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ABSTRACT

Generative retrieval (GR) has emerged as a new paradigm in neural information re-
trieval, offering an alternative to dense retrieval (DR) by directly generating iden-
tifiers of relevant documents. In this paper, we theoretically and empirically inves-
tigate how GR fundamentally diverges from DR in both learning objectives and
representational capacity. GR performs globally normalized maximum-likelihood
optimization and encodes corpus and relevance information directly in the model
parameters, whereas DR adopts locally normalized objectives and represents the
corpus with external embeddings before computing similarity via a bilinear in-
teraction. Our analysis suggests that, under scaling, GR can overcome the in-
herent limitations of DR, yielding two major benefits. First, with larger corpora,
GR avoids the sharp performance degradation caused by the optimization drift
induced by DR’s local normalization. Second, with larger models, GR’s represen-
tational capacity scales with parameter size, unconstrained by the global low-rank
structure that limits DR. We validate these theoretical insights through controlled
experiments on the Natural Questions and MS MARCO datasets, across vary-
ing negative sampling strategies, embedding dimensions, and model scales. But
despite its theoretical advantages, GR does not universally outperform DR in prac-
tice. We outline directions to bridge the gap between GR’s theoretical potential
and practical performance, providing guidance for future research in scalable and
robust generative retrieval.

1 INTRODUCTION

Advances in deep learning and representation learning (Vaswani et al., 2017; Lee & Toutanova,
2018) have established neural information retrieval (IR) as the dominant paradigm (Mitra et al.,
2018; Fan et al., 2022). Within this paradigm, dense retrieval (DR) encodes queries and documents
into vectors and measures their similarity through bilinear interactions, enabling efficient vectorized
recall and delivering state-of-the-art performance across diverse retrieval tasks (Karpukhin et al.,
2020; Khattab & Zaharia, 2020). Recently, driven by generative large language models (LLMs)
(Radford et al., 2018; Yang et al., 2025b; Lewis et al., 2020), generative retrieval (GR) has emerged
as a new branch of neural IR (Tay et al., 2022; Bevilacqua et al., 2022; Zhuang et al., 2022; Wang
et al., 2022; Li et al., 2024; Zeng et al., 2024b). GR directly generates identifiers of relevant doc-
uments (docids) for a given query, with corpus knowledge embedded in the model parameters. It
typically adopts a sequence-to-sequence architecture trained with cross-entropy loss, while inference
relies on constrained decoding to ensure valid docids.

To better understand GR, recent studies have examined its connection to DR. Some research inter-
prets GR as implicitly performing dot-product scoring within an LLM’s parameters and propose a
unified framework for similarity computation across both paradigms (Nguyen & Yates, 2023; Wu
et al., 2024). Despite this formal unification, the substantial differences in model architecture should
not be overlooked: DR is encoder-only, whereas GR employs an autoregressive model with a de-
coder. This naturally raises the question:

Do GR and DR differ fundamentally in their modeling mechanisms for retrieval?

We address this question along two dimensions: (i) Learning objective: DR trains with local nor-
malization over a small candidate set in document space, whereas GR maps the problem to vo-
cabulary space and optimizes a globally normalized likelihood; and (ii) Representational capacity:
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DR encodes queries and documents as low-dimensional embeddings, while GR uses the full model
parameters to memorize the entire corpus.

Our theoretical analysis elaborates on these aspects and leads to the following conclusions: DR has
intrinsic bottlenecks in both learning and representation that constrain its performance under scaling
of corpus and model size, whereas GR does not. First, local normalization in DR introduces calibra-
tion errors that grow with corpus size, whereas GR’s global normalization avoids such optimization
drift and benefits more from larger corpora. Second, the low-rank constraint imposed by DR’s em-
bedding dimension limits its ability to approximate the (often higher-rank) true query-document
relevance matrix, whereas GR’s parameterization allows higher-rank approximations, making it bet-
ter suited to leverage large-scale models.

To validate our theoretical analysis empirically, we evaluate standard DR, multi-vector DR
(MVDR) (Khattab & Zaharia, 2020; Formal et al., 2021; Li et al., 2023a) and two GR variants
following the DSI (Tay et al., 2022) framework on the Natural Questions (NQ) (Kwiatkowski et al.,
2019) and MS MARCO (Bajaj et al., 2016) datasets. Under controlled settings, we conduct three
studies: (i) By varying DR’s negative sampling and embedding dimension, we evaluate their effects
on calibration error and ranking metrics; experimental results show optimization limits due to local
normalization and representation limits due to the embedding dimension. (ii) By scaling GR and DR
with matched model sizes and training corpus sizes, we observe larger gains for GR, providing pre-
liminary evidence that GR has the potential to overcome DR’s bottlenecks when scaled. (iii) Using
a larger model with 14B parameters, we conduct zero-shot and test-time scaling experiments for GR
and observe promising performance, further supporting the scaling advantages that GR may obtain.

Overall, our theoretical and empirical results highlight key modeling differences between GR and
DR, showing that GR avoids DR’s bottlenecks and has greater potential as an IR paradigm at larger
data and model scales. However, our experiments are limited to in-distribution queries, and neither
the model nor the data scale is arbitrarily large. In practice, GR does not consistently outperform
DR, as its effectiveness depends on factors such as docid design (Bevilacqua et al., 2022; Li et al.,
2023b), training data construction (Zhuang et al., 2022), and decoding strategies (Zeng et al., 2024a;
Lee et al., 2022). We conclude by discussing these limitations and outlining future directions to
close the gap between GR’s theoretical promise and practical performance.

