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Abstract

Understanding the gradient variance of black-
box variational inference (BBVI) is a crucial step
for establishing its convergence and developing
algorithmic improvements. However, existing
studies have yet to show that the gradient vari-
ance of BBVI satisfies the conditions used to
study the convergence of stochastic gradient de-
scent (SGD), the workhorse of BBVI. In this
work, we show that BBVI satisfies a matching
bound corresponding to the 𝐴𝐵𝐶 condition used
in the SGD literature when applied to smooth and
quadratically-growing log-likelihoods. Our re-
sults generalize to nonlinear covariance param-
eterizations widely used in the practice of BBVI.
Furthermore, we show that the variance of the
mean-field parameterization has provably supe-
rior dimensional dependence.

1. Introduction
Variational inference (VI; Jordan et al. 1999; Blei et al.
2017; Zhang et al. 2019) algorithms are fast and scalable
Bayesian inference methods widely applied in fields of
statistics and machine learning. In particular, black-box VI
(BBVI; Ranganath et al. 2014; Titsias & Lázaro-Gredilla
2014) leverages stochastic gradient descent (SGD; Rob-
bins & Monro 1951; Bottou 1999) for inference of non-
conjugate probabilistic models. With the development of
bijectors (Kucukelbir et al., 2017; Dillon et al., 2017; Fjelde
et al., 2020), most of the methodological advances in BBVI
have now been abstracted out through various probabilistic
programming frameworks (Carpenter et al., 2017; Ge et al.,
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2018; Dillon et al., 2017; Bingham et al., 2019; Salvatier
et al., 2016).

Despite the advances of BBVI, little is known about its the-
oretical properties. Even when restricted to the location-
scale family (Definition 2), it is unknown whether BBVI is
guaranteed to converge without having to modify the algo-
rithms used in practice, for example, by enforcing bounded
domains, bounded support, bounded gradients, and such.
This theoretical insight is necessary since BBVI meth-
ods are known to be less robust (Yao et al., 2018; Dhaka
et al., 2020; Welandawe et al., 2022; Dhaka et al., 2021;
Domke, 2020) compared to other inference methods such
as Markov chain Monte Carlo. Although progress has been
made to formalize the theory of BBVI with some gener-
ality, the gap between our understanding of BBVI and the
convergence guarantees of SGD remains open. For exam-
ple, Domke (2019; 2020) provided smoothness and gradi-
ent variance guarantees. Still, these results do not yet yield
a full convergence guarantee and do not extend to nonlin-
ear covariance parameterizations used in practice.

In this work, we investigate whether recent progress
in relaxing the gradient variance assumptions used in
SGD (Tseng, 1998; Vaswani et al., 2019; Schmidt & Roux,
2013; Bottou et al., 2018; Gower et al., 2019; 2021b;
Nguyen et al., 2018) apply to BBVI. These extensions
have led to new insights that the structure of the gradi-
ent bounds can have non-trivial interactions with gradient-
adaptive SGD algorithms (Zhang et al., 2022). For ex-
ample, when the “interpolation assumption” (the gradient
noise converges to 0; Schmidt & Roux 2013; Ma et al.
2018; Vaswani et al. 2019) does not hold, ADAM (Kingma
& Ba, 2015) provably diverges with certain stepsize com-
binations (Zhang et al., 2022). Until BBVI can be shown
to conform to the assumptions used by these recent works,
it is unclear how these results relate to BBVI.

While the variance of BBVI gradient estimators has been
studied before (Xu et al., 2019; Domke, 2019; Mohamed
et al., 2020a; Fujisawa & Sato, 2021), the connection with
the conditions used in SGD has yet to be established. As
such, we answer the following question:

Does the gradient variance of BBVI conform to
the conditions assumed in convergence guaran-

1



Gradient Variance Bounds for Black-Box Variational Inference

tees of SGD without modifying the implementa-
tions used in practice?

The answer is yes! Assuming the target log joint distri-
bution is smooth and quadratically growing, we show that
the gradient variance of BBVI satisfies the ABC condition
(Assumption 2) used by Polyak & Tsypkin (1973); Khaled
& Richtárik (2023); Gower et al. (2021b). Our analysis
extends the previous result of Domke (2019) to covari-
ance parameterizations involving nonlinear functions for
conditioning the diagonal (see Section 2.5), as commonly
done in practice. Furthermore, we prove that the gradi-
ent variance of the mean-field parameterization (Peterson
& Anderson, 1987; Peterson & Hartman, 1989; Hinton &
van Camp, 1993) results in better dimensional dependence
compared to full-rank ones.

Overall, our results should act as a key ingredient to ob-
taining a full convergence guarantees of BBVI, as recently
done by Kim et al. (2023).

Our contributions are summarized as follows:

❶ We provide upper bounds on the gradient variance of
BBVI that matches the ABC condition (Assumption 2)
used for analyzing SGD.

➤ Theorems 1 and 2 do not require any modification
of the algorithms used in practice.

➤ Theorem 3 achieves better constants under the
stronger bounded entropy assumption.

❷ Our analysis applies to BBVI parameterizations (Sec-
tion 2.5) widely used in practice (Table 1).

➤ Lemma 1 enables the bounds to cover nonlinear
covariance parameterizations.

➤ Lemma 3 and Remark 4 shows that the gradient
variance of the mean-field parameterization has
superior dimensional scaling.

❸ We provide a matching lower bound (Theorem 4) on
the gradient variance, showing that, under the stated
assumptions, the ABC condition is the weakest as-
sumption applicable to BBVI.

2. Preliminaries
Notation Random variables are denoted in serif, while
their realization is in regular font. (i.e, 𝑥 is a real-
ization of 𝘹 , 𝒙 is a realization of the vector-valued 𝙭 .)
‖𝒙‖2 =

√
⟨𝒙,𝒙⟩ =

√
𝒙⊤𝒙 denotes the Euclidean norm, while

‖𝑨‖F =
√
tr (𝑨⊤𝑨) is the Frobenius norm, where tr (𝑨) =

∑𝑑
𝑖=1 𝐴𝑖𝑖 is the matrix trace.

