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Abstract

Machine unlearning (MUL) focuses on removing the influence of specific subsets
of data (such as noisy, poisoned, or privacy-sensitive data) from pretrained models.
MUL methods typically rely on specialized forms of fine-tuning. Recent research
has shown that data memorization is a key characteristic defining the difficulty of
MUL. As a result, novel memorization-based unlearning methods have been devel-
oped, demonstrating exceptional performance with respect to unlearning quality,
while maintaining high performance for model utility. Alas, these methods depend
on knowing the memorization scores of data points and computing said scores is
a notoriously time-consuming process. This in turn severely limits the scalability
of these solutions and their practical impact for real-world applications. In this
work, we tackle these scalability challenges of state-of-the-art memorization-based
MUL algorithms using a series of memorization-score proxies. We first analyze
the profiles of various proxies and then evaluate the performance of state-of-the-art
(memorization-based) MUL algorithms in terms of both accuracy and privacy
preservation. Our empirical results show that these proxies can introduce accuracy
on par with full memorization-based unlearning while dramatically improving
scalability. We view this work as an important step toward scalable and efficient
machine unlearning.

1 Introduction

Deep learning models have achieved significant success across various domains, largely by increasing
model capacity and utilizing vast amounts of data. However, real-world training data often includes
examples that may be polluted, harmful, or privacy-sensitive. This raises the need for methods to
remove the influence of such undesirable data from pre-trained models. To address this challenge,
machine unlearning (MUL) was introduced [4, 18]. MUL aims to remove the impact of a specific
subset of training data, ensuring that a model "forgets" the knowledge derived from it. As concerns
over data integrity and privacy continue to grow [19, 13], MUL has emerged as a rapidly growing
research area, gaining significant attention in recent years [21].

MUL can be viewed as a form of fine-tuning, which is operated on a pre-trained model to specifically
"unlearn" the influence of a selected set of training data examples. While traditional fine-tuning
adjusts a model to improve performance on new tasks or additional data, MUL takes a reverse
approach: it modifies the model to eliminate the effects of certain data points, ensuring that they no
longer contribute to the model’s behavior. This process is crucial in contexts where some data must
be forgotten due to ethical, legal, or privacy concerns, or to correct erroneous information.

An important aspect of both fine-tuning and unlearning is the role of memorization in deep learning
models. Deep neural networks with sufficient capacity are known to memorize their training data
[1], and recent theoretical work has shown that memorization is crucial for achieving near-optimal
generalization, particularly in cases where the training data distribution is long-tailed [8]. Memoriza-
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tion allows models to retain rare or atypical examples, which can enhance performance on difficult
tasks. In the context of MUL, it has long been conjectured that training-example memorization is
also a key factor in the MUL process. Recently, in large language models (LLMs), new algorithms
were presented that exploit the memorization of textual sequences, offering new state-of-the-art
MUL performance for memorized-data unlearning [2]. Furthermore, Zhao et al. [23] showed that
memorization is strongly linked to the difficulty of the unlearning task: the more memorized the data
is, the harder it is to effectively unlearn those examples. Building on these findings, Zhao et al. [23]
proposed a new meta-algorithm, "RUM," which leverages varying levels of memorization to improve
existing approximate unlearning algorithms. However, this approach has practical limitations, as it
requires precise knowledge of memorization levels in the dataset, which is computationally expensive
to obtain. This severely limits the scalability of high-performing MUL algorithms like RUM.

Motivated by this limitation, we explore and adopt a series of memorization proxies to ensure scala-
bility while maintaining the effectiveness of this new class of high-performing machine unlearning
algorithms, such as RUM. By using proxies that can be computed more efficiently, we aim to strike a
balance between performance and computational feasibility.

2 Related work and background

2.1 Problem Formulation

Let θo = A(Dtrain) denote the weights of a deep neural network trained on a dataset Dtrain using
the algorithm A; we refer to θo as the "original model" in an unlearning task. Suppose we have a
subset Df ⊆ Dtrain that we wish to remove its influence from the model, defined as the "forget set".
The complement of this subset, Dr = Dtrain \ Df , is referred to as the "retain set", representing the
data whose knowledge we aim to preserve. The unlearning process involves applying an unlearning
algorithm U to the original model, resulting in θu = U(θo,Df ,Dr). The goal of unlearning is for θu
to approximate the model θr that would have been obtained by retraining from scratch solely on Dr.

2.2 Memorization score and proxies

Memorization [8] Memorization, as defined by Feldman [8], measures the extent to which a
machine learning model’s predictions rely on a specific training data example. An example is
considered memorized if the model’s performance changes significantly when the example is included
or removed. Studies have shown that atypical or outlier examples, particularly those with noisy or
incorrect labels, are more likely to be memorized [8, 9, 14].

Formally, for a data point (xi, yi) ∈ D, where xi is the feature and yi is the label, the memorization
score with respect to a training dataset D and algorithm A is given by:

mem(A,D, i) = Pr
f∼A(D)

[f(xi) = yi] − Pr
f∼A(D\i)

[f(xi) = yi] (1)

where the first term considers models trained on the entire dataset, while the second reflects models
trained without the example (xi, yi). A high memorization score indicates that excluding the example
causes a significant change in the model’s predictions for that example.

Although Feldman et al. [9] proposed methods to estimate memorization, these approaches require
training numerous models on different dataset splits, making them computationally expensive and
impractical for deep learning models. To address this, researchers have developed several alternative
metrics that can act as proxies for memorization, with key examples outlined below:

C-score [14] C-score, introduced by Jiang et al. [14], measures the alignment of a held-out data
example with the underlying data distribution P . For a given example (xi, yi), it evaluates the
expected performance of models trained on increasingly larger subsets of data sampled from P ,
excluding (xi, yi). This consistency profile reflects how structurally aligned an example is with the
distribution P . Notably, a data point evaluation of the consistency profile at a fixed data size resembles
the second term of the memorization score formula. Since the C-score estimation follows a similar
process to the memorization estimator proposed by Feldman et al. [9], it remains computationally
expensive.
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Learning events proxy [20, 14] The learning events proxy is introduced by Jiang et al. [14], which
is a class of proxies designed to measure how quickly and reliably a model learns a specific example
during training. For a given data example (xi, yi) ∈ D, learning events proxies are computed by
collecting several metrics at each training epoch as the model θ is trained on D using algorithm A,
and averaging these metrics over all epochs. The key metrics include: confidence, which is the
softmax probability of θ(xi) corresponding to the ground-truth label yi; max confidence, which is
the highest softmax probability of θ(xi) across all classes; entropy, which is entropy of the output
probabilities of θ(xi); and binary accuracy, which indicates whether the model correctly predicts yi
for xi (0 or 1).

Examples with high proxy values are learned earlier in the training process, tend to exhibit strong
regularity within the overall data distribution, and contribute to better model generalization. Jiang
et al. [14] also demonstrated that the learning event proxies are highly correlated with the C-score,
suggesting that these proxies effectively capture both the difficulty and regularity of examples during
training.

Holdout retraining [5] Proposed by Carlini et al. [5], this proxy aims to capture the typicality or
atypicality of data points. Given a model θ trained on D and an unseen test dataset Dt, the model
θ is fine-tuned on Dt to yield θ′. For a data point (xi, yi) ∈ D, the proxy computes the symmetric
KL-divergence between the softmax probabilities of θ and θ′. Intuitively, a high proxy value indicates
that the model’s predictions for (xi, yi) change significantly after fine-tuning, suggesting that (xi, yi)
is less typical of the overall data distribution.

Loss curvature [11] This proxy was introduced by Garg et al. [11] by using the curvature of the
loss function around a given data point (xi, yi) to approximate its memorization score. The curvature,
as defined by Moosavi-Dezfooli et al. [17], is calculated from the derivative of the loss function with
respect to the inputs, and the proxy value is obtained by averaging these curvatures over the course
of training. This proxy identifies data points where the model is more sensitive to perturbations,
indicating stronger memorization.

