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O(T−1) CONVERGENCE OF OPTIMISTIC-FOLLOW-THE-
REGULARIZED-LEADER IN TWO-PLAYER ZERO-SUM
MARKOV GAMES

Yuepeng Yang∗ Cong Ma∗

ABSTRACT

We prove that optimistic-follow-the-regularized-leader (OFTRL), together with smooth
value updates, finds an O(T−1)-approximate Nash equilibrium in T iterations for two-
player zero-sum Markov games with full information. This improves the Õ(T−5/6)
convergence rate recently shown in the paper by Zhang et al. (2022b). The refined analysis
hinges on two essential ingredients. First, the sum of the regrets of the two players, though
not necessarily non-negative as in normal-form games, is approximately non-negative in
Markov games. This property allows us to bound the second-order path lengths of the
learning dynamics. Second, we prove a tighter algebraic inequality regarding the weights
deployed by OFTRL that shaves an extra log T factor. This crucial improvement enables
the inductive analysis that leads to the final O(T−1) rate.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) (Busoniu et al., 2008; Zhang et al., 2021) models sequential
decision-making problems in which multiple agents/players interact with each other in a shared environment.
MARL has recently achieved tremendous success in playing games (Vinyals et al., 2019; Berner et al., 2019;
Brown & Sandholm, 2019), which, consequently, has spurred a growing body of work on MARL; see Yang
& Wang (2020) for a recent overview.

A widely adopted mathematical model for MARL is the so-called Markov games (Shapley, 1953; Littman,
1994), which combines normal-form games (Nash, 1951) with Markov decision processes (Puterman, 2014).
In a nutshell, a Markov game starts with a certain state, followed by actions taken by the players. The players
then receive their respective payoffs, as in a normal-form game, and at the same time the system transits to
a new state as in a Markov decision process. The whole process repeats. As in normal-form games, the goal
for each player is to maximize her own cumulative payoffs. We defer the precise descriptions of Markov
games to Section 2.

In the simpler normal-form games, no-regret learning (Cesa-Bianchi & Lugosi, 2006) has long been used as
an effective method to achieve competence in the multi-agent environment. Take the two-player zero-sum
normal-form game as an example. It is easy to show that standard no-regret algorithms such as follow-the-
regularized-leader (FTRL) reach an O(T−1/2)-approximate Nash equilibrium (Nash, 1951) in T iterations.
Surprisingly, the seminal paper Daskalakis et al. (2011) demonstrates that a special no-regret algorithm,
built upon Nesterov’s excessive gap technique (Nesterov, 2005), achieves a faster and optimal Õ(T−1) rate
of convergence to the Nash equilibrium. This nice and fast convergence was later established for optimistic
variants of mirror descent (Rakhlin & Sridharan, 2013) and FTRL (Syrgkanis et al., 2015). Since then,
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a flurry of research (Chen & Peng, 2020; Daskalakis et al., 2021; Anagnostides et al., 2022a;b; Farina
et al., 2022) has been conducted around optimistic no-regret learning algorithms to obtain faster rate of
convergence in normal-form games.

In contrast, research on the fast convergence of optimistic no-regret learning in Markov games has been
scarce. In this paper, we focus on two-player zero-sum Markov games—arguably the simplest Markov
game. Zhang et al. (2022b) recently initiated the study of the optimistic-follow-the-regularized-leader
(OFTRL) algorithm in such a setting and proved that OFTRL converges to an Õ(T−5/6)-approximate Nash
equilibrium after T iterations. In light of the faster O(T−1) convergence of optimistic algorithms in normal-
form games, it is natural to ask

After T iterations, can OFTRL find an O(T−1)-approximate Nash equilibrium in two-player zero-
sum Markov games?

In fact, this question has also been raised by Zhang et al. (2022b) in the Discussion section. More
promisingly, they have verified the fast convergence (i.e., O(T−1)) of OFTRL in a simple two-stage Markov
game; see Fig. 1 therein.

Our main contribution in this work is to answer this question affirmatively, through improving the Õ(T−5/6)
rate demonstrated in Zhang et al. (2022b) to the optimal O(T−1) rate. The improved rate for OFTRL arises
from two technical contributions. The first is the approximate non-negativity of the sum of the regrets of the
two players in Markov games. In particular, the sum is lower bounded by the negative estimation error of
the optimal Q-function; see Lemma 6 for the precise statement. This is in stark contrast to the two-player
zero-sum normal-form game (Anagnostides et al., 2022c) and the multi-player general-sum normal-form
game (Anagnostides et al., 2022b), in which by definition, the sum of the external/swap regrets are non-
negative. This approximate non-negativity proves crucial for us to control the second-order path length of the
learning dynamics induced by OFTRL. In a different context—time-varying zero-sum normal-form games,
Zhang et al. (2022a) also utilizes a sort of approximate non-negativity of the sum of the regrets. However,
the source of this gap from non-negativity is different: in Zhang et al. (2022a) it arises from the time-varying
nature of the zero-sum game, while in our case with Markov games, it comes from the estimation error of
the equilibrium pay-off matrix by the algorithm itself.

Secondly, central to the analysis in finite-horizon Markov decision processes (and also Markov games) is
the induction across the horizon. In our case, in order to carry out the induction step, we prove a tighter
algebraic inequality related to the weights deployed by OFTRL; see Lemma 4. In particular, we shave
an extra log T factor. Surprisingly, this seemingly harmless log T factor is the key to enabling the above-
mentioned induction analysis, and as a by-product, removes the extra log factor in the performance guarantee
of OFTRL.

Note that as an imperfect remedy, Zhang et al. (2022b) proposed a modified OFTRL algorithm that achieves
Õ(T−1) convergence to Nash equilibrium. However, compared to the vanilla OFTRL algorithm considered
herein, the modified version tracks two Q-functions, adopts a different Q-function update procedure that
can be more costly in certain scenarios, and more importantly diverges from the general policy optimization
framework proposed in Zhang et al. (2022b). Our work bridges these gaps by establishing the fast
convergence for the vanilla OFTRL.

