

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNLOCKING THE PRE-TRAINED MODEL AS A DUAL-ALIGNMENT CALIBRATOR FOR POST-TRAINED LLMs

Anonymous authors

Paper under double-blind review

## ABSTRACT

Post-training boosts the performance of large language models (LLMs) but systematically degrades their confidence calibration, making them frequently over-confident. Recent post-hoc LLM calibration methods circumvent the challenge by aligning the post-trained language model with its pre-trained counterpart; however, they treat calibration as a static output distribution matching problem, and thus fail to capture the complex dynamics of post-training induced on calibration. Our investigation into these dynamics reveals that calibration errors stem from two distinct regimes: (i) *output drift*, where final confidence is inflated while intermediate decision process remains consistent, and (ii) *process drift*, where the intermediate pathways themselves diverge. Based on this diagnosis, we propose DUAL-ALIGN, a dynamic unsupervised framework performing dual alignment for LLM confidence calibration. It applies *output alignment* to correct output drift by matching the final output distributions. For process drift, it introduces novel *process alignment*, a technique that first identifies the specific layer where the models' inference paths diverge and then realigns the stability of their subsequent trajectories. This dual strategy enables learning a temperature parameter that corrects both calibration error types that occur during post-training. Experiment results demonstrate that our method brings consistent improvement compared with representative baselines, reducing calibration error and approaching the performance of a supervised oracle.

## 1 INTRODUCTION

Post-training methods such as instruction tuning and reinforcement learning from human feedback, substantially improves large language model (LLM) alignment and adaptability across tasks (Wei et al., 2022; Long Ouyang & et al., 2022; Zhang et al., 2025). Yet it also introduces new challenges in uncertainty estimates, often amplifying over-confidence relative to the pre-trained language models (PLMs) (Achiam et al., 2023; Shen et al., 2024). To circumvent this, researchers have explored confidence calibration, such as temperature scaling (TS) (Guo et al., 2017) for post-trained LMs (PoLMs): aligning predicted probabilities with empirical accuracy so models behave cautiously under uncertainty (Xiong et al., 2024).

Recent unsupervised methods, such as DACA (Luo et al., 2025a), use the PLM as a reference to calibrate the PoLM. To avoid potential conflicts from new knowledge introduced by post-training, DACA chooses to only align on samples where predictions are consistent between PLM and PoLM. However, this selective alignment strategy is inherently data-inefficient, as it discards all samples where the models disagree. More critically, by focusing solely on matching the final output confidence, it treats calibration as a static, surface-level matching problem. This fails to address the complex drifts in the model's intermediate inference process induced by post-training, which are often the root cause of miscalibration. We raise a key question here: *How does post-training alter the decision process of LLMs, and can we use that understanding to calibrate them more effectively?*

To answer this, we begin by investigating the different behavioral regimes of the PLM and PoLM by analyzing their layer-wise predictions and final outputs. Our analysis at Figure 1 reveals two distinct post-training phenomena: (i) In samples where the PoLM and PLM agree on the final answer, their intermediate decision process remains largely consistent, yet the PoLM's final confidence is systematically inflated—a phenomenon we term **output drift** (Figure 1(a)). (ii) Conversely, in samples where they disagree, the models' decision pathways diverge sharply at a specific intermediate

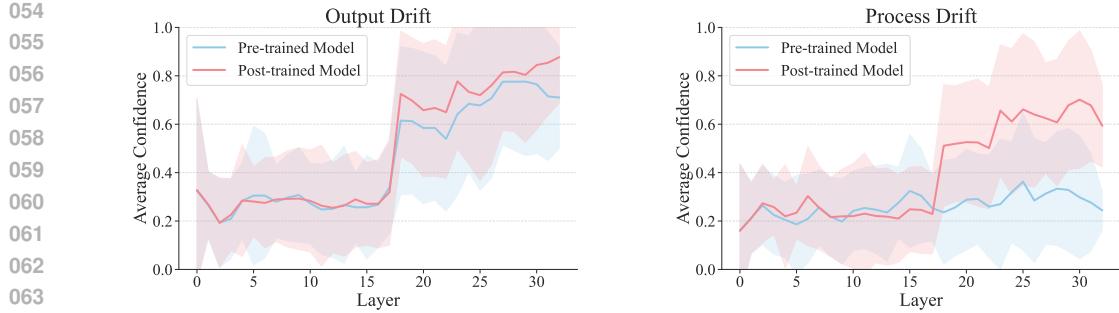


Figure 1: **Two post-training regimes underlying miscalibration.** (a) *Output drift*: the PLM and PoLM follow similar layer-wise trajectories, yet the PoLM’s final confidence is inflated (agreement cases). (b) *Process drift*: the models’ intermediate inference process diverges sharply from a specific layer, yielding different answers (disagreement cases). Curves are computed from layer-wise confidence trajectories projected by LogitLens (nostalgia, 2020) and are averaged over samples in MMLU (Hendrycks et al., 2021) (standard deviation shown in the shade region); see Section 3 for detailed illustration.

layer, causing their inference trajectories to split and lead to different answers. We term this more fundamental change **process drift** (Figure 1(b)). These observations motivate a calibration approach that addresses both phenomena at their source.

**Our contributions.** To this end, we propose DUAL-ALIGN, a dynamic post-hoc calibration framework (Figure 4) that treats calibration as a *dual alignment* problem. It performs (1) **output alignment** to correct surface-level overconfidence by matching the PoLM’s final-layer output distribution with the PLM’s. Our motivation for a deeper alignment stems from our key observation that post-training creates a problematic pattern where extreme overconfidence is coupled with unnaturally low Inferential Stability Entropy (ISE) (Figure 5) calculated over the LLM inference trajectory across different layers. To rectify this, our framework introduces a novel (2) **process alignment**, which first identifies the Peak Divergence Layer (PDL) where the models’ inference pathways diverge, and then aligns the PoLM’s ISE with the PLM’s healthier distribution from that point onwards. Importantly, our framework interpolates between these two objectives on a per-sample basis using a divergence-derived weight, which yields a temperature parameter that adapts across different miscalibration regimes without labels. Empirically, we show that our method achieves substantial calibration improvements, reducing the Expected Calibration Error by over 30% across various LLM architectures compared to strong baselines.

## 2 PRELIMINARIES

**Confidence calibration for PoLMs.** We aim to calibrate a post-trained language model PoLM, denoted by  $f$ , using a pre-trained language model PLM,  $g$ , as a reference. In the context of a multiple-choice question, for a given input prompt  $x$ , the model produces final-layer logits  $z_f^L(x)$  corresponding to the candidate choices. The model’s prediction,  $\hat{y}_f(x)$ , is the choice with the highest probability derived from the logits via a softmax function, and this maximum probability value is taken as its confidence,  $\hat{P}(x)$ . A model is considered perfectly calibrated if its confidence matches its true accuracy, i.e.,  $\Pr(Y = \hat{y} \mid \hat{P} = \beta) = \beta$ , where  $Y$  is the ground-truth label.

A standard metric to measure this discrepancy is the Expected Calibration Error (ECE) (Naeini et al., 2015). In practice, ECE is estimated empirically by partitioning  $K$  samples into  $M$  bins  $b_1, b_2, \dots, b_M$  based on the model’s predicted confidence scores, and then computed as:

$$\text{ECE} = \sum_{m=1}^M \frac{|b_m|}{K} |\text{acc}(b_m) - \text{conf}(b_m)|, \quad (1)$$

where  $\text{acc}(b_m)$  and  $\text{conf}(b_m)$  are the average accuracy and confidence in bin  $b_m$ . A smaller ECE indicates better calibration performance of the model. While PLMs are often well-calibrated, literature recognize that post-training often degrades this property, leading to overconfident predictions (Xiao et al., 2025; Luo et al., 2025a; Leng et al., 2025). Our experiments in Figure 2 verify this finding.

**Post-hoc calibration methods.** Post-hoc calibration adjusts a model’s confidence without altering its predictions. A popular supervised method is Temperature Scaling (TS) (Guo et al., 2017), which

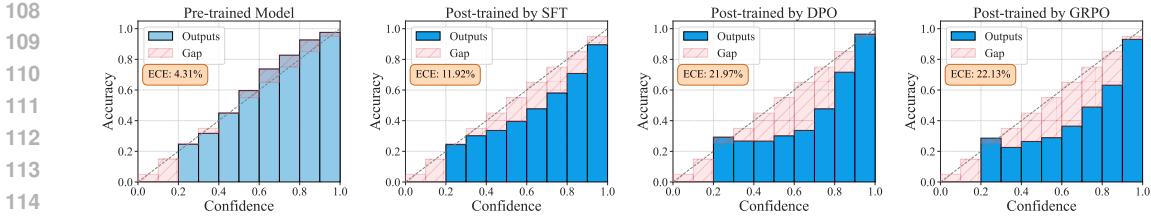


Figure 2: **Reliability diagrams on MMLU for a PLM vs. PoLMs obtained via different post-training methods.** The pre-trained model is Llama-3.1-8B and we consider Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO).

softens the probability distribution by applying a scalar temperature  $\tau > 0$  to the final-layer logits:

$$p_f(y = j \mid \mathbf{x}, \tau) = \text{softmax} \left( \frac{\mathbf{z}_f^L(\mathbf{x})}{\tau} \right)_j. \quad (2)$$

The temperature  $\tau$  is optimized on a labeled dataset. To eliminate the need for labels in calibration, unsupervised methods like DACA (Luo et al., 2025a) align the PoLM’s confidence with that of the better-calibrated PLM. Crucially, DACA performs this alignment exclusively on samples where the models agree on the prediction, thereby avoiding under-confidence issues caused by optimizing on disagreement cases. However, it treats calibration as a static, surface-level matching problem. This fails to address the complex drifts in the model’s intermediate inference process induced by post-training, which is the focus of our paper.