2.1. Variational Inference

Variational inference (Peterson & Anderson, 1987; Hinton
& van Camp, 1993) is a family of inference algorithms de-

vised to solve the problem

minimize
𝝀∈ℝ𝑝

DKL(𝑞𝜓,𝝀, 𝜋), (1)

where 𝑞𝜓,𝝀 is called the “variational approximation”, while
𝜋 is a distribution of interest, and 𝐷KL is the (exclusive)
Kullback-Leibler (KL) divergence.

For Bayesian inference, 𝜋 is the posterior distribution

𝜋 (𝒛) ∝ 𝓁 (𝒙 ∣ 𝒛)𝑝 (𝒛) = 𝓁 (𝒙, 𝒛) ,

where 𝓁 (𝒙 ∣ 𝒛) is the likelihood, and 𝑝 (𝒛) is the prior. In
practice, one only has access to the likelihood and the prior.
Thus, Equation (1) cannot be directly solved. Instead, we
can minimize the negative evidence lower bound (ELBO;
Jordan et al. 1999) function 𝐹 (𝝀).

Evidence Lower Bound More formally, we solve

minimize
𝝀∈ℝ𝑝

𝐹 (𝝀) ,

where 𝐹 is defined as

𝐹 (𝝀) ≜ −𝔼𝙯∼𝑞𝜓,𝝀 [log𝓁 (𝒙, 𝙯 )] − H
(
𝑞𝜓,𝝀

)
, (2)

= −𝔼𝙯∼𝑞𝜓,𝝀 [log𝓁 (𝒙|𝙯 )] + DKL(𝑞𝜓,𝝀, 𝑝), (3)

𝙯 is the latent (random) variable,
𝑞𝜓,𝝀 is the variational distribution,
𝜓 is a bijector (support transformation), and
H is the differential entropy.

The bijector 𝜓 (Dillon et al., 2017; Fjelde et al., 2020;
Leger, 2023) is a differentiable bijective map that is used to
de-constrain the support of constrained random variables.
For example, when 𝑧 is expected to follow a gamma dis-
tribution, using 𝜂 = 𝜓 (𝑧) with 𝜓 (𝑧) = log 𝑧 lets us work
with 𝜂, which can be any real number, unlike 𝑧. The use
of 𝜓−1 corresponds to the automatic differentiation VI for-
mulation (ADVI; Kucukelbir et al. 2017), which is now
widespread.
2.2. Variational Family

In this work, we specifically consider the location-scale
variational family with a standardized base distribution.
Definition 1 (Reparameterization Function). An affine
mapping 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 defined as

𝒕𝝀 (𝒖) ≜ 𝑪𝒖 +𝒎

with 𝝀 containing the parameters for forming the location
𝒎 ∈ ℝ𝑑 and scale 𝑪 = 𝑪 (𝝀) ∈ ℝ𝑑×𝑑 is called the
(location-scale) reparameterization function.
Definition 2 (Location-Scale Family). Let 𝜑 be some 𝑑-
dimensional distribution. Then, 𝑞𝝀 such that

𝞯 ∼ 𝑞𝝀 ⇔ 𝞯
𝑑
= 𝒕𝝀 (𝙪) ; 𝙪 ∼ 𝜑

is said to be a member of the location-scale family indexed
by the base distribution 𝜑 and parameter 𝝀.
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This family includes commonly used variational fami-
lies, such as the mean-field Gaussian, full-rank Gaussian,
Student-T, and other elliptical distributions.
Remark 1 (Entropy of Location-Scale Distributions).
The differential entropy of a location-scale family distri-
bution (Definition 2) is

H(𝑞𝝀) = H (𝜑) + log |𝑪|.

Definition 3 (ADVI Family; Kucukelbir et al. 2017). Let
𝑞𝝀 be some 𝑑-dimensional distribution. Then, 𝑞𝜓,𝝀 such
that

𝙯 ∼ 𝑞𝜓,𝝀 ⇔ 𝙯
𝑑
= 𝜓−1 (𝞯) ; 𝞯 ∼ 𝑞𝝀

is said to be a member of the ADVI family with the base
distribution 𝑞𝝀 parameterized with 𝝀.

We impose assumptions on the base distribution 𝜑.
Assumption 1 (Base Distribution). 𝜑 is a 𝑑-dimensional
distribution such that 𝙪 ∼ 𝜑 and 𝙪 = (𝘶1,… , 𝘶𝑑) with
indepedently and identically distributed components. Fur-
thermore, 𝜑 is (i) symmetric and standardized such that
𝔼𝘶𝑖 = 0, 𝔼𝘶2𝑖 = 1, 𝔼𝘶3𝑖 = 0, and (ii) has finite kurtosis
𝔼𝘶4𝑖 = 𝜅 <∞.

These assumptions are already satisfied in practice by,
for example, generating 𝘶𝑖 from a univariate normal or
Student-T with 𝜈 > 4 degrees of freedom.

2.3. Reparameterization Trick

When restricted to location scale families (Definitions 2
and 3), we can invoke Change-of-Variable, or more com-
monly known as the “reparameterization trick,” such that

𝔼𝙯∼𝑞𝜓,𝝀 log𝓁 (𝒙, 𝙯 ) = 𝔼𝞯∼𝑞𝝀 log𝓁
(
𝒙, 𝜓−1 (𝞯)

)

= 𝔼𝙪∼𝜑 log𝓁
(
𝒙, 𝜓−1 (𝒕𝝀 (𝙪))

)

through the Law of the Unconcious Statistician. Differenti-
ating this results in the reparameterization or path gradient,
which often achieves lower variance than alternatives (Xu
et al., 2019; Mohamed et al., 2020b).