Another line of algorithms used for solving Nash equilibrium is based on dynamic programming (Perolat
et al., 2015; Zhang et al., 2022b; Cen et al., 2021). Unlike the single-loop structure of OFTRL, the dynamic
programming approach requires a nested loop, with the outer-loop iterating over the horizons and the
inner-loops solving a sub-game through iterations. This requires more tuning parameters, one set for each
subproblem/layer. Such kind of extra tuning was documented in Cen et al. (2021). The nested nature of
dynamic programming also demands one to predetermine a precision ϵ and estimate the sub-game at each
horizon to precision ϵ/H . This is less convenient in practice compared to a single-loop algorithm like the
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OFTRL we study, where such predetermined precision is not necessary. Another recent paper Cen et al.
(2022) also discusses the advantages of single-loop algorithms over those with nested loops.

1.1 RELATED WORK

Optimistic no-regret learning in games. Our work is mostly related to the line of work on proving fast
convergence of optimistic no-regret algorithms in various forms of games. Daskalakis et al. (2011) provide
the first fast algorithm that reaches a Nash equilibrium at an Õ(T−1) rate in two-player zero-sum normal-
form games. Later, with the same setup, Rakhlin & Sridharan (2013) prove a similar fast convergence for
optimistic mirror descent (OMD). Syrgkanis et al. (2015) extend the results to multi-player general-sum
normal-form games. In addition, Syrgkanis et al. show that when all the players adopt optimistic algorithms,
their individual regret is at most O(T−3/4). This is further improved to O(T−5/6) in the special two-player
zero-sum case (Chen & Peng, 2020). More recently, via a detailed analysis of higher-order smoothness,
Daskalakis et al. (2021); Anagnostides et al. (2022a) manage to improve the individual regret guarantee of
optimistic hedge to Õ(T−1) in multi-player general-sum normal-form games, matching the result in the
two-player case. A similar result is shown by Anagnostides et al. (2022b) with a different analysis using
self-concordant barriers as the regularizer.

Several attempts have been made to extend the results on optimistic no-regret learning in normal-form
games to Markov games. Wei et al. (2021) design a decentralized algorithm based on optimistic gradient
descent / ascent that converges to a Nash equilibrium at an Õ(T−1/2) rate. Closest to us is the work by
Zhang et al. (2022b) which shows an Õ(T−5/6) convergence of OFTRL to the Nash equilibrium in two-
player zero-sum Markov games and an Õ(T−3/4) convergence to a coarse correlated equilibrium in multi-
player general-sum Markov games. Most recently, Erez et al. (2022) prove an O(T−1/4) individual regret
for OMD in multi-player general-sum Markov games.

Two-player zero-sum Markov games. Our work also fits into the study of two-player zero-sum Markov
games (Shapley, 1953; Littman, 1994). Various algorithms (Hu & Wellman, 2003; Littman, 1994; Zhao
et al., 2021; Cen et al., 2021) have been proposed in the full information setting, where one assumes the
players have access to the exact state-action value functions. In particular, Zhao et al. (2021); Cen et al.
(2021) use optimistic approaches for normal-form games as subroutines to extend the Õ(T−1) convergence
rates to two-player zero-sum Markov games. In particular, they provide last iterate convergence guarantees
as well. However, in doing so, their algorithms require one to approximately solve a normal-form game in
each iteration.

In the bandit setting, Bai & Jin (2020); Xie et al. (2020); Bai et al. (2020); Liu et al. (2021); Zhang et al.
(2020) study the sample complexity of two-player zero-sum Markov games. In addition, Sidford et al.
(2020); Jia et al. (2019); Zhang et al. (2020); Li et al. (2022) investigate the sample complexity under a
generative model where one can query the Markov game at arbitrary states and actions. Last but not least,
recently two-player zero-sum Markov games have been studied in the offline setting (Cui & Du, 2022; Yan
et al., 2022), where the learner is given a set of historical data, and cannot interact with Markov games
further.

2 PRELIMINARIES

This section provides the necessary background on Markov games and optimistic-follow-the-regularized-
leader (OFTRL).
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Two-player zero-sum Markov games. Denote by MG(H,S,A,B,P, r) a finite-horizon time-
inhomogeneous two-player zero-sum Markov game, with H the horizon, S the state space, A (resp. B)
the action space for the max-player (resp. min-player), P = {Ph}h∈[H] the transition probabilities, and
r = {rh}h∈[H] the reward function. We assume state space S and action spaces A,B to be finite and
have size S,A,B, respectively, and rh takes value in [0, 1]. Without loss of generality, we assume that the
game starts at a fixed state s1 ∈ S . Then at each step h, both players observe the current state sh ∈ S .
The max-player picks an action ah ∈ A and the min-player picks an action bh ∈ B simultaneously. Then
the max-player (resp. min-player) receives the reward rh(sh, ah, bh) (resp. −rh(sh, ah, bh)), and the game
transits to step h+1 with the next state sh+1 sampled from Ph(· | sh, ah, bh). The game ends after H steps.
The goal for the max-player is to maximize her total reward while the min-player seeks to minimize the total
reward obtained by the max-player.

Markov policies and value functions. Let µ = {µh}h∈[H] be the Markov policy for the max-player,
where µh(· | s) ∈ ∆A is the distribution of actions the max-player picks when seeing state s at step h. Here,
∆X denotes the set of all probability distributions on the space X . Similarly, the min-player is equipped
with a Markov policy ν = {νh}h∈[H]. We define the value function of the policy pair (µ, ν) at step h to be

V µ,ν
h (s) := Eµ,ν

[
H∑
i=h

r(si, ai, bi) | sh = s

]
,

where the expectation is taken w.r.t. the policies {µi, νi}i≥h and the state transitions {Pi}i≥h. Similarly,
one can define the Q-function as

Qµ,ν
h (s, a, b) := Eµ,ν

[
H∑
i=h

r(si, ai, bi) | sh = s, ah = a, bh = b

]
.

