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ABSTRACT

Post-training boosts the performance of large language models (LLMs) but sys-
tematically degrades their confidence calibration, making them frequently over-
confident. Recent post-hoc LLM calibration methods circumvent the challenge by
aligning the post-trained language model with its pre-trained counterpart; however,
they treat calibration as a static output distribution matching problem, and thus
fail to capture the complex dynamics of post-training induced on calibration. Our
investigation into these dynamics reveals that calibration errors stem from two dis-
tinct regimes: (i) output drift, where final confidence is inflated while intermediate
decision process remains consistent, and (ii) process drift, where the intermediate
pathways themselves diverge. Based on this diagnosis, we propose DUAL-ALIGN,
a dynamic unsupervised framework performing dual alignment for LLM confidence
calibration. It applies output alignment to correct output drift by matching the final
output distributions. For process drift, it introduces novel process alignment, a
technique that first identifies the specific layer where the models’ inference paths
diverge and then realigns the stability of their subsequent trajectories. This dual
strategy enables learning a temperature parameter that corrects both calibration
error types that occur during post-training. Experiment results demonstrate that
our method brings consistent improvement compared with representative baselines,
reducing calibration error and approaching the performance of a supervised oracle.

1 INTRODUCTION

Post-training methods such as instruction tuning and reinforcement learning from human feedback,
substantially improves large language model (LLM) alignment and adaptability across tasks (Wei
et al., 2022; Long Ouyang & et al., 2022; Zhang et al., 2025). Yet it also introduces new challenges in
uncertainty estimates, often amplifying over-confidence relative to the pre-trained language models
(PLMs) (Achiam et al., 2023; Shen et al., 2024). To circumvent this, researchers have explored
confidence calibration, such as temperature scaling (TS) (Guo et al., 2017) for post-trained LMs
(PoLMs): aligning predicted probabilities with empirical accuracy so models behave cautiously under
uncertainty (Xiong et al., 2024).

Recent unsupervised methods, such as DACA (Luo et al., 2025a), use the PLM as a reference to
calibrate the PoLM. To avoid potential conflicts from new knowledge introduced by post-training,
DACA chooses to only align on samples where predictions are consistent between PLM and PoLM.
However, this selective alignment strategy is inherently data-inefficient, as it discards all samples
where the models disagree. More critically, by focusing solely on matching the final output confidence,
it treats calibration as a static, surface-level matching problem. This fails to address the complex
drifts in the model’s intermediate inference process induced by post-training, which are often the
root cause of miscalibration. We raise a key question here: How does post-training alter the decision
process of LLMs, and can we use that understanding to calibrate them more effectively?

To answer this, we begin by investigating the different behavioral regimes of the PLM and PoLM
by analyzing their layer-wise predictions and final outputs. Our analysis at Figure 1 reveals two
distinct post-training phenomena: (i) In samples where the PoLM and PLM agree on the final answer,
their intermediate decision process remains largely consistent, yet the PoLM’s final confidence is
systematically inflated—a phenomenon we term output drift (Figure 1(a)). (ii) Conversely, in
samples where they disagree, the models’ decision pathways diverge sharply at a specific intermediate
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Figure 1: Two post-training regimes underlying miscalibration. (a) Output drift: the PLM and PoLM
follow similar layer-wise trajectories, yet the PoLM’s final confidence is inflated (agreement cases). (b) Process
drift: the models’ intermediate inference process diverges sharply from a specific layer, yielding different
answers (disagreement cases). Curves are computed from layer-wise confidence trajectories projected by
LogitLens (nostalgebraist, 2020) and are averaged over samples in MMLU (Hendrycks et al., 2021) (standard
deviation shown in the shade region); see Section 3 for detailed illustration.

layer, causing their inference trajectories to split and lead to different answers. We term this more
fundamental change process drift (Figure 1(b)). These observations motivate a calibration approach
that addresses both phenomena at their source.

Our contributions. To this end, we propose DUAL-ALIGN, a dynamic post-hoc calibration frame-
work (Figure 4) that treats calibration as a dual alignment problem. It performs (1) output alignment
to correct surface-level overconfidence by matching the PoLM’s final-layer output distribution with
the PLM’s. Our motivation for a deeper alignment stems from our key observation that post-training
creates a problematic pattern where extreme overconfidence is coupled with unnaturally low Inferen-
tial Stability Entropy (ISE) (Figure 5) calculated over the LLM inference trajectory across different
layers. To rectify this, our framework introduces a novel (2) process alignment, which first identifies
the Peak Divergence Layer (PDL) where the models’ inference pathways diverge, and then aligns
the PoLM’s ISE with the PLM’s healthier distribution from that point onwards. Importantly, our
framework interpolates between these two objectives on a per-sample basis using a divergence-derived
weight, which yields a temperature parameter that adapts across different miscalibration regimes
without labels. Empirically, we show that our method achieves substantial calibration improvements,
reducing the Expected Calibration Error by over 30% across various LLM architectures compared to
strong baselines.

2 PRELIMINARIES

Confidence calibration for PoLMs. We aim to calibrate a post-trained language model PoLM,
denoted by f , using a pre-trained language model PLM, g, as a reference. In the context of a
multiple-choice question, for a given input prompt x, the model produces final-layer logits zL

f (x)

corresponding to the candidate choices. The model’s prediction, ŷf (x), is the choice with the highest
probability derived from the logits via a softmax function, and this maximum probability value is
taken as its confidence, P̂ (x). A model is considered perfectly calibrated if its confidence matches
its true accuracy, i.e., Pr

(
Y = ŷ

∣∣ P̂ = β
)
= β, where Y is the ground-truth label.