Objective Function For generality, we represent our ob-
jective as a composite infinite sum problem:
Definition 4 (Composite Infinite Sum).

𝐹 (𝝀) = 𝔼𝙪∼𝜑𝑓 (𝒕𝝀 (𝙪)) + ℎ (𝝀) ,

where (𝝀, 𝙪) ↦ 𝑓◦𝒕𝝀 ∶ ℝ𝑝 × ℝ𝑑 → ℝ is some bivariate
stochastic function of 𝝀 and the “noise source” 𝙪 , while ℎ
is a deterministic regularization term.

By appropriately defining 𝑓 and ℎ, we retrieve the two most
common formulations of the ELBO in Equation (2) and
Equation (3) respectively:

Definition 5 (ELBO Entropy-Regularized Form).

𝑓H (𝜻 ) = − log𝓁
(
𝒙, 𝜓−1 (𝜻 )

)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Joint Likelihood

− log ||||𝑱𝜓−1 (𝜻 )
||||

ℎH (𝝀) = −H (𝑞𝝀) .

Definition 6 (ELBO KL-Regularized Form).

𝑓KL (𝜻 ) = − log𝓁
(
𝒙 ∣ 𝜓−1 (𝜻 )

)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Likelihood

− log ||||𝑱𝜓−1 (𝜻 )
||||

ℎKL (𝝀) = DKL(𝑞𝝀, 𝑝).

Here, 𝑱𝜓−1 is the Jacobian of the bijector. Since DKL(𝑞𝝀, 𝑝)
is seldomly available in tractable form, the entropy-
regularized form is the most widely used, while the KL
regularized is common for Gaussian processes and varia-
tional autoencoders.

Gradient Estimator We denote the 𝑀-sample estimator
of the gradient of 𝐹 as

𝙜𝑀 (𝝀) ≜
1
𝑀

𝑀∑

𝑚=1
𝙜𝑚 (𝝀) , where (4)

𝙜𝑚 (𝝀) ≜ ∇𝝀𝑓 (𝒕𝝀 (𝙪𝑚)) + ∇ℎ(𝝀); 𝙪𝑚 ∼ 𝜑. (5)

We will occasionally drop 𝝀 for clarity.

2.4. Gradient Variance Assumptions in
Stochastic Gradient Descent

Gradient Variance Assumptions in SGD For a while,
most convergence proofs in SGD have relied on the
“bounded variance” assumption. That is, for a gradient es-
timator 𝙜 , 𝔼‖𝙜‖22 ≤ 𝐺 for some finite constant 𝐺. This
assumption is problematic because ❶ these types of global
constants result in loose bounds, ❷ and it directly con-
tradicts the strong-convexity assumption (Nguyen et al.,
2018). Thus, retrieving previously known SGD conver-
gence rates under weaker assumptions has been an impor-
tant research direction (Tseng, 1998; Vaswani et al., 2019;
Schmidt & Roux, 2013; Bottou et al., 2018; Gower et al.,
2019; 2021b; Nguyen et al., 2018).

ABC Condition In this work, we focus on the re-
cently rediscovered expected smoothness, or ABC, condi-
tion (Polyak & Tsypkin, 1973; Gower et al., 2021b).
Assumption 2 (Expected Smoothness; 𝐴𝐵𝐶). 𝙜 is said to
satisfy the expected smoothness condition if

𝔼‖𝙜𝑀 (𝝀)‖22 ≤ 2𝐴 (𝐹 (𝝀) − 𝐹∗) + 𝐵 ‖∇𝐹 (𝝀)‖22 + 𝐶.

for some finite 𝐴, 𝐵, 𝐶 ≥ 0, where 𝐹∗ = inf𝝀∈R𝑝 𝐹 (𝝀).

As shown by Khaled & Richtárik (2023), this condition is
not only strictly weaker than many of the previously used
assumptions but also generalizes them by retrieving known
convergence rates when tweaking the constants.
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Table 1: Survey of Parameterizations Used in Black-Box Variational Inference

Framework Version Parameterizations Conditioner Code

TURING (Ge et al., 2018) v0.23.2 Nonlinear Mean-field softplus link

STAN (Carpenter et al., 2017) v2.31.0
Nonlinear Mean-field exp link

Linear Cholesky link

PYRO (Bingham et al., 2019) v0.10.1
Nonlinear Mean-field softplus link

Linear Cholesky1 link

PYMC3 (Salvatier et al., 2016) v5.0.1
Nonlinear Mean-field softplus link

Nonlinear Cholesky softplus link

GPYTORCH (Gardner et al., 2018) v1.9.0
Linear Cholesky link

Linear Mean-field link
1 Numpyro also provides a low-rank Cholesky parameterization, which is non-linearly con-

ditioned. But the full-rank Cholesky is linear.
* Tensorflow probability (Dillon et al., 2017) wasn’t included as it

doesn’t provide a fully pre-configured variational family (although
tfp.experimental.vi.build * posterior exists, the parameterization is
user-supplied).

With the 𝐴𝐵𝐶 condition, for non-
convex 𝐿-smooth functions, under a
“appropriately chosen” stepsize (oth-
erwise the bound may blow-up as
explained by Khaled & Richtárik)
of 𝛾 ≤ 1∕𝐿𝐵, SGD converges
to a 𝒪 (𝐿𝐶𝛾) neighborhood in a
𝒪
(
(1+𝐿𝛾2𝐴)𝑇∕(𝛾𝑇)

)
rate. Minor vari-

ants of the ABC condition have
also been used to prove convergence
of SGD for quasar convex func-
tions Gower et al. (2021a), stochastic
heavy-ball/momentum methods Liu &
Yuan (2022), and stochastic proxi-
mal methods (Li & Milzarek, 2022).
Given the influx of results based on
the ABC condition, connecting with it
would significantly broaden our theo-
retical understanding of BBVI.