In words, both functions represent the expected future rewards received by the max-player given the current
state or state-action pair.

Best responses and Nash equilibria. Fix a Markov policy ν for the min-player. There exists a Markov
policy µ†(ν) (a.k.a. best response) such that for any s ∈ S and h ∈ [H],

V
µ†(ν),ν
h (s) = sup

µ†
V µ†,ν
h (s),

where the supremum is taken over all Markov policies. To simplify the notation, we denote V †,ν
h (s) :=

V
µ†(ν),ν
h (s). Similarly, we can define V µ,†

h (s). It is known that a pair (µ⋆, ν⋆) of Markov policies exists and
µ⋆, ν⋆ are best responses to the other, i.e., V µ⋆,ν⋆

h (s) = V †,ν⋆

h (s) = V µ⋆,†
h (s) for all s ∈ S and h ∈ [H].

Such a pair (µ⋆, ν⋆) is called a Nash equilibrium (NE). We may denote the value function and Q-function
under any Nash equilibrium (µ⋆, ν⋆) as

V ⋆
h := V µ⋆,ν⋆

h , Q⋆
h := Qµ⋆,ν⋆

h ,

which are known to be unique even if there are multiple Nash equilibria (Shapley, 1953). The goal of
learning in two-player zero-sum Markov games is to find an ε-approximation to the NE defined as follows.

Definition 1 (ε-approximate Nash equilibrium). Fix any approximation accuracy ε > 0. A pair (µ, ν) of
Markov policies is an ε-approximate Nash equilibrium if

NE-gap(µ, ν) := V †,ν
1 (s1)− V µ,†

1 (s1) ≤ ε. (1)
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Algorithm 1 Optimistic-follow-the-regularized-leader for solving two-player zero-sum Markov games
Input: Stepsize η, reward function r, probability transition function P.
Initialization: Q0

h ≡ 0 for all h ∈ [H].
For iteration 1 to T , do

• Policy Update: for all state s ∈ S, horizon h ∈ [H],

µt
h(a | s) ∝ exp

(
η

wt

[
t−1∑
i=1

wi

[
Qi

hν
i
h

]
(s, a) + wt

[
Qt−1

h νt−1
h

]
(s, a)

])
, (2a)

νth(b | s) ∝ exp

(
− η

wt

[
t−1∑
i=1

wi

[
(Qi

h)
⊤µi

h

]
(s, b) + wt

[
(Qt−1

h )⊤µt−1
h

]
(s, b)

])
. (2b)

• Value Update: for all s ∈ S, a ∈ A, b ∈ B, from h = H to 1,

Qt
h(s, a, b) = (1− αt)Q

t−1
h (s, a, b) + αt

(
rh + Ph

[
(µt

h+1)
⊤Qt

h+1ν
t
h+1

])
(s, a, b), (3)

Output average policy: for all s ∈ S, h ∈ [H]

µ̂h(· | s) :=
T∑

t=1

αt
Tµ

t
h(· | s), ν̂h(· | s) :=

T∑
t=1

αt
T ν

t
h(· | s). (4)

An interlude: additional notations. Before explaining OFTRL, we introduce some additional notations
to simplify things hereafter. Fix any h ∈ [H], s ∈ S. For any function Q : S×A×B → R, we may consider
Q(s, ·, ·) to be an A×B matrix and µh(· | s), νh(· | s) to be vectors of length A and B, respectively. Then
for any policy (µh, νh) at horizon h we may define[

µ⊤
hQνh

]
(s) := Ea∼µh(·|s),b∼νh(·|s)[Q(s, a, b)],[

µ⊤
hQ
]
(s, ·) := Ea∼µh(·|s)[Q(s, a, ·)],

[Qνh] (s, ·) := Eb∼νh(·|s)[Q(s, ·, b)].

The term
[
µ⊤
hQνh

]
(s) can also be written in the inner product form ⟨µh, Qνh⟩ (s) or

〈
νh, Q

⊤µh

〉
(s). It is

easy to check that for fixed s and h, the left hand sides of these definitions are standard matrix operations.
In addition, for any V : S 7→ R, we define the shorthand

[PhV ] (s, a, b) := Es′∼Ph(·|s,a,b)[V (s′)],

which allows us to rewrite Bellman updates of V and Q as

V µ,ν
h (s) =

[
µ⊤
hQ

µ,ν
h νh

]
(s),

Qµ,ν
h (s, a, b) = rh(s, a, b) +

[
PhV

µ,ν
h+1

]
(s, a, b).

Optimistic-follow-the-regularized-leader. Now we are ready to introduce the optimistic-follow-the-
regularized-leader (OFTRL) algorithm for solving two-player zero-sum Markov games, which has appeared
in the paper by Zhang et al. (2022b). See Algorithm 1 for the full specification.

In a nutshell, the algorithm has three main components. The first is the policy update (2) using weighted
OFTRL for both the max and min players. As one can see, compared to the standard follow-the-regularized-
leader algorithm, the weighted OFTRL adds a loss predictor [Qt−1νt−1](s, a) and deploys a weighted update
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according to the weights {wi}1≤i≤t, which we shall define momentarily. The second component is the
backward value update (3) using weighted average of the previous estimates and the Bellman updates. The
last essential part is outputting a weighted policy (4) over all the historical policies. As one can realize,
weights play a big role in specifying the OFTRL algorithm. In particular, we set

αt :=
H + 1

H + t
, αt

t := αt, αi
t := αi

t∏
j=i+1

(1− αj), wi :=
αi
t

α1
t

=
αi

α1

∏i
j=2(1− αj)

, (5)

which are the same choices as in the paper by (Zhang et al., 2022b).

