
3D Diffuser Actor: Policy Diffusion with 3D Scene Representations

Tsung-Wei Ke†, Nikolaos Gkanatsios†, Katerina Fragkiadaki

3d-diffuser-actor.github.io

Abstract— We marry diffusion policies and 3D scene repre-
sentations for robot manipulation. Diffusion policies learn the
action distribution conditioned on the robot and environment
state using conditional diffusion models. They have recently
shown to outperform both deterministic and alternative state-
conditioned action distribution learning methods. 3D robot
policies use 3D scene feature representations aggregated from a
single or multiple camera views using sensed depth. They have
shown to generalize better than their 2D counterparts across
camera viewpoints. We unify these two lines of work and present
3D Diffuser Actor, a neural policy architecture that, given a
language instruction, builds a 3D representation of the visual
scene and conditions on it to iteratively denoise 3D rotations
and translations for the robot’s end-effector. At each denoising
iteration, our model represents end-effector pose estimates as 3D
scene tokens and predicts the 3D translation and rotation error
for each of them, by featurizing them using 3D relative attention
to other 3D visual and language tokens. 3D Diffuser Actor sets a
new state-of-the-art on RLBench with an absolute performance
gain of 18.1% over the current SOTA on a multi-view setup
and an absolute gain of 13.1% on a single-view setup. On the
CALVIN benchmark, it outperforms the current SOTA in the
setting of zero-shot unseen scene generalization by being able
to successfully run 0.2 more tasks, a 7% relative increase. It
also works in the real world from a handful of demonstrations.
We ablate our model’s architectural design choices, such as
3D scene featurization and 3D relative attentions, and show
they all help generalization. Our results suggest that 3D scene
representations and powerful generative modeling are keys to
efficient robot learning from demonstrations.

I. INTRODUCTION

Many robot manipulation tasks are inherently multimodal:
at any point during task execution, there may be multiple
actions which yield task-optimal behavior. A natural choice
is then to treat policy learning as a distribution learning
problem conditioned on the current robot state [1], [2], [3],
[4]. Recent works use diffusion models for learning action
distributions from demonstrations [5], [6], [7] and outperform
deterministic or other alternatives [8], [9], [4], [10]. They
exhibit better action distribution coverage and higher fidelity
(less mode hallucination) than alternative formulations [5].
They have so far been used with low-dimensional engineered
state representations [5] or 2D image encodings [6].

Lifting features from perspective views to a bird’s eye view
(BEV) or 3D robot workspace map has shown strong results
in robot learning [13], [14], [15], [16]. Our conjecture is that
this improved performance comes from the fact that the 3D
visual scene content and the robot’s end-effector poses live

†Equal contribution
Carnegie Mellon University
{tsungwek,ngkanats,katef}@cs.cmu.edu

Fig. 1: 3D Diffuser Actor sets a new state-of-the-art on
RLBench [11] on a multi-view setup (PerAct) and on
CALVIN [12] on a zero-shot long-horizon setup (ABC-D).

in a common 3D space. BEV or 3D policy formulations e.g.,
Transporter Networks [17], [18], C2F-ARM [14], PerAct [13],
Act3D [16] and RVT [15], discretize the robot’s workspace
for localizing the robot’s end-effector. Such 3D policies have
not been combined yet with diffusion objectives.

In this paper, we propose 3D Diffuser Actor, a model that
marries diffusion policies for handling action multimodality
and 3D scene encodings for effective spatial reasoning. 3D
Diffuser Actor is a denoising neural network that takes as
input a 3D scene, the current estimate of the end-effector’s
future trajectory (3D location and orientation), as well as
the diffusion iteration index, and predicts the error in 3D
translation and rotation. Our model achieves translation
equivariance in prediction by representing the current estimate
of the robot’s end-effector trajectory as 3D scene tokens and
featurizing them jointly with the visual tokens using relative-
position 3D attentions [19], [20], as shown in Figure 2.

We test 3D Diffuser Actor in learning from demonstrations
on the simulation benchmarks of RLBench [11] and CALVIN
[12], as well as in the real world. Our model sets a new state-
of-the-art on RLBench, outperforming existing 3D policies
and 2D diffusion policies with an 18.1% absolute gain. On
CALVIN, it outperforms the current SOTA in the setting
of zero-shot unseen scene generalization by a 7% relative
gain (Figure 1). We additionally show that 3D Diffuser Actor
outperforms all existing policy formulations that either do not
use 3D scene representations or do not use action diffusion.
We further show 3D Diffuser Actor can learn multi-task
manipulation in the real world from few demonstrations.
Videos, code and checkpoints are available on our website.

3d-diffuser-actor.github.io
3d-diffuser-actor.github.io

𝐚!~𝑁(0, 𝐼) 𝐚!"# 𝐚$ 𝐚#

“Open the middle drawer”

Image
Encoder

Language
Encoder

3D Relative
Transformer

Denoising step

𝑡

(b) Denoising process

(a) 3D Diffuser Actor model architecture

Proprioception
(action history)

Trajectory prediction 𝐚%

𝐚&"#

…

End-effector
estimate 𝐚!

3D visual
feature tokens 𝑜

Language
feature tokens 𝑙

Denoise

𝜖"
#$%, 𝜖"&$! 𝜖"

#$%, 𝜖"&$! 𝜖"
#$%, 𝜖"&$!

𝜖!
"#$(𝑜, 𝑙, 𝑐, 𝐚% , 𝑡)

𝜖!
&#%(𝑜, 𝑙, 𝑐, 𝐚% , 𝑡)

𝑓!
#"'((𝑜, 𝑙, 𝑐	𝐚% , 𝑡)

𝑐

Fig. 2: 3D Diffuser Actor is a diffusion model of the robot 3D trajectory conditioned on sensory input, language goals and
action history. It outputs position and rotation residuals for denoising, as well as the end-effector’s state (open/close). During
inference, it iteratively denoises the current estimate for the robot’s future trajectory, starting from pure noise.

II. METHOD

3D Diffuser Actor (Figure 2) is a conditional diffusion
model that takes as input visual observations, a language
instruction, a short history of the robot’s end-effectors and
the current estimate for the robot’s future action trajectory,
and predicts the error in the end-effector’s 3D translations
and 3D orientations for each predicted timestep.
Observation space and action representation 3D Diffuser
Actor is trained on demonstrations of successful trajectories in
the form of {(o1,a1), (o2,a2), ...}, accompanied with a task
language description [21], [13], [16], [22]. Each observation
o comprises a set of posed RGB-D images. Each action
a describes an end-effector pose and is decomposed into
3D position, 3D orientation and a binary open/closed state:
a = {apos ∈ R3,arot ∈ R6,aopen ∈ {0, 1}}. We represent
rotations using the 6D rotation representation of [23] to avoid
the discontinuities of the quaternion representation.
Keyposes 3D Diffuser Actor inherits the temporal abstraction
of demonstrations into end-effector keyposes [21], [13], [24]
(Appendix, Section C). During inference, 3D Diffuser Actor
can either predict and execute the full trajectory of actions up
to the next keypose (including the keypose), or just predict
the next keypose and use a sampling-based motion planner
to reach it, similar to previous works [13], [25], [16]. In the
rest of this section we use the term “trajectory" to refer to
3D Diffuser Actor’s output. Keypose prediction is a special
case where the trajectory contains only one future pose.
Scene and language encoder We use a scene and language
encoder similar to [16], [26]. The input is a set of posed
RGB-D images. We first extract multi-scale visual tokens for

each camera view using a pre-trained 2D feature extractor
and a feature pyramid network [27]. Next, we associate every
2D feature grid location in the 2D feature maps with a depth
value, by averaging the depth values of the image pixels that
correspond to it. We use camera intrinsics and the pinhole
camera equation to map a pixel location and depth value
(x, y, d) to a 3D location (X,Y, Z), and “lift” the 2D feature
tokens to 3D, to obtain a 3D feature cloud. The language
encoder maps language task descriptions or instructions
into language feature tokens. We use the pre-trained CLIP
ResNet50 2D image encoder [28] to encode each RGB image
into a 2D feature map and the pre-trained CLIP language
encoder to featurize the language task instruction.

3D Relative Position Denoising Transformer 3D Diffuser
Actor iteratively denoises an estimate of the end-effector’s
future trajectory. Every trajectory step token is a 10D action,
as defined earlier. We project each such action into a high-
dimensional representation through an MLP. Each action
token comes with the positional embeddings of its correspond-
ing apos. This enables relative cross-attention with the scene
and other entities. We incorporate proprioceptive information
as a short history of predicted end-effector keyposes. These
are represented with learnable feature vectors and their 3D
positions are used to compute positional embeddings.