2.5. Covariance Parameterizations

When using the location-scale family (Definition 2), the
scale matrix 𝑪 can be parameterized in different ways. Any
parameterization that results in a positive definite covari-
ance 𝑪𝑪⊤ ∈ 𝕊𝑑++ is valid. We consider multiple parame-
terizations as the choice can result in different theoretical
properties. A brief survey on the use of different parame-
terizations is shown in Table 1.

Linear Parameterization The previous results
by Domke (2019) considered the matrix square root
parameterization, which is linear with respect to the
variational parameters.
Definition 7 (Matrix Square Root).

𝑪 (𝝀) = 𝑪,
where 𝑪 ∈ ℝ𝑑×𝑑 is a matrix, 𝝀𝑪 = vec (𝑪) ∈ ℝ𝑑2 such
that 𝝀 = (𝒎,𝝀𝑪).

Note that 𝑪 is not constrained to be symmetric so this is not
a matrix square root in a narrow sense. Also, this param-
eterization does not guarantee 𝑪𝑪⊤ to be positive definite
(only positive semidefinite), which occasionally results in
the entropy term ℎH blowing up (Domke, 2020). Domke
proposed to fix this by using proximal operators.

Nonlinear Parameterizations In practice, optimization
is preferably done in unconstrained ℝ𝑝, which then posi-
tive definiteness can be ensured by explicitly mapping the
diagonal elements to positive numbers. We denote this by
the diagonal conditioner 𝜙. (See Table 1 for a brief sur-
vey on their use). The following two parameterizations are
commonly used, where 𝑫 = diag (𝜙 (𝒔)) ∈ ℝ𝑑×𝑑 denotes
a diagonal matrix such that 𝐷𝑖𝑖 = 𝜙 (𝑠𝑖) > 0.

Definition 8 (Mean-Field).

𝑪 (𝝀, 𝜙) = diag (𝜙 (𝒔)) ,

where 𝒔 ∈ ℝ𝑑 and 𝝀 = (𝒎, 𝒔).
Definition 9 (Cholesky).

𝑪 (𝝀, 𝜙) = diag (𝜙 (𝒔)) + 𝑳,

where 𝒔 ∈ ℝ𝑑, 𝑳 ∈ ℝ𝑑×𝑑 is a strictly lower triangu-
lar matrix, 𝝀𝑳 = vec (𝑳) ∈ ℝ(𝑑+1)𝑑∕2 such that 𝝀 =
(𝒎, 𝒔,𝝀𝑳). The special case of 𝜙 (𝑥) = 𝑥 is called the “lin-
ear Cholesky” parameterization.

Diagonal conditioner For the diagonal conditioner, the
softplus function 𝜙 (𝑥) = sof tplus(𝑥) ≜ log(1+𝑒𝑥) (Dugas
et al., 2000) or the exponential function 𝜙 (𝑥) = 𝑒𝑥 is com-
monly used. While using these nonlinear functions sig-
nificantly complicates the analysis, assuming 𝜙 to be 1-
Lipschitz retrieves practical guarantees.

Assumption 3 (Lipschitz Diagonal Conditioner). The di-
agonal conditioner 𝜙 is 1-Lipschitz continuous.

Remark 2. The softplus function is 1-Lipschitz.

3. Main Results
3.1. Key Lemmas

The main challenge in studying BBVI is that the gradient of
the composed function ∇𝝀𝑓 (𝒕𝝀 (𝒖)) is different from ∇𝑓.
For the matrix square root parameterization, Domke (2019)
established the connection through Lemma 1 (restated as
Lemma 6 in Appendix C.1). We generalize this result to
nonlinear parameterizations:
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Lemma 1. Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 be a location-scale
reparameterization function (Definition 1) with some dif-
ferentiable function 𝑓 ∶ ℝ𝑑 → ℝ. Then, for 𝒈𝑓 ≜
∇𝑓 (𝒕𝝀 (𝒖)),

(i) Mean-Field
‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖

2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝑼𝜱𝒈𝑓 ,

(ii) Cholesky

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝜮𝒈𝑓 + 𝒈⊤𝑓𝑼 (𝜱 − 𝐈)𝒈𝑓 ,

where 𝑼, 𝜱,𝜮 are diagonal matrices, which the diago-
nals are defined as

𝑈𝑖𝑖 = 𝑢2𝑖 , Φ𝑖𝑖 = 𝜙′ (𝑠𝑖)
2, Σ𝑖𝑖 =

∑𝑖
𝑗=1𝑢

2
𝑗 ,

and 𝜙 is a diagonal conditioner for the scale matrix.
Proof. See the full proof in Appendix C.2.1.

Note that the relationships in this lemma are all equalities,
which can be bounded with known quantities, as done in
the next lemma. We note here that if any of our analyses
were to be improved, this shall by done by obtaining tighter
bounds on the equalities in Lemma 1.
Lemma 2. Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 be a location-scale repa-
rameterization function (Definition 1), 𝑓 ∶ ℝ𝑑 → ℝ be
a differentiable function, and let 𝜙 satisfy Assumption 3.

(i) Mean-Field

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 ≤

(
1 + ‖𝑼‖F

)
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2,

where 𝑼 is a diagonal matrix such that 𝑈𝑖𝑖 = 𝑢2𝑖 .
(ii) Cholesky

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 ≤

(
1 + ‖𝒖‖22

)
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2,

where the equality holds for the matrix square root
parameterization.

Proof. See the full proof in Appendix C.2.2.

Lemma 1 act as the interface between the properties of the
parameterization and the likelihood 𝑓.
Remark 3 (Variance Reduction Through 𝜙). A nonlinear
Cholesky parameterization with a 1-Lipschitz 𝜙 achieves
lower or equal variance compared to the matrix square root
and linear Cholesky, where the equality is achieved with
the matrix square root parameterization.