3 MAIN RESULT AND OVERVIEW OF THE PROOF

With the preliminaries in place, we are in a position to state our main result for OFTRL in two-player
zero-sum Markov games.
Theorem 1. Consider Algorithm 1 with η = CηH

−2 for some constant Cη ≤ 1/8. The output policy pair
(µ̂, ν̂) satisfies

NE-gap(µ̂, ν̂) ≤
320C−1

η H5 · log(AB)

T
.

Several remarks on Theorem 1 are in order. First, Theorem 1 demonstrates that OFTRL can find an
O(T−1)-approximate Nash equilibrium in T iterations. This improves the Õ(T−5/6) rate proved in the
prior work (Zhang et al., 2022b), and also matches the empirical evidence provided therein. While the
paper by Zhang et al. (2022b) also provides a modified OFTRL algorithm that achieves an Õ(T−1) rate
by maintaining two separate value estimators (one for the max-player and the other for the min-player),
the OFTRL algorithm studied herein is more natural and also computationally simpler. Second, this rate is
nearly unimprovable even in the simpler two-player zero-sum normal-form games (Daskalakis et al., 2011).
It is also worth pointing out that algorithms with Õ(T−1) rate have been proposed in the literature (Cen
et al., 2021; Zhao et al., 2021). However, compared to those algorithms, OFTRL does not require one to
approximately solve a normal-form game in each iteration. Lastly, Theorem 1 allows any Cη ∈ (0, 1/8]
while Cη = 1/8 is optimal for the bound on NE-gap.

Before embarking on the formal proof, we would like to immediately provide an overview of our proof
techniques.

Step 1: controlling NE-gap using the sum of regrets and estimation error. In the simpler normal-form
game (i.e., without any state transition dynamics as in Markov games), it is well known that NE-gap is
controlled by the sum of the regrets of the two players. This would also be the case for Markov games if
in the policy update (2) by OFTRL, we use the true Q-function Q⋆

h instead of the estimate Qt
h. As a result,

intuitively, the NE-gap in Markov games should be controlled by both the sum of the regrets of the two
players and also the estimation error ∥Qt

h −Q⋆
h∥∞; see Lemma 1.

Step 2: bounding the sum of regrets. Given the extensive literature on regret guarantees for optimistic
algorithms (Anagnostides et al., 2022c;b; Zhang et al., 2022b), it is relatively easy to control the sum of the
regrets to obtain the desired O(T−1) rate; see Lemma 2. The key is to exploit the stability in the loss vectors.

Step 3: bounding estimation error. It then boils down to controlling the estimation error ∥Qt
h −Q⋆

h∥∞,
in which our main technical contributions lie. Due to the nature of the Bellman update (3), it is not hard to
obtain a recursive relation for the estimation error; see the recursion (17). However, the undesirable part is
that the estimation error depends on the maximal regret between the two players, instead of the sum of the
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regrets. This calls for technical innovation. Inspired by the work of Anagnostides et al. (2022c;b) in normal-
form games, we make an important observation that the sum of the regrets is approximately non-negative.
In particular, the sum is lower bounded by the negative estimation error ∥Qt

h − Q⋆
h∥∞; see Lemma 6.

This lower bound together with the upper bound in Step 2 allows us to control the maximal regret via the
estimation error (19), which further yields a recursive relation (20) involving estimation errors only. Solving
the recursion leads to the desired result.

4 PROOF OF THEOREM 1

In this section, we present the proof of our main result, i.e., Theorem 1. We first define a few useful
notations. For each step h ∈ [H], each state s ∈ S, and each iteration t ∈ [T ], we define the state-wise
weighted individual regret as

regth,1(s) := max
µ†∈∆A

t∑
i=1

αi
t

〈
µ† − µi

h, Q
i
hν

i
h

〉
(s), (6a)

regth,2(s) := max
ν†∈∆B

t∑
i=1

αi
t

〈
νih − ν†, (Qi

h)
⊤µi

h

〉
(s). (6b)

We also define the maximal regret as

regth := max
s∈S

max
i=1,2

{
regth,i(s)

}
,

that maximizes over the players and the states. In addition, for each step h ∈ [H], and each iteration t ∈ [T ],
we define the estimation error of the Q-function as

δth := ∥Qt
h −Q⋆

h∥∞.

With these notations in place, we first connect the NE-gap with the sum of regrets regTh,1(s) + regTh,2(s) as
well as the estimation error δth.

Lemma 1. One has

NE-gap(µ̂, ν̂) ≤ 2

H∑
h=1

{
max

s

{
regTh,1(s) + regTh,2(s)

}
+ 2

T∑
t=1

αt
T δ

t
h

}
.

See Section B.1 for the proof of this lemma.

It then boils down to controlling maxs

{
regTh,1(s) + regTh,2(s)

}
and

∑T
t=1 α

t
T δ

t
h. The following two

lemmas provide such control.
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Lemma 2. For every h ∈ [H], every s ∈ S, and every iteration t ∈ [T ], one has

regth,1(s) ≤
2H · (logA)

ηt
+

16ηH3

t
+ 2ηH2

t∑
i=2

αi
t∥νih(· | s)− νi−1

h (· | s)∥21 (7a)

− 1

8η

t∑
i=2

αi−1
t ∥µi

h(· | s)− µi−1
h (· | s)∥21;

regth,2(s) ≤
2H · (logB)

ηt
+

16ηH3

t
+ 2ηH2

t∑
i=2

αi
t∥µi

h(· | s)− µi−1
h (· | s)∥21 (7b)

− 1

8η

t∑
i=2

αi−1
t ∥νih(· | s)− νi−1

h (· | s)∥21.

As a result, when η = CηH
−2 for some constant Cη ≤ 1/8, one has

max
s

{
regth,1(s) + regth,2(s)

}
≤

3C−1
η H3 · log(AB)

t
− 4ηH3

t∑
i=2

αi
t

(
∥µi

h(· | s)− µi−1
h (· | s)∥21 (8)

+ ∥νih(· | s)− νi−1
h (· | s)∥21

)
.