### 3 UNDERSTANDING THE EFFECTS OF POST-TRAINING ON CALIBRATION

In this section, we aim to understand how post-training affects the calibration performance of LLMs based on their internal inference processes. Let the input prompt be a sequence of tokens  $\mathbf{x} = \{x_1, x_2, \dots, x_N\}$ . Our analysis focuses on the final token,  $x_N$ , as its hidden state is used to generate the model’s prediction. At each layer  $l \in [1, L]$  of a transformer model (Vaswani et al., 2017), the hidden state for this token is conceptually updated as:

$$\mathbf{h}^l(x_N) = \mathbf{h}^{l-1}(x_N) + \text{Attn}^l(x_N) + \text{MLP}^l(x_N), \quad (3)$$

where  $\mathbf{h}^l \in \mathbb{R}^{d_{\text{model}}}$  denotes the hidden state at the  $l$ -th layer. Using LogitLens (nostalgia, 2020), we can project any intermediate hidden state  $\mathbf{h}^l(x_N)$  into the vocabulary space via the unembedding matrix  $W_U \in \mathbb{R}^{V \times d_{\text{model}}}$ , with  $V$  as the vocabulary size. Since the embedding  $\mathbf{h}^l(x_N)$  encapsulates information from the entire input  $\mathbf{x}$ , we denote the resulting per-layer logits as  $\mathbf{z}^l(\mathbf{x}) = W_U \mathbf{h}^l(x_N) \in \mathbb{R}^V$ , from which we can derive a probability distribution  $\mathbf{p}^l(\mathbf{x})$  at every layer by applying softmax.

To understand how post-training alters an LLM’s decision process, we analyze the layer-wise information of a pre-trained model  $g$  and its post-trained counterpart  $f$ . Our method involves two components: we first track the evolution of predictive confidence across layers, and second, to symmetrically measure the predictive distance between the models at each layer, we use the Jensen-Shannon Divergence (JSD), denoted as  $d^l(\mathbf{x}) = D_{JS}(\mathbf{p}_g^l(\mathbf{x}) \parallel \mathbf{p}_f^l(\mathbf{x}))$ . This dual analysis, when performed separately on samples grouped by whether the models’ final predictions agree or disagree, reveals two distinct post-training effects on model calibration:

**Output drift.** Occurring predominantly on agreed samples, output drift describes the scenario where the PoLM’s intermediate decision process remains consistent with the PLM. As shown in Figure 1 (a), their confidence trajectories follow a similar path where confidence sharply increases in later layers, although the PoLM is systematically

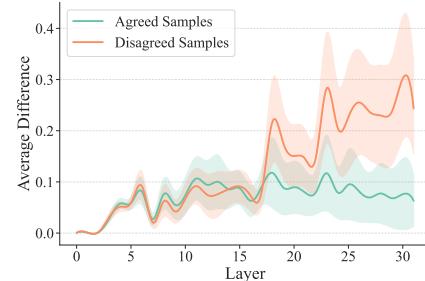


Figure 3: **Layer-wise predictive distance between PLM and PoLM.** We plot the predictive distance ( $d^l(\mathbf{x})$ ) between  $\mathbf{p}_g^l$  and  $\mathbf{p}_f^l$ . Agreement samples show low difference while disagreement samples exhibit a sharp spike at an intermediate layer, indicating process drift.

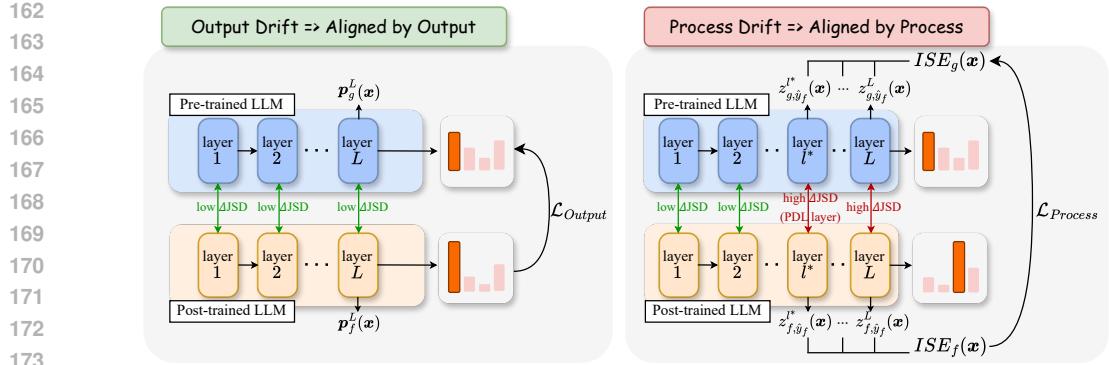


Figure 4: **Illustration of our method DUAL-ALIGN.** Our approach takes care of both output drift by focusing strategically on aligning the LLMs’ output confidence with  $\mathcal{L}_{\text{Output}}$  (Left), and process drift by firstly identifying the Peak Divergence Layer (PDL) and then aligning the Inferential Stability Entropy (ISE) calculated w.r.t. the process drift between PLM and PoLM with the learning objective  $\mathcal{L}_{\text{Process}}$  (Right).

overconfident in the final outputs. This phenomenon is further confirmed by the consistently low JSD between their intermediate logit distributions projected by the unembedding matrix, as shown in Figure 3. In this regime, post-training has primarily altered the final output distribution rather than the inference pathway.

**Process drift.** A more fundamental drift *that is overlooked in literature*, termed process drift, is usually observed on disagreed samples, where the PoLM’s layer-wise inference process diverges sharply from PLM. A critical feature, visible in Figure 3, is that the predictive distance  $d^l(\mathbf{x})$  between PoLM and PLM is low in the early layers but then exhibits an obvious increase at an intermediate layer, which might signal an abrupt difference in inferential strategy. This divergence is also evident in the confidence trajectories shown in Figure 1(b), where the two models’ layer-wise confidence scores are closely aligned in early layers, but then split apart at an intermediate stage. Our analysis thus suggests that naively aligning the final outputs of PLM and PoLM on all disagreement samples would be counterproductive, as it forces a match between outputs generated from fundamentally different intermediate decision processes, which can ultimately harm calibration.

## 4 PROPOSED FRAMEWORK: DUAL-ALIGN

Our analysis in Section 3 reveals that post-training induces two distinct phenomena: output drift, where output confidence becomes inflated in PoLM while the the intermediate computations remain similar to PLM, and process drift, where the model’s inference pathway fundamentally diverges. Motivated by these findings, we propose DUAL-ALIGN (Figure 4), a novel post-hoc LLM calibration framework designed to address both effects in a synergistic manner. Our approach aims to learn a temperature parameter  $\tau$  that effectively calibrates the post-trained model by comprehensively accounting for these underlying drifts, using only unlabeled data.

### 4.1 OUTPUT ALIGNMENT FOR OUTPUT DRIFT

When post-training primarily causes a output drift, the PoLM and PLM arrive at the same answer, but the PoLM exhibits inflated confidence in its output. In these circumstances, the PLM’s final-layer output distribution serves as a reliable and well-calibrated target. We address this with a **output alignment** objective, which aims to correct the PoLM’s overconfidence directly. This is achieved by minimizing the KL divergence between the temperature-scaled final-layer output distribution of the PoLM ( $f$ ) and the original distribution of the PLM ( $g$ ):

$$\mathcal{L}_{\text{Output}}(\tau; \mathbf{x}) = D_{KL}(p_g^L(\mathbf{x}) || p_f^L(\mathbf{x}, \tau)). \quad (4)$$

As depicted in the left panel of Figure 4, this loss component encourages the PoLM’s temperature-scaled confidence scores to mirror those of the better-calibrated PLM, effectively correcting the output confidence miscalibration introduced during post-training.

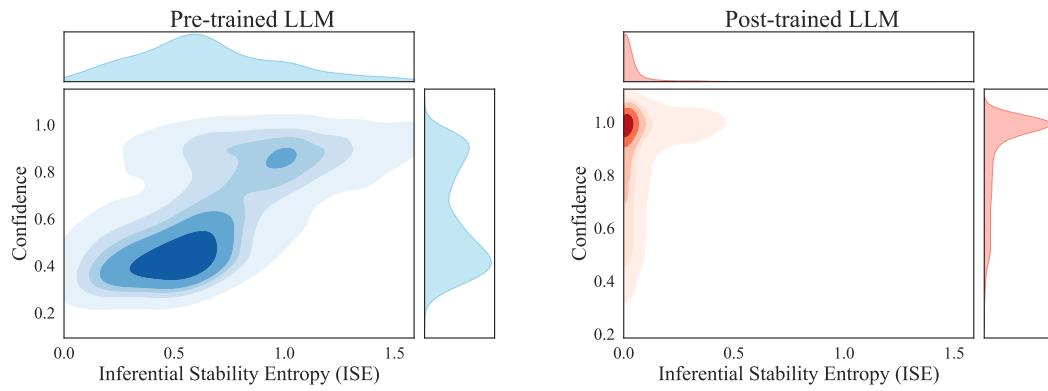


Figure 5: **Relationship between output confidence and Inferential Stability Entropy (ISE).** The pre-trained model (left) shows healthy uncertainty distribution, while the post-trained model (right) exhibits extreme overconfidence coupled with unnaturally low ISE values, indicating rigid conviction processes.