2.3 Approximate unlearning algorithms

Fine-tune [22, 12] leverages "catastrophic forgetting" to reduce the model’s knowledge of the forget
set, achieving unlearning by continuing to train the original model θo on the retain set Dr. NegGrad+
[15] extends the fine-tuning approach by applying gradient descent to the retain set Dr, while treating
the forget set Df differently using gradient ascent to encourage unlearning. L1-sparse [16] builds on
Fine-tune by incorporating an L1 penalty to promote sparsity in the model weights. SalUn [7] uses a
random-label unlearning approach by assigning random labels to examples in Df and fine-tuning the
model on both Dr and Df with these random labels [12]. Specifically, SalUn identifies salient model
weights and applies the random-label method only to those weights.

RUM [23] is a meta-algorithm for unlearning proposed by Zhao et al. [23], which has empirically
demonstrated significant improvements in unlearning performance across various existing algorithms.

Figure 1: Overview of RUM.

An overview of RUM is shown in Figure 1.
RUM operates in two steps: (i) Refinement,
denoted by the function F , where the forget
set Df is partitioned into K homogeneous sub-
sets based on the chosen inherent data property
(e.g., memorization or its proxies): F(Df ) =
{Di

f}Ki=1; (ii) Meta-Unlearning, where an un-
learning algorithm is selected from a pool of
algorithms for each subset Di

f , and then applied
sequentially from the first subset to the last in
a specified order. Specifically, let U1, . . . ,UN

represent a pool of state-of-the-art unlearning
algorithms. For each subset Di

f , we select an
algorithm U i ∈ U1, . . . ,UN and perform K
unlearning steps in sequence. At step i, the selected algorithm U i is applied to Di

f , denoted as
U i(θo,Di

f ,Di
r) = θiu, where θiu is the model after unlearning step i, and Di

r = Dr∪{Di+1
f , . . . ,DK

f }
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is the retain set for step i, which includes Dr and all remaining subsets of Df yet to be unlearned.
The process returns the final unlearned model θKu after the last step. In this study, we focus on RUMF

[23], where the refinement step is utilized by applying the same unlearning algorithm U sequentially
to the subsets from F(Df ), to investigate the impact of refinement alone.

2.4 Evaluation metrics

The unlearned model θu = U(θo,Df ,Dr) is expected to balance the forgetting of Df while pre-
serving performance on Dr and generalizing well to the unseen test set Dt. To assess this delicate
balance between forgetting quality on Df and model utility performance on Dr and Dt, we adopt the
"tug-of-war (ToW)" metric, defined by Zhao et al. [23] and introduce "ToW-MIA", a variant of ToW,
to evaluate the unlearned model’s performance from both accuracy and privacy perspectives. The
formal definitions of ToW and ToW-MIA are provided below:

ToW(θu, θr,Df ,Dr,Dt) = (1−∆a(θu, θr,Df )) · (1−∆a(θu, θr,Dr)) · (1−∆a(θu, θr,Dt))

ToW-MIA(θu, θr,Df ,Dr,Dt) = (1−∆m(θu, θr,Df )) ·(1−∆a(θu, θr,Dr)) ·(1−∆a(θu, θr,Dt))

where a(θ,D) = 1
|D|

∑
(x,y)∈D[f(x; θ) = y] is the accuracy on D of a model f parameterized by θ

and ∆a(θu, θr,D) = |a(θu,D) − a(θr,D)| is the absolute difference in accuracy between models

θu and θr on D. Similarly, m(θ,D) =
TNDf

|Df | represents the MIA performance of a model with
parameters θ on D, and ∆m(θu, θr,D) = |m(θu,D)− m(θr,D)| denote the absolute difference in
MIA performance between models θu and θr on D. We used a commonly adopted MIA approach
[7, 16, 23] for ToW-MIA, which involves training a binary classifier to distinguish between Dr and
Dt and then querying it with examples from Df . See Section A.2 for further details on the MIA
setup.

The only distinction between ToW and ToW-MIA lies in the "forgetting quality" term. ToW measures
the relative accuracy difference on the forget set between the unlearned and retrained models, while
ToW-MIA evaluates the relative difference in MIA performance on the forget set between the same
models. Both ToW and ToW-MIA reward unlearned models that closely match the performance of
the retrained-from-scratch model. These metrics range from 0 to 1, with higher values indicating
better unlearning performance.

3 Profiles of memorization proxies

In this section, we evaluate the performance profiles of each proxy across two key dimensions: fidelity
and efficiency. Fidelity is assessed by calculating the Spearman correlation coefficient between the
proxy and memorization scores. The coefficient ranges from [−1, 1], where a higher absolute value
indicates a stronger correlation. Efficiency is measured by the extra computational time required
to compute each proxy, in comparison to both computing memorization scores and retraining the
original model θo from scratch (i.e., exact unlearning).

The evaluation results for fidelity and efficiency are presented in Table 1, with more detailed results,
including distribution plots for the proxies versus memorization provided in the Section A.3.1. The
results indicate that, among the learning event proxies, confidence and binary accuracy exhibit the
highest Spearman correlation with memorization scores while also requiring the least computational
time. Although holdout retraining exhibits only moderate correlation with memorization, it is far
more efficient to compute and requires no intervention during model training compared to the
other proxies. Therefore, based on both fidelity and efficiency, we select the three best-performing
proxies—confidence, binary accuracy, and holdout retraining—for further investigation into their
impact on unlearning performance.
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Table 1: Comparison of proxies based on Spearman correlation with memorization, computation
time, and relative computation time percentages compared to memorization computing and retraining
the model from scratch, evaluated on CIFAR-10 and CIFAR-100 datasets using ResNet-18 and
ResNet-50 model architectures.

Proxy Spearman
corr. (mem)

Computation
time (s)

Comp. time
% (mem)

Comp. time
% (retrain)

Confidence -0.80 73.285 0.018% 17.123%
Max confidence -0.76 83.805 0.021% 19.581%
Entropy -0.75 115.838 0.029% 27.065%
Binary accuracy -0.71 72.154 0.018% 16.859%
Holdout retraining 0.67 69.263 0.017% 16.183%
Loss curvature 0.69 844.427 0.209% 197.298%

(a) CIFAR-10 with ResNet-18.

Proxy Spearman
corr. (mem)

Computation
time (s)

Comp. time
% (mem)

Comp. time
% (retrain)

Confidence -0.91 508.884 0.002% 8.175%
Max confidence -0.87 548.701 0.003% 8.815%
Entropy -0.80 734.146 0.004% 11.794%
Binary accuracy -0.89 441.257 0.002% 7.089%
Holdout retraining 0.62 209.236 0.001% 3.361%
Loss curvature 0.70 15142.780 0.074% 243.273%

(b) CIFAR-100 with ResNet-50.

4 How do proxies improve unlearning algorithms in RUM?

In this section, we explore the impact of integrating various proxies into RUM on existing unlearning
algorithms. We assess the unlearning performance from both the accuracy and privacy perspectives,
using ToW and ToW-MIA metrics, respectively.

Experimental setup We experiment with a refinement strategy based on proxy scores, setting
K = 3 in RUMF (see Section 2.3). The forget set Df consists of 3000 examples, divided into three
subsets of N = 1000 examples each, representing the lowest, medium, and highest proxy values. For
each unlearning algorithm, we apply the refinement strategy RUMF following the same sequence
as [23], unlearning in the order of low → medium → high memorization but using proxies in place
of memorization scores. Additionally, we include two control setups from [23]: vanilla, which
unlearns the entire Df in one step, and shuffle, which uses random, equal-sized subsets of Df and
operates sequentially on the three subsets. We conduct the experiments on three dataset/architecture
combinations: CIFAR-10 with ResNet-18, CIFAR-100 with ResNet-50, and Tiny-ImageNet with
VGG-16. We evaluate the unlearning algorithm performance using ToW and ToW-MIA metrics. All
the results are averaged over three runs with 95% confidence intervals.