We contextualize all tokens (visual o, language l, pro-
prioception c and current action estimate apost ,arott) us-
ing 3D relative position attention layers [29], [30]. The
updated action feature tokens are fed to MLPs to predict
the position error ϵposθ (o, l, c,apost ,arott , t), rotation error
ϵrotθ (o, l, c,apost ,arott , t) and whether the end-effector should

be open or closed fopen
θ (o, l, c,apost ,arott , t). We update

the current estimate of each element of the end-effector’s
trajectory:

apost−1 =
1

√
αt

(
apost − βt√

1− ᾱt
ϵposθ (o, l, c,apost ,arott , t)

)
+

1− ᾱt+1

1− ᾱt
βtz

pos (1)

arott−1 =
1

√
αt

(
arott − βt√

1− ᾱt
ϵrotθ (o, l, c,arott ,arott , t)

)
+

1− ᾱt+1

1− ᾱt
βtz

rot (2)

where zpos, zrot ∼ N (0,1) variables of appropriate dimen-
sion. We found using a scaled-linear noise schedule to denoise
thet end-effector’s 3D positions and a squared cosine noise
schedule for the end-effector’s 3D orientations to converge
much faster than using squared cosine noise for both.
Training 3D Diffuser Actor is trained on a dataset of RGB-
D observations o, proprioception information c, action
trajectories a = [apos,arot] and language goals D =
{(o1, c1,a1, l1), (o2, c2,a2, l2), ...}. During training, we ran-
domly sample a diffusion step t and add noise ϵ = (ϵpost , ϵrott)
to the ground-truth action. Our model learns to reconstruct the
clean actions by predicting the pose residual with respect to
the current estimate. We adopt the L1 loss for reconstructing
the 3D position and 3D rotation error. We use binary cross-
entropy loss to supervise end-effector opening fopen

θ :

Lθ =
1

|D|

|D|∑
i=1

BCE(fopen
θ (oi, li, ci,a

pos
t,i ,a

rot
t,i , t),a

open
i)

+ w1 · ∥(ϵposθ (oi, li, ci,a
pos
t,i ,a

rot
t,i , t)− ϵpost ∥

+ w2 · ∥(ϵrotθ (oi, li, ci,a
pos
t,i ,a

rot
t,i , t)− ϵrott ∥, (3)

where w1, w2 are hyperparameters.

III. EXPERIMENTS

We test 3D Diffuser Actor on RLBench [11] and CALVIN
[12] against the current state-of-the-art and ablative versions
of our model. We also test our model in the real world.

A. Evaluation on RLBench

Setup A Franka Panda Robot is used to manipulate the scene.
Our model is trained to predict the next end-effector keypose
and employs the motion planner BiRRT [31] to reach it
pose [13], [16]. We train and evaluate on the PerAct setup [13].
This uses a suite of 18 manipulation tasks with 2-60 variations
per task, specified by language descriptions. There are 100
training demonstrations available per task and 25 unseen test
episodes for each task. Four cameras are available. A more
detailed discussion of the setup, baselines and results on a
single-camera setup is included in our appendix (Section D).
Results In Figure 1 right, 3D Diffuser Actor achieves an
average 81.3% success rate among all 18 tasks, an absolute
improvement of +18.1% over the previous state-of-the-art.
Ablations In Table I. 3D Diffuser Actor largely outperforms
its 2D counterpart, 2D Diffuser Actor, underlining the

Avg. Success.

2D Diffuser Actor 47.0
3D Diffuser Actor w/o Rel. Attn. 71.3
3D Diffuser Actor (ours) 81.3

TABLE I: Ablation study on 18 RLBench tasks.

close put insert peg insert peg put open
box duck into hole into torus mouse pen

100 100 50 30 80 100

press put sort stack stack put block
stapler grapes rectangle blocks cups in triangle

90 90 50 20 40 90

TABLE II: Multi-Task performance on real-world tasks.

importance of 3D scene representations. Using absolute 3D
attentions (3D Diffuser Actor w/o Rel. Attn.) is significantly
worse, indicating the importance of translation equivariance.
Notably, this baseline already outperforms all prior arts
in Figure 1, proving the effectiveness of marrying 3D
representations and diffusion policies.

B. Evaluation on CALVIN

Setup A Franka Panda Robot arm manipulates the scene.
CALVIN consists of 34 tasks and 4 different environments
(A, B, C and D), differing mostly on texture and object
placements. We train 3D Diffuser Actor on the environments
A, B and C and evaluate on 1000 unique instruction chains on
environment D. Each instruction chain includes five language
instructions that need to be executed sequentially. We extract
keyposes (Section C) and train our model to predict both
the end-effector keypose and the corresponding trajectory to
reach it (see Section E for more).
Results 3D Diffuser Actor achieves state-of-the-art results
(Figure 1 left), completing on average 3.27 tasks in a row.

C. Evaluation in the real world

We use a Franka Emika robot and capture visual obser-
vations with a Azure Kinect RGB-D sensor at a front view.
We use 12 tasks and 15 demonstrations per task where we
record the keyposes. We refer to the appendix (Section G)
for more details. 3D Diffuser Actor is trained to predict the
next end-effector keypose and uses the BiRRT [31] planner
provided by the MoveIt! ROS package [32] to reach it. We
measure the success rate on 10 episodes per task in Table II.

IV. CONCLUSION

We present 3D Diffuser Actor, a 3D robot manipulation
policy with action diffusion that sets a new state-of-the-art on
RLBench and CALVIN by a large margin and learns in the
real-world from a handful of demonstrations. Our future work
will attempt to train 3D Diffuser Actor in domain-randomized
simulation environments at a large scale, to help transfer to
the real world.

REFERENCES

[1] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
CoRR, vol. abs/1606.03476, 2016. [Online]. Available: http:
//arxiv.org/abs/1606.03476

[2] Y. Tsurumine and T. Matsubara, “Goal-aware generative adversarial
imitation learning from imperfect demonstration for robotic cloth
manipulation,” 2022.

[3] K. Hausman, Y. Chebotar, S. Schaal, G. S. Sukhatme, and J. J. Lim,
“Multi-modal imitation learning from unstructured demonstrations
using generative adversarial nets,” CoRR, vol. abs/1705.10479, 2017.
[Online]. Available: http://arxiv.org/abs/1705.10479

[4] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto, “Behavior
transformers: Cloning k modes with one stone,” 2022.

[5] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu,
S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, and S. Devlin,
“Imitating human behaviour with diffusion models,” 2023.

[6] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[7] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned
imitation learning using score-based diffusion policies,” arXiv preprint
arXiv:2304.02532, 2023.

[8] A. Mandlekar, F. Ramos, B. Boots, L. Fei-Fei, A. Garg,
and D. Fox, “IRIS: implicit reinforcement without interaction
at scale for learning control from offline robot manipulation
data,” CoRR, vol. abs/1911.05321, 2019. [Online]. Available:
http://arxiv.org/abs/1911.05321

[9] S. Chernova and M. Veloso, “Confidence-based policy learning
from demonstration using gaussian mixture models,” in Proceedings
of the 6th International Joint Conference on Autonomous Agents
and Multiagent Systems, ser. AAMAS ’07. New York, NY, USA:
Association for Computing Machinery, 2007. [Online]. Available:
https://doi.org/10.1145/1329125.1329407

[10] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” CoRR, vol. abs/2109.00137, 2021. [Online]. Available:
https://arxiv.org/abs/2109.00137

[11] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[12] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” IEEE Robotics and Automation Letters
(RA-L), vol. 7, no. 3, pp. 7327–7334, 2022.

[13] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2023, pp. 785–799.

[14] S. James, K. Wada, T. Laidlow, and A. J. Davison, “Coarse-to-
fine q-attention: Efficient learning for visual robotic manipulation
via discretisation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 13 739–13 748.

[15] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox, “Rvt:
Robotic view transformer for 3d object manipulation,” arXiv preprint
arXiv:2306.14896, 2023.

[16] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3d: Infinite
resolution action detection transformer for robotic manipulation,” arXiv
preprint arXiv:2306.17817, 2023.

[17] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 726–747.

[18] H. Huang, O. Howell, X. Zhu, D. Wang, R. Walters, and R. Platt,
“Fourier transporter: Bi-equivariant robotic manipulation in 3d,” in
ICLR, 2024.

[19] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” 2018.

[20] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, “Roformer:
Enhanced transformer with rotary position embedding,” arXiv preprint
arXiv:2104.09864, 2021.

[21] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1612–1619, 2022.

[22] H. Wu, Y. Jing, C. Cheang, G. Chen, J. Xu, X. Li, M. Liu, H. Li,
and T. Kong, “Unleashing large-scale video generative pre-training for
visual robot manipulation,” arXiv preprint arXiv:2312.13139, 2023.

[23] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of
rotation representations in neural networks,” 2020.

[24] H. Liu, L. Lee, K. Lee, and P. Abbeel, “Instruction-following agents
with jointly pre-trained vision-language models,” arXiv preprint
arXiv:2210.13431, 2022.