Dimension Dependence of Mean-Field The superior di-
mensional dependence of the mean-field parameterization
is given by the following lemma:
Lemma 3. Let the assumptions of Lemma 2 hold and
𝙪 ∼ 𝜑 satisfy Assumption 1. Then, for the mean-field
parameterization,

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22
(
1 + ‖𝙐‖F

)

≤
(√

𝑑𝜅 + 𝜅
√
𝑑 + 1

)
‖𝒎 − 𝒛‖22 +

(
2𝜅
√
𝑑 + 1

)
‖𝑪‖2F.

Proof. See the full proof in Appendix C.2.3.

Remark 4 (Superior Variance of Mean-Field). The
mean-field parameterization has 𝒪

(√
𝑑
)

dimensional de-
pendence compared to the 𝒪 (𝑑) dimensional dependence
of the full-rank parameterizations in Lemma 7.

Lastly, the following lemma is the basic building block for
all of our upper bounds:

Lemma 4. Let 𝒈𝑀 be the 𝑀-sample gradient estimator
of 𝐹 (Definition 4) for some function 𝑓, ℎ and let 𝙪 be
some random variable. Then,

𝔼‖𝙜𝑀‖
2
2 ≤

1
𝑀𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 + ‖∇𝐹 (𝝀)‖22.

Proof. See the full proof in Appendix C.2.4.

3.2. Upper Bounds

We restrict our analysis to the class of log-likelihoods that
satisfy the following conditions:

Definition 10 (𝐿-smoothness). A function 𝑓 ∶ ℝ𝑑 → ℝ is
𝐿-smooth if it satisfies the following for all 𝜻 , 𝜻 ′ ∈ ℝ𝑑:

‖∇𝑓 (𝜻 ) − ∇𝑓 (𝜻 ′)‖2 ≤ 𝐿 ‖𝜻 − 𝜻 ′‖2.

Definition 11 (Quadratic Functional Growth). A func-
tion 𝑓 ∶ ℝ𝑑 → ℝ is 𝜇-quadratically growing if

𝜇
2 ‖𝜻 − 𝜻 ‖

2

2 ≤ 𝑓 (𝜻 ) − 𝑓∗

for all 𝜻 ∈ ℝ𝑑, where 𝜻 = Π𝑓 (𝜻 ) is a projection of 𝜻 onto
the set of minimizers of 𝑓 and 𝑓∗ = inf 𝜻∈ℝ𝑑 𝑓 (𝜻 ).

The quadratic growth condition has first been used by
(Anitescu, 2000) and is strictly weaker than the Polyak-
Łojasiewicz inequality (see Karimi et al. 2016, Appendix
A for the proof). Furthermore, for 𝜇-strongly (quasar) con-
vex functions (Hinder et al., 2020; Jin, 2020) automatically
satisfy quadratic growth, but our analysis does not require
(quasar) convexity.

Both assumptions are commonly used in SGD. For study-
ing the gradient variance of BBVI, assuming both smooth-
ness and quadratic growth is weaker than the assumptions
of Xu et al. (2019) but stronger than those of Domke
(2019), who assumed only smoothness. The additional as-
sumption on growth is necessary to extend his results to
establish the ABC condition.

For the variational family, we assume the followings:

Assumption 4. 𝑞𝜓,𝝀 is a member of the ADVI family (Def-
inition 3), where the underlying 𝑞𝝀 is a member of the
location-scale family (Definition 2) with its base distribu-
tion 𝜑 satisfying Assumption 1.

Entropy-Regularized Form First, we provide the upper
bound for the ELBO in entropy-regularized form. This re-
sult does not require any modifications to vanilla SGD.
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Theorem 1. Let 𝙜𝑀 be an𝑀-sample estimate of the gra-
dient of the ELBO in entropy regularized form (Defini-
tion 5). Also, assume that Assumption 3 and 4 hold,

• 𝑓H is 𝐿H-smooth, and

• 𝑓KL is 𝜇KL-quadratically growing.

Then,

𝔼‖𝙜𝑀‖
2
2 ≤

4𝐿2H
𝜇KL𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2H
𝑀 𝐶 (𝑑, 𝜅) ‖𝜻KL − 𝜻H‖

2

2

+
4𝐿2H
𝜇KL𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗KL

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky and matrix square root,

𝜁KL, 𝜁H are the stationary points of 𝑓KL, 𝑓H, respec-
tively, 𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗KL = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof Sketch. From Lemma 4, we can see that the key
quantity of upper bounding the gradient variance is to ana-
lyze 𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖. The bird’s eye view of the proof is
as follows:

❶ The relationship between ‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2 and

‖∇𝑓H (𝒕𝝀 (𝙪))‖
2
2 is established through Lemma 2.

❷ Then, the 𝐿H-smoothness of 𝑓H relates
‖∇𝑓H (𝒕𝝀 (𝙪))‖

2
2 with ‖𝒕𝝀 (𝙪) − 𝜻H‖

2
2, the aver-

age squared distance from 𝑓H’s stationary point.
❸ The average squared distance enables the simplifica-

tion of stochastic terms through Lemmas 3 and 7. This
step also introduces dimension dependence.

From here, we are now left with the 𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 term.

One might be tempted to assume the quadratic growth as-
sumption on 𝑓H and proceed as

𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 ≤

2
𝜇
(
𝑓H (𝒕𝝀 (𝙪)) − 𝑓∗H

)
.

However, for the entropy-regularized form, this soon runs
into a dead end since in

𝔼𝑓H (𝒕𝝀 (𝙪)) − 𝑓∗H = 𝐹 (𝝀) − ℎ (𝝀) − 𝑓∗

= (𝐹 (𝝀) − 𝐹∗) + (𝐹∗ − 𝑓∗) − ℎH (𝝀) ,

the negative entropy term ℎH is not bounded unless we
rely on assumptions that need modifications to the BBVI
algorithms. (e.g., bounded support, bounded domain). For-
tunately, the following inequality cleverly side-steps this
problem:

𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 ≤ 2𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖

2
2 + 2 ‖𝜻KL − 𝜻H‖

2
2,

(6)

albeit at the cost of some looseness. By converting the
entropy-regularized form into the KL-regularized form,
the regularizer term becomes ℎKL = DKL(𝑞𝝀, 𝑝) ≥ 0,
which is bounded below by definition, unlike the entropic-
regularizer ℎH. The proof completes by

❹ applying the quadratic growth assumption to relate
the parameter distance with the function suboptimal-
ity gap, and

❺ upper bounding the KL regularizer term.