2 PRELIMINARIES

Problem statement. Let Q be a set of queries and D = d1, . . . , dN a document collection. Let
P ⋆(d | q) denote the unknown ground-truth conditional distribution of documents given query q.
Training pairs (q, d+) are drawn from a data distribution Dtrain, where d+ is a relevant document
under P ⋆(· | q). The goal of IR is to approximate P ⋆(d | q) using a parametric model PΘ(d | q),
ensuring both probabilistic calibration and high ranking quality (Chowdhury, 2010).

Dense retrieval. Let eq ∈ Rr and ed ∈ Rr denote the query and document embeddings from
encoders fq and fd, respectively (Karpukhin et al., 2020; Xiong et al., 2020a). The DR score for a
pair is computed as their inner product S(q, d) = e⊤q ed, and the locally normalized (e.g., in-batch)
softmax loss is defined accordingly:

PΘ(d | q;N ) =
exp(S(q, d)/τ)∑

d′∈{d}∪N (q) exp(S(q, d
′)/τ)

, (1)

where N (q) is the negative set and τ > 0 is a temperature. The standard contrastive objective is:

LDR(Θ) = Eq

[
− logPΘ(d

+ | q;N (q))
]
. (2)

Eq. 2 encourages S(q, d+) to exceed the scores of negatives within the current candidate pool.
In practice, negatives may come from the in-batch sampling (Karpukhin et al., 2020; Khattab &
Zaharia, 2020) or hard-negative mining (Xiong et al., 2020a; Zhan et al., 2021).

Generative retrieval. Each document has a tokenized docid y1:L ∈ VL from a finite vocabulary V
(Tay et al., 2022). The GR training loss is defined by a sequence generation model pΘ(yt | y<t, q):

LGR(Θ) = Eq

[
− logPΘ(d

+ | q)
]
= Eq

[
−

L∑
t=1

log pΘ
(
y+t | y+<t, q

)]
. (3)
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The mapping between sequences in VL and D is constrained, so that decoding a sequence determin-
istically selects a document. At inference time, beam search is used with prefix constraints (e.g.,
trie) to guarantee valid docids.

3 THEORETICAL ANALYSIS

3.1 LEARNING OBJECTIVES

Here, we refer to an objective as local when normalization is restricted to the sampled candidate set,
whereas a global objective normalizes over the entire document collection D. §3.1.1 presents DR’s
locally normalized surrogate and formalizes the resulting calibration gap, while §3.1.2 then shows
that GR optimizes a globally normalized likelihood objective.

3.1.1 DR LOCALLY NORMALIZES SURROGATE

The DR objective in Eq. 2 minimizes a surrogate defined on the set {d+} ∪ N (q), renormalizing
scores via a softmax within K candidates per batch. This makes the learning objective explicitly
dependent on the sampled negatives, implying that the negative-sampling scheme (both the size of
the candidate set and the quality of the negatives) has a substantial impact on the final performance
of DR. Ideally, one would use as negatives the entire set of non-relevant documents, but this is
computationally infeasible under realistic resource constraints (Wang & Isola, 2020). This mismatch
leads to a calibration gap between the global and local objectives.

Assumptions. Negatives for each query q are drawn i.i.d. from a proposal sample policy π(·) over D
(with µ(·) the random sample policy) and scores are bounded as |S(q, d)/τ | ≤ M . We define the
proposal-bias term

δ(q) = logEd∼π

[
eS(q,d)/τ

]
− logEd∼µ

[
eS(q,d)/τ

]
. (4)

Theorem 3.1 (Lower bound under local normalization). Let P̃Θ(d | q) be the full-softmax distribu-
tion. Under the assumptions above, the expected gap satisfies the following condition:

Eq

[
log P̃Θ(d

+ | q)− logPΘ(d
+ | q;N (q))

]
≥ log

N

K
− Eq[δ(q)], (5)

where N = |D| and K is the batch candidate size.

The proof in Appendix B exposes the mechanism: local normalization replaces the global partition
function Z(q) with a batch-level ZK(q) and, in expectation, ZK(q) ≈ (K/N)Z(q) up to proposal
bias, yielding a gap that shrinks only logarithmically in K, where Z(q) =

∑
d′ exp(S(q, d′)/τ)

and ZK(q) =
∑

d′∈{d+}∪N (q) exp(S(q, d
′)/τ). And a high-probability tail bound version of this

theorem is provided in Appendix E.

Practical mitigations for the calibration gap. Increasing K and mining harder negatives can
partially reduce the gap by better approximating the global normalization, and temperature scaling or
post-hoc calibration further helps align scores (Xiong et al., 2020a; Zhan et al., 2021). Nevertheless,
as the corpus size N grows, the log(N/K) term dominates unless K scales proportionally with N ,
making it increasingly hard for DR to match the true posterior calibration.

3.1.2 GR FULLY NORMALIZES MAXIMUM LIKELIHOOD

The GR loss in Eq. 3 is the token-level negative log-likelihood of a fully normalized sequence model
over docids. Averaging over tokens and queries, the cross-entropy decomposes as

Eq

[
− logPΘ(d

+ | q)
]︸ ︷︷ ︸

CE loss

= Eq

[
H(P ⋆(· | q))

]︸ ︷︷ ︸
entropy term

+Eq

[
KL

(
P ⋆(· | q) ∥PΘ(· | q)

)]
︸ ︷︷ ︸

KL divergence

. (6)

From the CE–KL decomposition in Eq. 6, the entropy term is constant with respect to the model
parameters Θ. We therefore obtain the following proposition, for which a detailed proof is provided
in Appendix A:
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Proposition 3.2 (Global normalization and calibration of GR). Minimizing the GR loss in Eq. 3 is
equivalent to minimizing the expected KL divergence in Eq. 6. Consequently, GR permits error-free
approximation of the true posterior P ⋆(d | q) and its objective is equivalent to likelihood-consistent
optimization over the globally normalized candidate space.