[25] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and C. Schmid,
“Instruction-driven history-aware policies for robotic manipulations,” in
Conference on Robot Learning. PMLR, 2023, pp. 175–187.

[26] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki,
“Chaineddiffuser: Unifying trajectory diffusion and keypose prediction
for robotic manipulation,” in Conference on Robot Learning. PMLR,
2023, pp. 2323–2339.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 2117–2125.

[28] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[29] Y. Li and T. Harada, “Lepard: Learning partial point cloud matching in
rigid and deformable scenes,” 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[30] N. Gkanatsios, M. K. Singh, Z. Fang, S. Tulsiani, and K. Fragkiadaki,
“Analogy-forming transformers for few-shot 3d parsing,” ArXiv, vol.
abs/2304.14382, 2023.

[31] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[32] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier
to entry of complex robotic software: a moveit! case study,” arXiv
preprint arXiv:1404.3785, 2014.

[33] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Proceedings of (NeurIPS) Neural Information Processing
Systems, D. Touretzky, Ed. Morgan Kaufmann, December 1989, pp.
305 – 313.

[34] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving
cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[35] C. Lynch and P. Sermanet, “Grounding language in play,”
CoRR, vol. abs/2005.07648, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.07648

[36] Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned
imitation learning,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf

[37] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto, “From play
to policy: Conditional behavior generation from uncurated robot data,”
ArXiv, vol. abs/2210.10047, 2022.

[38] D.-N. Ta, E. Cousineau, H. Zhao, and S. Feng, “Conditional energy-
based models for implicit policies: The gap between theory and practice,”
2022.

[39] N. Gkanatsios, A. Jain, Z. Xian, Y. Zhang, C. Atkeson, and K. Fragki-
adaki, “Energy-based models as zero-shot planners for compositional
scene rearrangement,” arXiv preprint arXiv:2304.14391, 2023.

[40] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
2015.

[41] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” CoRR, vol. abs/2006.11239, 2020. [Online]. Available:
https://arxiv.org/abs/2006.11239

[42] S. Singh, S. Tu, and V. Sindhwani, “Revisiting energy based models as
policies: Ranking noise contrastive estimation and interpolating energy
models,” 2023.

[43] T. Salimans and J. Ho, “Should EBMs model the energy or the score?”
in Energy Based Models Workshop - ICLR 2021, 2021. [Online].
Available: https://openreview.net/forum?id=9AS-TF2jRNb

[44] H. Ryu, J. Kim, J. Chang, H. S. Ahn, J. Seo, T. Kim, J. Choi,
and R. Horowitz, “Diffusion-edfs: Bi-equivariant denoising generative

http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1705.10479
http://arxiv.org/abs/1911.05321
https://doi.org/10.1145/1329125.1329407
https://arxiv.org/abs/2109.00137
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://proceedings.neurips.cc/paper_files/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://arxiv.org/abs/2006.11239
https://openreview.net/forum?id=9AS-TF2jRNb

modeling on se (3) for visual robotic manipulation,” arXiv preprint
arXiv:2309.02685, 2023.

[45] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “Se (3)-diffusionfields:
Learning smooth cost functions for joint grasp and motion optimization
through diffusion,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 5923–5930.

[46] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an
expressive policy class for offline reinforcement learning,” arXiv
preprint arXiv:2208.06193, 2022.

[47] U. A. Mishra and Y. Chen, “Reorientdiff: Diffusion model based
reorientation for object manipulation,” arXiv preprint arXiv:2303.12700,
2023.

[48] W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion:
Object-centric diffusion for semantic rearrangement of novel objects,”
arXiv preprint arXiv:2211.04604, 2022.

[49] A. Simeonov, A. Goyal, L. Manuelli, L. Yen-Chen, A. Sarmiento,
A. Rodriguez, P. Agrawal, and D. Fox, “Shelving, stacking, hanging:
Relational pose diffusion for multi-modal rearrangement,” arXiv
preprint arXiv:2307.04751, 2023.

[50] X. Fang, C. R. Garrett, C. Eppner, T. Lozano-Pérez, L. P. Kaelbling, and
D. Fox, “Dimsam: Diffusion models as samplers for task and motion
planning under partial observability,” arXiv preprint arXiv:2306.13196,
2023.

[51] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-
scale diffusion models to robotics,” IEEE Robotics and Automation
Letters, 2023.

[52] Y. Dai, M. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum,
D. Schuurmans, and P. Abbeel, “Learning universal policies via text-
guided video generation,” arXiv preprint arXiv:2302.00111, 2023.

[53] A. Ajay, S. Han, Y. Du, S. Li, G. Abhi, T. Jaakkola, J. Tenenbaum,
L. Kaelbling, A. Srivastava, and P. Agrawal, “Compositional foundation
models for hierarchical planning,” arXiv preprint arXiv:2309.08587,
2023.

[54] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar,
and S. Levine, “Zero-shot robotic manipulation with pretrained image-
editing diffusion models,” arXiv preprint arXiv:2310.10639, 2023.

[55] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu, “Offline reinforcement
learning via high-fidelity generative behavior modeling,” 2023.

[56] B. Yang, H. Su, N. Gkanatsios, T.-W. Ke, A. Jain, J. Schneider, and
K. Fragkiadaki, “Diffusion-es: Gradient-free planning with diffusion
for autonomous driving and zero-shot instruction following,” ArXiv,
vol. abs/2402.06559, 2024.

[57] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine,
“Idql: Implicit q-learning as an actor-critic method with diffusion
policies,” arXiv preprint arXiv:2304.10573, 2023.

[58] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with diffu-
sion for flexible behavior synthesis,” arXiv preprint arXiv:2205.09991,
2022.

[59] H. He, C. Bai, K. Xu, Z. Yang, W. Zhang, D. Wang, B. Zhao, and
X. Li, “Diffusion model is an effective planner and data synthesizer for
multi-task reinforcement learning,” arXiv preprint arXiv:2305.18459,
2023.

[60] Z. Wang, T. Oba, T. Yoneda, R. Shen, M. R. Walter, and B. C. Stadie,
“Cold diffusion on the replay buffer: Learning to plan from known
good states,” ArXiv, vol. abs/2310.13914, 2023.

[61] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo,
“Adaptdiffuser: Diffusion models as adaptive self-evolving planners,”
arXiv preprint arXiv:2302.01877, 2023.

[62] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

[63] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and
V. Kumar, “Cacti: A framework for scalable multi-task multi-scene
visual imitation learning,” arXiv preprint arXiv:2212.05711, 2022.

[64] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[65] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choroman-
ski, T. Ding, D. Driess, A. Dubey, C. Finn, P. Florence, C. Fu, M. G.
Arenas, K. Gopalakrishnan, K. Han, K. Hausman, A. Herzog, J. Hsu,
B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang,
I. Leal, L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski,
I. Mordatch, K. Pertsch, K. Rao, K. Reymann, M. Ryoo, G. Salazar,
P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran,

V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu,
F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich, “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
2023.

[66] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg,
et al., “A generalist agent,” arXiv preprint arXiv:2205.06175, 2022.

[67] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning. PMLR,
2022, pp. 991–1002.

[68] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,
A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid,
B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Ichter, C. Lu, C. Xu,
C. Finn, C. Xu, C. Chi, C. Huang, C. Chan, C. Pan, C. Fu, C. Devin,
D. Driess, D. Pathak, D. Shah, D. Büchler, D. Kalashnikov, D. Sadigh,
E. Johns, F. Ceola, F. Xia, F. Stulp, G. Zhou, G. S. Sukhatme,
G. Salhotra, G. Yan, G. Schiavi, H. Su, H. Fang, H. Shi, H. B.
Amor, H. I. Christensen, H. Furuta, H. Walke, H. Fang, I. Mordatch,
I. Radosavovic, I. Leal, J. Liang, J. Kim, J. Schneider, J. Hsu, J. Bohg,
J. Bingham, J. Wu, J. Wu, J. Luo, J. Gu, J. Tan, J. Oh, J. Malik,
J. Tompson, J. Yang, J. J. Lim, J. Silvério, J. Han, K. Rao, K. Pertsch,
K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne,
K. Oslund, K. Kawaharazuka, K. Zhang, K. Majd, K. Rana, K. P.
Srinivasan, L. Y. Chen, L. Pinto, L. Tan, L. Ott, L. Lee, M. Tomizuka,
M. Du, M. Ahn, M. Zhang, M. Ding, M. K. Srirama, M. Sharma,
M. J. Kim, N. Kanazawa, N. Hansen, N. M. O. Heess, N. J. Joshi,
N. Suenderhauf, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer,
P. R. Sanketi, P. Wohlhart, P. Xu, P. Sermanet, P. Sundaresan, Q. H.
Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mendonca, R. Shah,
R. Hoque, R. C. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Moore,
S. Bahl, S. Dass, S. Song, S. Xu, S. Haldar, S. O. Adebola, S. Guist,
S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Dasari, S. Belkhale,
T. Osa, T. Harada, T. Matsushima, T. Xiao, T. Yu, T. Ding, T. Davchev,
T. Zhao, T. Armstrong, T. Darrell, V. Jain, V. Vanhoucke, W. Zhan,
W. Zhou, W. Burgard, X. Chen, X. Wang, X. Zhu, X. Li, Y. Lu,
Y. Chebotar, Y. Zhou, Y. Zhu, Y. Xu, Y. Wang, Y. Bisk, Y. Cho, Y. Lee,
Y. Cui, Y. hua Wu, Y. Tang, Y. Zhu, Y. Li, Y. Iwasawa, Y. Matsuo,
Z. Xu, and Z. J. Cui, “Open x-embodiment: Robotic learning datasets
and rt-x models,” ArXiv, vol. abs/2310.08864, 2023.