A standard metric to measure this discrepancy is the Expected Calibration Error (ECE) (Naeini
et al., 2015). In practice, ECE is estimated empirically by partitioning K samples into M bins
b1, b2, . . . , bM based on the model’s predicted confidence scores, and then computed as:

ECE =

M∑
m=1

|bm|
K

∣∣acc(bm)− conf(bm)
∣∣, (1)

where acc(bm) and conf(bm) are the average accuracy and confidence in bin bm. A smaller ECE
indicates better calibration performance of the model. While PLMs are often well-calibrated, literature
recognize that post-training often degrades this property, leading to overconfident predictions (Xiao
et al., 2025; Luo et al., 2025a; Leng et al., 2025). Our experiments in Figure 2 verify this finding.

Post-hoc calibration methods. Post-hoc calibration adjusts a model’s confidence without altering
its predictions. A popular supervised method is Temperature Scaling (TS) (Guo et al., 2017), which

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Pre-trained Model
Outputs
Gap

ECE: 4.31%

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Post-trained by SFT
Outputs
Gap

ECE: 11.92%

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Post-trained by DPO
Outputs
Gap

ECE: 21.97%

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Post-trained by GRPO
Outputs
Gap

ECE: 22.13%

Figure 2: Reliability diagrams on MMLU for a PLM vs. PoLMs obtained via different post-training
methods. The pre-trained model is Llama-3.1-8B and we consider Supervised Fine-tuning (SFT), Direct
Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO).

softens the probability distribution by applying a scalar temperature τ > 0 to the final-layer logits:

pf (y = j | x, τ) = softmax

(
zL
f (x)

τ

)
j

. (2)

The temperature τ is optimized on a labeled dataset. To eliminate the need for labels in calibration,
unsupervised methods like DACA (Luo et al., 2025a) align the PoLM’s confidence with that of
the better-calibrated PLM. Crucially, DACA performs this alignment exclusively on samples where
the models agree on the prediction, thereby avoiding under-confidence issues caused by optimizing
on disagreement cases. However, it treats calibration as a static, surface-level matching problem.
This fails to address the complex drifts in the model’s intermediate inference process induced by
post-training, which is the focus of our paper.

3 UNDERSTANDING THE EFFECTS OF POST-TRAINING ON CALIBRATION

In this section, we aim to understand how post-training affects the calibration performance of
LLMs based on their internal inference processes. Let the input prompt be a sequence of tokens
x = {x1, x2, . . . , xN}. Our analysis focuses on the final token, xN , as its hidden state is used to
generate the model’s prediction. At each layer l ∈ [1, L] of a transformer model (Vaswani et al.,
2017), the hidden state for this token is conceptually updated as:

hl(xN ) = hl−1(xN ) + Attnl(xN ) + MLPl(xN ), (3)

where hl ∈ Rdmodel denotes the hidden state at the l-th layer. Using LogitLens (nostalgebraist, 2020),
we can project any intermediate hidden state hl(xN ) into the vocabulary space via the unembedding
matrix WU ∈ RV×dmodel , with V as the vocabulary size. Since the embedding hl(xN ) encapsulates
information from the entire input x, we denote the resulting per-layer logits as zl(x) = WUh

l(xN ) ∈
RV , from which we can derive a probability distribution pl(x) at every layer by applying softmax.
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Figure 3: Layer-wise predictive distance
between PLM and PoLM. We plot the
predictive distance (dl(x)) between pl

g and
pl
f . Agreement samples show low difference

while disagreement samples exhibit a sharp
spike at an intermediate layer, indicating pro-
cess drift.

To understand how post-training alters an LLM’s decision
process, we analyze the layer-wise information of a pre-
trained model g and its post-trained counterpart f . Our
method involves two components: we first track the evolu-
tion of predictive confidence across layers, and second, to
symmetrically measure the predictive distance between the
models at each layer, we use the Jensen-Shannon Diver-
gence (JSD) , denoted as dl(x) = DJS(p

l
g(x) || pl

f (x)).
This dual analysis, when performed separately on samples
grouped by whether the models’ final predictions agree
or disagree, reveals two distinct post-training effects on
model calibration:

Output drift. Occurring predominantly on agreed sam-
ples, output drift describes the scenario where the PoLM’s
intermediate decision process remains consistent with the
PLM. As shown in Figure 1 (a), their confidence trajec-
tories follow a similar path where confidence sharply in-
creases in later layers, although the PoLM is systematically
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Figure 4: Illustration of our method DUAL-ALIGN. Our approach takes care of both output drift by focusing
strategically on aligning the LLMs’ output confidence with LOutput (Left), and process drift by firstly identifying
the Peak Divergence Layer (PDL) and then aligning the Inferential Stability Entropy (ISE) calculated w.r.t. the
process drift between PLM and PoLM with the learning objective LProcess (Right).

overconfident in the final outputs. This phenomenon is further confirmed by the consistently low
JSD between their intermediate logit distributions projected by the unembedding matrix, as shown in
Figure 3. In this regime, post-training has primarily altered the final output distribution rather than
the inference pathway.