See Section B.2 for the proof of this lemma.

Lemma 3. Choosing η = CηH
−2 for some constant Cη ≤ 1/8, for all h ∈ [H] and t ∈ [T ], we have that

δth ≤
5e2C−1

η H4 · log(AB)

t
.

See Section B.3 for the proof of this lemma.

Combine Lemmas 2-3 with Lemma 1 to arrive at the desired conclusion that when η = CηH
−2 for some

constant Cη ≤ 1/8,

NE-gap(µ̂, ν̂) ≤ 2

H∑
h=1

{
max

s

{
regTh,1(s) + regTh,2(s)

}
+ 2

T∑
t=1

αt
T δ

t
h

}

≤ 2

H∑
h=1

{
3C−1

η H3 · log(AB)

T
+ 2

T∑
t=1

αt
T

5e2C−1
η H4 · log(AB)

t

}

≤ 2H ·

{
3C−1

η H3 · log(AB)

T
+

20e2C−1
η H4 · log(AB)

T

}

≤
320C−1

η H5 · log(AB)

T
,

where the penultimate inequality uses the following important lemma we have alluded to before.
Lemma 4. For all t ≥ 1, one has

t∑
i=1

αi
t ·

1

i
≤
(
1 +

1

H

)
1

t
. (9)
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On the surface, this lemma shaves an extra log t factor from a simple average of the sequence {1/i}i≤t

(cf. Lemma A.3 in the paper by Zhang et al. (2022b)). But more importantly, it shines in the ensuing proof
of Lemma 3 by enabling the induction step. See Section B.4 for the proof of Lemma 4, and see the end of
Section B.3 for the comment on the benefit of this improved result.

5 DISCUSSION

In this paper, we prove that the optimistic-follow-the-regularized-leader algorithm, together with smooth
value updates, converges to an O(T−1)-approximate Nash equilibrium in two-player zero-sum Markov
games. This improves the Õ(T−5/6) rate proved in the paper Zhang et al. (2022b). Quite a few interesting
directions are open. Below we single out a few of them. First, although our rate is unimprovable in the
dependence on T , it is likely sub-optimal in its dependence on the horizon H . Improving such dependence
and proving any sort of lower bound on it are both interesting and important for finite-horizon Markov
games. Second, we focus on the simple two-player zero-sum games. It is an important open question to see
whether one can generalize the proof technique herein to the multi-player general-sum Markov games and
to other solution concepts in games (e.g., coarse correlated equilibria, and correlated equilibria).
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A PROPERTIES OF αi
t

This section collects a few useful properties of the sequences {αt}t≥1 and {αi
t}t≥1,1≤i≤t. Some of these

results have appeared in prior work (Jin et al., 2018; Zhang et al., 2022b). For completeness, we include all
the proofs here.
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To help reading, we repeat the definitions below: for each t ≥ 1, and 1 ≤ i ≤ t, we define

αt = αt
t =

H + 1

H + t
, and (10a)

αi
t = αi

t∏
j=i+1

(1− αj). (10b)

Lemma 5. Fix any t ≥ 1. The following properties are true:

1. The sequence {αi
t}1≤i≤t sums to 1, i.e.,

∑t
i=1 α

i
t = 1.

2. For all 1 ≤ i ≤ t, one has αi
t ≤ i/t.

3. For the relative weight defined by wi = αi
t/α

1
t (note that this is the same for every t ≥ i), we have

wi

wi−1
=

αi
t

αi−1
t

=
H + i− 1

i− 1
≤ H.

4. The sequence {αi
t}1≤i≤t is increasing in i.

5. On the sum of squares of the weights, we have
t∑

i=1

(αi
t)

2 ≤
t∑

i=1

α2
i ≤ H + 2.

6. For any non-increasing sequence {bi}1≤i≤t, one has

t∑
i=1

αi
tbi ≤

1

t

t∑
i=1

bi.

Proof. Property 1 follows directly from the definitions of
{
αi
t

}
1≤i≤t

.

Now we move on to Property 2. It trivially holds for i = t. Therefore we focus on the case when 1 ≤ i ≤
t− 1. By definition, we have

αi
t = αi

t∏
j=i+1

(1− αj) ≤
t∏

j=i+1

(1− αj) =

t∏
j=i+1

j − 1

H + j
. (11)

where the inequality holds since αi ≤ 1 for all 1 ≤ i ≤ t, and the last relation is the definition of αj .
Expanding the right hand side of (11), we have

αi
t ≤

i

H + i+ 1
× i+ 1

H + i+ 2
× · · · × t− 1

H + t
≤ i

H + t
,

where we only keep the first numerator and the last denominator. Property 2 then follows.

Property 3 is trivial. Hence we omit the proof. In addition, Property 3 implies Property 4 since αi
t

αi−1
t

=
H+i−1
i−1 ≥ 1.
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For Property 5, the first inequality holds since 0 ≤ αi ≤ 1 for all 1 ≤ i ≤ t. For the second inequality, one
has

t∑
i=1

α2
i = 1 +

t∑
i=2

(
H + 1

H + i

)2

≤ 1 + (H + 1)2
t∑

i=2

(
1

(H + i− 1)(H + i)

)
.

Expanding this as a telescoping sum, we see that

t∑
i=1

α2
i ≤ 1 + (H + 1)2

t∑
i=2

(
1

H + i− 1
− 1

H + i

)
≤ 1 + (H + 1)2

1

H + 1

= H + 2.

Lastly, for Property 6, we have
t∑

i=1

αi
tbi −

1

t

t∑
i=1

bi =

t∑
i=1

(αi
t −

1

t
)bi.