[69] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, D. Sadigh,
C. Finn, and S. Levine, “Octo: An open-source generalist robot policy,”
https://octo-models.github.io, 2023.

[70] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani,
K. Goldberg, and A. Zeng, “Learning to rearrange deformable cables,
fabrics, and bags with goal-conditioned transporter networks,” 2021.

[71] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 894–906.

[72] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and
J. Carreira, “Perceiver: General perception with iterative attention,”
2021.

[73] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” arXiv preprint arXiv:2005.07648, 2020.

[74] O. Mees, L. Hermann, and W. Burgard, “What matters in language
conditioned robotic imitation learning over unstructured data,” IEEE
Robotics and Automation Letters (RA-L), vol. 7, no. 4, pp. 11 205–
11 212, 2022.

[75] O. Mees, J. Borja-Diaz, and W. Burgard, “Grounding language with
visual affordances over unstructured data,” in ICRA, 2023.

[76] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing,
W. Zhang, H. Liu, et al., “Vision-language foundation models as
effective robot imitators,” arXiv preprint arXiv:2311.01378, 2023.

[77] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning
to follow image editing instructions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
18 392–18 402.

[78] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,
M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, et al.,
“Laion-5b: An open large-scale dataset for training next generation
image-text models,” arXiv preprint arXiv:2210.08402, 2022.

[79] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ international

https://octo-models.github.io

conference on intelligent robots and systems. IEEE, 2013, pp. 1321–
1326.

[80] Y. Ze, G. Yan, Y.-H. Wu, A. Macaluso, Y. Ge, J. Ye, N. Hansen,
L. E. Li, and X. Wang, “Gnfactor: Multi-task real robot learning with
generalizable neural feature fields,” arXiv preprint arXiv:2308.16891,
2023.

[81] S. Chen, R. G. Pinel, C. Schmid, and I. Laptev, “Polarnet: 3d
point clouds for language-guided robotic manipulation,” ArXiv, vol.
abs/2309.15596, 2023.

[82] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny,
and B. Ghanem, “Pointnext: Revisiting pointnet++ with improved
training and scaling strategies,” in NeurIPS, 2022.

[83] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[84] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, 2018.

[85] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv preprint arXiv:2010.02502, 2020.

APPENDIX

A. Acknowledgements

This work is supported by Sony AI, NSF award No
1849287, DARPA Machine Common Sense, an Amazon
faculty award, and an NSF CAREER award. The authors
would like to thank Moritz Reuss for useful training tips on
CALVIN; Zhou Xian for help with the real-robot experiments;
Brian Yang for discussions, comments and efforts in the early
development of this paper.

B. Related Work

Learning robot manipulation policies from demonstrations
Though state-to-action mappings are typically multimodal,
earlier works on learning from demonstrations train deter-
ministic policies with behavior cloning [33], [34]. To better
handle action multimodality, other approaches discretize
action dimensions and use cross entropy losses [35], [13],
[17]. However, the number of bins needed to approximate a
continuous action space grows exponentially with increasing
dimensionality. Generative adversarial networks [1], [2], [36],
variational autoencoders [8] and combined Categorical and
Gaussian distributions [4], [25], [37] have been used to learn
from multimodal demonstrations. Nevertheless, these models
tend to be sensitive to hyperparameters, such as the number
of clusters used [4]. Implicit behaviour cloning represents
distributions over actions by using Energy-Based Models
(EBMs) [10], [38]. Optimization in EBMs amounts to search-
ing the energy landscape for minimal-energy action, given
a state. EBMs are inherently multimodal, since the learned
landscape can have more than one minima. EBMs are also
composable, which makes them suitable for combining action
distributions with additional constraints during inference [39].
Diffusion models [40], [41] are a powerful class of generative
models related to EBMs in that they model the score of the
distribution, else, the gradient of the energy, as opposed to
the energy itself [42], [43]. The key idea behind diffusion
models is to iteratively transform a simple prior distribution
into a target distribution by applying a sequential denoising
process. They have been used for modeling state-conditioned
action distributions in imitation learning [44], [45], [5], [46],
[7], [47] from low-dimensional input, as well as from visual
sensory input, and show both better mode coverage and higher
fidelity in action prediction than alternatives. They have not
been yet combined with 3D scene representations.
Diffusion models in robotics Beyond policy representa-
tions in imitation learning, diffusion models have been
used to model cross-object and object-part arrangements
[48], [49], [47], [50], [39] and visual image subgoals [51],
[52], [53], [54]. They have also been used successfully in
offline reinforcement learning [55], [56], [57], where they
model the state-conditioned action trajectory distribution [57],
[55] or state-action trajectory distribution [58], [59], [60].
ChainedDiffuser [26] proposes to replace motion planners,
commonly used for keypose to keypose linking, with a
trajectory diffusion model that conditions on the 3D scene
feature cloud and the predicted target 3D keypose to denoise

a trajectory from the current to the target keypose. 3D
Diffuser Actor instead predicts the next 3D keypose for the
robot’s end-effector alongside the linking trajectory, which is
a much harder task than linking two given keyposes. Lastly,
image diffusion models have been used for augmenting the
conditioning images input to robot policies to help the latter
generalize better [61], [62], [63].
2D and 3D scene representations for robot manipulation
End-to-end image-to-action policy models, such as RT-1 [64],
RT-2[65], GATO [66], BC-Z [67], RT-X [68], Octo [69] and
InstructRL [24] leverage transformer architectures for the
direct prediction of 6-DoF end-effector poses from 2D video
input. However, this approach comes at the cost of requiring
thousands of demonstrations to implicitly model 3D geometry
and adapt to variations in the training domains. Another line
of research is centered around Transporter networks [17], [70],
[71], [39], demonstrating remarkable few-shot generalization
by framing end-effector pose prediction as pixel classification.
Nevertheless, these models are usually confined to top-down
2D planar environments with simple pick-and-place primitives.
Direct extensions to 3D, exemplified by C2F-ARM [14] and
PerAct [13], involve voxelizing the robot’s workspace and
learning to identify the 3D voxel containing the next end-
effector keypose. However, this becomes computationally
expensive as resolution requirements increase. Consequently,
related approaches resort to either coarse-to-fine voxelization
or efficient attention operations [72] to mitigate computational
costs. Act3D [16] foregoes 3D scene voxelization altogether;
it instead computes a 3D action map of variable spatial
resolution by sampling 3D points in the empty workspace
and featurizing them using cross-attentions to the 3D physical
points. Robotic View Transformer (RVT) [15] re-projects the
input RGB-D image to alternative image views, featurizes
those and lifts the predictions to 3D to infer 3D locations
for the robot’s end-effector. Both Act3D and RVT show
currently the highest performance on RLBench [11]. Our
model outperforms them by a big margin, as we show in the
experimental section.
Instruction-conditioned long-horizon policies To generate
actions based on language instructions, early works [73], [74],
[64] employ a text encoder to map language instructions to
latent features, then they deploy 2D policies that condition
on these language latents to predict actions. HULC++ [75]
alternates between a free-space policy that reaches subgoals
(next object to interact with) and a local policy [74] for low-
level interaction. However, these models struggle to infer
3D actions precisely from 2D observations and language
instructions and do not generalize to new environments with
different texture. Recent works [54], [76], [22] explore the
use of large-scale pre-training to boost their performance.
SuSIE [54] proposes to synthesize visual subgoals using
InstructPix2Pix [77], an instruction-conditioned image gener-
ative model pre-trained on a subset of 5 billion images [78].
Actions are then predicted by a low-level diffusion policy con-
ditioned on both current observations and synthesized visual
goals. RoboFlamingo [76] fine-tunes existing vision-language
models, pre-trained for solving vision and language tasks, to

predict the robot’s actions. GR-1 [22] pre-trains a GPT-style
transformer for video generation on a massive video corpus,
then jointly trains the model for predicting robot actions and
future observations. We show that 3D Diffuser Actor can
exceed the performance of these policies thanks to effective
use of 3D representations.