#### 4.2 PROCESS ALIGNMENT FOR PROCESS DRIFT

A process drift represents a more significant alteration, where the PoLM’s intermediate decision process diverges sharply from the PLM’s, resulting in a different final answer. For such cases, naively enforcing output alignment is counterproductive; as aligning the final output or even the LLM representations between PoLM and PLM would force the PoLM to match a conclusion derived from a fundamentally different inference process, leading to severe underconfidence. Instead, our key insight is to regularize the PoLM’s intermediate inference process itself. Specifically, we propose to align the *stability* of the model inference that occurs after the point of divergence. This ensures that even when the PoLM reaches a different conclusion, its conviction in that conclusion emulates the properly stable confidence characteristic of the well-calibrated PLM, preventing erratic overconfidence.

To implement this, we first identify the exact layer where the two models’ inference pathways diverge most sharply by first measuring their per-layer output distance using the JSD. We then define the Peak Divergence Layer (PDL),  $l^*(\mathbf{x})$ , as the layer exhibiting the maximum *increase* in JSD from the previous one:

$$l^*(\mathbf{x}) = \arg \max_{l \in \{2, \dots, L\}} \left( D_{JS}(\mathbf{p}_f^l(\mathbf{x}) \parallel \mathbf{p}_g^l(\mathbf{x})) - D_{JS}(\mathbf{p}_f^{l-1}(\mathbf{x}) \parallel \mathbf{p}_g^{l-1}(\mathbf{x})) \right). \quad (5)$$

The measurement of a model’s conviction stability begins by identifying the final prediction of the post-trained model,  $\hat{y}_f(\mathbf{x})$ , and the Peak Divergence Layer ( $l^*$ ). For each layer  $l$  from  $l^*$  to the final layer  $L$ , the logit vector from the post-trained model,  $\mathbf{z}_f^l(\mathbf{x})$ , is generated. From this vector, the specific logit value corresponding to the position of the final prediction is extracted, which is denoted as  $z_{f, \hat{y}_f}^l(\mathbf{x})$ . These individual logit values are then collected to form a vector,  $\mathbf{v}_f(\mathbf{x}) = [z_{f, \hat{y}_f}^{l^*}(\mathbf{x}), z_{f, \hat{y}_f}^{l^*+1}(\mathbf{x}), \dots, z_{f, \hat{y}_f}^L(\mathbf{x})]$ . After normalizing with softmax, The stability is then quantified by calculating an entropy value from this sequence of logits with the following formula:

$$ISE_f(\mathbf{x}) = - \sum_{l=l^*}^L q_f^l(\mathbf{x}) \log q_f^l(\mathbf{x}), \quad q_f^l(\mathbf{x}) = \frac{\exp(v_f^l(\mathbf{x}))}{\sum_{j=l^*}^L \exp(v_f^j(\mathbf{x}))}, \quad l = l^*, \dots, L. \quad (6)$$

Our motivation for this approach is rooted in the hypothesis that a PoLM’s overconfidence stems from its conviction process becoming overly rigid, where it quickly settles on a decision with consistently high confidence, unlike the more deliberative PLM. A lower ISE signifies a more consistent conviction across intermediate layers, and this hypothesis is supported by the empirical observations in Figure 5.

We first observe that the PLM’s output confidence is distributed across a reasonable range, reflecting a healthy level of uncertainty (Left). In sharp contrast, the PoLM suffers from severe overconfidence, with its confidence scores overwhelmingly concentrated near 1.0 (Right). Furthermore, the two models show a vastly different relationship between confidence and inferential stability. For the PLM, confidence is largely stable across its typical ISE range. The PoLM, however, exhibits an undesirable correlation where extreme confidence is systematically coupled with unnaturally low ISE.

270 This suggests the PoLM’s conviction process has become over-certain and with less variations across  
 271 different layers, which is reflected in Figure 5 by the dense clustering of data points in the top-left  
 272 corner of the plot, where confidence approaches 1.0 as ISE nears 0.

273 This sharp contrast between PoLM and PLM reveals that simply correcting the final output confidence  
 274 may be insufficient. A better approach is to address the intermediate inference dynamics, which  
 275 makes the PLM’s healthier ISE distribution an ideal target. Our process alignment loss is therefore  
 276 designed to restore a more stable conviction process for PoLM by minimizing the squared difference  
 277 between the ISE of the two models:

$$\mathcal{L}_{\text{Process}}(\tau; \mathbf{x}) = (\text{ISE}_f(\mathbf{x}, \tau) - \text{ISE}_g(\mathbf{x}))^2, \quad (7)$$

280 where we divide the PoLM logits by a temperature  $\tau$  to calculate  $\text{ISE}_f(\mathbf{x}, \tau)$ . This objective optimizes  
 281  $\tau$  to align the stability of the PoLM’s inference process with that of a better-calibrated PLM.

#### 282 4.3 DUAL-ALIGN: A UNIFIED CALIBRATION FRAMEWORK

284 DUAL-ALIGN addresses the two miscalibration errors incurred by LLM post-training in one unified  
 285 manner. Specifically, we achieve this by using the magnitude of the peak JSD increase,  $\Delta D_{JS}^{l^*}(\mathbf{x}) =$   
 286  $D_{JS}(p_f^{l^*}(\mathbf{x}) \parallel p_g^{l^*}(\mathbf{x})) - D_{JS}(p_f^{l^*-1}(\mathbf{x}) \parallel p_g^{l^*-1}(\mathbf{x}))$ , as a natural indicator of the process drift’s  
 287 severity for each sample. The final learning objective is a weighted combination of the output and  
 288 process alignment components:

$$\mathcal{L}_{\text{DUAL-ALIGN}}(\tau; \mathbf{x}) = (1 - \Delta D_{JS}^{l^*}(\mathbf{x})) \cdot \mathcal{L}_{\text{Output}}(\tau; \mathbf{x}) + \Delta D_{JS}^{l^*}(\mathbf{x}) \cdot \mathcal{L}_{\text{Process}}(\tau; \mathbf{x}). \quad (8)$$

291 This unified objective <sup>1</sup> uses the model’s intermediate predictive divergence  $\Delta D_{JS}^{l^*}(\mathbf{x})$  as a data-  
 292 driven weight coefficient during training. In this way, the loss function dynamically balances the two  
 293 alignment objectives for each sample, without introducing separate hyperparameter. By minimizing  
 294 the expected loss  $\mathbb{E}_{\mathbf{x} \in \mathcal{D}}[\mathcal{L}_{\text{DUAL-ALIGN}}(\tau; \mathbf{x})]$  over an unlabeled dataset  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^K$ , DUAL-ALIGN  
 295 learns an optimal temperature  $\tau^*$  that can comprehensively handle the post-training effects on LLM  
 296 calibration. During inference, we apply the learned  $\tau^*$  to calibrate PoLMs in their final outputs,  
 297 which does not require additional computational cost or PLMs.

## 298 5 EXPERIMENTS

300 In this section, we present empirical evidence to validate the effectiveness of our method across  
 301 various LLM architectures and datasets. We describe the setup in Section 5.1, followed by the results  
 302 and comprehensive analyses in Section 5.2–Section 6.

### 304 5.1 EXPERIMENTAL SETUP

306 **Models, datasets and evaluation.** Our evaluation comprehensively assesses a diverse array of  
 307 large language models, encompassing various scales and architectures, including the Llama-3.1 series  
 308 (Grattafiori et al., 2024), the Gemma-3 series (Team et al., 2025) and the Qwen-2.5 series (Yang et al.,  
 309 2024a). More details about these LLMs are presented in Appendix A.1.

310 We validate our methodology’s efficacy across three widely-adopted evaluation benchmarks: MMLU  
 311 (Hendrycks et al., 2021), and MedMCQA (Pal et al., 2022). All benchmark datasets are obtained from  
 312 the Hugging Face repository. Comprehensive descriptions of each evaluation dataset are provided in  
 313 Appendix A.2.

314 To assess the calibration performance of DUAL-ALIGN, we measure four established metrics: Ex-  
 315 pected Calibration Error (ECE) (Naeini et al., 2015), Maximum Calibration Error (MCE) (Naeini  
 316 et al., 2015), Adaptive Calibration Error (ACE) (Nixon et al., 2019) and Brier Score (Brier, 1950).  
 317 Additional evaluation details are provided in Appendix A.3.