Let i0 := supi
{
αi
t ≤ 1/t

}
. Since {αi

t} is increasing in i (cf. Property 4) and
∑t

i=1 α
i
t = 1 (cf. Property

1), we know that i0 is well defined, i.e., 1 ≤ i0 ≤ t. Since
{
αi
t

}
i≤t

(resp. {bi}i≤t) is increasing (resp. non-
increasing), we have αi

t ≤ 1/t and bi ≥ bi0 for all i ≤ i0. As a result, we obtain (αi
t−1/t)bi ≤ (αi

t−1/t)bi0
for all i ≤ i0. Similarly, one has αi

t > 1/t and bi ≤ bi0 for all i > i0, which implies (αi
t − 1/t)bi ≤

(αi
t − 1/t)bi0 for all i > i0. Take these two relations together to see that

t∑
i=1

(αi
t − 1/t)bi ≤

t∑
i=1

(αi
t − 1/t)bi0 = 0,

where the last equality uses the fact from Property 1, namely
∑t

i=1 α
i
t = 1.

B PROOF OF SUPPORTING LEMMAS IN SECTION 4

B.1 PROOF OF LEMMA 1

Invoke Lemma C.1 in the paper by Zhang et al. (2022b) to obtain

NE-gap(µ̂, ν̂) = V †,ν̂
1 (s1)− V ⋆

1 (s1) + V ⋆
1 (s1)− V µ̂,†

1 (s1)

≤ 2

H∑
h=1

max
s

{
max
µ†,ν†

[〈
µ†, Q⋆

hν̂h
〉
−
〈
ν†, Q⋆⊤

h µ̂h

〉]
(s)

}
.

By the definition of the output policy (µ̂, ν̂), one has

max
µ†,ν†

[〈
µ†, Q⋆

hν̂h
〉
−
〈
ν†, Q⋆⊤

h µ̂h

〉]
(s) = max

µ†,ν†

T∑
t=1

αt
T

[〈
µ†, Q⋆

hν
t
h

〉
−
〈
ν†, Q⋆⊤

h µt
h

〉]
(s).
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Replacing the true value function Q⋆
h with the value estimate Qt

h yields

max
µ†,ν†

[
⟨µ,Q⋆

hν̂h⟩ −
〈
ν†, (Q⋆

h)
⊤µ̂h

〉]
(s) ≤ max

µ†,ν†

T∑
t=1

αt
T

[〈
µ†, Qt

hν
t
h

〉
−
〈
ν†, (Qt

h)
⊤µt

h

〉]
(s) + 2

T∑
t=1

αt
T δ

t
h,

where we recall δth = ∥Qt
h −Q⋆

h∥∞. The proof is finished by taking the above three relations together with
the observation that

regTh,1(s) + regTh,2(s) = max
µ†,ν†

T∑
t=1

αt
T

[〈
µ†, Qt

hν
t
h

〉
−
〈
ν†, (Qt

h)
⊤µt

h

〉]
(s).

B.2 PROOF OF LEMMA 2

We prove the regret bound for the max-player (i.e., bound (7a)). The bound (7b) for the min-player can be
obtained via symmetry.

First, we make the observation that, the policy update in Algorithm 1 for the max-player is exactly
the OFTRL algorithm (i.e., Algorithm 4 in the paper by Zhang et al. (2022b)) with the loss vector
gt = wt[Q

t
hν

t
h](s, ·), the recency bias Mt = wt[Q

t−1
h νt−1

h ](s, ·), and a learning rate ηt = η/wt. Therefore,
we can apply Lemma B.3 from Zhang et al. (2022b) to obtain

regth,1(s) = max
µ†

t∑
i=1

αi
t

〈(
µ† − µi

h

)
, Qi

hν
i
h

〉
(s)

= α1
t max

µ†

t∑
i=1

wi

〈(
µ† − µi

h

)
, Qi

hν
i
h

〉
(s)

≤ αt · (logA)

η
+ α1

t

t∑
i=1

η

wi

∥∥[wiQ
i
hν

i
h − wiQ

i−1
h νi−1

h

]
(s, ·)

∥∥2
∞︸ ︷︷ ︸

=:Err1

(12)

− α1
t

t∑
i=2

wi−1

8η
∥µi

h(· | s)− µi−1
h (· | s)∥21︸ ︷︷ ︸

=:Err2

, (13)

where we have used the fact that wi = αi
t/α

1
t . We now move on to bound the term Err1. Use (a + b)2 ≤

2a2 + 2b2 to see that∥∥[Qi
hν

i
h −Qi−1

h νi−1
h

]
(s, ·)

∥∥2
∞ ≤ 2

∥∥[Qi
hν

i
h −Qi−1

h νih
]
(s, ·)

∥∥2
∞ + 2

∥∥[Qi−1
h νih −Qi−1

h νi−1
h

]
(s, ·)

∥∥2
∞

≤ 2∥Qi
h −Qi−1

h ∥2∞ + 2H2∥νih(· | s)− νi−1
h (· | s)∥21,

where the second line uses Holder’s inequality and the fact that ∥Qi−1
h ∥∞ ≤ H . In view of the update

rule (3) for the Q-function, we further have

∥Qi
h −Qi−1

h ∥∞ =
∥∥−αiQ

i−1
h + αi

(
rh + Ph

[
(µi

h+1)
⊤Qi

h+1ν
i
h+1

])∥∥
∞

≤ αi max
{∥∥Qi−1

h

∥∥
∞ ,
∥∥rh + Ph

[
(µi

h+1)
⊤Qi

h+1ν
i
h+1

]∥∥
∞

}
≤ αiH.
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As a result, we arrive at the bound

Err1 ≤ 2ηα1
t

t∑
i=1

wi

(
α2
iH

2 +H2∥νih(· | s)− νi−1
h (· | s)∥21

)
= 2ηH2

t∑
i=1

αi
tα

2
i + 2ηH2

t∑
i=1

αi
t∥νih(· | s)− νi−1

h (· | s)∥21,

where we again use the relation wi = αi
t/α

1
t . Since {αi}i≤t is decreasing in i, we can apply Property 6 in

Lemma 5 to obtain
t∑

i=1

αi
tα

2
i ≤ 1

t

t∑
i=1

α2
i ≤ H + 2

t
≤ 3H

t
,

where the second inequality follows from Property 5 in Lemma 5. In all, we see that