C. Our heuristics for keypose discovery

For RLBench we use the heuristics from [21], [14]: a
pose is a keypose if (1) the end-effector state changes (grasp
or release) or (2) the velocity’s magnitude approaches zero
(often at pre-grasp poses or a new phase of a task). For our
real-world experiments we maintain the above heuristics and
record pre-grasp poses as well as the poses at the beginning
of each phase of a task, e.g., when the end-effector is right
above an object of interest. We report the number of keyposes
per real-world task in this Appendix (Section G). Lastly, for
CALVIN we adapt the above heuristics to devise a more
robust algorithm to discover keyposes. Specifically, we track
end-effector state changes and significant changes of motion,
i.e. both velocity and acceleration. For reference, we include
our Python code for discovering keyposes in CALVIN here:

1 """Utility functions for computing keyposes."""
2 import numpy as np
3 from scipy.signal import argrelextrem
4

5 def motion_changed(trajectories, buffer_size):
6 """Select keyposes where motion changes

significantly. The chosen poses shall be sparse
.

7

8 Args:
9 trajectories: a list of 1D array

10 buffer_size: an integer indicates the
11 minimum distance of waypoints
12

13 Returns:
14 key_poses: a list of integers indicates
15 the time steps when motion of the end
16 effector changes significantly.
17 """
18 # compute velocity
19 trajectories = np.stack(
20 [trajectories[0]] + trajectories, axis=0
21)
22 velocities = (
23 trajectories[1:] - trajectories[:-1]
24)
25

26 # compute acceleration
27 velocities = np.concatenate(
28 [velocities, [velocities[-1]]],
29 axis=0
30)
31 accelerations = velocities[1:] - velocities

[:-1]
32

33 # compute the magnitude of acceleration
34 A = np.linalg.norm(
35 accelerations[:, :3], axis=-1
36)
37

38 # local maximas of acceleration indicates
39 # significant motion change of the end effector
40 local_max_A = argrelextrema(A, np.greater)[0]
41

42 # consider the top 20% of local maximas
43 K = int(A.shape[0] * 0.2)

44 topK = np.sort(A)[::-1][K]
45 large_A = A[local_max_A] >= topK
46 local_max_A = local_max_A[large_A].tolist()
47

48 # select waypoints sparsely
49 key_poses = [local_max_A.pop(0)]
50 for i in local_max_A:
51 if i - key_poses[-1] >= buffer_size:
52 key_poses.append(i)
53

54 return key_poses
55

56 def gripper_state_changed(trajectories):
57 """Select keyposes where the end-effector
58 opens/closes.
59

60 Args:
61 trajectories: a list of 1D array
62

63 Returns:
64 key_poses: a list of integers indicates
65 the time steps when the end-effector
66 opens/closes.
67 """
68 trajectories = np.stack(
69 [trajectories[0]] + trajectories, axis=0
70)
71 openess = trajectories[:, -1]
72 changed = openess[:-1] != openess[1:]
73

74 key_poses = np.where(changed)[0].tolist()
75

76 return key_poses
77

78 def keypoint_discovery(trajectories, buffer_size=5)
:

79 """Select keyposes where motion changes
significantly. The chosen poses shall be sparse
.

80

81 Args:
82 trajectories: a list of 1D array
83 buffer_size: an integer indicates the
84 minimum distance of waypoints
85

86 Returns:
87 key_poses: an Integer array indicates the
88 indices of keyposes
89 """
90 motion_changed = motion_changed(
91 trajectories, buffer_size
92)
93

94 gripper_changed = (
95 gripper_state_changed(trajectories)
96)
97 one_frame_before_gripper_changed = [
98 i - 1 for i in gripper_changed if i > 1
99]

100

101 last_frame = [len(trajectories) - 1]
102

103 key_pose_inds = (
104 moition_changed +
105 gripper_changed.tolist() +
106 one_frame_before_gripper_changed.tolist() +
107 last_frame
108)
109 key_pose_inds = np.unique(key_pose_inds)
110

111 return key_pose_inds

D. Evaluation on RLBench

Setup RLBench is built atop the CoppelaSim [79] simulator,
where a Franka Panda Robot is used to manipulate the scene.
Our 3D Diffuser Actor is trained to predict the next end-
effector keypose and we employ the low-level motion planner
BiRRT [31], native to RLBench, to reach the predicted pose,
following previous works [13], [16]. Our model does not
perform collision checking for our experiments. We train and
evaluate 3D Diffuser Actor on two experimental setups of
multi-task manipulation:

1) PerAct setup introduced in [13]: This uses a suite of
18 manipulation tasks, each task has 2-60 variations,
which concern scene variability across object poses,
appearance and semantics. The tasks are specified by
language descriptions. There are four cameras available
(front, wrist, left shoulder, right shoulder). There are
100 training demonstrations available per task, evenly
split across task variations and 25 unseen test episodes
for each task. Due to the randomness of the sampling-
based motion planner, we test our model across 5
random seeds. During evaluation, models are allowed to
predict a maximum of 25 keyposes, unless they receive
earlier task-completion indicators from the simulation
environment.

2) GNFactor setup introduced in [80]: This uses a suite
of 10 manipulation tasks (a subset of PerAct’s task
set). Only one RGB-D camera view is available (front
camera). There are 20 training demonstrations per task,
evenly split across variations. The evaluation setup
mirrors that of PerAct, with the exception that we test
the final checkpoint using 3, rather than 5, random
seeds on the test set.

Baselines We consider the following baselines:
1) C2F-ARM-BC [14], a 3D policy that iteratively vox-

elizes RGB-D images and predicts actions in a coarse-
to-fine manner. Q-values are estimated within each
voxel and the translation action is determined by the
centroid of the voxel with the maximal Q-values.

2) PerAct [13], a 3D policy that voxelizes the workspace
and detects the next voxel action through global self-
attention.

3) Hiveformer [25], a 3D policy that enables attention
between features of different history time steps.

4) PolarNet [81], a 3D policy that computes dense point
representations for the robot workspace using a Point-
Next backbone [82].

5) RVT [15], a 3D policy that deploys a multi-view
transformer to predict actions and fuses those across
views by back-projecting to 3D.

6) Act3D [16], a 3D policy that featurizes the robot’s 3D
workspace using coarse-to-fine sampling and featuriza-
tion.

7) GNFactor [80], a 3D policy that co-optimizes a neural
field for reconstructing the 3D voxels of the input scene
and a PerAct module for predicting actions based on
voxel representations.

We report results for RVT, PolarNet and GNFactor based
on their respective papers. Results for CF2-ARM-BC and
PerAct are presented as reported in RVT [15]. Results for
Hiveformer are copied from PolarNet [81].

We observed that Act3D [16] does not follow the same
setup as PerAct on RLBench. Specifically, Act3D uses
different 1) 3D object models, 2) success conditions, 3)
training/test episodes and 4) maximum numbers of keyposes
during evaluation. For fair comparison, we retrain and test
Act3D on the same setup.

We also compare to the following ablative versions of our
model:

1) 2D Diffuser Actor, our implementation of [6]. We
remove the 3D scene encoding from 3D Diffuser Actor
and instead use per-image 2D representations by
average-pooling features within each view. We add
learnable embeddings to distinguish between different
views. We use standard attention layers for joint
encoding the action estimate and 2D image features.

2) 3D Diffuser Actor w/o Rel. Attn., an ablative version of
our model that uses standard (non-relative) attentions
to featurize the current rotation and translation estimate
with the 3D scene feature cloud. This version of our
model is not translation-equivariant.

Evaluation metrics Following previous work [16], [13], we
evaluate policies by task completion success rate, which is
the proportion of execution trajectories that achieve the goal
conditions specified in the language instructions.
Results on the PerAct setup We show quantitative results in
Table III. Our 3D Diffuser Actor outperforms all baselines
on most tasks by a large margin. It achieves an average 81.3%
success rate among all 18 tasks, an absolute improvement
of +18.1% over Act3D, the previous state-of-the-art. In
particular, 3D Diffuser Actor achieves big leaps on tasks
with multiple modes, such as stack blocks, stack cups and
place cups, which most baselines fail to complete. We obtain
substantial improvements of +39.5%, +18.4%, +41.6% and
+20.8% on stack blocks, put in cupboard, insert peg and
stack cups respectively.
Results on the GNFactor setup We show quantitative
results in Table IV. We train Act3D on this setup using
its publicly available code. 3D Diffuser Actor outperforms
both GNFactor and Act3D by a significant margin, achieving
absolute performance gains of +46.4% and +13.1% respec-
tively. Notably, 3D Diffuser Actor and Act3D utilize similar
3D scene representations—sparse 3D feature tokens—while
GNFactor featurizes a scene with 3D voxels and learns to
reconstruct them. Even with a single camera view, both Act3D
and 3D Diffuser Actor outperform GNFactor significantly.
This suggests that the choice of 3D scene representation is
a more crucial factor than the completion of 3D scenes in
developing efficient 3D manipulation policies.

