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Abstract

We present POSTHOC, a debugging and visualisation frame-
work that helps users better understand how search algo-
rithms work. POSTHOC takes as input search traces, human-
readable output logs produced by an algorithmic problem
solving program. The logs are are used for subsequent play-5

back, analysis and visualisation. Our system does not de-
pend on any specific type of visualisation nor any particu-
lar decision-making schema. Being independent, POSTHOC
readily complements new and existing solvers: for AI plan-
ning, pathfinding, and heuristic search, and it can be inte-10

grated as a complementary problem-solving tool alongside.

Introduction
Search algorithms are considered a foundational topic in the
field of Artificial Intelligence (Russell and Norvig 2021)
and they are often found at the heart of leading solvers,15

for a variety of important practical settings; e.g., AI Plan-
ning (Wilkins 2014), Game Development (Rabin 2019),
Robotics (Kavraki and LaValle 2016), Routing (Bast et al.
2016) and more. Substantial interest in the topic has also
produced a variety of complementary tools that try to help20

practitioners better understand search programs. Recent ex-
amples include MAES (Andreasen et al. 2022), a visualisa-
tion and debugging environment for robotics applications,
PDSim (De Pellegrin and Petrick 2023), a tool which vi-
sualises and simulates planning domains, and Sturtevant’s25

collection of Single Agent Search demos (Sturtevant 2021),
which help newcomers to the area understand how influen-
tial and foundational algorithms actually work. Yet, difficul-
ties arise when attempting to extend these tools beyond their
original context; e.g., to visualise output from a new type of30

algorithm, to examine solutions for a new kind of domain,
or simply trying to plot existing information in a new way.
This is because search procedures and outputs vary widely
from one problem to the next. Moreover, the core insights
which make algorithms successful can often depend on de-35

tails from the domain in which they are applied.
In this demo we present POSTHOC, a new visualisa-

tion framework which can address these shortcomings. Like
some other tools, our system allows practitioners to quickly
profile a wide variety of search procedures, then contextu-40

alise their results with a corresponding visual representation.

Figure 1: Basic A* grid search in POSTHOC

Listing 1: Simple search trace example.trace.yaml
1 version: 1.1.0
2 view:
3 main:
4 - $: rect
5 x: ${{x}}
6 y: ${{y}}
7 color: ${{palette[type]}}
8 events:
9 - {type: expand, id: 2, x: 8, y: 15, f:

2, g: 3}
10 - {type: generate, id: 3, pid: 2, x: 9,

y: 15, f: 2, g: 4}

Unlike similar tools, POSTHOC is technology-agnostic, be-
ing independent of any specific domain, solving program or
algorithmic strategy. We achieve this using search traces,
solver produced output logs that help to decouple search 45

from visualisation. Our framework has near-zero upfront
cost: it has no installation, no set-up, and requires only mini-
mal knowledge of search procedures to get started. The main
goals of POSTHOC are twofold: (i) reduce the barrier-to-
entry for producing visualisations and; (ii) assist non-experts 50

to engage with cutting-edge developments in the area of
state-space search. A video demonstration is available at
https://shorturl.at/pJKT5.



Figure 2: JPSW Figure 3: Guided PIBT Figure 4: StarCraft game analysis

System Description
POSTHOC takes as input a structured event log, which we55

call a search trace. The logs describe fundamental search
operations and search outputs; e.g., expand, generate,
relax and goal. Each event has a corresponding set of
labels, which record node-id, cost and parent information.
Search programs are often instrumented to produce such60

logs, during algorithmic development, and some solvers
output event logs as part of their core functionality; e.g.,
WARTHOG (Harabor 2024), a library for pathfinding search.
Our system requires event logs follow a specific YAML-
format, which we illustrate in Listing 1. The basic form65

(lines 8–11) suffices to visualise the search trace as a de-
cision tree. Events can be further annotated with arbitrary
metadata, such as state descriptors (e.g., agent position) and
drawing primitives (lines 2–7). These are used to produce a
custom visualisation of the domain. Figure 1 shows an ex-70

ample for a grid-based pathfinding problem. The visualisa-
tion was generated using a search trace similar to Listing 1.

Playback and Interrogation
POSTHOC allows users to explore recorded data via sim-
ple playback mechanisms. Events are parsed and visualised75

in input order, which allows the user inspect the process:
step by step, to verify the correctness of each operation, or
holistically, to acquire general insights into the search pro-
cess (e.g., where were the “hard bits”). Another possibility is
to interrogate the search process using breakpoints, pausing80

playback when specific conditions are met; e.g., when a cer-
tain node is expanded, when a new solution is found or when
a specified invariant (such as monotonicity) is violated.

For each step of the search the system offers two views:
a domain-independent decision-tree and a domain-specific85

rendered view. In each view the user can select elements to
better understand the search process; e.g., selecting a tree-
node shows the metadata associated with that node and the
sequence of decisions to that node, from the root. Figure 1
shows an example. When multiple search traces are loaded,90

POSTHOC facilitates comparisons between different solver
outputs. Figure 4 shows an example where we analyse plan-
ning decisions for a game of StarCraft. The right shows the
planned path for one agent; the left shows the locations of
temporal obstacles, which helps the user understand why the95

path looks as it does.

Integrated Search
In pedagogical settings it is often desirable to interact di-
rectly with a solver program and observe its output. Interac-
tivity helps users to better understand search algorithms by 100

observing how they tackle different problems, in real time.
Integrating a solver with POSTHOC is straightforward: the
user specifies which executable to invoke and which input
problem file. A more complex use-case allows the user to
specify particular start and target states, directly from the vi- 105

sualiser. In this case the integration with the solver requires
an additional schema, which maps input from the visualiser
to the problem format expected by the solver, so that new
problem instances can be created on-the-fly.

Posthoc In Practice 110

To evaluate POSTHOC we undertook a range of user studies
with postgraduate students whose projects involve problem
solving using state-space search. We conclude with three
real-world examples from these studies.
Case 1: Debugging an implementation of Weighted Ter- 115

rain Jump Point Search (JPSW; Carlson et al. 2023). In rare
cases the implementation incorrectly pruned optimal solu-
tions from the search space. Direct inspection of output logs
did not produce any clues about the cause of the error. Us-
ing POSTHOC, the researcher created a visualisation of the 120

search (Figure 2) and found the error in minutes.
Case 2: Optimising a MAPF algorithm. In this com-
plex use case, a researcher used POSTHOC to better under-
stand the effectiveness of a recently propopsed MAPF algo-
rithm (Zhang et al. 2024). The resulting visualisation (Fig- 125

ure 3) allowed the researcher to identify opportunities for
further improvement: it shows agent occupancy and direc-
tional flows as a heat map.
Case 3: Game analysis. In this use case, a researcher wanted
to analyse the behaviour of path-planning agents in a game 130

of StarCraft. The game involves many agents and thou-
sands of path planning episodes among numerous dynamic
obstacles. The researcher produced several visualisations
(Figure 4) including trajectories for each individual agent,
heatmaps of all paths, and all locations appearing as a start 135

or target.
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