Note that teacher forcing makes gradients local to each conditional step, yet the objective itself
remains globally normalized. Therefore, even under prefix constraints on the valid code space,
improvements in likelihood translate directly into better probability calibration of PΘ(d | q).
GR is expected to benefit under corpus scaling. Based on the above analysis, we conclude that
under the assumptions in §3.1.1 for locally normalized DR (fixed negative-sample budget K and
proposal bias δ(q)) the gap between the ideal global partition Z(q) and its sampled counterpart
ZK(q) grows with logN when K and δ are not increased along with the corpus growth. In practice,
this typically manifests as saturation or degradation in retrieval metrics unless K is increased or the
sample quality is improved. In contrast, GR optimizes a globally normalized likelihood over the
docid space. Assuming a fixed docid scheme with adequate coverage and in-distribution queries,
GR does not incur the logN calibration drift and can keep benefiting from larger corpora without
increasing K (albeit with higher computational costs).

3.2 REPRESENTATIONAL CAPACITY

§3.2.1 below shows that DR compresses relevance into rank-r structures, inducing a low-rank bot-
tleneck on the relevance matrix, while §3.2.2 shows that GR can approximate the query-document
posterior arbitrarily well using its full parameterization.

3.2.1 DR EXHIBITS A LOW-RANK BOTTLENECK IN RELEVANCE REPRESENTATION

DR learns a text-to-embedding mapping and computes relevance through a fixed post-interaction
rule, typically a bilinear score such as the inner product S(q, d) = e⊤q ed. Consequently, all relevance
information for a query or a document is compressed into an r-dimensional vector (Weller et al.,
2025). Formally, DR stacks m query embeddings into Q ∈ Rm×r and N document embeddings
into D ∈ RN×r. The resulting relevance matrix is S = QD⊤ ∈ Rm×N , which satisfies
rank(S) ≤ r regardless of the encoder architecture, as long as the final interaction is bilinear.

By the Eckart-Young-Mirsky theorem (Eckart & Young, 1936; Mirsky, 1960), among all matrices
of rank at most r, the truncated SVD of any target logit matrix S⋆ achieves the best Frobenius-
norm approximation, with minimal error equal to the sum of squared discarded singular values. We
therefore state the following corollary:
Corollary 3.3 (Low-rank bottleneck of bilinear DR). Let r be the embedding dimension. Any bi-
linear DR with score S(q, d) = e⊤q ed induces a relevance matrix S = QD⊤ with rank(S) ≤ r.
Moreover, for a target S⋆, the optimal rank-r approximation error equals the squared singular-value
tail

∑
i>r σi(S

⋆)2.

Whenever S⋆ exhibits a heavy spectral tail, a fixed-r DR model inevitably suffers from an irreducible
approximation error unless r is increased. Contemporaneous work (Weller et al., 2025) also identi-
fies this limitation of DR, providing detailed proofs and experiments, and argues that late-interaction
MVDR models (e.g., ColBERT (Khattab & Zaharia, 2020)) may mitigate the issue. However, we
show that MVDR remains subject to a similar upper bound when tokens are grouped into channels
(see Appendix D for details).

3.2.2 GR DIRECTLY FITS THE QUERY-DOCUMENT RELEVANCE MAPPING

Let VL denote the docid space with a fixed bijection to documents. GR directly fits the query-
document relevance mapping through its full set of model parameters.
Theorem 3.4 (Approximation of P ⋆ by GR). For any ϵ > 0 and any conditional distribution
P ⋆(· | q) supported on D, there exist L and a decoder parameterization such that the induced GR
model satisfies Eq

[
TV(P ⋆(· | q), PΘ(· | q))

]
< ϵ, where TV denotes the total variation distance.

Theorem 3.4 states that under a fixed bijective docid coding and for in-distribution queries, a suf-
ficiently expressive GR model can approximate the true query–document relevance mapping arbi-
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trarily well (in expected total-variation distance). In other words, with adequate capacity, GR could
represents documents, queries, and their relevance relations within the model itself. Note that Theo-
rem 3.4 continues to hold when GR decodes under prefix-constrained decoding (see Appendix C for
a detailed proof). Nevertheless, in practice the degree to which GR fits the query-document map-
ping is affected by several factors, including the quality of the docid tree design and the sufficiency
and cleanliness of training data (Tay et al., 2022; Zhuang et al., 2022; Wang et al., 2022). There-
fore, Theorem 3.4 is a capacity statement rather than a claim about sample or compute efficiency.
It assumes an in-distribution query law and a fixed docid. A highly unbalanced or semantically in-
coherent docid trie can increase optimization difficulty even under universality, and no guarantee is
made for out-of-distribution queries.

GR is expected to benefit under model scaling. Under the representation analysis in §3.2, GR can
reduce the posterior approximation error by scaling its model capacity (given a fixed docid scheme),
whereas DR with bilinear interactions is constrained by an effective rank bound rank(S) ≤ r (or
≤ cr with c independent interaction channels). Hence, matching a heavy spectral tail requires
proportionally increasing r or c. This predicts steeper gains for GR under equal-parameter scaling.

4 EXPERIMENTS

We present: (i) experiments that evaluate the theoretical limitations of DR, (ii) synchronized scal-
ing experiments comparing GR and DR, and (iii) experiments that investigate the potential scaling
advantages of GR.

4.1 EXPERIMENTAL SETUP

We evaluate on two widely used retrieval benchmarks: (i) Natural Questions (NQ) (Kwiatkowski
et al., 2019): Real user questions paired with supporting evidence from Wikipedia; and (ii) MS
MARCO Passage (Bajaj et al., 2016): Web search queries from Bing with associated relevant pas-
sages. We report the calibration metric Brier, computed as the mean squared error between the
predicted relevance probability for the top-1 candidate and the ground truth for each query. We also
report three retrieval metrics: (i) Hits@k, (ii) NDCG@k, and (iii) MRR@k.