Results and discussion The RUMF results are illustrated in Figures 2, with further details on the
control experiments provided in the Section A.3.2. Moreover, Table 2 presents the ToW, ToW-MIA,
and runtime results for each unlearning algorithm using different proxies in RUMF . Comprehensive
results for all three datasets and architectures are available in Table 5.

The experimental results show that all proxies can improve the performance of unlearning algorithms
in terms of both accuracy and privacy when integrated into RUMF , with some proxies even out-
performing memorization. This outcome is expected, as memorization and proxies capture similar
but nuanced aspects of the data. Memorization reflects the model’s behavior when trained with or
without a specific example, while proxies like learning events measure how easily the model learns
an example during training. The holdout retraining proxy, in contrast, assesses whether an example is
well-represented by others, particularly in identifying atypical data points.
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(a) CIFAR-10 with ResNet-18 (b) CIFAR-100 with ResNet-50 (c) Tiny-ImageNet with VGG-16

(d) CIFAR-10 with ResNet-18 (e) CIFAR-100 with ResNet-50 (f) Tiny-ImageNet with VGG-16

Figure 2: Uncovering the impact of three proxies (confidence, binary accuracy, holdout retraining) and
memorization on unlearning performance in RUMF , evaluated using ToW (Figures (a),(b),(c)) and
ToW-MIA (Figures (d),(e),(f)) across three datasets and model architectures. Higher ToW/ToW-MIA
values indicate better performance.

Table 2: Comparison of unlearning algorithm performance using confidence, binary accuracy,
and holdout retraining proxies, evaluated on CIFAR-100 with ResNet-50 (results for additional
datasets/architectures are available in Table 5). Each algorithm U is applied in three different ap-
proaches: i) in one go ("vanilla"), ii) sequentially on a random partition of Df into three equal-sized
subsets ("shuffle"), and iii) sequentially on three equal-sized subsets refined by F ("RUMF"). Run-
time indicates the time required for applying each algorithm U in the corresponding approach.

Confidence Binary accuracy Holdout retraining
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Retrain 1.000 ± 0.000 1.000 ± 0.000 6254.604 1.000 ± 0.000 1.000 ± 0.000 6127.849 1.000 ± 0.000 1.000 ± 0.000 6430.247

Fine-tune RUMF 0.863 ± 0.049 0.857 ± 0.059 852.886 0.863 ± 0.048 0.861 ± 0.065 859.824 0.846 ± 0.032 0.812 ± 0.146 798.843
Fine-tune shuffle 0.674 ± 0.057 0.639 ± 0.079 843.585 0.671 ± 0.031 0.639 ± 0.062 865.150 0.714 ± 0.031 0.638 ± 0.045 852.442
Fine-tune vanilla 0.813 ± 0.061 0.880 ± 0.032 379.337 0.813 ± 0.015 0.868 ± 0.034 390.707 0.763 ± 0.028 0.803 ± 0.044 432.678

NegGrad+ RUMF 0.890 ± 0.047 0.922 ± 0.017 773.603 0.900 ± 0.020 0.919 ± 0.016 768.227 0.966 ± 0.042 0.928 ± 0.035 777.204
NegGrad+ shuffle 0.721 ± 0.020 0.712 ± 0.038 773.607 0.726 ± 0.007 0.719 ± 0.024 769.536 0.707 ± 0.016 0.618 ± 0.037 770.538
NegGrad+ vanilla 0.822 ± 0.025 0.836 ± 0.030 369.705 0.817 ± 0.053 0.821 ± 0.053 363.956 0.879 ± 0.046 0.790 ± 0.053 357.868

L1-sparse RUMF 0.908 ± 0.049 0.906 ± 0.057 783.477 0.897 ± 0.009 0.892 ± 0.041 782.627 0.867 ± 0.049 0.828 ± 0.037 769.910
L1-sparse shuffle 0.699 ± 0.031 0.670 ± 0.010 787.643 0.686 ± 0.016 0.658 ± 0.057 785.941 0.706 ± 0.005 0.613 ± 0.038 783.263
L1-sparse vanilla 0.796 ± 0.099 0.797 ± 0.084 395.368 0.771 ± 0.112 0.795 ± 0.094 396.259 0.770 ± 0.024 0.730 ± 0.115 397.543

SalUn RUMF 0.656 ± 0.031 0.636 ± 0.038 791.166 0.673 ± 0.048 0.641 ± 0.072 793.327 0.696 ± 0.013 0.640 ± 0.129 793.793
SalUn shuffle 0.603 ± 0.052 0.541 ± 0.055 792.552 0.636 ± 0.030 0.591 ± 0.035 795.967 0.581 ± 0.039 0.488 ± 0.045 793.672
SalUn vanilla 0.633 ± 0.043 0.543 ± 0.186 417.232 0.651 ± 0.050 0.705 ± 0.035 421.418 0.617 ± 0.030 0.478 ± 0.163 396.784

From Figure 2, we observe that SalUn underperforms on CIFAR-100 and Tiny-ImageNet compared
to other unlearning algorithms. This can be attributed to the use of data augmentation on these
datasets (but not on CIFAR-10), which makes these models more robust to noise. As SalUn is a
relabelling-based algorithm that introduces noisy labels to facilitate unlearning, its effectiveness is
reduced in models that are more resilient to noise. As a result, SalUn achieves incomplete unlearning,
leaving the influence of the forget set partially intact and making the model more vulnerable to MIA
on the forget set data, compared to other unlearning algorithms.

Another notable observation from Figure 2a is that holdout retraining outperforms other proxies on
CIFAR-10, even surpassing memorization in most cases. This is likely because holdout retraining is
the only proxy that has access to all data examples (both the training and test sets) during computation,
whereas the other proxies only rely on the training set. This broader exposure may give the model
a better grasp of an example’s atypicality by leveraging a larger image pool. However, when data
augmentation is applied (Figures 2b and 2c), synthetic variations of the training images are generated,
effectively increasing the number of training examples, reducing the relative advantage of holdout
retraining. This suggests that holdout retraining is highly effective when no data augmentation is
used and could be a strong option for RUM in such cases. Conversely, Figures 2d, 2e and 2f shows
that no single proxy consistently outperforms the others across all scenarios. This indicates that the

6



proxies may have similar effects on privacy when integrated into RUMF , with no one proxy offering
a universal advantage.

In terms of efficiency, Table 2 and Table 5 show that while RUMF requires approximately twice
the runtime of the vanilla approach, it still takes significantly less time than retraining from scratch.
This efficiency advantage becomes even more evident with larger datasets. Given the substantial
performance gains RUMF offers with reasonable extra overhead, it emerges as a highly promising
unlearning approach. Regarding unlearning algorithms, we observe that Fine-tune RUMF requires
more runtime on larger datasets such as CIFAR-100 and Tiny-ImageNet compared to other baselines.
However, on smaller datasets like CIFAR-10, NegGrad+ RUMF takes more runtime than the other
methods. When comparing proxies, no single proxy stands out as significantly more efficient when
applying an algorithm U across different approaches. However, as discussed in Section 3, holdout
retraining is more computationally efficient than other proxies and does not require any intervation
during the training process, making it a strong candidate as a proxy for memorization.

Stability analysis One may reasonably expect that memorization scores may change after succes-
sive unlearning operations, analogously to the "onion effect" [6]. This raises issues of stability of
the improvements achieved by memorization proxies in sequential unlearning. We shed light on this
issue by examining changes in unlearning performance before and after each unlearning step across
multiple unlearning iterations, in order to understand the cumulative effects of unlearning over time
and the impact of memorization proxies on this. We apply multiple sequential unlearning steps and
track performance in terms of accuracy and privacy, which are evaluated using ToW and ToW-MIA,
respectively. We use NegGrad+ as the unlearning algorithm and experiment on CIFAR-10/ResNet-18
and Tiny-ImageNet/VGG-16, as described in Section 4 for both RUMF and vanilla approaches. After
each unlearning step n, we recalculate the proxy values and reapply the partitioning procedure based
on the updated proxy values, which involves selecting three subsets (lowest, medium, and highest
proxy values) of 1000 examples each, which form the forget set of size 3,000 for step n+ 1.