Process drift. A more fundamental drift that is overlooked in literature, termed process drift, is
usually observed on disagreed samples, where the PoLM’s layer-wise inference process diverges
sharply from PLM. A critical feature, visible in Figure 3, is that the predictive distance dl(x) between
PoLM and PLM is low in the early layers but then exhibits an obvious increase at an intermediate
layer, which might signal an abrupt difference in inferential strategy. This divergence is also evident
in the confidence trajectories shown in Figure 1(b), where the two models’ layer-wise confidence
scores are closely aligned in early layers, but then split apart at an intermediate stage. Our analysis
thus suggests that naively aligning the final outputs of PLM and PoLM on all disagreement samples
would be counterproductive, as it forces a match between outputs generated from fundamentally
different intermediate decision processes, which can ultimately harm calibration.

4 PROPOSED FRAMEWORK: DUAL-ALIGN

Our analysis in Section 3 reveals that post-training induces two distinct phenomena: output drift,
where output confidence becomes inflated in PoLM while the the intermediate computations remain
similar to PLM, and process drift, where the model’s inference pathway fundamentally diverges.
Motivated by these findings, we propose DUAL-ALIGN (Figure 4), a novel post-hoc LLM calibration
framework designed to address both effects in a synergistic manner. Our approach aims to learn
a temperature parameter τ that effectively calibrates the post-trained model by comprehensively
accounting for these underlying drifts, using only unlabeled data.

4.1 OUTPUT ALIGNMENT FOR OUTPUT DRIFT

When post-training primarily causes a output drift, the PoLM and PLM arrive at the same answer, but
the PoLM exhibits inflated confidence in its output. In these circumstances, the PLM’s final-layer
output distribution serves as a reliable and well-calibrated target. We address this with a output
alignment objective, which aims to correct the PoLM’s overconfidence directly. This is achieved by
minimizing the KL divergence between the temperature-scaled final-layer output distribution of the
PoLM (f ) and the original distribution of the PLM (g):

LOutput(τ ;x) = DKL(p
L
g (x) || pL

f (x, τ)). (4)

As depicted in the left panel of Figure 4, this loss component encourages the PoLM’s temperature-
scaled confidence scores to mirror those of the better-calibrated PLM, effectively correcting the
output confidence miscalibration introduced during post-training.
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Figure 5: Relationship between output confidence and Inferential Stability Entropy (ISE). The pre-trained
model (left) shows healthy uncertainty distribution, while the post-trained model (right) exhibits extreme
overconfidence coupled with unnaturally low ISE values, indicating rigid conviction processes.

4.2 PROCESS ALIGNMENT FOR PROCESS DRIFT

A process drift represents a more significant alteration, where the PoLM’s intermediate decision
process diverges sharply from the PLM’s, resulting in a different final answer. For such cases,
naively enforcing output alignment is counterproductive; as aligning the final output or even the LLM
representations between PoLM and PLM would force the PoLM to match a conclusion derived from a
fundamentally different inference process, leading to severe underconfidence. Instead, our key insight
is to regularize the PoLM’s intermediate inference process itself. Specifically, we propose to align
the stability of the model inference that occurs after the point of divergence. This ensures that even
when the PoLM reaches a different conclusion, its conviction in that conclusion emulates the properly
stable confidence characteristic of the well-calibrated PLM, preventing erratic overconfidence.

To implement this, we first identify the exact layer where the two models’ inference pathways diverge
most sharply by first measuring their per-layer output distance using the JSD. We then define the
Peak Divergence Layer (PDL), l∗(x), as the layer exhibiting the maximum increase in JSD from the
previous one:

l∗(x) = argmax
l∈{2,...,L}

(
DJS(p

l
f (x) || pl

g(x))−DJS(p
l−1
f (x) || pl−1

g (x))
)
. (5)

The measurement of a model’s conviction stability begins by identifying the final prediction of
the post-trained model, ŷf (x), and the Peak Divergence Layer (l∗). For each layer l from l∗ to
the final layer L, the logit vector from the post-trained model, zl

f (x), is generated. From this
vector, the specific logit value corresponding to the position of the final prediction is extracted,
which is denoted as zlf,ŷf

(x). These individual logit values are then collected to form a vector,

vf (x) = [zl
∗

f,ŷf
(x), zl

∗+1
f,ŷf

(x), . . . , zLf,ŷf
(x)]. After normalizing with softmax, The stability is then

quantified by calculating an entropy value from this sequence of logits with the following formula:

ISEf (x) = −
L∑

l=l∗

qlf (x) log q
l
f (x), q l

f (x) =
exp
(
v l
f (x)

)∑L
j=l∗ exp

(
v j
f (x)

) , l = l∗, . . . , L. (6)

Our motivation for this approach is rooted in the hypothesis that a PoLM’s overconfidence stems from
its conviction process becoming overly rigid, where it quickly settles on a decision with consistently
high confidence, unlike the more deliberative PLM. A lower ISE signifies a more consistent conviction
across intermediate layers, and this hypothesis is supported by the empirical observations in Figure 5.

We first observe that the PLM’s output confidence is distributed across a reasonable range, reflecting
a healthy level of uncertainty (Left). In sharp contrast, the PoLM suffers from severe overconfidence,
with its confidence scores overwhelmingly concentrated near 1.0 (Right). Furthermore, the two
models show a vastly different relationship between confidence and inferential stability. For the
PLM, confidence is largely stable across its typical ISE range. The PoLM, however, exhibits an
undesirable correlation where extreme confidence is systematically coupled with unnaturally low ISE.
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This suggests the PoLM’s conviction process has become over-certain and with less variations across
different layers, which is reflected in Figure 5 by the dense clustering of data points in the top-left
corner of the plot, where confidence approaches 1.0 as ISE nears 0.