We implement representative systems for DR and GR, deliberately avoiding sophisticated variants
to ensure fairness and transparency. For DR, we use: (i) a standard dual encoder with inner-product
scoring (referred to as Standard DR), following DPR (Karpukhin et al., 2020); and (ii) a multi-vector
late-interaction variant (referred to as MVDR) in the style of ColBERT-v1 (Khattab & Zaharia,
2020). For GR, we adopt two docid designs and follow a DSI-style training/inference pipeline
(Tay et al., 2022): (i) codebook docids constructed via residual quantization, where each docid is
a length-6 sequence of 8-bit code indices (referred to as GR-codebook); and (ii) text docids that
directly use the document title as the identifier (referred to as GR-text). All GR decoding is prefix-
constrained by a trie built from the set of valid docids.

To control for capacity and pretraining, all DR models are built on Qwen3-Embedding-0.6B,
and all GR models use Qwen3-0.6B (Yang et al., 2025a). Full details of the experimental setup
are provided in Appendix F, and the implementation details for each subsequent experiment
are given in Appendix G.

4.2 LIMITATIONS OF DR

Optimization limitations introduced by local normalization. To evaluate the effect of local nor-
malization in DR, we fix all other settings and vary only the number of negative samples and the
proportion of hard negatives, and then observe the resulting performance changes.

Figure 1 shows how DR performance changes as the number of negative samples increases. We
observe that (i) the calibration metric Brier and the ranking metrics move in tandem, indicating
that the theoretically predicted calibration drift manifests as changes in retrieval performance; (ii)
all retrieval metrics improve as the number K of negative samples increases and have not plateaued
within our compute budget; and (iii) despite a few outliers, Standard DR and MVDR exhibit broadly
consistent trends across both datasets.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32
Number of Negative Samples (log scale)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Re
tri

ev
al 

Me
tri

c V
alu

e

Hit@1
Hit@10

NDCG@10
Brier

0.410

0.415

0.420

0.425

0.430

0.435

0.440

Br
ier

1 2 4 8 16 32
Number of Negative Samples (log scale)

0.70

0.75

0.80

0.85

0.90

0.95

Re
tri

ev
al 

Me
tri

c V
alu

e

Hit@1
Hit@10

NDCG@10
Brier

0.048

0.050

0.052

0.054

0.056

Br
ier

(a) Effect of the number of negative samples on Standard DR (Left) and MVDR (Right) on NQ.
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(b) Effect of the number of negative samples on Standard DR (Left) and MVDR (Right) on MS MARCO.

Figure 1: DR’s retrieval performance improves as the number of negative samples increases. The
left y-axis shows retrieval metrics (higher is better), while the right y-axis shows the Brier score
(lower is better). The plotted Brier values are raw and thus not comparable across different settings.

Table 1: Effect of the hard-negative ratio on DR
and MVDR on the NQ dataset.

Standard DR MVDR

Hard-negative Hit NDCG Hit NDCG

ratio @1 @10 @10 @1 @10 @10

0 52.4 79.9 61.9 57.5 80.4 61.9
0.25 45.4 70.3 53.0 58.4 82.4 53.0
0.5 39.5 63.2 46.7 52.2 78.8 46.7
0.75 43.0 66.8 50.2 60.0 83.5 50.2
1.0 47.0 73.8 52.2 55.6 81.6 50.2

Table 1 shows the effect of the negative-sampling
strategy, showing that DR is highly sensitive to how
negatives are chosen. For example, when hard neg-
atives constitute one half of the batch, Standard
DR’s Hit@1 drops by about 13% relative to using
no hard negatives, whereas MVDR’s Hit@1 actu-
ally improves when mixing in 1/4 hard negatives.
These findings further corroborate the bias intro-
duced by local normalization and indicate that mit-
igating this limitation purely via negative-sampling
heuristics (e.g., injecting hard negatives) is nontrivial.

Representational limitations imposed by embedding dimensionality. To assess the limitations
under bilinear interactions in DR, we vary the embedding size experimentally. Specifically, we ap-
pend a two-layer non-linear projection after the original output layer to obtain the target embedding
dimension, and train this projection jointly with the backbone.

The relationship between embedding dimensionality and DR performance is shown in Figure 2.
We observe that: (i) the calibration metric and the ranking metrics vary consistently, indicating
that the theoretical effect translates directly into retrieval outcomes; (ii) increasing the embedding
dimension yields substantial improvements for both Standard DR and MVDR across datasets, with
Standard DR achieving gains of over 20% on the NQ and MS MARCO datasets; and (iii) even at
1024 dimensions, well above the commonly used 768, retrieval performance continues to improve
on nearly all curves. Since our datasets are much smaller than real-world corpora, these findings
suggest that embedding dimensionality can act as a genuine bottleneck for dimensionality reduction.

4.3 SCALING TRENDS OF GR AND DR

GR and DR under corpus scaling. To assess how normalization schemes affect corpus-level scal-
ing, we compare GR and DR on progressively larger corpora. We sample document and query
subsets of varying sizes from the official training and evaluation sets, and train/evaluate GR and DR
on matched subset sizes. All hyperparameters are held fixed except corpus size. To isolate training
budget effects, we keep it fixed and vary only the number of candidate documents, increasing it
logarithmically from a base equal to the number of documents seen during training (300K for NQ
and 1M for MS MARCO).
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(a) Effect of the number of negative samples on Standard DR (Left) and MVDR (Right) on NQ.
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(b) Effect of the number of negative samples on Standard DR (Left) and MVDR (Right) on MS MARCO.