Figure 3 and Table 7 show the results. For CIFAR-10 (Figures (a) and (b)), RUMF remains
relatively stable across both ToW and ToW-MIA metrics. Vanilla shows an upward trend of improved
performance. The performance gap between them narrows with each subsequent unlearning step.
The upward trend in vanilla may result from the sequential removal of highly memorized examples,
which are more difficult to unlearn according to [23]. As these challenging examples are gradually
unlearned, the unlearning problem becomes easier, leading to improved performance of the vanilla
version. Results for Tiny-ImageNet/VGG-16 are shown in Figures (c) and (d). We see for both that
RUMF performance is declining with successive iterations, whereas vanilla tends to either improve
or be less affected. The main reason for this is that the superiority of RUMF lies in its ability to
distinguish high- versus low-memorized data examples. Successive unlearning steps have as a result
the removal of most highly-memorized examples, hence reducing the possible improvement gains of
RUMF , as forget sets become after a given point inherently homogenized. Please note, however, that
in typical application settings, only a very small percentage of the dataset will be unlearned (unlike
our experimental setup where we ended up unlearning a large percentage of the dataset) which will
leave the memorization distribution unaffected.

To confirm that the drop in RUMF performance is due to the removal of most outlier examples
with very high memorization, we calculated the Gini coefficient [3], along with Lorenz curves [10].
Combined they offer an explainable metric for the skewness (inequity) of how a variable X (say
total income or total memorization scores) is distributed across a population P (say people or data
examples). A point (α, β) on a Lorenz curve depicts that β% of X comes from α% of P . The
Gini coefficient measures how far the curve is from a perfectly equal distribution (where any α%
of X contributes α% to P ) and how close it is to a totally skewed distribution (where a single
member of the population accounts for 100% of the value of X). Gini values range from 0 to 1,
where higher values indicate greater distribution skewness (inequality). Gini and Lorenz curves are
appropriate in our setting which is dominated by a few examples contributing more to the cumulative
memorization score of all examples. We hypothesize that this distribution changes over time, after
successive unlearning steps. To track these changes, we calculate the Gini values before and after
each unlearning step (see Table 3). The results show a marked decrease in the Gini coefficient for both
vanilla and RUMF , indicating a progressively less skewed distribution. This reduction in skewness
reflects the removal of highly memorized, long-tailed examples, diminishing the advantage of RUMF

over steps. Figure 12 further visualizes the proxy value distribution across unlearning steps.
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(a) CIFAR-10 with ResNet-18 (b) CIFAR-10 with ResNet-18

(c) Tiny-ImageNet with VGG-16 (d) Tiny-ImageNet with VGG-16

Figure 3: Cumulative performance changes over 5-step sequential unlearning in RUMF and vanilla
using NegGrad+ as the baseline, evaluated by ToW (Figures (a), (c)) and ToW-MIA (Figures (b),
(d)) across two datasets and model architectures. Higher ToW/ToW-MIA values indicate better
performance.

Table 3: Gini coefficient of proxy values over 5 sequential unlearning steps. A higher Gini indicates
greater skewness in the distribution. Step 0 represents the state before any unlearning is applied.

CIFAR-10 / ResNet-18 Tiny-ImageNet / VGG-16
NegGrad+ RUMF NegGrad+ vanilla NegGrad+ RUMF NegGrad+ vanilla

Step 0 0.788 0.788 0.629 0.629
Step 1 0.742 0.758 0.547 0.634
Step 2 0.683 0.751 0.487 0.616
Step 3 0.697 0.730 0.427 0.596
Step 4 0.676 0.726 0.386 0.440
Step 5 0.642 0.723 0.365 0.403

5 Conclusion

A new class of memorization-based algorithms has emerged that significantly improves unlearn-
ing quality while preserving model utility. However, their heavy reliance on exact memorization
scores à la Feldman, which are notoriously computationally expensive, limits their scalability. This
paper conducts an in-depth analysis of the performance of such unlearning algorithms when using
memorization proxies instead. Our findings demonstrate that these substantial performance gains
can indeed be achieved efficiently and at scale. Specifically, integrating memorization proxies into
RUMF enhances unlearning performance from both accuracy and privacy perspectives, with up to
a 30% improvement in accuracy and up to a 46% improvement in privacy compared to baseline
methods. Among the proxies evaluated, although no single proxy consistently outperforms others
across all scenarios, holdout retraining stands out for its efficiency—requiring up to 99.98% less
runtime than computing exact memorization scores—and its practicality, as it requires no intervention
during model training. This significant reduction in computational cost makes proxies a scalable
alternative for memorization-based unlearning, achieving near-equivalent performance without the
prohibitive overhead of exact memorization scores. Furthermore, while successive unlearning steps
change the underlying memorization score distributions, the performance gains offered by RUMF

using memorization proxies appear to hold, up to a point where memorization score distribution
becomes less skewed for RUM to have any performance impact. The main conclusion therefore
is that memorization-based unlearning algorithms can now offer scalability and efficiency along
with their great unlearning accuracy and privacy performance. These findings not only highlight the
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scalability of memorization-based unlearning but also pave the way for new possibilities in efficient
machine unlearning.
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A Appendix / supplemental material

A.1 Implementation details

We use three settings with different datasets and model architectures for our evaluation: CIFAR-10
with ResNet-18, CIFAR-100 with ResNet-50, and Tiny-ImageNet with VGG-16. All experiments
were implemented in PyTorch, and conducted on Nvidia RTX A5000 GPUs. Specific details for
training the original models can be found in Table 4.

Table 4: Training configurations across three settings.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Number of classes 10 100 200
Training set size 45,000 45,000 100,000
Architecture ResNet-18 ResNet-50 VGG-16
Optimizer SGD SGD SGD
Base learning rate 0.1 0.1 0.1
Learning rate scheduler CosineAnnealingLR MultiStepLR* CosineAnnealingLR
Batch size 256 256 256
Epochs 30 150 100
Momentum 0.9 0.9 0.9
Weight decay 5× 10−4 5× 10−4 5× 10−4

Data augmentation None Random Crop +
Horizontal Flip

Random Crop +
Horizontal Flip

* The learning rate was initialized at 0.1 and decayed by a factor of 0.2 at 60 and 120 epochs.

Training details for machine unlearning In the unlearning process, several state-of-the-art algo-
rithms were employed, each with carefully tuned hyperparameters to ensure optimal performance
across different datasets and architectures. Retrain-from-scratch follows the same training procedure
as the original model but is performed solely on the retain set Dr, excluding the forget set Df .
Fine-tune involves training the model for 5 to 10 epochs with a learning rate ranging from 0.001
to 0.1. L1-Sparse also runs for 5 to 10 epochs with a learning rate between 0.001 and 0.1, using a
sparsity regularization parameter γ in the range of 10−5 to 5× 10−4. NegGrad+ is executed for 5
epochs, using a learning rate between 0.001 and 0.05 and a β parameter ranging from 0.9 to 0.99.
SalUn operates for 5 to 10 epochs with a learning rate between 0.005 and 0.1 and applies sparsity
ratios between 0.3 and 0.7. These varied hyperparameters allow each algorithm to efficiently facilitate
the unlearning process under different conditions.