318 **Baselines.** We compare our method with several post-hoc calibration techniques. Our unsupervised  
 319 baselines include **DACA** (Luo et al., 2025a), which aligns the pre-trained model on agreement  
 320 samples; a hidden-state-based approach, Internal Consistency (**IC**) (Xie et al., 2024b), which measures  
 321 the ratio of consistency between each layer’s predictions and the final layer’s output; and two prompt-  
 322 based methods: **CAPE** (Jiang et al., 2023), which reduces bias by reordering answer choices, and

323 <sup>1</sup>We adopt base-2 logs in JSD calculation to ensure its  $\Delta D_{JS} \leq 1$ .

| Models      | Methods                  | Evaluation Metrics                |                                    |                                   |                                   |
|-------------|--------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|
|             |                          | ECE (%) ↓                         | MCE (%) ↓                          | ACE (%) ↓                         | Brier Score ↓                     |
| Llama3.1-8B | Vanilla                  | 10.806 $\pm$ 0.275                | 18.602 $\pm$ 0.212                 | 11.809 $\pm$ 0.652                | 0.461 $\pm$ 0.005                 |
|             | CAPE                     | 12.567 $\pm$ 0.134                | 20.788 $\pm$ 0.841                 | 13.134 $\pm$ 0.257                | 0.495 $\pm$ 0.001                 |
|             | Elicitation              | 13.203 $\pm$ 0.067                | 40.983 $\pm$ 4.065                 | 21.300 $\pm$ 1.714                | -                                 |
|             | IC                       | 11.716 $\pm$ 0.248                | 64.448 $\pm$ 29.949                | 19.517 $\pm$ 3.165                | -                                 |
|             | DACA                     | 7.811 $\pm$ 0.619                 | 13.824 $\pm$ 0.667                 | 8.064 $\pm$ 0.544                 | 0.451 $\pm$ 0.004                 |
|             | <b>DUAL-ALIGN (Ours)</b> | <b>2.871<math>\pm</math>0.308</b> | <b>5.587<math>\pm</math>0.648</b>  | <b>3.222<math>\pm</math>0.306</b> | <b>0.445<math>\pm</math>0.004</b> |
| Qwen2.5-14B | TS <sup>†</sup> (oracle) | 1.526 $\pm$ 0.450                 | 4.790 $\pm$ 1.090                  | 1.985 $\pm$ 0.609                 | 0.441 $\pm$ 0.004                 |
|             | Vanilla                  | 16.735 $\pm$ 0.375                | 32.406 $\pm$ 0.583                 | 21.848 $\pm$ 1.130                | 0.388 $\pm$ 0.006                 |
|             | CAPE                     | 18.022 $\pm$ 0.061                | 36.091 $\pm$ 0.501                 | 20.987 $\pm$ 0.340                | 0.407 $\pm$ 0.001                 |
|             | Elicitation              | 15.321 $\pm$ 0.002                | 85.556 $\pm$ 0.000                 | 31.973 $\pm$ 2.713                | -                                 |
|             | IC                       | 32.852 $\pm$ 0.258                | 47.360 $\pm$ 5.4265                | 22.089 $\pm$ 0.627                | -                                 |
|             | DACA                     | 5.146 $\pm$ 0.340                 | <b>8.867<math>\pm</math>0.590</b>  | 4.427 $\pm$ 0.287                 | 0.329 $\pm$ 0.004                 |
| Gemma-3-27B | <b>DUAL-ALIGN (Ours)</b> | <b>2.423<math>\pm</math>0.070</b> | 11.241 $\pm$ 2.918                 | <b>3.602<math>\pm</math>0.642</b> | <b>0.326<math>\pm</math>0.005</b> |
|             | TS <sup>†</sup> (oracle) | 2.297 $\pm$ 0.124                 | 11.411 $\pm$ 2.996                 | 3.986 $\pm$ 0.994                 | 0.326 $\pm$ 0.005                 |
|             | Vanilla                  | 23.842 $\pm$ 0.336                | 58.230 $\pm$ 8.103                 | 35.240 $\pm$ 2.461                | 0.481 $\pm$ 0.007                 |
|             | CAPE                     | 19.891 $\pm$ 0.053                | 38.791 $\pm$ 0.334                 | 23.281 $\pm$ 0.345                | 0.445 $\pm$ 0.01                  |
|             | Elicitation              | 18.413 $\pm$ 0.284                | 26.526 $\pm$ 2.564                 | 22.456 $\pm$ 1.326                | -                                 |
|             | IC                       | 36.667 $\pm$ 0.313                | 53.937 $\pm$ 0.414                 | 36.746 $\pm$ 0.346                | -                                 |
|             | DACA                     | 16.842 $\pm$ 0.324                | 35.205 $\pm$ 0.660                 | 23.985 $\pm$ 0.524                | 0.406 $\pm$ 0.006                 |
|             | <b>DUAL-ALIGN (Ours)</b> | <b>5.247<math>\pm</math>0.310</b> | <b>18.065<math>\pm</math>8.913</b> | <b>9.175<math>\pm</math>1.565</b> | <b>0.379<math>\pm</math>0.005</b> |
|             | TS <sup>†</sup> (oracle) | 5.225 $\pm$ 0.254                 | 18.069 $\pm$ 9.148                 | 8.871 $\pm$ 1.561                 | 0.359 $\pm$ 0.005                 |

Table 1: **Main evaluation results on MMLU datasets across different LLMs.** Lower values indicate better performance. Best results among unsupervised methods are shown in **bold**. “IC”: Internal-consistency; “TS”: Temperature Scaling. <sup>†</sup> indicates calibration methods with access to labels. Values are percentages averaged over 3 runs.

**Elicitation** (Tian et al., 2023), which prompts the model to state its confidence. We also report results for the uncalibrated **Vanilla** model and use supervised **Temperature Scaling (TS)** (Guo et al., 2017) as an oracle. More details of baselines are presented in Appendix A.4.

## 5.2 MAIN RESULTS

**DUAL-ALIGN consistently achieves state-of-the-art results.** DUAL-ALIGN demonstrates superior performance across all evaluated models and metrics, establishing a new state-of-the-art for unsupervised LLM calibration by outperforming all other unsupervised baselines, as shown in Table 1. For instance, on MMLU with the Llama-3.1-8B, our method achieves an ECE of just 2.871%, a significant reduction compared to the 7.811% of the strongest unsupervised baseline, DACA, and the 10.806% of the uncalibrated model. Notably, our framework’s performance can significantly outperform the hidden-state-based approach IC and closely approach that of the supervised TS oracle. This indicates that our method that tackles both output drift and process drift in a dual alignment manner, can effectively address the complex dynamics of miscalibration while reducing human annotation costs. We also present the reliability diagrams visualization in Appendix D.

**DUAL-ALIGN is effective across different model architectures and sizes.** To validate the scalability and generalizability of our method, we conduct experiments across different model architectures (Qwen2.5-14B and Gemma-3-27B) in Table 1, and the Qwen-2.5 model series with varying sizes in Table 2. The results demonstrate that our method can maintain its effectiveness as model architecture varies and model size increases from 7B to 32B parameters. In all configurations, our method consistently outperforms both the uncalibrated model and the DACA baseline. This consistent performance advantage across different model scenarios highlights that DUAL-ALIGN is not tailored to a specific model but is a general solution that can be applied practically and flexibly.

| Size | Method            | ECE (↓)                           | MCE (↓)                            |
|------|-------------------|-----------------------------------|------------------------------------|
| 7B   | Vanilla           | 20.666 $\pm$ 0.382                | 38.647 $\pm$ 1.219                 |
|      | DACA              | 10.312 $\pm$ 0.502                | 16.884 $\pm$ 0.954                 |
|      | <b>DUAL-ALIGN</b> | <b>9.406<math>\pm</math>0.577</b> | <b>15.256<math>\pm</math>0.993</b> |
| 14B  | Vanilla           | 23.842 $\pm$ 0.336                | 58.230 $\pm$ 8.103                 |
|      | DACA              | 5.146 $\pm$ 0.340                 | <b>8.867<math>\pm</math>0.590</b>  |
|      | <b>DUAL-ALIGN</b> | <b>2.423<math>\pm</math>0.070</b> | 11.241 $\pm$ 2.918                 |
| 32B  | Vanilla           | 11.338 $\pm$ 0.065                | 23.522 $\pm$ 5.214                 |
|      | DACA              | 10.958 $\pm$ 0.670                | 17.312 $\pm$ 1.082                 |
|      | <b>DUAL-ALIGN</b> | <b>9.203<math>\pm</math>0.055</b> | <b>15.723<math>\pm</math>0.332</b> |

Table 2: **Evaluation of DUAL-ALIGN with different model sizes.** We experiment with Qwen2.5 series of different model sizes.

is not tailored to a specific model but is a

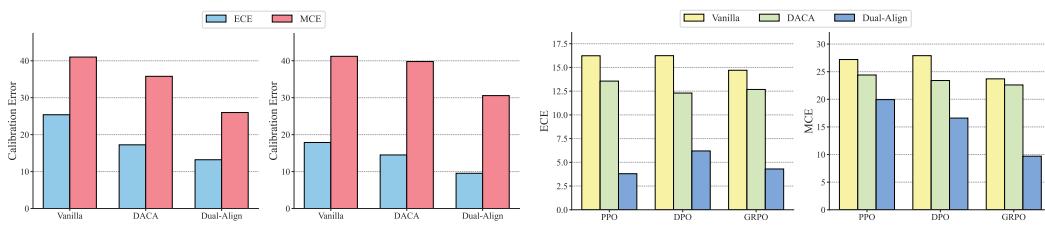
378 **5.3 ABLATION STUDY**  
379380 To validate the key components of our DUAL-ALIGN framework, we conduct a series of ablation  
381 studies on the MMLU benchmark using the Llama-3.1-8B model. We investigate the contributions of  
382 our dual-component loss function and our dynamic layer selection strategy.  
383384 **Ablation on loss components.** To validate our dual-component loss, we compare the full DUAL-  
385 ALIGN framework against versions using only the output alignment loss ( $\mathcal{L}_{\text{Output}}$ ) or the process  
386 alignment loss ( $\mathcal{L}_{\text{Process}}$ ). As shown in Table 3, the “Output Only” variant is ineffective, performing  
387 worse than the DACA baseline. While the “Process Only” variant substantially reduces calibration  
388 error, our full DUAL-ALIGN framework—which dynamically integrates both losses—achieves the  
389 best performance. It significantly outperforms both ablated versions and approaches the supervised  
390 TS oracle, confirming the necessity of our dual-component strategy for effective calibration.  
391