Err1 ≤ 6ηH3

t
+ 2ηH2

t∑
i=1

αi
t

∥∥νih(· | s)− νi−1
h (· | s)

∥∥2
1
. (14)

Substitute the upper bound (14) for Err1 into the master bound (12) to obtain

regth,1(s) ≤
αt · (logA)

η
+ Err1 − Err2

≤ 2H · (logA)

ηt
+

6ηH3

t
+ 2ηH2

t∑
i=1

αi
t∥νih(· | s)− νi−1

h (· | s)∥21

− 1

8η

t∑
i=2

αi−1
t ∥µi

h(· | s)− µi−1
h (· | s)∥21,

where in the first inequality we use αt = (H + 1)/(H + t) ≤ 2H/t. Since ∥νih(· | s) − νi−1
h (· | s)∥1 ≤ 2

and α1
t ≤ 1/t (see Property 2 of Lemma 5), we can take the term i = 1 out and reach

regth,1(s) ≤
2H · (logA)

ηt
+

16ηH3

t
+ 2ηH2

t∑
i=2

αi
t∥νih(· | s)− νi−1

h (· | s)∥21

− 1

8η

t∑
i=2

αi−1
t ∥µi

h(· | s)− µi−1
h (· | s)∥21.

This finishes the proof of the regret bound (7a) for the max-player. The bound (7b) for the min-player can
be obtained via symmetry.

Combine the two bounds (7a) and (7b) see that

regth,1(s) + regth,2(s) ≤
2H · log(AB)

ηt
+

32ηH3

t

+

t∑
i=2

(
2ηH2αi

t −
αi−1
t

8η

)(
∥µi

h(· | s)− µi−1
h (· | s)∥21 (15)

+ ∥νih(· | s)− νi−1
h (· | s)∥21

)
. (16)
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When η ≤ 1/(8H2), one has

2ηH2αi
t −

αi−1
t

8η
≤ 2ηH3αi

t −
αi−1
t

8η
≤ −4ηH3αi

t,

where we have used Property 3 of Lemma 5, i.e., αi−1
t /αi

t ≥ 1/H . Consequently, with η = CηH
−2 for

some constant Cη ≤ 1/8, the bound (16) reads

max
s

{
regth,1(s) + regth,2(s)

}
≤

3C−1
η H3 · log(AB)

t
− 4ηH3

t∑
i=2

αi
t

(
∥µi

h(· | s)− µi−1
h (· | s)∥21

+ ∥νih(· | s)− νi−1
h (· | s)∥21

)
,

where we assume the choice of players is non-trivial, i.e., AB ≥ 2.

B.3 PROOF OF LEMMA 3

By Lemma C.2 in the paper by Zhang et al. (2022b), for any h ∈ [H − 1], we have the recursive relation

δth ≤
t∑

i=1

αi
tδ

i
h+1 + regth+1, (17)

where we recall regth+1 = maxs maxi=1,2{regth+1,i(s)}.

Step 1: Bounding regth+1. In view of this recursion (17), one needs to control the maximal regret regth+1

over the two players. Lemma 2 provides us with precise control of the individual regrets regth,1(s) and
regth,2(s):

regth,1(s) ≤
3C−1

η H3 · (logAB)

t
+ 2ηH2

t∑
i=2

αi
t∥νih(· | s)− νi−1

h (· | s)∥21, (18a)

regth,2(s) ≤
3C−1

η H3 · (logAB)

t
+ 2ηH2

t∑
i=2

αi
t∥µi

h(· | s)− µi−1
h (· | s)∥21, (18b)

where we have substituted η = CηH
−2 for Cη ≤ 1/8 and AB ≥ 2. We have also ignored the negative

terms on the right hand sides of (7a) and (7b). Therefore, to control individual regrets, it suffices to bound the
second-order path lengths 2ηH2

∑t
i=2 α

i
t∥µi

h(· | s)−µi−1
h (· | s)∥21 and 2ηH2

∑t
i=2 α

i
t∥νih(· | s)−νi−1

h (· |
s)∥21. To this end, the following lemma proves crucial, whose proof is deferred to the end of this section.

Lemma 6. For each t, h and s, one has

regth,1(s) + regth,2(s) ≥ −2

t∑
i=1

αi
tδ

i
h.

In words, Lemma 6 reveals the approximate non-negativity of the sum of the regrets. This together with the
upper bound (8) in Lemma 2 implies

2ηH2
t∑

i=2

(
αi
t∥µi

h(· | s)− µi−1
h (· | s)∥21 + ∥νih(· | s)− νi−1

h (· | s)∥21
)

≤
3C−1

η H2 · log(AB)

2t
+

1

H

t∑
i=1

αi
tδ

i
h.
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Feeding this back to (18a) and (18b), we obtain

regth = max
s

max
i=1,2

{
regth,i(s)

}
≤

5C−1
η H3 · log(AB)

t
+

1

H

t∑
i=1

αi
tδ

i
h. (19)

Step 2: Bounding δth. Substituting the maximal regret bound (19) into the recursion (17), we arrive at

δth ≤
(
1 +

1

H

) t∑
i=1

αi
tδ

i
h+1 +

5C−1
η H3 · log(AB)

t
. (20)

We continue the proof of Lemma 3 via induction on h. More precisely, we aim to inductively establish the
claim

δth ≤
H∑

h′=h

(
1 +

1

H

)2(H−h′)

·
5C−1

η H3 · log(AB)

t
. (21)

First note that the induction hypothesis holds naturally for h = H as δtH = 0 for all 1 ≤ t ≤ T . Now
assume that the induction hypothesis is true for some 2 ≤ h+ 1 ≤ H and for all 1 ≤ t ≤ T . Our goal is to
show that (21) continues to hold for the previous step h and for all 1 ≤ t ≤ T . By the recursion (20) and the
induction hypothesis, one has for any 1 ≤ t ≤ T :

δth ≤
(
1 +

1

H

) t∑
i=1

αi
tδ

i
h+1 +

5C−1
η H3 · log(AB)

t

≤
(
1 +

1

H

) t∑
i=1

αi
t

(
H∑

h′=h+1

(
1 +

1

H

)2(H−h′)

·
5C−1

η H3 · log(AB)

t

)
+

5C−1
η H3 · log(AB)

t
.