Proof. See the full proof in Appendix C.3.1.

Remark 5. If the bijector 𝜓 is an identity function, 𝜻KL
and 𝜻H are the maximum likelihood (ML) and maximum
a-posteriori (MAP) estimates, respectively. Thus, with
enough datapoints, the term ‖𝜻KL − 𝜻H‖

2
2 will be negligible

since the ML and MAP estimates will be close.
Remark 6. It is also possible the tighten the constants by a
factor of two. Instead of applying Equation (6), we can use
the inequality

(𝑎 + 𝑏)2 ≤
(
1 + 𝛿2

)
𝑎2 +

(
1 + 𝛿−2

)
𝑏2,

for some 𝛿 > 0. By setting 𝛿2 = 𝑏 = ‖𝜻KL − 𝜻H‖2,

𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 ≤ (1 + 𝛿2)𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖

2
2 + 𝛿4 + 𝛿2.

Since 𝛿 ≈ 0 as explained in Remark 5, the constant in front
of the first term is tightened almost by a factor of 2. How-
ever, the stated form is more convenient for theory since
the first term does not depend on ‖𝜻KL − 𝜻H‖2.
Remark 7. Let 𝜅cond. = 𝐿H∕𝜇KL be the condition number of
the problem. For the full-rank parameterizations, the vari-
ance is bounded as 𝒪 (𝐿H𝜅cond. (𝑑 + 𝜅) ∕𝑀). The variance
depends linearly on

❶ the scaling of the problem 𝐿H,
❷ the conditioning of the problem 𝜅cond.,
❸ the dimensionality of the problem 𝑑, and
❹ the tail properties of the variational family 𝜅,

where the number of Monte Carlo samples 𝑀 linearly re-
duces the variance.

KL-Regularized Form We now prove an equivalent re-
sult for the KL-regularized form. Here, we do not have to
rely on Equation (6) since we already start from 𝑓KL, which
results in better constants.
Theorem 2. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in KL-regularized form (Defini-
tion 6). Also, assume that

• 𝑓KL is 𝐿KL-smooth,

• 𝑓KL is 𝜇KL-quadratically growing,

and Assumption 3 and 4 hold. Then, the gradient vari-
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ance is bounded above as

𝔼‖𝙜𝑀‖
2
2 ≤

2𝐿2KL
𝜇KL𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2KL
𝜇KL𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗KL

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky and matrix square root,

𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗KL = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof. See the full proof in Appendix C.3.2.

3.3. Upper Bound Under Bounded Entropy

The bound in Theorem 1 is slightly loose due to the
use of Equation (6) and Equation (29). An alternative
bound with slightly tighter constants, although the gains
are marignal compared to Remark 6, can be obtained by
assuming the following:
Assumption 5 (Bounded Entropy). The regularization
term is bounded below as ℎH (𝝀) ≥ ℎ∗H.

For the entropy-regularized form, this corresponds to the
entropy being bounded above by some constant since
ℎ (𝝀) = −H (𝑞𝝀). When using the nonlinear parameteri-
zations (Definitions 8 and 9), this assumption can be prac-
tically enforced by bounding the output of 𝜙 by some large
𝑆.
Proposition 1. Let the diagonal conditioner 𝜙 be
bounded as 𝜙 (𝑥) ≤ 𝑆. Then, for any 𝑑-dimensional dis-
tribution 𝑞𝝀 in the location-scale family with the mean-
field (Definition 8) or Cholesky (Definition 9) parame-
terizations,

ℎH (𝝀) = −H (𝑞𝝀) ≥ −H (𝜑) −
𝑑
2 log 𝑆.

Proof. From Remark 1, H(𝑞𝝀) = H (𝜑)+ log |𝑪|. Since 𝑪
under Definitions 8 and 9 is a diagonal or triangular matrix,
the log absolute determinant is the log sum of the diago-
nals. The conclusion follows from the fact that the diago-
nals 𝐶𝑖𝑖 = 𝜙 (𝑠𝑖) are bounded by 𝑆.

This is essentially a weaker version of the bounded do-
main assumption, though only the diagonal elements of 𝑪,
𝑠1,… , 𝑠𝑑, are bounded. While this assumption results in
an admittedly less realistic algorithm, it enables a tighter
bound for the entropy-regularized form ELBO.
Theorem 3. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in entropy-regularized form (Defi-
nition 5). Also, assume that

• 𝑓H is 𝐿H-smooth,

• 𝑓H is 𝜇H-quadratically growing,

• ℎH is bounded as ℎH (𝝀) > ℎ∗H (Assumption 5),

and Assumption 3 and 4 hold. Then, the gradient vari-
ance of 𝒈𝑀 is bounded above as

𝔼‖𝙜𝑀‖
2
2 ≤

2𝐿2H
𝜇H𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2H
𝜇H𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗H − ℎ∗H

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky parameterization,

𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗H = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof Sketch. Instead of using Equation (6), we apply
the quadratic assumption directly to 𝑓H. The remaining
entropic-regularizer term can now be bounded through the
bounded entropy assumption.

Proof. See the full proof in Appendix C.3.3.

3.4. Matching Lower Bound

Finally, we present a matching lower bound on the gra-
dient variance of BBVI. Our lower bound holds broadly
for smooth and strongly convex problem instances that are
well-conditioned and high-dimensional.