Figure 2: DR’s retrieval performance improves as the embedding dimension increases.

Table 2: DR vs. GR under synchronized corpus scaling.
(a) On NQ, corpus expansion leads to a sharper degradation for DR.

Standard DR GR-codebook

Metric Initial Final Abs. drop Per-unit Initial Final Abs. drop Per-unit

Hit@1 52.4 45.5 6.9 1.0 64.2 60.9 3.3 0.5
Hit@10 79.9 73.6 6.3 0.9 82.5 79.2 3.3 0.5
NDCG@10 61.9 56.5 5.4 0.8 – – – –
MRR@10 – – – – 86.7 83.7 3.0 0.4

(b) On MS MARCO, DR likewise shows a larger performance drop than GR.

Standard DR GR-codebook

Metric Initial Final Abs. drop Per-unit Initial Final Abs. drop Per-unit

Hit@1 57.5 48.4 9.1 1.3 42.3 39.6 2.7 0.4
Hit@10 80.4 73.3 7.1 1.0 70.8 64.5 6.3 0.9
NDCG@10 65.4 58.9 6.5 0.9 – – – –
MRR@10 – – – – 45.1 41.0 4.1 0.6

As shown in Table 2 (a)
and Table 2 (b), both
datasets exhibit the same
pattern: (i) as the num-
ber of candidate documents
increases, the performance
of both GR and DR de-
clines, reflecting the in-
creased task difficulty in-
troduced by a larger candi-
date pool; however, (ii) GR
degrades more slowly than
DR, both in magnitude and
in rate. For instance, on
NQ, DR’s Hit@1 decreases
by 6.9% and Hit@10 by
6.3%, while GR’s Hit@1
and Hit@10 drop by only 3.3% each. This aligns with our theoretical analysis: corpus expansion
amplifies the optimization drift of DR caused by local sampling, whereas GR optimizes a globally
normalized objective over the full docid space for each query, making it less sensitive to additional
non-relevant documents. Results for MVDR and GR-text are provided in Appendix H.

GR and DR under model scaling. To examine differences in model scaling, we compare GR and
DR under equal added parameter budgets. We attach randomly initialized adapters of the same size
to both models and train the adapters jointly with the backbone, then track ranking metrics. Note
that the adapters range from 0.1B to 0.8B parameters and at the largest setting, the adapter exceeds
the backbone in size, making this setup meaningful for model-scaling evaluation.

Figure 3 shows a clear upward trend for GR with the model scale. Performance improves substan-
tially as parameters increase. On both datasets (NQ and MSMARCO), all metrics rise by roughly
5%, indicating that GR reaps sizable gains from added parameters. In contrast, DR remains flat
or improves only marginally, with changes around 1%, suggesting that simply scaling parameters
does not directly benefit DR. These patterns are consistent across both datasets. Taken together, the
results imply that, in the era of large language models, GR is better positioned to capitalize on rapid
parameter growth, whereas DR lacks an equally direct path and may require larger embeddings or
richer contrastive pretraining. Please refer to Appendix I for results on MVDR and GR-text.
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(a) Standard DR shows no clear trend of improved retrieval performance with increasing parameter scale on
NQ (Left) and MS MARCO (Right).
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(b) GR shows a clear upward scaling trend in retrieval performance on NQ (Left) and MS MARCO (Right).

Figure 3: Comparison of DR and GR under synchronized model scaling. Only the increasing range
is shown here. All models drop after 0.4B due to adding too many new parameters. See Appendix I
for the full curve.

4.4 POTENTIAL ADVANTAGES OF GR

Next, we explore GR’s advantages at larger scales using a 14B-parameter model. We focus on
GR-text on the NQ dataset, as these experiments are designed to fully leverage capabilities acquired
during LLM pretraining. The NQ dataset’s documents are drawn from Wikipedia, with titles serving
as natural text docids. Because both documents and titles are seen during pretraining, this setup
directly exploits the model’s world knowledge and reasoning abilities.

Zero-shot GR. GR performs token-by-token prediction of a docid and when the docid is textual,
this inference procedure aligns with the LLM’s next-token–prediction (NTP) pretraining objective.
This motivates the hypothesis that an LLM can perform retrieval without any task-specific training,
relying solely on its pretrained capabilities. We therefore design a zero-shot GR experiment to test
this hypothesis. Specifically, we add only a prompt and enforce decoding under trie constraints, with
no retrieval-specific fine-tuning.

TTS GR. We further assess test-time scaling (TTS) with a “think-then-retrieve” procedure to probe
GR’s exploitation of LLM capabilities and its internalization of the corpus. Specifically, before
constrained decoding, the model first produces a short free-form reasoning snippet. The original
query and the reasoning are then concatenated and passed to constrained decoding for retrieval.
This augmentation is applied only at inference, while training follows the standard GR setup.

Table 3: Retrieval performance on the NQ
dataset for standard GR-text and its zero-shot
and TTS variants.