E. Evaluation on CALVIN

The CALVIN benchmark is build on top of the PyBul-
let [83] simulator and involves a Franka Panda Robot arm

Avg. open slide sweep to meat off turn put in close drag stack
Success ↑ drawer block dustpan grill tap drawer jar stick blocks

C2F-ARM-BC [14] 20.1 20 16 0 20 68 4 24 24 0
PerAct [13] 49.4 88.0±5.7 74.0±13.0 52.0±0.0 70.4±2.0 88.0±4.4 51.2±4.7 55.2±4.7 89.6±4.1 26.4±3.2

HiveFormer [25] 45 52 64 28 100 80 68 52 76 8
PolarNet [81] 46 84 56 52 100 80 32 36 92 4
RVT [15] 62.9 71.2±6.9 81.6±5.4 72.0±0.0 88.0±2.5 93.6±4.1 88.0±5.7 52.0±2.5 99.2±1.6 28.8±3.9

Act3D [16] 63.2 78.4±11.2 96.0±2.5 86.4±6.5 95.2±1.6 94.4±2.0 91.2±6.9 96.8±3.0 80.8±6.4 4.0±3.6

3D Diffuser Actor (ours) 81.3 89.6±4.1 97.6±3.2 84.0±4.4 96.8±1.6 99.2±1.6 96.0±3.6 96.0±2.5 100.0±0.0 68.3±3.3

screw put in place put in sort push insert stack place
bulb safe wine cupboard shape buttons peg cups cups

C2F-ARM-BC [14] 8 12 8 0 8 72 4 0 0
PerAct [13] 17.6±2.0 86.0±3.6 44.8±7.8 28.0±4.4 16.8±4.7 92.8±3.0 5.6±4.1 2.4±2.2 2.4±3.2

HiveFormer [25] 8 76 80 32 8 84 0 0 0
PolarNet [81] 44 84 40 12 12 96 4 8 0
RVT [15] 48.0±5.7 91.2±3.0 91.0±5.2 49.6±3.2 36.0±2.5 100.0±0.0 11.2±3.0 26.4±8.2 4.0±2.5

Act3D [16] 32.8±6.9 95.2±4.0 59.2±9.3 67.2±3.0 29.6±3.2 93.6±2.0 24.0±8.4 9.6±6.0 3.2±3.0

3D Diffuser Actor (ours) 82.4±2.0 97.6±2.0 93.6±4.8 85.6±4.1 44.0±4.4 98.4±2.0 65.6±4.1 47.2±8.5 24.0±7.6

TABLE III: Multi-Task performance on RLBench. We report success rates on 18 RLBench tasks of the same test split as
PerAct [13]. Four camera views are used for all experiments. We evaluate the final checkpoint over 5 random seeds with the
same 3D object models and success conditions of RLBench [11] as PerAct. We show the mean and standard deviation of
success rates average across all random seeds. Our 3D Diffuser Actor outperforms all prior arts among most tasks by a large
margin. Variances are included when available.

Avg. close open sweep to meat off turn slide put in drag push stack
Success. jar drawer dustpan grill tap block drawer stick buttons blocks

GNFactor [80] 31.7 25.3 76.0 28.0 57.3 50.7 20.0 0.0 37.3 18.7 4.0
Act3D [16] 65.3 52.0 84.0 80.0 66.7 64.0 100.0 54.7 86.7 64.0 0.0
3D Diffuser Actor 78.4 82.7 89.3 94.7 88.0 80.0 92.0 77.3 98.7 69.3 12.0

TABLE IV: Multi-Task performance on RLBench with single camera view. Following GNFactor [80], we report sucess
rates on 10 RLBench tasks using only the front camera view. All models are trained with 20 demonstrations per task. We
evaluate the final checkpoints across 3 seeds with 25 episodes for each task in the test set. Our 3D Diffuser Actor outperforms
prior state-of-the-art baselines–GNFactor and Act3D–among most tasks by a large margin.

Train Task completed in a row
episodes 1 2 3 4 5 Avg. Len

MCIL [73] All 30.4 1.3 0.2 0.0 0.0 0.31
HULC [74] All 41.8 16.5 5.7 1.9 1.1 0.67
RT-1 [64] Lang 53.3 22.2 9.4 3.8 1.3 0.90
RoboFlamingo [76] Lang 82.4 61.9 46.6 33.1 23.5 2.48
SuSIE [54] All 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 [22] Lang 85.4 71.2 59.6 49.7 40.1 3.06
3D Diffuser Actor (ours, 60 keyposes) Lang 92.2 78.7 63.9 51.2 41.2 3.27

3D Diffuser Actor (ours, 360 keyposes) Lang 95.7 88.1 78.6 65.7 55.3 3.83

TABLE V: Zero-shot long-horizon performance on CALVIN. We report success rates and average length of completed
task sequences. All models are trained on play trajectories on environments A, B, C, and tested on 1000 unique instruction
chains on environment D. MCIL, HULC and SuSIE are trained with all play trajectories in the training scenes, whereas,
RT-1, RoboFlamingo, GR-1 and our 3D Diffuser Actor are trained with the subset of play data annotated with language
descriptions. Our 3D Diffuser Actor achieves a new state-of-the-art. For reference, we include our model’s performance
when allowed for more predictions, in which case the performance significantly increases.

that manipulates the scene. CALVIN consists of 34 tasks1 and
1The definition of “task" varies between different benchmarks: CALVIN

considers the manipulation of variations (e.g., same objects with different
colors) as different tasks, whereas, RLBench considers those the same task.

4 different environments (A, B, C and D). All environments
are equipped with a desk, a sliding door, a drawer, a button
that turns on/off an LED, a switch that controls a lightbulb

Fig. 3: Zero-shot long-horizon performance on CALVIN
with varying number of keyposes allowed at test time.

and three different colored blocks (red, blue and pink). These
environments differ from each other in the texture of the
desk and positions of the objects. CALVIN provides 24 hours
of tele-operated unstructured play data, 35% of which are
annotated with language descriptions.

We train 3D Diffuser Actor on the subset of play data
annotated with language descriptions on the environments
A, B and C and evaluate it on 1000 unique instruction
chains on environment D, following prior works [76], [22].
Each instruction chain includes five language instructions that
need to be executed sequentially. We devise an algorithm
(Section C) to extract keyposes on CALVIN, since prior
works do not use keyposes on this benchmark. We train
our 3D Diffuser Actor to predict both the end-effector pose
for each keypose and the corresponding trajectory to reach
the predicted pose, instead of using a motion planner. Prior
works [74], [54], [76] predict a maximum of 360 actions
to complete each instructional task, while, on average, it
takes only 60 actions to complete each task using ground-
truth trajectories. Our model predicts both keyposes and
corresponding trajectories, and, on average, it takes 10
keyposes of each demonstration to complete an instructional
task. We thus allow our model to predict a maximum of
60 keyposes for each task. For reference, we also allow our
model to predict 360 times and show the influence of this
hyperparameter in Section F.
Baselines. We consider the following baselines:

1) MCIL [73], a multi-modal goal-conditioned 2D policy
that maps three types of goals–goal images, language
instructions and task labels–to a shared latent feature
space, and conditions on such latent goals to predict
actions.

2) HULC [74], a 2D policy that uses a variational
autoencoder to sample a latent plan based on the current
observation and task description, then conditions on
this latent to predict actions.

3) RT-1 [64], a 2D transformer-based policy that encodes
the image and language into a sequence of tokens and
employs a Transformer-based architecture that contex-
tualizes these tokens and predicts the arm movement
or terminates the episode.

4) RoboFlamingo [76], a 2D policy that adapts existing
vision-language models, which are pre-trained for
solving vision and language tasks, to robot control.
It uses frozen vision and language foundational models
and learns a cross-attention between language and visual
features, as well as a recurrent policy that predicts the
low-level actions conditioned on the language latents.

5) SuSIE [54], a 2D policy that deploys an large-scale pre-
trained image generative model [77] to synthesize visual
subgoals based on the current observation and language
instruction. Actions are then predicted by a low-
level goal-conditioned 2D diffusion policy that models
inverse dynamics between the current observation and
the predicted subgoal image.

6) GR-1 [22], a 2D policy that first pre-trains an autore-
gressive Transformer on next frame prediction, using
a large-scale video corpus without action annotations.
Each video frame is encoded into an 1d vector by
average-pooling its visual features. Then, the same
architecture is fine-tuned in-domain to predict both
actions and future observations.