Theorem 4. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in either the entropy- or KL-
regularized form. Also, let Assumption 4 hold where
the matrix square root parameterization is used. Then,
for all 𝐿-smooth and 𝜇-strongly convex functions 𝑓 such
that 𝐿∕𝜇 <

√
𝑑 + 1, the variance of 𝙜𝑀 is bounded below

by some strictly positive constant as

𝔼‖𝙜𝑀‖
2
2 ≥

2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝔼𝑓 (𝒕𝝀∗ (𝒖)) − 𝑓∗) ,

as long as 𝝀 is in a local neighborhood around the
unique global optimum 𝝀∗ = argmin𝝀∈ℝ𝑝 𝐹 (𝝀), where
𝐹∗ = 𝐹 (𝝀∗) and 𝑓∗ = argmin𝜻∈ℝ𝑑 𝑓 (𝜻 ).

Proof Sketch. We use the fact that, with the matrix square
root parameterization, if 𝑓 is 𝐿-smooth, 𝔼𝑓 (𝒕𝝀 (𝙪)) is also
𝐿-smooth (Domke, 2020). From this, the parameter subop-
timality can be related to the function suboptimality as

‖𝝀 − �̄�‖22 ≥ (2∕𝐿) (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗) ,

where �̄� =
(
𝜻 ,𝐎

)
. For the entropy term, we circumvent the

need to directly bound its value by restricting our interest
to the neighborhood of the minimizer 𝝀∗, where the con-
tribution of ℎ (𝝀∗) − ℎ (𝝀) will be marginal enough for the
lower bound to hold.

Proof. See the full proof in Appendix C.3.4.
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DKL(𝑞𝝀, 𝑝)
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Cholesky 𝜙 (𝑥) = sof tplus (𝑥) Mean-Field 𝜙 (𝑥) = sof tplus (𝑥)

Theorem 1 Theorem 3 Theorem 1 Theorem 3

Gradient Variance 𝔼‖𝙜‖22 Upper Bound 2𝐴 (𝐹 (𝝀) − 𝐹∗) + 𝐵‖∇𝐹‖22 + 𝐶

Figure 1: Evaluation of the bounds for a perfectly conditioned quadratic target function. The blue regions are the
loosenesses resulting from either using (Theorem 1) or not using (Theorem 3) the bounded entropy assumption (Assump-
tion 5), while the red regions are the remaining “technical loosesnesses.” The gradient variance was estimated from 103
samples.

Remark 8 (Matching Dimensional Dependence). For
well-conditioned problems such that 𝐿∕𝜇 <

√
𝑑 + 1, a lower

bound of the same dimensional dependence with our upper
bounds holds near the optimum.
Remark 9 (Unimprovability of the ABC Condition).
The lower bound suggests that the 𝐴𝐵𝐶 gradient vari-
ance condition is unimprovable within the class of smooth,
quadratically growing functions.

4. Simulations
We now evaluate our bounds and the insights gathered dur-
ing the analysis through simulations. We implemented a
bare-bones implementation of BBVI in Julia (Bezanson
et al., 2017) with plain SGD. The stepsize were manually
tuned so that all problems converge at similar speeds. For
all problems, we use a unit Gaussian base distribution such
that 𝜑 (𝑢) =𝒩 (𝑢; 0, 1) resulting in a kurtosis of 𝜅 = 3 and
use 𝑀 = 10 Monte Carlo samples.

4.1. Synthetic Problem

To test the ideal tightness of the bounds, we consider
quadratics achieving the tightest bound for the constants
𝐿H, 𝐿KL, 𝜇H, 𝜇KL given as

log𝓁 (𝒙 ∣ 𝒛) = −𝑁
𝜎2
‖𝒛 − 𝒛∗‖22; log𝑝 (𝒛) = −1

𝜆
‖𝒛‖22,

where 𝑁 simulates the effect of the number of datapoints.
We set the constants as 𝜎 = 0.3, 𝜆 = 8.0, and 𝑁 = 100,
the mode 𝒛∗ is randomly sampled from a Gaussian, and
the dimension of the problem is 𝑑 = 20. For the bounded
entropy case, we set 𝑆 = 2.0 (the true standard deviation is
in the order of 1e-3).

𝐶

DKL(𝑞𝝀, 𝑝)

1 2,000 4,000
104

106

108

1010

Iteration

Gradient Variance 𝔼‖𝙜‖22
Upper Bound

1 500 1,000
104

105

106

107

Iteration
𝔼‖
𝙜
‖2 2

Iteration

𝔼‖
𝙜
‖2 2

Matrix square root

Cholesky 𝜙(𝑥) = 𝑥
Cholesky 𝜙(𝑥) = sof tplus (𝑥)

Figure 2: Linear regression on the AIRFOIL dataset.
(left) Evaluation of the upper bound (Theorem 1).
(right) Comparison of the variance of different param-
eterizations resulting in the same 𝒎, 𝑪.

Quality of Upper Bound The results for the Cholesky
and mean-field parameterizations with a softplus bijector
are shown in Figure 1. For the Cholesky parameterization,
the bulk of the looseness comes from the treatment of the
regularization term (blue region). The remaining “techni-
cal looseness” (red region) is relatively tight and can be
shown to be tighter when using linear parameterizations
(𝜙 (𝑥) = 𝑥) and the square root parameterization, which
is the tightest. However, for the mean-field parameteriza-
tion, despite the superior constants (Remark 4), there is still
room for improvement. Additional results for other param-
eterizations can be found in Appendix B.1.

4.2. Real Dataset

Model We now evaluate the theoretical results with real
datasets. Given a regression dataset (𝑿,𝒚), we use the lin-
ear Gaussian model

𝑦 ∼𝒩
(
𝑿𝒘, 𝜎2

)
; 𝒘 ∼𝒩 (𝟎, 𝜆𝐈) ,
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where 𝜆 and 𝜎 are hyperparameters. The smoothness and
quadratic growth constants for this model are given as the
max- and minimum eigenvalues of 𝜎−2𝑿⊤𝑿 + 𝜆−1𝐈 (for
𝑓H) and 𝜎−2𝑿⊤𝑿 (for 𝑓KL). 𝑓∗KL and 𝑓∗H are given as the
mode of the likelihood and the posterior, while 𝐹∗ is the
negative marginal log-likelihood.