Hit@1 Hit@10 NDCG@10

Zero-shot GR 18.1 23.8 33.3
Standard GR 45.7 63.5 88.6
TTS GR 47.3 65.8 89.1

Results for zero-shot GR and TTS GR, alongside
standard GR, are reported in Table 3. We summa-
rize: (i) zero-shot GR achieves non-trivial retrieval
quality (although it remains modest), suggesting that
with larger models, carefully designed prompts, and
suitable docids, practical training-free GR may be
attainable; and (ii) even without task-specific fine-
tuning, GR benefits from a pre-retrieval reason-
ing step, outperforming the no-reasoning baseline,
which indicates that GR’s parameterized internalization of documents and relevance aids retrieval
via query reformulation. These experiments corroborate GR’s advantages at larger model scales.
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5 DISCUSSION

Practical challenges of GR. Although GR is theoretically appealing and exhibits demonstrable
scaling advantages, it seldom reaches the theoretical optimum in practice, for two main reasons:
(i) Noisy or biased supervision (e.g., conflicting relevance labels) and insufficient training can induce
an irreducible mismatch between the learned model and the target posterior (Zhuang et al., 2022);
and (ii) Prefix-constrained autoregressive decoding is prone to error propagation which means once
early tokens deviate, subsequent steps tend to drift (Bevilacqua et al., 2022; Zhang et al., 2024).
This issue is exacerbated when the docid design is flawed (e.g., unbalanced hierarchies, suboptimal
clustering, or text-based docids that fail to cover document content). Beyond this optimality gap,
engineering considerations further limit GR’s practical use: (i) GR’s token-by-token decoding in-
troduces high per-step latency whereas ANN-indexed DR can provide near-instant lookups once the
index is built; and (ii) under continual corpus drift, GR often needs retraining or local fine-tuning to
accommodate an updated codebook or shifting hierarchical boundaries (Chen et al., 2023; Kishore
et al., 2023), whereas DR commonly supports index-only updates.

Potential solutions. We discuss some potential solutions to address the practical challenges of GR.
For data noise and undertraining, two complementary directions are promising: (i) treating rele-
vance itself as the pretraining target and pretrain a decoder-only model from scratch on large-scale,
noise-controlled (q, d) pairs to directly optimize − logP (d | q), similar to some recent works on
generative recommendation (e.g., one-rec (Deng et al., 2025)). This is appropriate when relevance is
explicitly defined by human rules (e.g., e-commerce query–item (Rajput et al., 2023), ads matching
(Fan et al., 2019), FAQ–KB pairs (Sakata et al., 2019)); and (ii) exploiting the world knowledge and
reasoning of LLM bases. Specifically, teach the model the semantics and interface of retrieval with
light instruction tuning instead of memorizing full-corpus relevance. At inference, execute “retrieval
as constrained generation” via constrained decoding. This is suitable when the relevance underly-
ing the retrieval task is already encoded in the pretraining corpus (e.g., Wikipedia or encyclopedic
retrieval (Petroni et al., 2020)).

For early-error propagation, relaxing clustering constraints or decoding constraints might work.
Specifically, allowing each document to belong to multiple clusters (especially for boundary cases)
might reduce early-errors. On the decoding side, enabling backoff mechanisms or, when necessary,
allowing tokens outside the constraint set to recover from early mistakes.

For engineering efficiency, integrating GR with DR in a single system within a single system is
promising. One practical design is to let GR decode only a shallow prefix to perform coarse-grained
category recall, followed by DR for fine-grained retrieval within that category. This coarse-to-fine
design is expected to leverages GR’s capacity to fit relevance while mitigating error accumulation
and reducing the latency associated with deep prefix-constrained decoding down to docids.

6 CONCLUSION AND LIMITATIONS

We have systematically compared DR and GR in terms of learning objectives and representational
capacity. Theoretically, GR performs globally normalized maximum likelihood over the docid
space, thereby avoiding the calibration gap introduced by DR’s locally normalized contrastive learn-
ing. Moreover, under fixed bilinear interactions, DR is constrained by a low-rank bottleneck deter-
mined by the embedding dimension, whereas GR admits higher-rank approximations. Empirically,
results on the NQ and MS MARCO datasets show that calibration and ranking metrics corrobo-
rate these theoretical differences. Under comparable corpus and parameter scaling, GR achieves
larger gains and further demonstrates advantages in zero-shot and test-time scaling. In summary,
GR shows promise in overcoming DR’s bottlenecks, though several practical challenges remain.

This work also has several limitations: (i) our theoretical analysis assumes idealized formulations
of GR and DR and does not fully account for the effects of training data, docid design, or decod-
ing/search strategies; (ii) due to resource constraints, we were unable to compare GR and DR at
larger model and corpus scales; (iii) our comparisons did not include state-of-the-art variants of
GR and DR; and (iv) although we propose several potential extensions for GR, we did not conduct
preliminary experiments to validate their effectiveness.
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7 REPRODUCIBILITY STATEMENT

We summarize the steps we have taken to ensure reproducibility and point to where the relevant
details can be found. The theoretical assumptions are stated in Section §3 and Appendices A–E,
where we provide complete proofs for the CE–KL decomposition, the DR local-normalization gap,
the low-rank bottleneck, and the universality of GR. Readers can map each claim in Section §3
to its corresponding appendix proof. Our experimental setup, including model choices, datasets,
evaluation metrics, and training/inference details are specified in Section §4.1 and Appendix F. We
enumerate all experimental factors that affect the results (the size/quality of negative samples, em-
bedding dimensionality, and corpus/model scaling) and provide their implementations and settings
in Appendix G. For large-model experiments (zero-shot GR and TTS GR), we report implementa-
tion details in Appendix G including the exact instructions/prompts.
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A CROSS-ENTROPY AND KL DECOMPOSITION

For completeness, we give a concise derivation of Eq. 6. Let P be the data distribution and QΘ the
model on the same finite support. By definition,

CE(P,QΘ) = Ex∼P

[
− logQΘ(x)

]
= Ex∼P

[
log

P (x)

QΘ(x)

]
+ Ex∼P

[
− logP (x)

]
. (7)

The first term equals KL(P∥QΘ) and the second equals H(P ), hence CE(P,QΘ) = H(P ) +
KL(P∥QΘ). For conditional sequence models (GR), summing token-wise cross-entropies yields
the same identity after taking expectations over queries.