A.2 Description of MIA

In this study, we adopted a commonly used MIA from prior work [16, 7, 23] to evaluate unlearning
performance from a privacy perspective. To measure MIA performance, we first sample equal-sized
data from the retain set Dr and test set Dt to train a binary classifier that distinguishes between data
points involved in training and those that were not. After applying an unlearning algorithm, we apply
this classifier to the unlearned model θu on the forget set Df . If an example has been effectively
"forgotten", the classifier should identify it as "non-training" data, as if it came from Dt.

We define "training" data as the positive class and "non-training" data as the negative class. The
MIA score is calculated as the proportion of true negatives—Df examples correctly classified as
"non-training." A score closer to 1 indicates more effective unlearning. Ideally, the MIA score
should match that of retraining-from-scratch, but due to the similarity between the forget set and
retain set, some examples may still be classified as "training." To account for this, we calculate
the "MIA gap", the absolute difference between the MIA score of the unlearned model and that of
retraining-from-scratch, and incorporate it into the "ToW-MIA" evaluation (Section 2.4) as a measure
of "forgetting quality", where a smaller MIA gap indicates better unlearning performance.
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CIFAR-10 with ResNet-18

CIFAR-100 with ResNet-50

Figure 5: Distribution of memorization scores and proxies. Each plot compares a proxy with respect
to the memorization scores. Results are presented for CIFAR-10 using ResNet-18 and CIFAR-100
using ResNet-50.

A.3 Detailed results

A.3.1 Distribution of memorization vs. proxies

To illustrate the fidelity of each proxy in relation to memorization, we present a distribution compari-
son between memorization and each proxy. Figure 5 displays these distributions, showing how each
proxy relates to memorization. It is important to note that the learning event proxies (i.e., confidence,
max confidence, entropy, and binary accuracy) are negatively correlated with memorization, as
indicated by the Spearman correlation coefficients in Table 1. This negative correlation is also evident
in the distribution plots.

A.3.2 RUMF and control experiment results

Table 5 and Table 6 present the results of RUMF and the corresponding control experiment, including
"vanilla" and "shuffle", the description of which can be found in Section 4. For each unlearning
algorithm, we conduct three experiments: RUMF , shuffle and vanilla, and collect the forget, retain,
and test accuracy, as well as MIA scores. We then calculate ToW and ToW-MIA using accuracies (as
outlined in Section 2.4) to evaluate their performance. Additionally, Table 5 includes a "runtime"
column to report the running time for each experiment, highlighting the efficiency of each method.
This procedure is repeated for each proxy (i.e. confidence, binary accuracy, and holdout retraining)
across three dataset/architecture settings: CIFAR-10 with ResNet-18, CIFAR-100 with ResNet-50,
and Tiny-ImageNet with VGG-16.

12



Table 5: Performance and runtime comparison of unlearning algorithms using confidence, binary
accuracy, and holdout retraining proxies. Each algorithm U is applied in three different approaches:
i) in one go ("vanilla"), ii) sequentially on a random partition of Df into three equal-sized subsets
("shuffle"), and iii) sequentially on three equal-sized subsets obtained by F , processed in a low →
medium → high memorization order based on the proxy ("RUMF"). Each experiment is repeated
three times, and results are reported as averages with 95% confidence intervals.

Confidence Binary accuracy Holdout retraining
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Retrain 1.000 ± 0.000 1.000 ± 0.000 427.314 1.000 ± 0.000 1.000 ± 0.000 427.277 1.000 ± 0.000 1.000 ± 0.000 430.526

Fine-tune RUMF 0.919 ± 0.042 0.920 ± 0.059 288.163 0.908 ± 0.052 0.911 ± 0.041 280.439 0.920 ± 0.035 0.865 ± 0.023 320.511
Fine-tune shuffle 0.624 ± 0.040 0.584 ± 0.056 291.465 0.644 ± 0.041 0.597 ± 0.147 295.766 0.697 ± 0.027 0.597 ± 0.043 336.668
Fine-tune vanilla 0.829 ± 0.022 0.874 ± 0.185 166.337 0.787 ± 0.041 0.836 ± 0.062 163.180 0.800 ± 0.039 0.763 ± 0.072 205.539

NegGrad+ RUMF 0.880 ± 0.039 0.803 ± 0.074 376.308 0.868 ± 0.052 0.819 ± 0.057 375.025 0.901 ± 0.035 0.791 ± 0.046 372.202
NegGrad+ shuffle 0.529 ± 0.071 0.450 ± 0.056 378.119 0.613 ± 0.031 0.523 ± 0.068 382.487 0.626 ± 0.039 0.480 ± 0.040 384.028
NegGrad+ vanilla 0.724 ± 0.070 0.700 ± 0.065 167.852 0.822 ± 0.036 0.795 ± 0.122 163.180 0.771 ± 0.079 0.661 ± 0.047 140.775

L1-sparse RUMF 0.907 ± 0.026 0.870 ± 0.008 285.494 0.899 ± 0.030 0.906 ± 0.027 303.667 0.920 ± 0.030 0.859 ± 0.061 291.099
L1-sparse shuffle 0.618 ± 0.095 0.569 ± 0.059 283.997 0.626 ± 0.040 0.591 ± 0.107 297.092 0.718 ± 0.062 0.624 ± 0.062 280.279
L1-sparse vanilla 0.754 ± 0.071 0.772 ± 0.030 156.423 0.802 ± 0.046 0.834 ± 0.094 154.346 0.812 ± 0.025 0.778 ± 0.047 158.543

SalUn RUMF 0.859 ± 0.042 0.867 ± 0.097 234.165 0.892 ± 0.063 0.966 ± 0.045 227.167 0.956 ± 0.051 0.939 ± 0.076 230.375
SalUn shuffle 0.638 ± 0.071 0.716 ± 0.022 240.078 0.636 ± 0.030 0.694 ± 0.074 227.042 0.735 ± 0.031 0.736 ± 0.024 226.220
SalUn vanilla 0.737 ± 0.040 0.677 ± 0.056 90.334 0.818 ± 0.024 0.703 ± 0.061 86.423 0.858 ± 0.056 0.643 ± 0.064 92.601

(a) CIFAR-10 with ResNet-18

Confidence Binary accuracy Holdout retraining
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Retrain 1.000 ± 0.000 1.000 ± 0.000 6254.604 1.000 ± 0.000 1.000 ± 0.000 6127.849 1.000 ± 0.000 1.000 ± 0.000 6430.247

Fine-tune RUMF 0.863 ± 0.049 0.857 ± 0.059 852.886 0.863 ± 0.048 0.861 ± 0.065 859.824 0.846 ± 0.032 0.812 ± 0.146 798.843
Fine-tune shuffle 0.674 ± 0.057 0.639 ± 0.079 843.585 0.671 ± 0.031 0.639 ± 0.062 865.150 0.714 ± 0.031 0.638 ± 0.045 852.442
Fine-tune vanilla 0.813 ± 0.061 0.880 ± 0.032 379.337 0.813 ± 0.015 0.868 ± 0.034 390.707 0.763 ± 0.028 0.803 ± 0.044 432.678

NegGrad+ RUMF 0.890 ± 0.047 0.922 ± 0.017 773.603 0.900 ± 0.020 0.919 ± 0.016 768.227 0.966 ± 0.042 0.928 ± 0.035 777.204
NegGrad+ shuffle 0.721 ± 0.020 0.712 ± 0.038 773.607 0.726 ± 0.007 0.719 ± 0.024 769.536 0.707 ± 0.016 0.618 ± 0.037 770.538
NegGrad+ vanilla 0.822 ± 0.025 0.836 ± 0.030 369.705 0.817 ± 0.053 0.821 ± 0.053 363.956 0.879 ± 0.046 0.790 ± 0.053 357.868

L1-sparse RUMF 0.908 ± 0.049 0.906 ± 0.057 783.477 0.897 ± 0.009 0.892 ± 0.041 782.627 0.867 ± 0.049 0.828 ± 0.037 769.910
L1-sparse shuffle 0.699 ± 0.031 0.670 ± 0.010 787.643 0.686 ± 0.016 0.658 ± 0.057 785.941 0.706 ± 0.005 0.613 ± 0.038 783.263
L1-sparse vanilla 0.796 ± 0.099 0.797 ± 0.084 395.368 0.771 ± 0.112 0.795 ± 0.094 396.259 0.770 ± 0.024 0.730 ± 0.115 397.543