This sharp contrast between PoLM and PLM reveals that simply correcting the final output confidence
may be insufficient. A better approach is to address the intermediate inference dynamics, which
makes the PLM’s healthier ISE distribution an ideal target. Our process alignment loss is therefore
designed to restore a more stable conviction process for PoLM by minimizing the squared difference
between the ISE of the two models:

LProcess(τ ;x) =
(
ISEf (x, τ)− ISEg(x)

)2
, (7)

where we divide the PoLM logits by a temperature τ to calculate ISEf (x, τ). This objective optimizes
τ to align the stability of the PoLM’s inference process with that of a better-calibrated PLM.
4.3 DUAL-ALIGN: A UNIFIED CALIBRATION FRAMEWORK

DUAL-ALIGN addresses the two miscalibration errors incurred by LLM post-training in one unified
manner. Specifically, we achieve this by using the magnitude of the peak JSD increase, ∆Dl∗

JS(x) =

DJS(p
l∗

f (x) || pl∗g (x)) − DJS(p
l∗−1
f (x) || pl∗−1

g (x)), as a natural indicator of the process drift’s
severity for each sample. The final learning objective is a weighted combination of the output and
process alignment components:

LDUAL-ALIGN(τ ;x) = (1−∆Dl∗

JS(x)) · LOutput(τ ;x) + ∆Dl∗

JS(x) · LProcess(τ ;x). (8)

This unified objective 1 uses the model’s intermediate predictive divergence ∆Dl∗

JS(x) as a data-
driven weight coefficient during training. In this way, the loss function dynamically balances the two
alignment objectives for each sample, without introducing separate hyperparameter. By minimizing
the expected loss Ex∈D[LDUAL-ALIGN(τ ;x)] over an unlabeled dataset D = {xi}Ki=1, DUAL-ALIGN
learns an optimal temperature τ∗ that can comprehensively handle the post-training effects on LLM
calibration. During inference, we apply the learned τ∗ to calibrate PoLMs in their final outputs,
which does not require additional computational cost or PLMs.

5 EXPERIMENTS

In this section, we present empirical evidence to validate the effectiveness of our method across
various LLM architectures and datasets. We describe the setup in Section 5.1, followed by the results
and comprehensive analyses in Section 5.2–Section 6.

5.1 EXPERIMENTAL SETUP

Models, datasets and evaluation. Our evaluation comprehensively assesses a diverse array of
large language models, encompassing various scales and architectures, including the Llama-3.1 series
(Grattafiori et al., 2024), the Gemma-3 series (Team et al., 2025) and the Qwen-2.5 series (Yang et al.,
2024a). More details about these LLMs are presented in Appendix A.1.

We validate our methodology’s efficacy across three widely-adopted evaluation benchmarks: MMLU
(Hendrycks et al., 2021), and MedMCQA (Pal et al., 2022). All benchmark datasets are obtained from
the Hugging Face repository. Comprehensive descriptions of each evaluation dataset are provided in
Appendix A.2.

To assess the calibration performance of DUAL-ALIGN, we measure four established metrics: Ex-
pected Calibration Error (ECE)(Naeini et al., 2015), Maximum Calibration Error (MCE) (Naeini
et al., 2015), Adaptive Calibration Error (ACE) (Nixon et al., 2019) and Brier Score (Brier, 1950).
Additional evaluation details are provided in Appendix A.3.

Baselines. We compare our method with several post-hoc calibration techniques. Our unsupervised
baselines include DACA (Luo et al., 2025a), which aligns the pre-trained model on agreement
samples; a hidden-state-based approach, Internal Consistency (IC) (Xie et al., 2024b), which measures
the ratio of consistency between each layer’s predictions and the final layer’s output; and two prompt-
based methods: CAPE (Jiang et al., 2023), which reduces bias by reordering answer choices, and

1We adopt base-2 logs in JSD calculation to ensure its ∆DJS ≤ 1.
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Models Methods
Evaluation Metrics

ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ Brier Score ↓

L
la

m
a3

.1
-8

B

Vanilla 10.806±0.275 18.602±0.212 11.809±0.652 0.461±0.005

CAPE 12.567±0.134 20.788±0.841 13.134±0.257 0.495±0.001

Elicitation 13.203±0.067 40.983±4.065 21.300±1.714 -
IC 11.716±0.248 64.448±29.949 19.517±3.165 -
DACA 7.811±0.619 13.824±0.667 8.064±0.544 0.451±0.004

DUAL-ALIGN (Ours) 2.871±0.308 5.587±0.648 3.222±0.306 0.445±0.004

TS† (oracle) 1.526±0.450 4.790±1.090 1.985±0.609 0.441±0.004

Q
w

en
2.