We report results for HULC, RoboFlamingo, SuSIE and GR-1
from the respective papers. Results from MCIL are borrowed
from [74]. Results from RT-1 are copied from [22].
Evaluation metrics Following previous works [74], [22], we
report the success rate and the average number of completed
sequential tasks.

F. Evaluation on CALVIN with varying number of maximum
keyposes allowed at test time

We show zero-shot long-horizon performance on CALVIN
with varying number of keyposes allowed at test time in
Figure 3. The performance saturates with more than 300
keyposes.

G. Evaluation in the real world

We validate 3D Diffuser Actor in learning manipulation
tasks from real-world demonstrations. We use a Franka Emika
robot and capture visual observations with a Azure Kinect
RGB-D sensor at a front view. Images are originally captured
at 1280× 720 resolution and downsampled to a resolution of
256 × 256. Camera extrinsics are calibrated w.r.t the robot
base. We use 12 tasks: 1) close a box, 2) put ducks in
bowls, 3) insert a peg vertically into the hole, 4) insert a
peg horizontally into the torus, 5) put a computer mouse on
the pad, 6) open the pen, 7) press the stapler, 8) put grapes
in the bowl, 9) sort the rectangle, 10) stack blocks with the
same shape, 11) stack cups and 12) put block in a triangle
on the plate. All tasks take place in a cluttered scene with
distractors (random objects that do not participate in the task)
which are not mentioned in the descriptions below.

Self Attention: pose estimate ↔ sceneSelf Attention: pose estimate ↔ scene

2D Visual Encoder

“Stack the bottle to
the middle of the rack”

Multi-view RGB-D

Proprioception 𝑐

Language
Encoder

Noisy
position

Cross Attention: scene → instructions

Cross Attention: pose estimate → scene

Linear Linear

MLP MLP

Position error
open/close

Rotation
error

3D Lifting

FPS

Denoising step 𝑡

MLP

FiLM

Concatenate

Noisy
rotation

Self Attention: pose estimate ↔ scene

2D Visual Encoder

“Stack the bottle to
the middle of the rack”

Multi-view RGB-D

Proprioception 𝑐

Language
Encoder

Noisy
position

Cross Attention: scene → instructions

Cross Attention: pose estimate → scene

Linear Linear

MLP MLP

Position error
open/close

Rotation
error

3D Lifting

FPS

Denoising step 𝑡

MLP

FiLM

Concatenate

Noisy
rotation

Self Attention: pose estimate ↔ scene

Cross Attention: pose estimate, scene → instructions

Cross Attention: pose estimate, scene → instructions

Self Attention: pose estimate ↔ sceneSelf Attention: pose estimate ↔ scene

Fig. 4: 3D Diffuser Actor architecture in more detail. Top: Standard version: the encoded inputs are fed to attention
layers that predict the position and rotation error for each trajectory timestep. The language information is fused to the
visual stream by allowing the encoded visual feature tokens to attend to language feature tokens. There are two different
attention and output heads for position and rotation error respectively. Bottom: version with enhanced language conditioning:
cross-attention layers from visual and pose estimate tokens to language tokens are interleaved between pose estimate-visual
token attention layers.

1) Close a box: The end-effector needs to move and hit
the lid of an open box so that it closes. The agent
is successful if the box closes. The task involves two
keyposes.

2) Put a duck in a bowl: There are two toy ducks and two
bowls. One of the ducks have to be placed in one of
the bowls. The task involves four keyposes.

3) Insert a peg vertically into the hole: The agent needs to
detect and grasp a peg, then insert it into a hole that is
placed on the ground. The task involves four keyposes.

4) Insert a peg horizontally into the torus: The agent needs
to detect and grasp a peg, then insert it into a torus that
is placed vertically to the ground. The task involves
four keyposes.

5) Put a computer mouse on the pad: There two computer
mice and one mousepad. The agent needs to pick one
mouse and place it on the pad. The task involves four
keyposes.

6) Open the pen: The agent needs to detect a pen that is
attached vertically to the table, grasp its lid and pull it
to open the pen. The task involves three keyposes.

7) Press the stapler: The agent needs to reach and press a
stapler. The task involves two keyposes.

8) Put grapes in the bowl: The scene contains three vines
of grapes of different color and one bowl. The agent
needs to pick one vine and place it in the bowl. The
task involves four keyposes.

9) Sort the rectangle: Between two rectangle cubes there
is space for one more. The task comprises detecting
the rectangle to be moved and placing it between the
others. It involves four keyposes.

10) Stack blocks with the same shape: The scene contains
of several blacks, some of which have rectangular and
some cylindrical shape. The task is to pick the same-
shape blocks and stack them on top of the first one. It
involves eight keyposes.

11) Stack cups: The scene contains three cups of different
colors. The agent needs to successfully stack them in
any order. The task involves eight keyposes.

12) Put block in a triangle on the plate: The agent needs to
detect three blocks of the same color and place them
inside a plate to form an equilateral triangle. The task
involves 12 keyposes.

The above tasks examine different generalization capa-
bilities of 3D Diffuser Actor, for example multimodality in
the solution space (5, 8), order of execution (10, 11, 12),
precision (3, 4, 6) and high noise/variance in keyposes (1).

We collect 15 demonstrations per task where we record the
keyposes, most of which naturally contain noise and multiple
modes of human behavior. For example, we pick one of
two ducks to put in the bowl, we insert the peg into one of
two holes and we put one of three grapes in the bowl, as
shown in Figure 5. 3D Diffuser Actor conditions on language
descriptions and is trained to predict the next end-effector
keypose. During inference, we utilize the BiRRT [31] planner
provided by the MoveIt! ROS package [32] to reach the

"insert the peg "put grapes "put a mouse
into a hole" in the bowl" on the pad"

Fig. 5: Visualized results of our real-world manipulation.

predicted poses. We evaluate 10 episodes for each task are
report the success rate.

H. Run time

We measure the latency of our 3D Diffuser Actor on
CALVIN in simulation, using an NVIDIA GeForce 2080
Ti graphic card. The wall-clock time of 3D Diffuser Actor is
600 ms. Notably, our model predicts end-effector keyposes
sparsely, resulting in better efficiency than methods that
predict actions densely at each time step. On CALVIN, on
average, it takes 10 keyposes / 60 actions to complete each
task using ground-truth trajectories. Our 3D Diffuser Actor
can thus perform manipulation efficiently.

I. Limitations

Our framework currently has the following limitations: 1.
Our model conditions on 3D scene representations, which
require camera calibration and depth information. 2. All tasks
in RLBench and CALVIN are quasi-static. Extending our
method to dynamic tasks and velocity control is a direct
avenue of future work.

J. RLBench tasks under PerAct’s setup

We provide an explanation of the RLBench tasks and
their success conditions under the PerAct setup for self-
completeness. All tasks vary the object pose, appearance
and semantics, which are not described in the descriptions
below. For more details, please refer to the PerAct paper [13].

1) Open a drawer: The cabinet has three drawers (top,
middle and bottom). The agent is successful if the
target drawer is opened. The task on average involves
three keyposes.

2) Slide a block to a colored zone: There is one block
and four zones with different colors (red, blue, pink,
and yellow). The end-effector must push the block to
the zone with the specified color. On average, the task
involves approximately 4.7 keyposes

3) Sweep the dust into a dustpan: There are two dustpans
of different sizes (short and tall). The agent needs to
sweep the dirt into the specified dustpan. The task on
average involves 4.6 keyposes.

4) Take the meat off the grill frame: There is chicken
leg or steck. The agent needs to take the meat off the
grill frame and put it on the side. The task involves 5
keyposes.

5) Turn on the water tap: The water tap has two sides of
handle. The agent needs to rotate the specified handle
90◦. The task involves 2 keyposes.

6) Put a block in the drawer: The cabinet has three drawers
(top, middle and bottom). There is a block on the
cabinet. The agent needs to open and put the block
in the target drawer. The task on average involves 12
keyposes.

7) Close a jar: There are two colored jars. The jar colors
are sampled from a set of 20 colors. The agent needs to
pick up the lid and screw it in the jar with the specified
color. The task involves six keyposes.

8) Drag a block with the stick: There is a block, a stick
and four colored zones. The zone colors are sampled
from a set of 20 colors. The agent is successful if the
block is dragged to the specified colored zone with the
stick. The task involves six keyposes.

9) Stack blocks: There are 8 colored blocks and 1 green
platform. Each four of the 8 blocks share the same
color, while differ from the other. The block colors are
sampled from a set of 20 colors. The agent needs to
stack N blocks of the specified color on the platform.
The task involves 14.6 keyposes.

10) Screw a light bulb: There are 2 light bulbs, 2 holders,
and 1 lamp stand. The holder colors are sampled from
a set of 20 colors. The agent needs to pick up and
screw the light bulb in the specified holder. The task
involves 7 keyposes.