Apply Lemma 4 to obtain
t∑

i=1

αi
t ·

5C−1
η H3 · log(AB)

i
≤
(
1 +

1

H

)
5C−1

η H3 · log(AB)

t
.

This leads to the conclusion that

δth ≤
(
1 +

1

H

) H∑
h′=h+1

(
1 +

1

H

)2(H−h′)(
1 +

1

H

)
5C−1

η H3 · log(AB)

t
+

5C−1
η H3 · log(AB)

t

=

H∑
h′=h+1

(
1 +

1

H

)2(H−h′+1) 5C−1
η H3 · log(AB)

t
+

5C−1
η H3 · log(AB)

t

=

H∑
h′=h

(
1 +

1

H

)2(H−h′) 5C−1
η H3 · log(AB)

t
.

This finishes the induction.

This bound on δth can be further simplified by

δth ≤
H∑

h′=h

(
1 +

1

H

)2(H−h′)

·
5C−1

η H3 · log(AB)

t

≤ H

(
1 +

1

H

)2H

·
5C−1

η H3 · log(AB)

t

≤
5e2C−1

η H4 · log(AB)

t
.
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This finishes the proof, and we are left with proving Lemma 6.

Proof of Lemma 6. Recall that

regth,1(s) + regth,2(s) = max
µ†,ν†

t∑
i=1

αi
t

[〈
µ†, Qi

hν
i
h

〉
−
〈
ν†, (Qi

h)
⊤µi

h

〉]
(s).

Replace the estimation Qi
h with Q⋆

h to obtain

regth,1(s) + regth,2(s) ≥ max
µ†,ν†

[
t∑

i=1

αi
t

[〈
µ†, Q⋆

hν
i
h

〉
−
〈
ν†, (Q⋆

h)
⊤µi

h

〉]
(s)

+

t∑
i=1

αi
t

[〈
µ†,
(
Qi

h −Q⋆
h

)
νih
〉
−
〈
ν†,
(
Qi

h −Q⋆
h

)⊤µi
h

〉]
(s)

]
.

Lower bounding the term involving Qi
h −Q⋆

h yields

regth,1(s) + regth,2(s) ≥ max
µ†,ν†

[
t∑

i=1

αi
t

[〈
µ†, Q⋆

hν
i
h

〉
−
〈
ν†, (Q⋆

h)
⊤µi

h

〉]
(s)

]
− 2

t∑
i=1

αi
tδ

i
h.

where recall δih = ∥Qi
h − Q⋆

h∥∞. Now observe that
∑t

i=1 α
i
tµ

i
h(· | s) and

∑t
i=1 α

i
tν

i
h(· | s) are valid

policies, which implies

max
µ†,ν†

[
t∑

i=1

αi
t

[〈
µ†, Q⋆

hν
i
h

〉
−
〈
ν†, (Q⋆

h)
⊤µi

h

〉]
(s)

]

= max
µ†,ν†

[〈
µ†, Q⋆

h

(
t∑

i=1

αi
tν

i
h

)〉
(s)−

〈
ν†, Q⋆⊤

h

(
t∑

i=1

αi
tµ

i
h

)〉
(s)

]

≥

〈(
t∑

i=1

αi
tµ

i
h

)
, Q⋆

h

(
t∑

i=1

αi
tν

i
h

)〉
(s)−

〈(
t∑

i=1

αi
tν

i
h

)
, Q⋆⊤

h

(
t∑

i=1

αi
tµ

i
h

)〉
(s)

= 0.

Combine the above two inequalities to finish the proof.

In the end, it is worth pointing out that without the improved inequality in Lemma 4, one would necessarily
incur an extra log T factor in each induction step. Consequently, the recursion will fail due to the explosion
at a rate of (log T )H .

B.4 PROOF OF LEMMA 4

We prove the claim via induction. The base case t = 1 is true since α1
1 · 1 = 1 ≤ 1 + 1/H . Now assume

that the inequality (9) holds for some t ≥ 1, and we aim to prove that it continues to hold at t+ 1. We first
make the observation that for all i ≤ t

αi
t+1 = αi

t+1∏
j=i+1

(1− αj) = (1− αt+1)αi

t∏
j=i+1

(1− αj) = (1− αt+1)α
i
t.
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This allows us to rewrite
∑t+1

i=1 α
i
t+1 · 1

i as

t+1∑
i=1

αi
t+1 ·

1

i
= (1− αt+1)

(
t∑

i=1

αi
t ·

1

i

)
+ αt+1 ·

1

t+ 1

≤ (1− αt+1)

(
1 +

1

H

)
1

t
+

αt+1

t+ 1
,

where the second line follows from the induction hypothesis. Note that αt+1 = H+1
H+t+1 . We can continue

the derivation as
t+1∑
i=1

αi
t+1 ·

1

i
≤
(
1 +

1

H

)
t

H + t+ 1
· 1
t
+

H + 1

H + t+ 1
· 1

t+ 1

=

(
1 +

1

H

)
t+ 1

H + t+ 1
· 1

t+ 1
+

(
1 +

1

H

)
H

H + t+ 1
· 1

t+ 1

=

(
1 +

1

H

)
1

t+ 1
.

This finishes the proof.
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