5-
14

B

Vanilla 16.735±0.375 32.406±0.583 21.848±1.130 0.388±0.006

CAPE 18.022±0.061 36.091±0.501 20.987±0.340 0.407±0.001

Elicitation 15.321±0.002 85.556±0.000 31.973±2.713 -
IC 32.852±0.258 47.360±5.4265 22.089±0.627 -
DACA 5.146±0.340 8.867±0.590 4.427±0.287 0.329±0.004

DUAL-ALIGN (Ours) 2.423±0.070 11.241±2.918 3.602±0.642 0.326±0.005

TS† (oracle) 2.297±0.124 11.411±2.996 3.986±0.994 0.326±0.005

G
em

m
a-

3-
27

B

Vanilla 23.842±0.336 58.230±8.103 35.240±2.461 0.481±0.007

CAPE 19.891±0.053 38.791±0.334 23.281±0.345 0.445±0.01

Elicitation 18.413±0.284 26.526±2.564 22.456±1.326 -
IC 36.667±0.313 53.937±0.414 36.746±0.346 -
DACA 16.842±0.324 35.205±0.660 23.985±0.524 0.406±0.006

DUAL-ALIGN (Ours) 5.247±0.310 18.065±8.913 9.175±1.565 0.379±0.005

TS† (oracle) 5.225±0.254 18.069±9.148 8.871±1.561 0.359±0.005

Table 1: Main evaluation results on MMLU datasets across different LLMs. Lower values indicate better
performance. Best results among unsupervised methods are shown in bold. “IC”: Internal-consistency; “TS”:
Temperature Scaling. † indicates calibration methods with access to labels. Values are percentages averaged
over 3 runs.

Elicitation (Tian et al., 2023), which prompts the model to state its confidence. We also report results
for the uncalibrated Vanilla model and use supervised Temperature Scaling (TS) (Guo et al., 2017)
as an oracle. More details of baselines are presented in Appendix A.4.

5.2 MAIN RESULTS

DUAL-ALIGN consistently achieves state-of-the-art results. DUAL-ALIGN demonstrates superior
performance across all evaluated models and metrics, establishing a new state-of-the-art for unsu-
pervised LLM calibration by outperforming all other unsupervised baselines, as shown in Table 1.
For instance, on MMLU with the Llama-3.1-8B, our method achieves an ECE of just 2.871%, a
significant reduction compared to the 7.811% of the strongest unsupervised baseline, DACA, and
the 10.806% of the uncalibrated model. Notably, our framework’s performance can significantly
outperform the hidden-state-based approach IC and closely approach that of the supervised TS oracle.
This indicates that our method that tackles both output drift and process drift in a dual alignment
manner, can effectively address the complex dynamics of miscalibration while reducing human
annotation costs. We also present the reliability diagrams visualization in Appendix D.

Size Method ECE (↓) MCE (↓)

7B
Vanilla 20.666±0.382 38.647±1.219

DACA 10.312±0.502 16.884±0.954

DUAL-ALIGN 9.406±0.577 15.256±0.993

14B
Vanilla 23.842±0.336 58.230±8.103

DACA 5.146±0.340 8.867±0.590

DUAL-ALIGN 2.423±0.070 11.241±2.918

32B
Vanilla 11.338±0.065 23.522±5.214

DACA 10.958±0.670 17.312±1.082

DUAL-ALIGN 9.203±0.055 15.723±0.332

Table 2: Evaluation of DUAL-ALIGN with
different model sizes. We experiment with
Qwen2.5 series of different model sizes.

DUAL-ALIGN is effective across different model ar-
chitectures and sizes. To validate the scalability and
generalizability of our method, we conduct experiments
across different model architectures (Qwen2.5-14B and
Gemma-3-27B) in Table 1, and the Qwen-2.5 model series
with varying sizes in Table 2. The results demonstrate that
our method can maintain its effectiveness as model archi-
tecture varies and model size increases from 7B to 32B
parameters. In all configurations, our method consistently
outperforms both the uncalibrated model and the DACA
baseline. This consistent performance advantage across
different model scenarios highlights that DUAL-ALIGN is not tailored to a specific model but is a
general solution that can be applied practically and flexibly.
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5.3 ABLATION STUDY

To validate the key components of our DUAL-ALIGN framework, we conduct a series of ablation
studies on the MMLU benchmark using the Llama-3.1-8B model. We investigate the contributions of
our dual-component loss function and our dynamic layer selection strategy.

Ablation on loss components. To validate our dual-component loss, we compare the full DUAL-
ALIGN framework against versions using only the output alignment loss (LOutput) or the process
alignment loss (LProcess). As shown in Table 3, the “Output Only” variant is ineffective, performing
worse than the DACA baseline. While the “Process Only” variant substantially reduces calibration
error, our full DUAL-ALIGN framework—which dynamically integrates both losses—achieves the
best performance. It significantly outperforms both ablated versions and approaches the supervised
TS oracle, confirming the necessity of our dual-component strategy for effective calibration.

Method ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ Brier Score ↓
Vanilla 10.806±0.275 18.602±0.212 11.809±0.652 0.461±0.005

DACA 7.811±0.619 13.824±0.667 8.064±0.544 0.451±0.004

DUAL-ALIGN (Output Only) 10.267±0.925 17.599±1.145 10.393±0.795 0.459±0.003

DUAL-ALIGN (Process Only) 6.082±1.982 9.082±3.011 6.092±1.925 0.449±0.006

DUAL-ALIGN (Ours) 2.871±0.308 5.587±0.648 3.222±0.306 0.445±0.004

TS† (Oracle) 1.526±0.450 4.790±1.090 1.985±0.609 0.441±0.004

Table 3: Ablation study on the loss components of DUAL-ALIGN using Llama-3.1-8B on the MMLU
datasets. Our full, dual alignment method significantly outperforms the ablated versions, highlighting the
necessity of addressing both output and process drift.