SalUn RUMF 0.656 ± 0.031 0.636 ± 0.038 791.166 0.673 ± 0.048 0.641 ± 0.072 793.327 0.696 ± 0.013 0.640 ± 0.129 793.793
SalUn shuffle 0.603 ± 0.052 0.541 ± 0.055 792.552 0.636 ± 0.030 0.591 ± 0.035 795.967 0.581 ± 0.039 0.488 ± 0.045 793.672
SalUn vanilla 0.633 ± 0.043 0.543 ± 0.186 417.232 0.651 ± 0.050 0.705 ± 0.035 421.418 0.617 ± 0.030 0.478 ± 0.163 396.784

(b) CIFAR-100 with ResNet-50

Confidence Binary accuracy Holdout retraining
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Retrain 1.000 ± 0.000 1.000 ± 0.000 5127.197 1.000 ± 0.000 1.000 ± 0.000 4952.773 1.000 ± 0.000 1.000 ± 0.000 5544.903

Fine-tune RUMF 0.812 ± 0.053 0.690 ± 0.058 1015.630 0.743 ± 0.035 0.705 ± 0.026 1056.892 0.779 ± 0.047 0.698 ± 0.076 1020.360
Fine-tune shuffle 0.514 ± 0.009 0.501 ± 0.091 1031.002 0.627 ± 0.029 0.531 ± 0.028 1022.625 0.630 ± 0.061 0.521 ± 0.046 1023.901
Fine-tune vanilla 0.637 ± 0.106 0.673 ± 0.015 496.984 0.708 ± 0.009 0.669 ± 0.043 499.738 0.679 ± 0.030 0.615 ± 0.043 495.645

NegGrad+ RUMF 0.885 ± 0.024 0.743 ± 0.078 843.334 0.808 ± 0.034 0.713 ± 0.040 847.294 0.816 ± 0.020 0.692 ± 0.030 846.290
NegGrad+ shuffle 0.589 ± 0.028 0.526 ± 0.150 848.724 0.563 ± 0.034 0.485 ± 0.045 846.873 0.671 ± 0.025 0.562 ± 0.055 845.253
NegGrad+ vanilla 0.771 ± 0.030 0.609 ± 0.048 488.123 0.624 ± 0.082 0.558 ± 0.087 491.732 0.716 ± 0.069 0.576 ± 0.069 483.439

L1-sparse RUMF 0.767 ± 0.044 0.907 ± 0.050 806.103 0.883 ± 0.050 0.806 ± 0.043 816.238 0.854 ± 0.019 0.791 ± 0.042 806.247
L1-sparse shuffle 0.576 ± 0.061 0.523 ± 0.013 818.745 0.649 ± 0.019 0.578 ± 0.055 806.770 0.691 ± 0.030 0.596 ± 0.012 814.305
L1-sparse vanilla 0.750 ± 0.013 0.693 ± 0.028 498.304 0.723 ± 0.020 0.658 ± 0.031 507.753 0.744 ± 0.018 0.657 ± 0.026 507.526

SalUn RUMF 0.679 ± 0.025 0.602 ± 0.097 832.785 0.685 ± 0.059 0.595 ± 0.054 835.974 0.647 ± 0.030 0.502 ± 0.063 833.936
SalUn shuffle 0.566 ± 0.011 0.500 ± 0.005 835.109 0.587 ± 0.054 0.481 ± 0.130 838.125 0.599 ± 0.015 0.458 ± 0.055 829.783
SalUn vanilla 0.602 ± 0.041 0.648 ± 0.037 483.636 0.625 ± 0.070 0.573 ± 0.189 491.136 0.601 ± 0.023 0.494 ± 0.051 481.330

(c) Tiny-ImageNet with VGG-16

Figures 8 and 11 provide visualizations of Table 5 in terms of ToW and ToW-MIA, respectively.
Figure 8 displays ToW, while Figure 11 illustrates ToW-MIA for the unlearning algorithms using
different proxies (and memorization where applicable for CIFAR-10 and CIFAR-100) across various
dataset/architecture settings.

A.3.3 Stability analysis of proxies

We use NegGrad+ as a baseline and apply both RUMF and vanilla as unlearning approaches for
comparison. Each approach (vanilla or RUMF ) is sequentially applied over 5 steps, and we track
ToW, ToW-MIA, and runtime after each step. Table 7 presents the detailed results of the stability
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Table 6: Accuracy and MIA performance for different unlearning algorithms across various proxies
on CIFAR-10/ResNet-18, CIFAR-100/ResNet-50, and Tiny-ImageNet/VGG-16. Results are averaged
over 3 runs, with 95% confidence intervals reported.

Confidence Binary accuracy Holdout retraining
Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA

Retrain 100.000 ± 0.000 50.433 ± 6.808 84.167 ± 1.616 0.637 ± 0.032 100.000 ± 0.000 47.156 ± 9.892 83.683 ± 0.953 0.663 ± 0.038 100.000 ± 0.000 62.922 ± 4.681 84.270 ± 2.183 0.564 ± 0.022

Fine-tune RUMF 99.460 ± 1.419 56.189 ± 5.483 82.320 ± 5.818 0.579 ± 0.039 99.207 ± 2.186 54.333 ± 10.423 82.323 ± 2.336 0.594 ± 0.052 98.157 ± 1.818 66.256 ± 4.692 81.270 ± 3.304 0.472 ± 0.004
Fine-tune shuffle 95.491 ± 4.235 82.089 ± 6.515 79.940 ± 8.227 0.276 ± 0.077 96.778 ± 4.003 79.578 ± 18.263 82.290 ± 4.460 0.291 ± 0.242 95.275 ± 6.451 86.178 ± 4.784 79.697 ± 10.533 0.221 ± 0.077
Fine-tune vanilla 98.060 ± 5.309 62.800 ± 16.311 80.670 ± 5.082 0.560 ± 0.091 98.612 ± 2.610 64.867 ± 9.118 80.670 ± 6.397 0.537 ± 0.059 97.967 ± 3.280 77.244 ± 6.718 79.647 ± 1.761 0.380 ± 0.009

NegGrad+ RUMF 99.037 ± 1.532 56.067 ± 5.261 78.443 ± 5.531 0.504 ± 0.049 98.696 ± 1.376 48.322 ± 6.839 75.883 ± 3.480 0.564 ± 0.049 98.748 ± 1.310 64.089 ± 8.840 76.627 ± 4.501 0.432 ± 0.066
NegGrad+ shuffle 98.919 ± 2.120 94.867 ± 9.081 80.563 ± 6.630 0.110 ± 0.107 93.426 ± 6.033 75.189 ± 17.793 74.953 ± 5.193 0.278 ± 0.155 99.612 ± 0.331 97.667 ± 2.518 80.633 ± 1.315 0.064 ± 0.031
NegGrad+ vanilla 91.123 ± 12.963 56.300 ± 37.655 73.510 ± 10.680 0.503 ± 0.301 95.580 ± 2.430 51.511 ± 21.793 76.937 ± 3.304 0.556 ± 0.151 97.534 ± 6.008 78.478 ± 3.000 77.867 ± 11.231 0.289 ± 0.043