| Method                    | ECE (%) ↓                           | MCE (%) ↓                           | ACE (%) ↓                           | Brier Score ↓                       |
|---------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Vanilla                   | $10.806 \pm 0.275$                  | $18.602 \pm 0.212$                  | $11.809 \pm 0.652$                  | $0.461 \pm 0.005$                   |
| DACA                      | $7.811 \pm 0.619$                   | $13.824 \pm 0.667$                  | $8.064 \pm 0.544$                   | $0.451 \pm 0.004$                   |
| DUAL-ALIGN (Output Only)  | $10.267 \pm 0.925$                  | $17.599 \pm 1.145$                  | $10.393 \pm 0.795$                  | $0.459 \pm 0.003$                   |
| DUAL-ALIGN (Process Only) | $6.082 \pm 1.982$                   | $9.082 \pm 3.011$                   | $6.092 \pm 1.925$                   | $0.449 \pm 0.006$                   |
| <b>DUAL-ALIGN (Ours)</b>  | <b><math>2.871 \pm 0.308</math></b> | <b><math>5.587 \pm 0.648</math></b> | <b><math>3.222 \pm 0.306</math></b> | <b><math>0.445 \pm 0.004</math></b> |
| TS <sup>†</sup> (Oracle)  | $1.526 \pm 0.450$                   | $4.790 \pm 1.090$                   | $1.985 \pm 0.609$                   | $0.441 \pm 0.004$                   |

392 **Table 3: Ablation study on the loss components of DUAL-ALIGN using Llama-3.1-8B on the MMLU  
393 datasets.** Our full, dual alignment method significantly outperforms the ablated versions, highlighting the  
394 necessity of addressing both output and process drift.  
395396 **Ablation on layer selection.** To validate our dynamic Peak Divergence Layer (PDL) selection  
397 strategy, we compare it against starting process alignment at fixed network depths ( $L/4$ ,  $L/2$ , and  
398  $3L/4$ ). As shown in Table 4, our dynamic approach, which identifies the layer with the maximum  
399 JSD increase, yields substantially better calibration performance than any fixed-layer strategy. This  
400 result confirms that divergence is sample-dependent and that accurately identifying this layer on a  
401 per-sample basis is critical to the success of the DUAL-ALIGN framework.  
402

| Method                   | ECE (%) ↓                           | MCE (%) ↓                           | ACE (%) ↓                           | Brier Score ↓                       |
|--------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Vanilla                  | $10.806 \pm 0.275$                  | $18.602 \pm 0.212$                  | $11.809 \pm 0.652$                  | $0.461 \pm 0.005$                   |
| DACA                     | $7.811 \pm 0.619$                   | $13.824 \pm 0.667$                  | $8.064 \pm 0.544$                   | $0.451 \pm 0.004$                   |
| DUAL-ALIGN ( $L/4$ )     | $4.716 \pm 0.397$                   | $9.089 \pm 1.298$                   | $5.087 \pm 0.317$                   | $0.449 \pm 0.004$                   |
| DUAL-ALIGN ( $L/2$ )     | $4.862 \pm 0.363$                   | $9.235 \pm 0.874$                   | $5.228 \pm 0.360$                   | $0.449 \pm 0.003$                   |
| DUAL-ALIGN ( $3L/4$ )    | $2.846 \pm 0.460$                   | $5.806 \pm 0.845$                   | $3.125 \pm 0.587$                   | $0.446 \pm 0.004$                   |
| <b>DUAL-ALIGN (Ours)</b> | <b><math>2.382 \pm 0.619</math></b> | <b><math>4.928 \pm 1.030</math></b> | <b><math>2.697 \pm 0.715</math></b> | <b><math>0.445 \pm 0.004</math></b> |
| TS <sup>†</sup> (Oracle) | $1.526 \pm 0.450$                   | $4.790 \pm 1.090$                   | $1.985 \pm 0.609$                   | $0.441 \pm 0.004$                   |

417 **Table 4: Ablation study on the PDL selection strategy of DUAL-ALIGN using Llama-3.1-8B on the MMLU  
418 datasets.** Our proposed method, which selects the layer with the maximum JSD increase, yields the best  
419 calibration performance.  
420421 **6 DISCUSSIONS**  
422423 In this section, we explore the broader applicability and potential extensions of our proposed DUAL-  
424 ALIGN framework. We demonstrate its adaptability by showing its effectiveness on open-ended  
425 generation tasks, its successful generalization to specialized domains like medicine (see Appendix B  
426 for full results), and its compatibility with various post-training methodologies.  
427428 **Can DUAL-ALIGN be used for open-ended tasks?** While DUAL-ALIGN is designed for multiple-  
429 choice questions, it extends to open-ended tasks through reformulation. We convert open-ended  
430 generation into binary classification: the model first generates a free-form answer, then evaluates  
431 it via self-assessment. This approach follows the  $p(\text{true})$  framework (Kadavath et al., 2022), effec-  
432 tively repurposing open-ended outputs for calibration without modifying our core method. We use  
433



(a) **Applicability to open-ended question answering.** (b) **Applicability to different post-training methods.** We evaluate LLama3.1 and Qwen2.5-14B on TruthfulQA dataset. Apart from instruction-tuning, we consider PPO, DPO and GRPO training on Qwen2.5-7B.

TruthfulQA (Lin et al., 2022b). As shown in Figure 6a, DUAL-ALIGN significantly reduces both ECE and MCE on the TruthfulQA dataset for both LLama-3.1-8B and Qwen2.5-14B models. This demonstrates that our framework successfully adapts to open-ended generation, outperforming the strong DACA baseline and proving its versatility beyond multiple-choice formats.

**Applicability to other post-training methods.** To demonstrate the general applicability of our DUAL-ALIGN framework, we evaluate its performance on models subjected to various popular post-training techniques. We test on Qwen2.5-7B model trained with Proximal Policy Optimization(PPO) (Schulman et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and Group Relative Policy Optimization (GRPO) (Liu et al., 2024a). As shown in Figure 6b, DUAL-ALIGN consistently outperforms both the uncalibrated model and the DACA baseline across all three methods. This robust performance highlights that our approach is not confined to a single post-training paradigm like instruction-tuning but generalizes effectively to models refined through various LLM post-training techniques, confirming its broad applicability.

## 7 RELATED WORKS

**Post-training** refines LLMs after their initial pre-training on broad datasets (Tie et al., 2025; Kumar et al., 2025). This stage includes methods like full fine-tuning for task-specific adaptation (Yue et al., 2023; Luo et al., 2025b), Parameter-Efficient Fine-Tuning (PEFT) such as LoRA for resource-efficient specialization (Hu et al., 2022; Gao et al., 2023; Trung et al., 2024), and reinforcement learning techniques like RLHF and DPO to align models with user preferences (Long Ouyang & et al., 2022; Rafailov et al., 2023). While creating versatile and aligned models, these post-training processes can introduce miscalibration. Our paper therefore investigates these effects and proposes a novel framework to calibrate Post-trained Language Models.

**Confidence calibration** aims to ensure a model’s output confidence accurately reflects its correctness likelihood (Guo et al., 2017). However, studies show that post-training often leads to overconfident LLMs (Xiao et al., 2022; Chen et al., 2023; Liu et al., 2024b; Jiang et al., 2023). Current calibration approaches include eliciting verbalized confidence through prompting or fine-tuning (Lin et al., 2022a; Tian et al., 2023; Yang et al., 2024b; Xie et al., 2024a; Leng et al., 2025; Damani et al., 2025; Tao et al., 2025), and estimating confidence from output logits (Shen et al., 2024; Luo et al., 2025a; Vejendla et al., 2025). Closest to our work, Shen et al. (2024); Xie et al. (2024a) leverage hidden states for calibration. However, they fail to account for both the output / process drifts and alignment dynamics induced by post-training in one unified framework, which are central to our research.

## 8 CONCLUSION

In this paper, we tackle the overconfidence issue in post-trained LLMs, diagnosing that miscalibration stems from two distinct phenomena: output drift and process drift. We propose DUAL-ALIGN, an unsupervised post-hoc framework that performs a dual alignment to address both issues. The framework corrects output drift by matching final output distributions and rectifies process drift by identifying a Peak Divergence Layer and aligning the subsequent Inferential Stability Entropy. Critically, DUAL-ALIGN dynamically weighs these two objectives based on the model’s intermediate predictive divergence, learning a single temperature parameter without human annotation. Experiments show our method achieves the state-of-the-art performance across diverse LLM architectures and datasets. We hope our work will inspire future research on understanding the LLM post-training effects on model calibration.

486 REPRODUCIBILITY STATEMENT  
487488 We summarize our efforts below to facilitate reproducible results:  
489

490 1. **Datasets.** We use publicly available datasets, which are described in detail in Section 5.1,  
491 and Appendix A.2.

492 2. **Baselines.** The description and hyperparameters of the LLM calibration baselines are  
493 explained in Appendix A.3, and Appendix A.4.