Ablation on layer selection. To validate our dynamic Peak Divergence Layer (PDL) selection
strategy, we compare it against starting process alignment at fixed network depths (L/4, L/2, and
3L/4). As shown in Table 4, our dynamic approach, which identifies the layer with the maximum
JSD increase, yields substantially better calibration performance than any fixed-layer strategy. This
result confirms that divergence is sample-dependent and that accurately identifying this layer on a
per-sample basis is critical to the success of the DUAL-ALIGN framework.

Method ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ Brier Score ↓
Vanilla 10.806±0.275 18.602±0.212 11.809±0.652 0.461±0.005

DACA 7.811±0.619 13.824±0.667 8.064±0.544 0.451±0.004

DUAL-ALIGN (L/4) 4.716±0.397 9.089±1.298 5.087±0.317 0.449±0.004

DUAL-ALIGN (L/2) 4.862±0.363 9.235±0.874 5.228±0.360 0.449±0.003

DUAL-ALIGN (3L/4) 2.846±0.460 5.806±0.845 3.125±0.587 0.446±0.004

DUAL-ALIGN (Ours) 2.382±0.619 4.928±1.030 2.697±0.715 0.445±0.004

TS† (Oracle) 1.526±0.450 4.790±1.090 1.985±0.609 0.441±0.004

Table 4: Ablation study on the PDL selection strategy of DUAL-ALIGN using Llama-3.1-8B on the MMLU
datasets. Our proposed method, which selects the layer with the maximum JSD increase, yields the best
calibration performance.

6 DISCUSSIONS

In this section, we explore the broader applicability and potential extensions of our proposed DUAL-
ALIGN framework. We demonstrate its adaptability by showing its effectiveness on open-ended
generation tasks, its successful generalization to specialized domains like medicine (see Appendix B
for full results), and its compatibility with various post-training methodologies.

Can DUAL-ALIGN be used for open-ended tasks? While DUAL-ALIGN is designed for multiple-
choice questions, it extends to open-ended tasks through reformulation. We convert open-ended
generation into binary classification: the model first generates a free-form answer, then evaluates
it via self-assessment. This approach follows the p(true) framework (Kadavath et al., 2022), effec-
tively repurposing open-ended outputs for calibration without modifying our core method. We use
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TruthfulQA (Lin et al., 2022b). As shown in Figure 6a, DUAL-ALIGN significantly reduces both
ECE and MCE on the TruthfulQA dataset for both LLama-3.1-8B and Qwen2.5-14B models. This
demonstrates that our framework successfully adapts to open-ended generation, outperforming the
strong DACA baseline and proving its versatility beyond multiple-choice formats.

Applicability to other post-training methods. To demonstrate the general applicability of our
DUAL-ALIGN framework, we evaluate its performance on models subjected to various popular
post-training techniques. We test on Qwen2.5-7B model trained with Proximal Policy Optimiza-
tion(PPO) (Schulman et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2023),
and Group Relative Policy Optimization (GRPO) (Liu et al., 2024a). As shown in Figure 6b, DUAL-
ALIGN consistently outperforms both the uncalibrated model and the DACA baseline across all
three methods. This robust performance highlights that our approach is not confined to a single
post-training paradigm like instruction-tuning but generalizes effectively to models refined through
various LLM post-training techniques, confirming its broad applicability.

7 RELATED WORKS

Post-training refines LLMs after their initial pre-training on broad datasets (Tie et al., 2025; Kumar
et al., 2025). This stage includes methods like full fine-tuning for task-specific adaptation (Yue et al.,
2023; Luo et al., 2025b), Parameter-Efficient Fine-Tuning (PEFT) such as LoRA for resource-efficient
specialization (Hu et al., 2022; Gao et al., 2023; Trung et al., 2024), and reinforcement learning
techniques like RLHF and DPO to align models with user preferences (Long Ouyang & et al., 2022;
Rafailov et al., 2023). While creating versatile and aligned models, these post-training processes
can introduce miscalibration. Our paper therefore investigates these effects and proposes a novel
framework to calibrate Post-trained Language Models.

Confidence calibration aims to ensure a model’s output confidence accurately reflects its correctness
likelihood (Guo et al., 2017). However, studies show that post-training often leads to overconfident
LLMs (Xiao et al., 2022; Chen et al., 2023; Liu et al., 2024b; Jiang et al., 2023). Current calibration
approaches include eliciting verbalized confidence through prompting or fine-tuning (Lin et al.,
2022a; Tian et al., 2023; Yang et al., 2024b; Xie et al., 2024a; Leng et al., 2025; Damani et al., 2025;
Tao et al., 2025), and estimating confidence from output logits (Shen et al., 2024; Luo et al., 2025a;
Vejendla et al., 2025). Closest to our work, Shen et al. (2024); Xie et al. (2024a) leverage hidden
states for calibration. However, they fail to account for both the output / process drifts and alignment
dynamics induced by post-training in one unified framework, which are central to our research.