L1-sparse RUMF 96.947 ± 1.991 53.611 ± 3.446 80.783 ± 2.540 0.566 ± 0.021 99.190 ± 0.443 55.244 ± 8.641 82.347 ± 2.069 0.589 ± 0.042 97.694 ± 3.078 65.600 ± 4.265 81.110 ± 2.920 0.472 ± 0.019
L1-sparse shuffle 95.890 ± 4.480 83.222 ± 1.391 79.963 ± 5.127 0.256 ± 0.031 96.273 ± 3.580 80.622 ± 14.632 81.493 ± 4.575 0.291 ± 0.178 95.832 ± 4.322 85.322 ± 4.436 80.807 ± 2.414 0.239 ± 0.053
L1-sparse vanilla 96.095 ± 4.676 66.856 ± 9.041 78.200 ± 5.173 0.492 ± 0.041 97.175 ± 6.035 60.811 ± 14.615 79.323 ± 3.242 0.560 ± 0.065 96.794 ± 6.533 74.500 ± 6.474 79.320 ± 0.410 0.410 ± 0.057

SalUn RUMF 98.030 ± 1.356 58.111 ± 4.816 79.180 ± 4.306 0.593 ± 0.014 99.891 ± 0.085 56.400 ± 6.402 82.303 ± 5.425 0.645 ± 0.015 99.757 ± 0.651 61.500 ± 5.984 82.683 ± 3.331 0.607 ± 0.039
SalUn shuffle 97.897 ± 0.449 84.067 ± 5.039 82.387 ± 3.331 0.381 ± 0.015 97.823 ± 0.409 81.189 ± 7.998 82.367 ± 4.221 0.384 ± 0.091 97.902 ± 0.325 86.444 ± 3.850 82.447 ± 4.513 0.330 ± 0.023
SalUn vanilla 99.996 ± 0.009 75.578 ± 4.606 82.597 ± 4.474 0.949 ± 0.049 99.998 ± 0.007 63.878 ± 8.252 82.030 ± 4.742 0.948 ± 0.017 99.991 ± 0.021 75.389 ± 6.614 82.333 ± 4.831 0.909 ± 0.044

(a) CIFAR-10 with ResNet-18

Confidence Binary accuracy Holdout retraining
Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA

Retrain 99.994 ± 0.007 64.267 ± 0.504 74.160 ± 1.623 0.473 ± 0.015 99.997 ± 0.003 64.511 ± 0.621 75.153 ± 1.427 0.465 ± 0.019 99.963 ± 0.025 69.856 ± 2.620 74.030 ± 1.237 0.479 ± 0.060

FTine-tune RUMF 97.002 ± 1.970 66.811 ± 3.428 65.460 ± 3.965 0.441 ± 0.010 96.796 ± 2.717 64.867 ± 1.242 64.597 ± 4.174 0.459 ± 0.007 96.281 ± 6.211 72.722 ± 9.196 64.643 ± 3.474 0.408 ± 0.024
Fine-tune shuffle 93.547 ± 10.320 83.722 ± 9.360 63.767 ± 9.213 0.236 ± 0.066 94.649 ± 7.021 84.856 ± 7.825 64.243 ± 6.960 0.222 ± 0.054 95.825 ± 4.014 87.844 ± 5.113 64.883 ± 4.310 0.212 ± 0.041
Fine-tune vanilla 99.692 ± 0.536 80.467 ± 8.165 71.453 ± 4.990 0.380 ± 0.017 99.502 ± 0.702 78.689 ± 2.530 70.403 ± 4.854 0.381 ± 0.022 99.751 ± 0.248 91.400 ± 3.803 71.667 ± 4.725 0.306 ± 0.016

NegGrad+ RUMF 98.635 ± 1.294 58.811 ± 4.524 69.630 ± 1.635 0.478 ± 0.057 99.230 ± 0.525 60.522 ± 1.198 69.597 ± 2.596 0.445 ± 0.029 99.838 ± 0.261 69.633 ± 4.341 71.450 ± 3.253 0.433 ± 0.052
NegGrad+ shuffle 94.895 ± 4.593 81.344 ± 8.248 65.867 ± 4.353 0.293 ± 0.118 97.266 ± 0.806 84.989 ± 4.567 69.090 ± 4.641 0.253 ± 0.071 94.213 ± 1.751 87.744 ± 0.172 65.370 ± 2.599 0.198 ± 0.036
NegGrad+ vanilla 97.755 ± 1.210 54.233 ± 2.348 67.660 ± 1.851 0.558 ± 0.018 98.118 ± 1.033 54.167 ± 5.900 67.990 ± 3.576 0.564 ± 0.037 99.679 ± 0.885 79.144 ± 7.291 71.260 ± 2.346 0.294 ± 0.086

L1-sparse RUMF 98.621 ± 1.213 65.444 ± 2.082 67.370 ± 3.775 0.458 ± 0.012 98.187 ± 0.418 65.344 ± 2.036 67.277 ± 3.352 0.451 ± 0.027 96.182 ± 1.555 68.544 ± 1.081 65.280 ± 2.923 0.422 ± 0.037
L1-sparse shuffle 96.825 ± 0.943 86.889 ± 1.130 67.493 ± 1.459 0.215 ± 0.018 95.427 ± 3.689 85.300 ± 5.243 65.980 ± 5.357 0.223 ± 0.016 93.512 ± 1.992 85.711 ± 3.398 63.780 ± 2.756 0.210 ± 0.027
L1-sparse vanilla 93.144 ± 5.025 61.011 ± 1.284 62.443 ± 4.461 0.442 ± 0.007 92.363 ± 6.279 60.311 ± 3.562 62.253 ± 5.650 0.453 ± 0.016 96.879 ± 3.757 84.578 ± 7.648 67.240 ± 3.661 0.287 ± 0.038

SalUn RUMF 93.047 ± 9.588 85.933 ± 14.590 64.467 ± 6.889 0.232 ± 0.119 88.792 ± 4.571 76.667 ± 9.624 61.437 ± 1.364 0.302 ± 0.108 92.798 ± 15.973 87.167 ± 24.725 66.337 ± 18.105 0.233 ± 0.060
SalUn shuffle 79.560 ± 10.370 72.278 ± 9.983 56.617 ± 5.759 0.299 ± 0.086 88.594 ± 4.984 81.389 ± 5.900 61.583 ± 2.134 0.237 ± 0.012 73.911 ± 5.088 69.867 ± 5.380 53.297 ± 0.989 0.312 ± 0.051
SalUn vanilla 84.519 ± 20.376 76.856 ± 27.639 60.637 ± 4.232 0.410 ± 0.777 98.818 ± 2.541 94.833 ± 18.050 69.810 ± 0.447 0.219 ± 0.056 76.144 ± 6.933 73.500 ± 9.736 58.250 ± 0.568 0.469 ± 0.767

(b) CIFAR-100 with ResNet-50

Confidence Binary accuracy Holdout retraining
Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA Retain Acc Forget Acc Test Acc MIA

Retrain 99.995 ± 0.003 49.100 ± 1.910 60.699 ± 0.207 0.637 ± 0.013 99.996 ± 0.004 57.344 ± 0.956 60.585 ± 1.107 0.573 ± 0.019 99.980 ± 0.004 66.656 ± 1.832 60.072 ± 0.526 0.488 ± 0.015

Fine-tune RUMF 97.515 ± 9.221 57.233 ± 9.692 51.430 ± 6.930 0.477 ± 0.062 89.031 ± 2.309 54.056 ± 0.981 46.816 ± 2.642 0.492 ± 0.053 90.491 ± 2.924 67.911 ± 4.829 47.763 ± 0.255 0.368 ± 0.067
Fine-tune shuffle 86.404 ± 29.465 78.078 ± 42.146 47.103 ± 25.866 0.376 ± 0.598 88.963 ± 0.438 76.167 ± 1.363 47.436 ± 2.371 0.261 ± 0.065 80.539 ± 15.855 75.378 ± 11.318 45.989 ± 1.995 0.244 ± 0.117
Fine-tune vanilla 97.146 ± 11.969 79.356 ± 31.411 55.678 ± 12.037 0.301 ± 0.188 85.916 ± 0.795 52.889 ± 0.960 46.876 ± 0.977 0.476 ± 0.079 82.642 ± 1.333 63.178 ± 3.064 45.162 ± 1.034 0.363 ± 0.062