494 3. **Methodology.** Our method is fully documented in Section 4. Hyperparameters are specified  
495 in Appendix A.3.

496 4. **Open source.** Code, datasets and model checkpoints will be made publicly available for  
497 reproducible research.

499 REFERENCES  
500501 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,  
502 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.  
503 *arXiv preprint arXiv:2303.08774*, 2023.504 Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly weather review*,  
505 78(1):1–3, 1950.507 Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, and Heng Ji. A close look into the calibration of  
508 pre-trained language models. In *Proceedings of the 61st Annual Meeting of the Association for*  
509 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1343–1367, 2023.510 Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob  
511 Andreas. Beyond binary rewards: Training lms to reason about their uncertainty. *arXiv preprint*  
512 *arXiv:2507.16806*, 2025.514 Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,  
515 Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.  
516 *arXiv preprint arXiv:2304.15010*, 2023.517 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
518 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of  
519 models. *arXiv preprint arXiv:2407.21783*, 2024.521 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural  
522 networks. In *International Conference on Machine Learning*, pp. 1321–1330. PMLR, 2017.523 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob  
524 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*  
525 *Learning Representations*, 2021.527 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
528 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *International Conference*  
529 *on Learning Representations*, 2022.530 Mingjian Jiang, Yangjun Ruan, Sicong Huang, Saifei Liao, Silviu Pitis, Roger Baker Grosse, and  
531 Jimmy Ba. Calibrating language models via augmented prompt ensembles. *ICML 2023 Workshop*  
532 *on Deployable Generative AI*, 2023.533 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas  
534 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)  
535 know what they know. *arXiv preprint arXiv:2207.05221*, 2022.537 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,  
538 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm  
539 post-training: A deep dive into reasoning large language models. *arXiv preprint arXiv:2502.21321*,  
2025.

540 Jixuan Leng, Chengsong Huang, Banghua Zhu, and Jiaxin Huang. Taming overconfidence in llms: Re-  
 541 ward calibration in rlhf. In *The Thirteenth International Conference on Learning Representations*,  
 542 2025.

543

544 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in  
 545 words. *arXiv preprint arXiv:2205.14334*, 2022a.

546 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human  
 547 falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Computational*  
 548 *Linguistics (Volume 1: Long Papers)*, pp. 3214–3252, 2022b.

549

550 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong  
 551 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-  
 552 experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

553

554 Xin Liu, Muhammad Khalifa, and Lu Wang. Litcab: Lightweight language model calibration  
 555 over short- and long-form responses. In *The Twelfth International Conference on Learning*  
 556 *Representations*, 2024b.

557

558 Xu Jiang Long Ouyang, Jeffrey Wu and et al. Training language models to follow instructions with  
 559 human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),  
 560 *Advances in Neural Information Processing Systems*, 2022.

561

562 Beier Luo, Shuoyuan Wang, Yixuan Li, and Hongxin Wei. Your pre-trained llm is secretly an  
 563 unsupervised confidence calibrator. *arXiv preprint arXiv:2505.16690*, 2025a.

564

565 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of  
 566 catastrophic forgetting in large language models during continual fine-tuning. *IEEE Transactions*  
 567 *on Audio, Speech and Language Processing*, 2025b.

568

569 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-  
 570 bilities using bayesian binning. In *Proceedings of the AAAI conference on artificial intelligence*,  
 571 volume 29, 2015.

572

573 Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring  
 574 calibration in deep learning. In *CVPR workshops*, 2019.

575

576 nostalgebraist. Interpreting GPT: the logit lens. LessWrong blog post, 2020. URL: <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>.

577

578 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale  
 579 multi-subject multi-choice dataset for medical domain question answering. In *Conference on*  
 580 *health, inference, and learning*, pp. 248–260. PMLR, 2022.

581

582 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 583 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*  
 584 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

585

586 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 587 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

588

589 Maohao Shen, Subhro Das, Kristjan Greenewald, Prasanna Sattigeri, Gregory W Wornell, and  
 590 Soumya Ghosh. Thermometer: Towards universal calibration for large language models. In  
 591 *International Conference on Machine Learning*, 2024.

592

593 Linwei Tao, Yi-Fan Yeh, Minjing Dong, Tao Huang, Philip Torr, and Chang Xu. Revisiting uncertainty  
 594 estimation and calibration of large language models. *arXiv preprint arXiv:2505.23854*, 2025.

595

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 596 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical  
 597 report. *arXiv preprint arXiv:2503.19786*, 2025.

594 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea  
 595 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated  
 596 confidence scores from language models fine-tuned with human feedback. In *Proceedings of the*  
 597 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5433–5442, 2023.

598 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,  
 599 Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv preprint*  
 600 *arXiv:2503.06072*, 2025.

602 Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning  
 603 with reinforced fine-tuning. In *Proceedings of the 62nd Annual Meeting of the Association for*  
 604 *Computational Linguistics (Volume 1: Long Papers)*, pp. 7601–7614, 2024.

605 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 606 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing*  
 607 *Systems*, 30, 2017.

609 Harshil Vejendla, Haizhou Shi, Yibin Wang, Tunyu Zhang, Huan Zhang, and Hao Wang. Efficient  
 610 uncertainty estimation via distillation of bayesian large language models. *arXiv preprint*  
 611 *arXiv:2505.11731*, 2025.

612 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,  
 613 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International*  
 614 *Conference on Learning Representations*, 2022.

616 Jiancong Xiao, Bojian Hou, Zhanliang Wang, Ruochen Jin, Qi Long, Weijie J Su, and Li Shen.  
 617 Restoring calibration for aligned large language models: A calibration-aware fine-tuning approach.  
 618 In *Forty-second International Conference on Machine Learning*, 2025.

619 Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-  
 620 Philippe Morency. Uncertainty quantification with pre-trained language models: A large-scale  
 621 empirical analysis. In *Findings of the Association for Computational Linguistics: EMNLP 2022*,  
 622 pp. 7273–7284, 2022.

623 Johnathan Xie, Annie Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language  
 624 models with adaptive temperature scaling. In *Proceedings of the 2024 Conference on Empirical*  
 625 *Methods in Natural Language Processing*, pp. 18128–18138, 2024a.

627 Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with  
 628 internal consistency. *Advances in Neural Information Processing Systems*, 37:114872–114901,  
 629 2024b.

630 Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs  
 631 express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In *The*  
 632 *Twelfth International Conference on Learning Representations*, 2024.

634 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 635 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*  
 636 *arXiv:2412.15115*, 2024a.

637 Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. On verbalized confidence scores for llms.  
 638 *arXiv preprint arXiv:2412.14737*, 2024b.

640 Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li, Chenchen Shen, Shujun Liu, Yuxuan Zhou,  
 641 Yao Xiao, Song Yun, Xuanjing Huang, et al. Disc-lawllm: Fine-tuning large language models for  
 642 intelligent legal services. *arXiv preprint arXiv:2309.11325*, 2023.

643 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi  
 644 Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A  
 645 survey, 2025.

# 648 649 650 651 652 653 654 655 656 Appendix

## 657 A EXPERIMENTAL DETAILS 658

### 659 A.1 MODELS DETAILS 660

661 We conduct our experiments across a diverse set of large language models, spanning various architectures  
662 and scales from prominent model families. Table 5 provides a detailed overview of the specific  
663 pre-trained and post-trained versions used in this study.  
664

| 665 Model Family     | 666 Model Type         | 667 HuggingFace Path             |
|----------------------|------------------------|----------------------------------|
| 668 Llama-3.1 Family | 669 Pre-trained Model  | meta-llama/Llama-3.1-8B          |
|                      | 670 Post-trained Model | meta-llama/Llama-3.1-8B-Instruct |
| 671 Qwen-2.5 Family  | 672 Pre-trained Model  | Qwen/Qwen2.5-14B                 |
|                      | 673 Post-trained Model | Qwen/Qwen2.5-14B-Instruct        |
| 674 Gemma-3 Family   | 675 Pre-trained Model  | google/gemma-3-27b-pt            |
|                      | 676 Post-trained Model | google/gemma-3-27b-it            |

677 Table 5: An overview of models used in our experiments, detailing the pre-trained and post-trained versions  
678 and their respective Hugging Face paths for each family.  
679

### 680 A.2 DATASETS DETAILS 681

682 We evaluate our method on three diverse benchmarks. MMLU (Hendrycks et al., 2021) is a widely-  
683 adopted benchmark for measuring massive multitask language understanding. MedMCQA (Pal  
684 et al., 2022) is a large-scale, multi-subject, multiple-choice question dataset designed for the medical  
685 domain. TruthfulQA (Lin et al., 2022b) is a benchmark used to measure a model’s truthfulness and  
686 its ability to avoid generating falsehoods.  
687

688 For all datasets, we divide the data into a 30% subset for alignment training and a 70% test set. All  
689 three datasets are publicly available on Hugging Face<sup>2</sup>. For MMLU, we use the test split from all  
690 subjects, while for MedMCQA, we use the validation split.  
691

### 692 A.3 IMPLEMENTATION DETAILS 693

694 All results are reported as mean  $\pm$  standard deviation from three independent runs with different  
695 random seeds. All post-hoc methods requiring optimization—including our supervised oracle  
696 (Temperature Scaling) and the unsupervised baselines (DACA, DUAL-ALIGN)—are trained using the  
697 Adam optimizer with a fixed learning rate of 0.05 for 300 epochs. For the unsupervised methods, we  
698 use a batch size of 128. Finally, all bin-based calibration metrics (ECE, MCE, ACE) are computed  
699 using a default of 10 bins as specified in our evaluation script. For prompt templates used for  
700 evaluation, we present the details in Appendix C.  
701