B PROOF OF THEOREM 3.1

For a query q, define the global and in-batch partition functions

Z(q) =
∑
d′∈D

exp
(
S(q, d′)/τ

)
, ZK(q) =

∑
d′∈{d+}∪N (q)

exp
(
S(q, d′)/τ

)
. (8)

Then
log P̃Θ(d

+ | q)− logPΘ(d
+ | q;N ) = logZK(q)− logZ(q). (9)

Let µ be the corpus marginal (uniform over D) and π the negative-sampling proposal,

δ(q) = logEd∼π

[
eS(q,d)/τ

]
− logEd∼µ

[
eS(q,d)/τ

]
. (10)

Taking expectation over the sampling of N (q) and using Jensen’s inequality,

E
[
logZK(q)

]
≥ logE

[
ZK(q)

]
≥ logK + logEd∼π

[
eS(q,d)/τ

]
, (11)

where we use the fact that E[ZK(q)] ≥ K Ed∼π[e
S(q,d)/τ ]. Since Z(q) = N Ed∼µ[e

S(q,d)/τ ], we
obtain

E
[
logZK(q)− logZ(q)

]
≥ log

K

N
− δ(q). (12)

Averaging over queries gives Theorem 3.1.

C CONSTRUCTIVE UNIVERSALITY FOR GR

Fix a bijection between D and the leaves of a |V|-ary trie of depth L. Given a target posterior
P ⋆(· | q), assign at each internal node the conditional distribution over its children to match the
subtree mass under P ⋆: for node u with children {v}, set

p⋆(v | u, q) =

∑
leaves ℓ∈subtree(v) P

⋆(ℓ | q)∑
leaves ℓ∈subtree(u) P

⋆(ℓ | q)
. (13)

A decoder with sufficient capacity can approximate each local conditional p⋆(· | u, q) arbitrarily
well. By the chain rule along any root-to-leaf path, the product of these conditionals approximates
the target leaf mass, hence the induced leaf distribution approaches P ⋆(· | q) in total variation.
Under prefix-constrained decoding, the same construction applies because valid leaves are exactly
the trie leaves corresponding to D.

D LOW-RANK LIMITATION FOR DR

Let S∗ ∈ Rm×N be a ground-truth logit matrix whose (i, j)-entry is a monotone transform of
logP ∗(dj | qi). Any bilinear DR model with embedding dimension r factorizes as S = QD⊤ and
thus rank(S) ≤ r (or ≤ cr with c independent interaction channels). By the Eckart-Young-Mirsky
theorem,

min
rank(S)≤r

∥S − S∗∥2F =
∑
i>r

σi(S
∗)2, (14)

the squared Frobenius norm of the spectral tail beyond rank r.

Consequently, if S∗ has a heavy spectral tail, any fixed-r DR model incurs an irreducible posterior
approximation error unless r (or the number of interaction channels) is increased.
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E A HIGH-PROBABILITY BOUND FOR logZK − logZ

Fix a query q and define X = eS(q,d)/τ for d ∼ π(· | q) with mean µπ = Eπ[X] and variance
σ2
π = Varπ[X]. Let X1, . . . , XK be i.i.d. copies and X̄K = 1

K

∑K
i=1 Xi. Assuming X is sub-

exponential (e.g., bounded or with a finite moment generating function in a neighborhood of 0), a
Bernstein-type inequality gives, for any ϵ ∈ (0, 1),

Pr
[
log X̄K ≤ log µπ − ϵ

]
≤ exp

(
− K ϵ2

2(σ2
π/µ

2
π + ϵ/3)

)
. (15)

Since ZK(q) =
∑

d∈N (q) e
S(q,d)/τ = K X̄K and Z(q) = N µµ with µµ = Ed∼µ[e

S(q,d)/τ ], we
have with probability at least 1− exp(−cKϵ2) (for a constant c depending on moments of X):

logZK(q)− logZ(q) ≥ log
K

N
−

(
log µµ − log µπ

)
− ϵ = log

K

N
− δ(q) − ϵ. (16)

Averaging over q yields a high-probability version of Theorem 3.1. We emphasize that this bound
holds under i.i.d. negatives from π; for adaptive or “hard-negative” proposals πt(· | q,Θt), the same
form holds with an additional bias term in δt(q) that captures proposal/model dependence.

F DETAILED EXPERIMENTAL SETUP

Datasets. We evaluate on two standard retrieval benchmark datasets: (i) Natural Questions (NQ)
(Kwiatkowski et al., 2019). This is a collection of real-user questions paired with supporting
Wikipedia evidence. We use the official train (313K) and test (7K) splits. To make generative
retrieval feasible, we ensure that each test query’s gold document appears in the docid inventory con-
structed from the training corpus (i.e., the gold docid is seen during training); and (ii) MS MARCO
Passage (Bajaj et al., 2016). This is a set of web search queries from Bing with associated passages.
We use the passage-ranking subset and sample 1M training pairs and 2K evaluation queries from
the official train/test splits. Unlike NQ, we do not enforce the “seen-document” constraint on MS
MARCO (because enforcing it would shrink the evaluation set to only few hundred queries).

Models used for comparison. We implement two representative systems for both DR and GR
and intentionally avoid complex variants to keep comparisons fair and transparent. For DR, we
implement (i) a standard bi-encoder in the spirit of DPR (Karpukhin et al., 2020) with inner-product
scoring; and (ii) a multi-vector late-interaction variant like ColBERT v1 (Khattab & Zaharia, 2020).
For GR, we implement two varying about the docid design and train/inference follow the DSI-style
(Tay et al., 2022): (i) codebook docids built via residual quantization, each docid is a length-6
sequence of 8-bit code indices; and (ii) textual docids that directly use the title as the document
identifier. All GR decoding is prefix-constrained by a trie constructed from the set of valid docids.