8 CONCLUSION

In this paper, we tackle the overconfidence issue in post-trained LLMs, diagnosing that miscalibration
stems from two distinct phenomena: output drift and process drift. We propose DUAL-ALIGN,
an unsupervised post-hoc framework that performs a dual alignment to address both issues. The
framework corrects output drift by matching final output distributions and rectifies process drift
by identifying a Peak Divergence Layer and aligning the subsequent Inferential Stability Entropy.
Critically, DUAL-ALIGN dynamically weighs these two objectives based on the model’s intermediate
predictive divergence, learning a single temperature parameter without human annotation. Experi-
ments show our method achieves the state-of-the-art performance across diverse LLM architectures
and datasets. We hope our work will inspire future research on understanding the LLM post-training
effects on model calibration.
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REPRODUCIBILITY STATEMENT

We summarize our efforts below to facilitate reproducible results:

1. Datasets. We use publicly available datasets, which are described in detail in Section 5.1,
and Appendix A.2.

2. Baselines. The description and hyperparameters of the LLM calibration baselines are
explained in Appendix A.3, and Appendix A.4.

3. Methodology. Our method is fully documented in Section 4. Hyperparameters are specified
in Appendix A.3.

4. Open source. Code, datasets and model checkpoints will be made publicly available for
reproducible research.
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Appendix
A EXPERIMENTAL DETAILS

A.1 MODELS DETAILS

We conduct our experiments across a diverse set of large language models, spanning various architec-
tures and scales from prominent model families. Table 5 provides a detailed overview of the specific
pre-trained and post-trained versions used in this study.

Model Family Model Type HuggingFace Path

Llama-3.1 Family
Pre-trained Model meta-llama/Llama-3.1-8B

Post-trained Model meta-llama/Llama-3.1-8B-Instruct

Qwen-2.5 Family
Pre-trained Model Qwen/Qwen2.5-14B

Post-trained Model Qwen/Qwen2.5-14B-Instruct

Gemma-3 Family
Pre-trained Model google/gemma-3-27b-pt

Post-trained Model google/gemma-3-27b-it

Table 5: An overview of models used in our experiments, detailing the pre-trained and post-trained versions
and their respective Hugging Face paths for each family.

A.2 DATASETS DETAILS

We evaluate our method on three diverse benchmarks. MMLU (Hendrycks et al., 2021) is a widely-
adopted benchmark for measuring massive multitask language understanding. MedMCQA (Pal
et al., 2022) is a large-scale, multi-subject, multiple-choice question dataset designed for the medical
domain. TruthfulQA (Lin et al., 2022b) is a benchmark used to measure a model’s truthfulness and
its ability to avoid generating falsehoods.

For all datasets, we divide the data into a 30% subset for alignment training and a 70% test set. All
three datasets are publicly available on Hugging Face2. For MMLU, we use the test split from all
subjects, while for MedMCQA, we use the validation split.

A.3 IMPLEMENTATION DETAILS

All results are reported as mean ± standard deviation from three independent runs with different
random seeds. All post-hoc methods requiring optimization—including our supervised oracle
(Temperature Scaling) and the unsupervised baselines (DACA, DUAL-ALIGN)—are trained using the
Adam optimizer with a fixed learning rate of 0.05 for 300 epochs. For the unsupervised methods, we
use a batch size of 128. Finally, all bin-based calibration metrics (ECE, MCE, ACE) are computed
using a default of 10 bins as specified in our evaluation script. For prompt templates used for
evaluation, we present the details in Appendix C.

A.4 BASELINE DETAILS

For prompt-based baselines, including CAPE (Jiang et al., 2023): a prompt-based method that
calibrates next-token probabilities by permuting option order to mitigate LLM biases, Elicitation
(Tian et al., 2023): estimates confidence by prompting the model to generate verbalized probabilities.
Unsupervised baseline DACA (Luo et al., 2025a) directly aligns the confidence of PoLMs to PLMs on

2https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/openlifescienceai/medmcqa
https://huggingface.co/datasets/domenicrosati/TruthfulQA
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the agreement samples. Internal Consistency (IC) (Xie et al., 2024b) measures the ratio of consistency
between each layer’s predictions (mapped to the final vocabulary) and the final layer’s output. It is
worth noting that the original IC leverages internal consistency within the model’s reasoning process.
Here, we ignore reasoning and directly generate the final answer for calculation. Since Elicitation
and IC can only output confidence for prediction classes, we do not calculate the Brier Score.

B EVALUATION ON OTHER DOMAINS

In our main experiments, we conduct our evaluation on MMLU (Hendrycks et al., 2021) dataset. To
further validate the generalizability of our method, we also present results on the MedMCQA (Pal
et al., 2022) dataset, which is from the medical domain. All experimental settings are kept consistent
with our main evaluation to ensure a fair comparison. The comprehensive results are shown in Table 6.

Models Methods
Evaluation Metrics

ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ Brier Score ↓

L
L

am
a3

.1
-8

B Vanilla 16.919±0.699 27.511±0.424 15.679±1.388 0.564±0.005

DACA 5.149±0.350 10.582±0.521 5.729±0.374 0.517±0.003

DUAL-ALIGN (Ours) 4.684±0.171 8.881±0.393 5.106±0.432 0.516±0.003

TS† (oracle) 1.587±0.545 4.929±2.491 1.842±0.444 0.513±0.003

Q
w

en
2.