### 702 A.4 BASELINE DETAILS 703

704 For prompt-based baselines, including CAPE (Jiang et al., 2023): a prompt-based method that  
705 calibrates next-token probabilities by permuting option order to mitigate LLM biases, Elicitation  
706 (Tian et al., 2023): estimates confidence by prompting the model to generate verbalized probabilities.  
707 Unsupervised baseline DACA (Luo et al., 2025a) directly aligns the confidence of PoLMs to PLMs on  
708

709 <sup>2</sup><https://huggingface.co/datasets/cais/mmlu>  
710 <https://huggingface.co/datasets/openlifescienceai/medmcqa>  
711 <https://huggingface.co/domenicrosati/TruthfulQA>

702 the agreement samples. Internal Consistency (IC) (Xie et al., 2024b) measures the ratio of consistency  
 703 between each layer’s predictions (mapped to the final vocabulary) and the final layer’s output. It is  
 704 worth noting that the original IC leverages internal consistency within the model’s reasoning process.  
 705 Here, we ignore reasoning and directly generate the final answer for calculation. Since Elicitation  
 706 and IC can only output confidence for prediction classes, we do not calculate the Brier Score.  
 707

## 708 B EVALUATION ON OTHER DOMAINS

710 In our main experiments, we conduct our evaluation on MMLU (Hendrycks et al., 2021) dataset. To  
 711 further validate the generalizability of our method, we also present results on the MedMCQA (Pal  
 712 et al., 2022) dataset, which is from the medical domain. All experimental settings are kept consistent  
 713 with our main evaluation to ensure a fair comparison. The comprehensive results are shown in Table 6.  
 714

| 716 Models             | 717 Methods              | 718 Evaluation Metrics             |                                    |                                    |                                   |
|------------------------|--------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|
|                        |                          | 719 ECE (%) ↓                      | 720 MCE (%) ↓                      | 721 ACE (%) ↓                      | 722 Brier Score ↓                 |
| 723 <b>LLama3.1-8B</b> | Vanilla                  | 16.919 $\pm$ 0.699                 | 27.511 $\pm$ 0.424                 | 15.679 $\pm$ 1.388                 | 0.564 $\pm$ 0.005                 |
|                        | DACA                     | 5.149 $\pm$ 0.350                  | 10.582 $\pm$ 0.521                 | 5.729 $\pm$ 0.374                  | 0.517 $\pm$ 0.003                 |
|                        | <b>DUAL-ALIGN (Ours)</b> | <b>4.684<math>\pm</math>0.171</b>  | <b>8.881<math>\pm</math>0.393</b>  | <b>5.106<math>\pm</math>0.432</b>  | <b>0.516<math>\pm</math>0.003</b> |
|                        | TS <sup>†</sup> (oracle) | 1.587 $\pm$ 0.545                  | 4.929 $\pm$ 2.491                  | 1.842 $\pm$ 0.444                  | 0.513 $\pm$ 0.003                 |
| 724 <b>Qwen2.5-14B</b> | Vanilla                  | 26.881 $\pm$ 0.631                 | 39.386 $\pm$ 0.109                 | 23.303 $\pm$ 0.471                 | 0.621 $\pm$ 0.010                 |
|                        | DACA                     | 4.904 $\pm$ 0.433                  | 9.245 $\pm$ 0.270                  | 8.361 $\pm$ 0.442                  | 0.529 $\pm$ 0.005                 |
|                        | <b>DUAL-ALIGN (Ours)</b> | <b>3.538<math>\pm</math>0.924</b>  | <b>7.507<math>\pm</math>0.866</b>  | <b>3.483<math>\pm</math>0.359</b>  | <b>0.489<math>\pm</math>0.006</b> |
|                        | TS <sup>†</sup> (oracle) | 3.628 $\pm$ 0.408                  | 19.972 $\pm$ 8.798                 | 7.184 $\pm$ 0.950                  | 0.498 $\pm$ 0.006                 |
| 725 <b>Gemma-3-27B</b> | Vanilla                  | 37.084 $\pm$ 0.058                 | 49.348 $\pm$ 14.837                | 34.293 $\pm$ 4.081                 | 0.748 $\pm$ 0.001                 |
|                        | DACA                     | 26.872 $\pm$ 0.238                 | 38.685 $\pm$ 1.628                 | 24.443 $\pm$ 0.497                 | 0.628 $\pm$ 0.003                 |
|                        | <b>DUAL-ALIGN (Ours)</b> | <b>12.940<math>\pm</math>0.176</b> | <b>29.034<math>\pm</math>0.220</b> | <b>14.765<math>\pm</math>0.292</b> | <b>0.537<math>\pm</math>0.001</b> |
|                        | TS <sup>†</sup> (oracle) | 6.917 $\pm$ 0.278                  | 28.561 $\pm$ 0.187                 | 9.317 $\pm$ 0.297                  | 0.519 $\pm$ 0.002                 |

733 Table 6: Performance comparison across different PoLMs and calibration methods on MedMCQA datasets.  
 734 Lower values indicate better performance. Best results among unsupervised methods are shown in **bold**. “Vanilla”  
 735 refers to uncalibrated PoLMs. <sup>†</sup> indicates calibration methods with access to labels. Values are percentages  
 736 averaged over 3 runs.

756 C EFFECT OF DIFFERENT PROMPTS  
757758 To test our framework’s robustness against prompt sensitivity, we evaluated four prompt templates  
759 (Figure 7). The results in Table 7 confirm that DUAL-ALIGN consistently outperforms the baselines  
760 across all variants, demonstrating its effectiveness is not contingent on specific prompt phrasing and  
761 is robust to minor instructional changes.  
762763 **Prompt Variations for Multiple-Choice Questions**  
764765 **Prompt Variant A (used in main experiments)**766 Select the correct answer for each of the following questions. Respond with the letter only:  
767768 [Question]  
769 A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]  
770771 Answer:  
772773 **Prompt Variant B**774 The following are multiple-choice questions. Give ONLY the correct option, no other words  
775 or explanation:  
776777 [Question]  
778 A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]  
779780 Answer:  
781782 **Prompt Variant C**783 For the following multiple choice question, provide just the correct letter:  
784785 [Question]  
786 A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]  
787788 Answer:  
789790 **Prompt Variant D**791 Directly select the correct answer for the following multiple choice question without any  
792 explanations:  
793794 [Question]  
795 A: [Option 1] B: [Option 2] C: [Option 3] D: [Option 4]  
796797 Answer:  
798799 Figure 7: Four different prompt instructions for a multiple-choice question task.  
800

810  
 811  
 812  
 813  
 814  
 815  
 816  
 817  
 818  
 819  
 820  
 821  
 822  
 823  
 824  
 825