NegGrad+ RUMF 99.932 ± 0.080 56.678 ± 1.315 56.471 ± 2.238 0.585 ± 0.024 99.632 ± 0.152 71.078 ± 2.079 54.618 ± 0.935 0.334 ± 0.034 95.442 ± 2.226 73.078 ± 4.809 51.477 ± 3.137 0.281 ± 0.071
NegGrad+ shuffle 96.793 ± 0.110 83.778 ± 0.539 53.924 ± 1.024 0.217 ± 0.025 92.693 ± 19.577 87.722 ± 22.461 48.623 ± 14.360 0.177 ± 0.274 98.932 ± 2.600 95.678 ± 4.582 55.704 ± 5.997 0.083 ± 0.118
NegGrad+ vanilla 89.907 ± 1.114 53.167 ± 2.384 50.117 ± 1.047 0.500 ± 0.031 99.226 ± 2.797 92.244 ± 11.764 57.298 ± 7.970 0.156 ± 0.111 99.932 ± 0.132 94.444 ± 9.026 59.312 ± 1.005 0.069 ± 0.086

L1-sparse RUMF 90.010 ± 3.150 49.899 ± 2.632 46.896 ± 2.862 0.527 ± 0.024 96.847 ± 0.935 57.356 ± 2.136 52.504 ± 2.696 0.479 ± 0.043 96.108 ± 2.207 70.011 ± 2.402 51.990 ± 0.899 0.384 ± 0.022
L1-sparse shuffle 81.317 ± 8.350 65.978 ± 11.740 46.023 ± 4.367 0.360 ± 0.160 95.620 ± 3.593 82.967 ± 4.120 51.884 ± 2.405 0.235 ± 0.002 95.860 ± 1.253 87.778 ± 3.182 51.497 ± 0.366 0.168 ± 0.013
L1-sparse vanilla 87.214 ± 2.139 49.433 ± 1.168 47.343 ± 1.151 0.528 ± 0.016 83.734 ± 2.898 55.311 ± 1.265 48.710 ± 2.527 0.466 ± 0.019 85.327 ± 1.300 66.367 ± 1.547 48.030 ± 1.254 0.364 ± 0.040

SalUn RUMF 82.377 ± 2.398 54.622 ± 5.034 47.990 ± 1.540 0.474 ± 0.136 80.224 ± 3.982 58.333 ± 5.413 47.123 ± 3.210 0.431 ± 0.098 78.037 ± 6.344 69.900 ± 5.152 45.729 ± 2.459 0.239 ± 0.044
SalUn shuffle 84.977 ± 36.200 72.622 ± 43.082 50.430 ± 15.871 0.313 ± 0.380 74.747 ± 6.517 63.533 ± 4.898 44.256 ± 2.857 0.341 ± 0.093 76.539 ± 4.944 74.967 ± 14.223 45.456 ± 1.959 0.188 ± 0.043
SalUn vanilla 98.336 ± 0.254 85.522 ± 2.569 56.945 ± 1.357 0.322 ± 0.035 79.726 ± 4.278 66.567 ± 4.349 47.116 ± 2.527 0.402 ± 0.120 78.775 ± 9.791 81.244 ± 7.437 49.517 ± 2.461 0.201 ± 0.100

(c) Tiny-ImageNet with VGG-16

analysis discussed in Section 4, and Figure 12 visualizes the distribution of proxy values across the
unlearning steps.
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(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

CIFAR-10 with ResNet-18

(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

CIFAR-100 with ResNet-50

(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

Tiny-ImageNet with VGG-16

Figure 8: ToW results for RUMF , shuffle, and vanilla approaches across different proxies and
memorization (for CIFAR-10 and CIFAR-100). For each unlearning algorithm (Fine-tune, NegGrad+,
L1-sparse, and SalUn), we present ToW results across the three approaches (RUMF , shuffle, and
vanilla) for each proxy and memorization (where applicable). The experiments were conducted on
CIFAR-10 with ResNet-18, CIFAR-100 with ResNet-50, and Tiny-ImageNet with VGG-16, each
repeated three times, with averages and 95% confidence intervals reported.

Table 7: Unlearning performance (evaluated by ToW and ToW-MIA) and runtime across 5 sequential
steps. The unlearning algorithm U (NegGrad+) is applied at each step using two approaches: (i)
"vanilla" and (ii) RUMF ." Results are averaged over three runs and reported with 95% confidence
intervals.

NegGrad+ RUMF NegGrad+ vanilla Retrain
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Step 1 0.901 ± 0.035 0.791 ± 0.046 372.202 0.771 ± 0.079 0.661 ± 0.047 140.775 1.000 ± 0.000 1.000 ± 0.000 378.786
Step 2 0.883 ± 0.029 0.737 ± 0.082 341.856 0.825 ± 0.031 0.691 ± 0.073 124.151 1.000 ± 0.000 1.000 ± 0.000 374.820
Step 3 0.888 ± 0.059 0.771 ± 0.070 311.569 0.880 ± 0.047 0.743 ± 0.070 116.526 1.000 ± 0.000 1.000 ± 0.000 366.586
Step 4 0.887 ± 0.047 0.740 ± 0.047 291.224 0.880 ± 0.041 0.729 ± 0.033 102.648 1.000 ± 0.000 1.000 ± 0.000 348.416
Step 5 0.893 ± 0.081 0.748 ± 0.051 270.743 0.890 ± 0.025 0.743 ± 0.043 98.810 1.000 ± 0.000 1.000 ± 0.000 317.038

(a) CIFAR-10 with ResNet-18

NegGrad+ RUMF NegGrad+ vanilla Retrain
ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s) ToW (↑) ToW-MIA (↑) Runtime (s)

Step 1 0.816 ± 0.020 0.692 ± 0.030 846.290 0.716 ± 0.069 0.576 ± 0.069 483.439 1.000 ± 0.000 1.000 ± 0.000 5544.903
Step 2 0.854 ± 0.081 0.776 ± 0.081 819.794 0.724 ± 0.028 0.634 ± 0.081 457.230 1.000 ± 0.000 1.000 ± 0.000 4874.518
Step 3 0.808 ± 0.059 0.751 ± 0.038 800.202 0.729 ± 0.024 0.592 ± 0.041 448.514 1.000 ± 0.000 1.000 ± 0.000 4612.383
Step 4 0.738 ± 0.043 0.723 ± 0.067 783.190 0.728 ± 0.040 0.674 ± 0.076 432.879 1.000 ± 0.000 1.000 ± 0.000 4548.031
Step 5 0.652 ± 0.054 0.576 ± 0.047 755.287 0.668 ± 0.094 0.672 ± 0.058 420.158 1.000 ± 0.000 1.000 ± 0.000 4321.621

(b) Tiny-ImageNet with VGG-16
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(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

CIFAR-10 with ResNet-18

(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

CIFAR-100 with ResNet-50

(a) Fine-tune (b) NegGrad+ (c) L1-sparse (d) SalUn

Tiny-ImageNet with VGG-16

Figure 11: ToW-MIA results for RUMF , shuffle, and vanilla approaches using various proxies and
memorization (for CIFAR-10 and CIFAR-100). For each unlearning algorithm (Fine-tune, NegGrad+,
L1-sparse, and SalUn), ToW-MIA results are presented across the three approaches (RUMF , shuffle,
and vanilla) for each proxy and memorization (where applicable). The experiments were performed
on CIFAR-10 with ResNet-18, CIFAR-100 with ResNet-50, and Tiny-ImageNet with VGG-16, each
run three times, with results reported as averages and 95% confidence intervals.

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Figure 12: Distribution of proxy values before and after each unlearning step, using holdout retraining
as the proxy and NegGrad+ as the unlearning baseline with the vanilla approach, evaluated on
Tiny-ImageNet with VGG-16 model architecture.
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