11) Put the cash in a safe: There is a stack of cash and a
safe. The safe has three layers (top, middle and bottom).
The agent needs to pick up the cast and put it in the
specified layer of the safe. The task involves 5 keyposes.

12) Place a wine bottle on the rack: There is a bottle of
wine and a wooden rack. The rack has three slots (left,
middle and right). The agent needs to pick up and place
the wine at the specified location of the wooden rack.
The task involves 5 keyposes.

13) Put groceries in the cardboard: There are 9 YCB objects
and a cupboard. The agent needs to grab the specified
object and place it in the cupboard. The task involves
5 keyposes.

14) Put a block in the shape sorter: There are 5 blocks of
different shapes and a sorter with the corresponding
slots. The agent needs to pick up the block with the
specified shape and insert it into the slot with the same
shape. The task involves 5 keyposes.

15) Push a button: There are 3 buttons, whose colors are
sampled from a set of 20 colors. The agent needs to
push the colored buttons in the specified sequence. The
task involves 3.8 keyposes.

16) Insert a peg: There is 1 square, and 1 spoke platform
with three colored spoke. The spoke colors are sampled
from a set of 20 colors. The agent needs to pick up

the square and put it onto the spoke with the specified
color. The task involves 5 keyposes.

17) Stack cups: There are 3 cups. The cup colors are
sampled from a set of 20 colors. The agent needs
to stack all the other cups on the specified one. The
task involves 10 keyposes.

18) Hang cups on the rack: There are 3 mugs and a mug
rack. The agent needs to pick up N mugs and place
them onto the rack. The task involves 11.5 keyposes.

K. Detailed Model Diagram

We present a more detailed architecture diagram of our
3D Diffuser Actor in Figure 4a. We also show a variant of
3D Diffuser Actor with enhanced language conditioning in
Figure 4b, which achieves SOTA results on CALVIN.

The inputs to our network are i) a stream of RGB-D views;
ii) a language instruction; iii) proprioception in the form of
end-effector’s history poses; iv) the current noisy estimates of
position and rotation; v) the denoising step t. The images are
encoded into visual tokens using a pretrained 2D backbone.
The depth values are used to “lift" the multi-view tokens into
a 3D feature cloud. The language is encoded into feature
tokens using a language backbone. The proprioception is
represented as learnable tokens with known 3D locations in
the scene. The noisy estimates are fed to linear layers that
map them to high-dimensional vectors. The denoising step is
fed to an MLP.

The visual tokens cross-attend to the language tokens and
get residually updated. The proprioception tokens attend to
the visual tokens to contextualize with the scene information.
We subsample a number of visual tokens using Farthest
Point Sampling (FPS) in order to decrease the computational
requirements. The sampled visual tokens, proprioception
tokens and noisy position/rotation tokens attend to each other.
We modulate the attention using adaptive layer normalization
and FiLM [84]. Lastly, the contextualized noisy estimates
are fed to MLP to predict the error terms as well as the
end-effector’s state (open/close).

L. Hyper-parameters for experiments

We lift 2D image features to 3D by calculating xyz-
coordinates of each image pixel, using the sensed depth and
camera parameters. We augment RGB-D observations with
random rescaling and cropping. Nearest neighbor interpolation
is used for rescaling RGB-D observations. To reduce the
memory footprint in our 3D Relative Transformer, we use
Farthest Point Sampling to sample a subset of the points in the
input 3D feature cloud. We use FiLM [84] to inject conditional
input, including the diffusion step and proprioception history,
to every attention layer in the model.

Table VI summarizes the hyper-parameters used for train-
ing/evaluating our model. On CALVIN we observed that
our model overfits the training data, resulting in lower
test performance. We use higher weight_decay and shorter
total_epoch on CALVIN compared to RLBench.

PerAct GNFactor CALVIN

Model
image_size 256 256 200
embedding_dim 120 120 192
camera_views 4 1 2
action_history_length 3 3 3
FPS : % of sampled tokens 20% 20% 33%
diffusion_timestep 100 100 25
noise_scheduler : position scaled_linear scaled_linear scaled_linear
noise_scheduler : rotation squaredcos squaredcos squaredcos
action_space absolute pose absolute pose relative displacement

Training
batch_size 240 240 1080
learning_rate 1e−4 1e−4 3e−4

weight_decay 5e−4 5e−4 5e−3

total_epochs 1.6e4 8e5 450
optimizer Adam Adam Adam
loss weight : w1 30 30 30
loss weight : w2 10 10 10

Evaluation
maximal # of keyposes 25 25 60

TABLE VI: Hyper-parameters of our experiments. We list the hyper-parameters used for training/evaluating our model
on RLBench and CALVIN simulated benchmarks. On RLBench we conduct experiments under two setups: PerAct and
GNFactor.

(a) Clean (b) Scaled Linear (c) Square Cosine (d) Rotation Accuracy

Fig. 6: Visualization of noised rotation based on different schedulers. We split the 6 DoF rotation representations into 2
three-dimension unit-length vectors, and plot the first/second vector as a point in 3D. The noised counterparts are colorized
in magenta/cyan. We visualize the rotation of all keyposes in RLBench insert_peg task. From left to right, we visualize the
(a) clean rotation, (b) noisy rotation with a scaled-linear scheduler, and (c) that with a square cosine scheduler. Lastly, we
compare (d) the denoising performance curve of two noise schedulers. Here, accuracy is defined as the percentage of times
the absolute rotation error is lower than a threshold of 0.025. Using the square cosine scheduler helps our model to denoise
from the pure noise better.

M. The importance of noise scheduler

We use the following two noise schedulers:
1) a scaled-linear noise scheduler βt = (βmax − βmin)t+

βmin, where βmax, βmin are hyperparameters, set to
0.02 and 0.0001 in our experiments,

2) a squared cosine noise scheduler βt =
1−cos

(
(t+1)/T+0.008

1.008 ∗π
2

)2

cos
(

t/T+0.008
1.008 ∗π

2

)2 .

We visualize the clean/noised 6D rotation representations

as two three-dimensional unit-length vectors in Figure 6. We
plot each vector as a point in the 3D space. We can observe
that noised rotation vectors generated by the squared linear
scheduler cover the space more completely than those by the
scaled linear scheduler.

N. Background on Denoising Diffusion Probabilistic Models

A diffusion model learns to model a probability distribution
p(x) by inverting a process that gradually adds noise to a sam-

ple x. For us, x represents a sequence of 3D translations and
3D rotations for the robot’s end-effector. The diffusion process
is associated with a variance schedule {βt ∈ (0, 1)}Tt=1, which
defines how much noise is added at each time step. The
noisy version of sample x at time t can then be written as
xt =

√
ᾱtx +

√
1− ᾱtϵ where ϵ ∼ N (0,1), is a sample

from a Gaussian distribution (with the same dimensionality
as x), αt = 1−βt, and ᾱt =

∏t
i=1 αi. The denoising process

is modeled by a neural network ϵ̂ = ϵθ(xt; t) that takes as
input the noisy sample xt and the noise level t and tries to
predict the noise component ϵ.

Diffusion models can be easily extended to draw samples
from a distribution p(x|c) conditioned on input c, which is
added as input to the network ϵθ. For us c is the visual
scene captured by one or more calibrated RGB-D images, a
language instruction, as well as a short history of the robot’s
end-effector’s poses. Given a collection of D = {(xi, ci)}Ni=1

of end-effector trajectories xi paired with observation and
robot history context ci, the denoising objective becomes:

Ldiff(θ;D) = 1
|D|

∑
xi,ci∈D

||ϵθ(
√
ᾱtx

i +
√
1− ᾱtϵ, ci, t)− ϵ||.

(4)
This loss corresponds to a reweighted form of the variational
lower bound for log p(x|c) [41].

In order to draw a sample from the learned distribution
pθ(x|c), we start by drawing a sample xT ∼ N (0,1). Then,
we progressively denoise the sample by iterated application
of ϵθ T times according to a specified sampling schedule [41],
[85], which terminates with x0 sampled from pθ(x):

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c)
)
+

1− ᾱt+1

1− ᾱt
βtz,

(5)
where z ∼ N (0,1).

	Introduction
	Method
	Experiments
	Evaluation on RLBench
	Evaluation on CALVIN
	Evaluation in the real world

	Conclusion
	References
	Appendix
	Acknowledgements
	Related Work
	Our heuristics for keypose discovery
	Evaluation on RLBench
	Evaluation on CALVIN
	Evaluation on CALVIN with varying number of maximum keyposes allowed at test time
	Evaluation in the real world
	Run time
	Limitations
	RLBench tasks under PerAct's setup
	Detailed Model Diagram
	Hyper-parameters for experiments
	The importance of noise scheduler
	Background on Denoising Diffusion Probabilistic Models