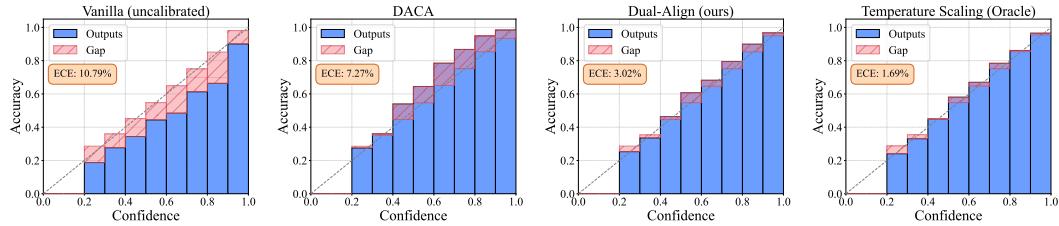
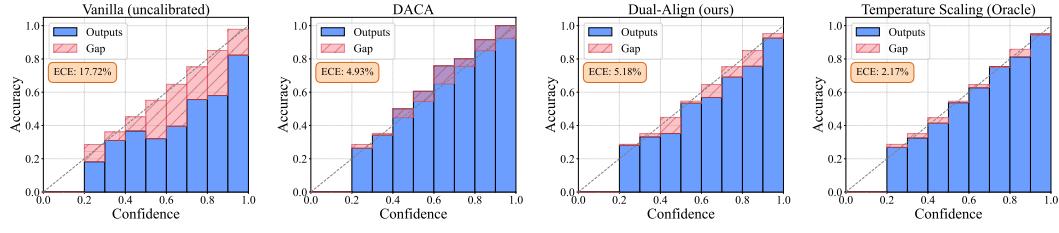
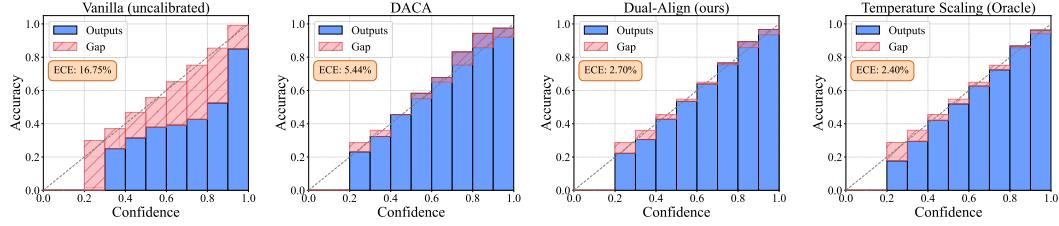
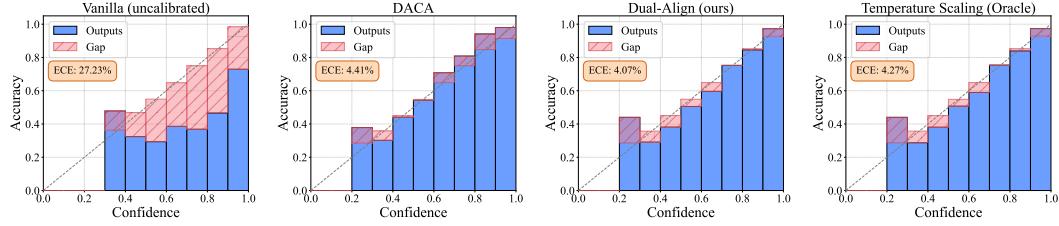
| Prompt Type | Methods                  | Evaluation Metrics                  |                                     |                                     |                                     |
|-------------|--------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|             |                          | ECE (%) ↓                           | MCE (%) ↓                           | ACE (%) ↓                           | Brier Score ↓                       |
| Prompt A    | Vanilla                  | $10.806 \pm 0.275$                  | $18.602 \pm 0.212$                  | $11.809 \pm 0.652$                  | $0.461 \pm 0.005$                   |
|             | DACA                     | $7.811 \pm 0.619$                   | $13.824 \pm 0.667$                  | $8.064 \pm 0.544$                   | $0.451 \pm 0.004$                   |
|             | <b>DUAL-ALIGN (Ours)</b> | <b><math>2.871 \pm 0.308</math></b> | <b><math>5.587 \pm 0.648</math></b> | <b><math>3.222 \pm 0.306</math></b> | <b><math>0.441 \pm 0.004</math></b> |
|             | TS <sup>†</sup> (oracle) | $1.526 \pm 0.450$                   | $4.790 \pm 1.090$                   | $1.985 \pm 0.609$                   | $0.441 \pm 0.004$                   |
| Prompt B    | Vanilla                  | $13.271 \pm 0.375$                  | $23.224 \pm 0.708$                  | $13.917 \pm 0.638$                  | $0.472 \pm 0.006$                   |
|             | DACA                     | $5.530 \pm 0.627$                   | $10.027 \pm 1.251$                  | $6.196 \pm 0.558$                   | $0.444 \pm 0.003$                   |
|             | <b>DUAL-ALIGN (Ours)</b> | <b><math>1.441 \pm 0.127</math></b> | <b><math>8.835 \pm 0.301</math></b> | <b><math>2.278 \pm 0.225</math></b> | <b><math>0.439 \pm 0.004</math></b> |
|             | TS <sup>†</sup> (oracle) | $1.641 \pm 0.341$                   | $8.820 \pm 0.132$                   | $2.488 \pm 0.424$                   | $0.439 \pm 0.004$                   |
| Prompt C    | Vanilla                  | $10.183 \pm 0.254$                  | $18.464 \pm 1.361$                  | $10.859 \pm 0.587$                  | $0.456 \pm 0.005$                   |
|             | DACA                     | $6.435 \pm 0.710$                   | $11.929 \pm 0.842$                  | $6.830 \pm 0.785$                   | $0.444 \pm 0.004$                   |
|             | <b>DUAL-ALIGN (Ours)</b> | <b><math>3.364 \pm 0.385</math></b> | <b><math>6.659 \pm 0.829</math></b> | <b><math>3.994 \pm 0.380</math></b> | <b><math>0.439 \pm 0.004</math></b> |
|             | TS <sup>†</sup> (oracle) | $1.387 \pm 0.237$                   | $6.954 \pm 1.340$                   | $2.143 \pm 0.294$                   | $0.437 \pm 0.004$                   |
| Prompt D    | Vanilla                  | $11.860 \pm 0.281$                  | $21.147 \pm 1.020$                  | $13.414 \pm 0.451$                  | $0.470 \pm 0.004$                   |
|             | DACA                     | $5.074 \pm 0.528$                   | $9.856 \pm 0.162$                   | $5.729 \pm 0.632$                   | $0.450 \pm 0.003$                   |
|             | <b>DUAL-ALIGN (Ours)</b> | <b><math>2.523 \pm 0.410</math></b> | <b><math>6.792 \pm 1.148</math></b> | <b><math>3.031 \pm 0.087</math></b> | <b><math>0.445 \pm 0.003</math></b> |
|             | TS <sup>†</sup> (oracle) | $1.915 \pm 0.084$                   | $5.849 \pm 3.020$                   | $2.370 \pm 0.449$                   | $0.445 \pm 0.003$                   |

Table 7: Effects of different prompt instructions on calibration error using Llama3.1-8B on MMLU dataset.

848  
 849  
 850  
 851  
 852  
 853  
 854  
 855  
 856  
 857  
 858  
 859  
 860  
 861  
 862  
 863

864 **D RELIABILITY DIAGRAM OF DIFFERENT BASELINES**  
865

866 This section provides reliability diagrams to visually assess calibration performance across our  
867 experiments. These plots show model accuracy versus confidence, with perfect calibration represented  
868 by the diagonal line. The following figures (Figure 8 to Figure 13) present these diagrams for the  
869 uncalibrated (Vanilla) model, the DACA baseline, our DUAL-ALIGN framework, and the supervised  
870 Temperature Scaling (TS) oracle. These visualizations visually confirm the quantitative results from  
871 the main paper, clearly illustrating that DUAL-ALIGN significantly reduces the overconfidence of  
872 post-trained models and achieves a calibration profile that closely approaches the supervised oracle.  
873

881 **Figure 8: Reliability diagrams of Llama3.1-8B-Instruct on MMLU dataset.**  
882891 **Figure 9: Reliability diagrams of Llama3.1-8B-Instruct on MedMCQA dataset.**  
892900 **Figure 10: Reliability diagrams of Qwen2.5-14B-Instruct on MMLU dataset.**  
901910 **Figure 11: Reliability diagrams of Qwen2.5-14B-Instruct on MedMCQA dataset.**  
911912 **E LLM USAGE DISCLOSURE**  
913

914 In accordance with the ICLR 2026 policy on Large Language Model (LLM) usage, we disclose that  
915 an LLM (OpenAI GPT-5) was used solely for minor language editing and grammar polishing of the  
916 manuscript. The LLM did not contribute to the research ideas, experimental design and data analysis.  
917 The authors take full responsibility for the content of this paper.

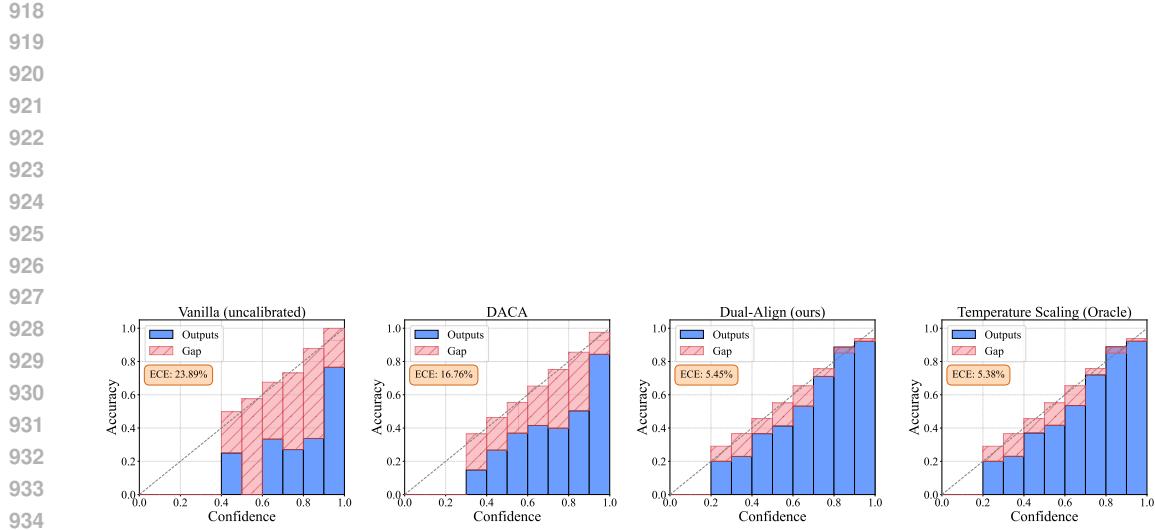


Figure 12: Reliability diagrams of Gemma-3-27b-it on MMLU dataset.

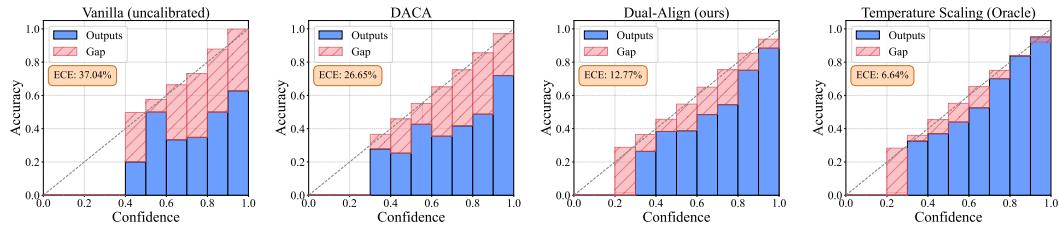


Figure 13: Reliability diagrams of Gemma-3-27b-it on MedMCQA dataset.