5-
14

B Vanilla 26.881±0.631 39.386±0.109 23.303±0.471 0.621±0.010

DACA 4.904±0.433 9.245±0.270 8.361±0.442 0.529±0.005

DUAL-ALIGN (Ours) 3.538±0.924 7.507±0.866 3.483±0.359 0.489±0.006

TS† (oracle) 3.628±0.408 19.972±8.798 7.184±0.950 0.498±0.006

G
em

m
a-

3-
27

B Vanilla 37.084±0.058 49.348±14.837 34.293±4.081 0.748±0.001

DACA 26.872±0.238 38.685±1.628 24.443±0.497 0.628±0.003

DUAL-ALIGN (Ours) 12.940±0.176 29.034±0.220 14.765±0.292 0.537±0.001

TS† (oracle) 6.917±0.278 28.561±0.187 9.317±0.297 0.519±0.002

Table 6: Performance comparison across different PoLMs and calibration methods on MedMCQA datasets.
Lower values indicate better performance. Best results among unsupervised methods are shown in bold. ”Vanilla”
refers to uncalibrated PoLMs. † indicates calibration methods with access to labels. Values are percentages
averaged over 3 runs.
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C EFFECT OF DIFFERENT PROMPTS

To test our framework’s robustness against prompt sensitivity, we evaluated four prompt templates
(Figure 7). The results in Table 7 confirm that DUAL-ALIGN consistently outperforms the baselines
across all variants, demonstrating its effectiveness is not contingent on specific prompt phrasing and
is robust to minor instructional changes.

Prompt Variations for Multiple-Choice Questions

Prompt Variant A (used in main experiments)
Select the correct answer for each of the following questions. Respond with the letter only:
[Question]
A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]
Answer:

Prompt Variant B
The following are multiple-choice questions. Give ONLY the correct option, no other words
or explanation:
[Question]
A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]
Answer:

Prompt Variant C
For the following multiple choice question, provide just the correct letter:
[Question]
A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]
Answer:

Prompt Variant D
Directly select the correct answer for the following multiple choice question without any
explanations:
[Question]
A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]
Answer:

Figure 7: Four different prompt instructions for a multiple-choice question task.
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Prompt Type Methods
Evaluation Metrics

ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ Brier Score ↓

Prompt A

Vanilla 10.806±0.275 18.602±0.212 11.809±0.652 0.461±0.005

DACA 7.811±0.619 13.824±0.667 8.064±0.544 0.451±0.004

DUAL-ALIGN (Ours) 2.871±0.308 5.587±0.648 3.222±0.306 0.441±0.004

TS† (oracle) 1.526±0.450 4.790±1.090 1.985±0.609 0.441±0.004

Prompt B

Vanilla 13.271±0.375 23.224±0.708 13.917±0.638 0.472±0.006

DACA 5.530±0.627 10.027±1.251 6.196±0.558 0.444±0.003

DUAL-ALIGN (Ours) 1.441±0.127 8.835±0.301 2.278±0.225 0.439±0.004

TS† (oracle) 1.641±0.341 8.820±0.132 2.488±0.424 0.439±0.004

Prompt C

Vanilla 10.183±0.254 18.464±1.361 10.859±0.587 0.456±0.005

DACA 6.435±0.710 11.929±0.842 6.830±0.785 0.444±0.004

DUAL-ALIGN (Ours) 3.364±0.385 6.659±0.829 3.994±0.380 0.439±0.004

TS† (oracle) 1.387±0.237 6.954±1.340 2.143±0.294 0.437±0.004

Prompt D

Vanilla 11.860±0.281 21.147±1.020 13.414±0.451 0.470±0.004

DACA DACA 5.074±0.528 9.856±0.162 5.729±0.632 0.450±0.003

DUAL-ALIGN (Ours) 2.523±0.410 6.792±1.148 3.031±0.087 0.445±0.003

TS† (oracle) 1.915±0.084 5.849±3.020 2.370±0.449 0.445±0.003

Table 7: Effects of different prompt instructions on calibration error using Llama3.1-8B on MMLU dataset.
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D RELIABILITY DIAGRAM OF DIFFERENT BASELINES

This section provides reliability diagrams to visually assess calibration performance across our
experiments. These plots show model accuracy versus confidence, with perfect calibration represented
by the diagonal line. The following figures (Figure 8 to Figure 13) present these diagrams for the
uncalibrated (Vanilla) model, the DACA baseline, our DUAL-ALIGN framework, and the supervised
Temperature Scaling (TS) oracle. These visualizations visually confirm the quantitative results from
the main paper, clearly illustrating that DUAL-ALIGN significantly reduces the overconfidence of
post-trained models and achieves a calibration profile that closely approaches the supervised oracle.
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Figure 8: Reliability diagrams of Llama3.1-8B-Instruct on MMLU dataset.
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Figure 9: Reliability diagrams of Llama3.1-8B-Instruct on MedMCQA dataset.
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Figure 10: Reliability diagrams of Qwen2.5-14B-Instruct on MMLU dataset.
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Figure 11: Reliability diagrams of Qwen2.5-14B-Instruct on MedMCQA dataset.

E LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on Large Language Model (LLM) usage, we disclose that
an LLM (OpenAI GPT-5) was used solely for minor language editing and grammar polishing of the
manuscript. The LLM did not contribute to the research ideas, experimental design and data analysis.
The authors take full responsibility for the content of this paper.
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Figure 12: Reliability diagrams of Gemma-3-27b-it on MMLU dataset.
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Figure 13: Reliability diagrams of Gemma-3-27b-it on MedMCQA dataset.
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