Metrics. We report the calibration metric Brier, which is the mean squared error between the pre-
dicted relevance probability and the ground truth over the query’s rank-1 candidate. We report
unnormalized (raw) Brier scores, consequently, they are comparable only within the same dataset
and experimental series, and the values are not comparable across experiments. We also report four
retrieval metrics: (i) Hits@k indicates whether at least one relevant document appears in the top-k
results for a query; (ii) NDCG@k is the normalized discounted cumulative gain at cutoff k, using
binary gains with logarithmic discounting by rank; and (iii) MRR@k is the mean reciprocal rank of
the first relevant document within the top-k.

Training and inference. To control for capacity and pretraining, all DR models are built on Qwen3-
Embedding-0.6B, and all GR models use Qwen3-0.6B (Yang et al., 2025a). Unless otherwise noted,
we train with the Adam optimizer (Kingma & Ba, 2014) using its default settings. At inference
time, DR retrieves top-k candidates using FAISS-based ANN search (Xiong et al., 2020b), while
GR performs top-k constrained decoding over the docid trie.

G DETAILED EXPERIMENTAL IMPLEMENTATION

DR negative sampling. The goal is to assess how negative sampling affects DR performance along
two dimensions: size and quality. For size, we use random negatives and vary the number of neg-
atives during training. For quality, we experiment only on NQ, which provides both standard and
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hard negatives: we vary the proportion of hard negatives in the sampled batch. If the official hard
negatives are insufficient, we first fill with the provided standard negatives, and if still insufficient we
complete the batch with random negatives. In this experiment, both query and document embedding
dimensionality is fixed at 128, and MVDR and DR share identical settings.

DR embedding size. The goal is to examine the constraint imposed by the embedding dimension on
DR. We append a two-layer non-linear projection (ReLU activations) after the model’s output layer
to map embeddings to the target dimension and this projection is trained jointly with the backbone.
Random negative sampling is used, and MVDR shares the same settings as DR.

Corpus scaling. The goal is to observe how GR and DR behave when the training corpus size is
increased by the same amount. We control the number of documents in the corpus and require that
each document appears at least once as a positive in the training set; the test set is a subset of this
corpus. In this experiment, DR uses random negative sampling and 128-dimensional embeddings.
GR-codebook and GR-text follow the configurations described in the main text. GR-text is evaluated
only on NQ, where the official titles can serve as textual docids.

Model scaling. The goal is to compare GR and DR when model capacity is scaled by the same
budget. We equip each layer with randomly initialized adapters of matched size and control the
scaling by the total number of newly introduced parameters and adapters are trained jointly with the
backbone. Note that the largest adapter budget can exceed the original backbone size. All other
settings mirror those in the Corpus Scaling experiment.

GR zero-shot. The goal is to evaluate GR’s retrieval ability without fine-tuning, relying solely
on pretrained knowledge. This experiment is conducted only on NQ with the GR-text, because
NQ’s documents and their titles (used as docids) come from Wikipedia which is thoroughly cov-
ered during LLM pretraining making zero-shot GR feasible. We employ a larger model (Qwen3-
14B) for this study. Specifically, we do not fine-tune Qwen3-14B, instead, we prepend a prompt
to each query: Given the question, predict the document title that most
likely contains the answer. The title is: and then enforce trie-constrained
decoding to produce the docid.

GR TTS. The goal is to assess whether GR can leverage an LLM’s reasoning capabil-
ity and its internalized document knowledge to improve performance via a “think-then-
retrieve” procedure. This experiment is conducted only on NQ with the GR-text, us-
ing Qwen3-14B as the backbone. During training, We prepend a retrieval instruction
Ir to each query: Given the question, predict the document title that
most likely contains the answer. The title is: and fine-tune GR with
LoRA. During inference, the model first performs unconstrained “thinking” given the
prompt: Briefly think about the document title that may contain the
answer to this question. The generated reasoning is then concatenated with the origi-
nal query and the retrieval instruction Ir, and constrained decoding is applied to produce the docid.
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H EXTENDED RESULTS OF CORPUS SCALING

This section supplements the corpus scaling experiments in Section 4.3. Figure 4 presents the full
performance trends under corpus scaling for all models (including MVDR and GR-text, which are
not covered in the main text Table 2). The conclusions mirror those in the main text: overall, DR
exhibits a larger performance drop than GR as the corpus size increases.
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(e) GR-codebook on NQ
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(f) GR-codebook on MS MARCO
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Figure 4: Extended results of corpus scaling.
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I EXTENDED RESULTS ON MODEL SCALING

This section supplements the model scaling experiments in Section 4.3. Figure 5 presents the full
performance trends under model scaling for all models (including MVDR and GR-text, which are
not covered in the main text, Figure 3). The end-of-curve downturn observed in all traces is likely
due to the addition of excessive parameters. Ignoring this effect and focusing on the initial stage
where model scaling yields gains, the conclusion aligns with the main text: GR derives greater
benefits from increases in parameter scale.
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(b) Standard DR on MS MARCO
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(c) MVDR on NQ
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(d) MVDR on MS MARCO
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(e) GR-codebook on NQ
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(f) GR-codebook on MS MARCO

1B 2B 3B 4B 5B 6B 7B 8B
Added Parameters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
tri

ev
al

 M
et

ric
 V

al
ue

0.0010.0030.002
Hit@1 Hit@10 NDCG@10

(g) GR-text on NQ

Figure 5: Extended results of model scaling.
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J LLM USAGE

We used a large language model to help polish wording and to generate codes for data visualization.
All core ideas, theoretical analysis, experimental design, and the initial full manuscript were con-
ceived and written by all co-authors. All LLM-suggested text and code were reviewed and verified
by the authors before inclusion.
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