Quality of Upper Bound Section 4.1 shows the result
on the AIRFOIL dataset (Dua & Graff, 2017). The con-
stants are 𝐿H = 3.520 × 104, 𝜇KL = 2.909 × 103. Due to
poor conditioning, the bound is much looser compared to
the quadratic case. We note that generalizing our bounds to
utilize matrix smoothness and matrix-quadratic growth as
done by (Domke, 2019) would tighten the bounds. But the
theoretical gains would be marginal. Detailed information
about the datasets and additional results for other parame-
terizations can be found in Appendix B.2.

Comparison of Parameterizations Section 4.1 com-
pares the gradient variance resulting from the different pa-
rameterizations. For a fair comparison, the gradient is
estimated on the 𝝀 that results in the same 𝒎,𝑪 for all
three parameterizations. This shows the gradual increase
in variance by (i) not using a nonlinear conditioner (linear
Cholesky) (ii) and increasing the number of variational pa-
rameters (matrix square root).

5. Related Works
Controlling Gradient Variance The main algorithmic
challenge in BBVI is to control the gradient noise (Ran-
ganath et al., 2014). This has led to various methods
for reducing the variance of VI gradient estimators us-
ing control variates (Ranganath et al., 2014; Miller et al.,
2017; Geffner & Domke, 2018), ensembling of estima-
tors (Geffner & Domke, 2020), modifying the differ-
entiation procedure (Roeder et al., 2017), quasi-Monte
Carlo (Buchholz et al., 2018; Liu & Owen, 2021), and mul-
tilevel Monte Carlo (Fujisawa & Sato, 2021). Cultivating a
deeper understanding of the properties of gradient variance
could further extend this list.

Convergence Guarantees Obtaining full convergence
guarantees has been an important task for understand-
ing BBVI algorithms. However, most guarantees so far
have relied on strong assumptions such as that the log-
likelihood is Lipschitz (Chérief-Abdellatif et al., 2019;
Alquier, 2021), that the gradient variance is bounded
by constant (Liu & Owen, 2021; Buchholz et al., 2018;
Domke, 2020; Hoffman & Ma, 2020), and that the sup-
port of 𝑞𝝀 is bounded (Fujisawa & Sato, 2021). Our result
shows that similar results can be obtained under relaxed as-
sumptions. Meanwhile, Bhatia et al. (2022) have recently
proven a full complexity guarantee for a variant of BBVI.
But similarly to Hoffman & Ma (2020), they only optimize

the scale matrix 𝑪, and the specifics of the algorithm di-
verge from the usual BBVI implementations as it uses the
stochastic power iterations instead of SGD.

Gradient Variance Guarantees Studying the actual gra-
dient variance properties of BBVI has only started to make
progress recently. Fan et al. (2015) first provided bounds
by assuming the log-likelihood to be Lipschitz. Under
more general conditions, Domke (2019) provided tight
bounds for smooth log-likelihoods, which our work builds
upon. Domke’s result can also be seen as a direct gen-
eralization of the results of Xu et al. (2019), which are
restricted to quadratic log-likelihoods and the mean-field
family. Lastly, Mohamed et al. (2020a) provides a concep-
tual evaluation of gradient estimators used in BBVI.

6. Discussions
Conclusions In this work, we have proven upper bounds
on the gradient variance of BBVI with the location-scale
family for smooth, quadratically-growing log-likelihoods.
Specifically, we have provided bounds for both the ELBO
in entropy-regularized and KL-regularized forms. Our
guarantees work without a single modification to the al-
gorithms used in practice, although stronger assumptions
establish a tighter bound for the entropy-regularized form
ELBO. Also, our bounds corresponds to the ABC condi-
tion (Section 2.4) and the expected residual (ER) condition,
where the latter is a special case of the former with 𝐵 = 1.
The ER condition has been used by Gower et al. (2021a) for
proving convergence of SGD on quasar convex functions,
which generalize convex functions. The results of this pa-
per are used by Kim et al. (2023) to establish convergence
of BBVI through the results of Khaled & Richtárik (2023).

Limitations Our results have the following limitations:
❶ Our results only apply to smooth and quadratically–
growing log likelihoods and ❷ the location-scale ADVI
family. Also, ❸ our bounds cannot distinguish the variance
of the Cholesky and matrix square root parameterizations,
❹ and empirically, the bounds for the mean-field parame-
terization appear loose. Furthermore, ❺ our results only
work with 1-Lipschitz diagonal conditioners such as the
softplus function. Unfortunately, assuming both smooth-
ness and quadratic growth is quite restrictive, as it leaves a
very small number of known distributions. Also, in prac-
tice, non-Lipschitz conditioners such as the exponential
functions are widely used. While obtaining similar bounds
with such conditioners would be challenging, constructing
a theoretical framework that extends to such would be an
important future research direction.
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Gower, R. M., Richtárik, P., and Bach, F. Stochastic
quasi-gradient methods: Variance reduction via Jaco-
bian sketching. Mathematical Programming, 188(1):
135–192, July 2021b. (pages 1, 2, 3)

Hinder, O., Sidford, A., and Sohoni, N. Near-optimal meth-
ods for minimizing star-convex functions and beyond. In
Proceedings of Conference on Learning Theory, volume
125 of PMLR, pp. 1894–1938. ML Research Press, July
2020. (page 5)

Hinton, G. E. and van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the Annual Conference on
Computational Learning Theory, pp. 5–13, Santa Cruz,
California, United States, 1993. ACM Press. (page 2)

Hoffman, M. and Ma, Y. Black-box variational inference
as a parametric approximation to Langevin dynamics. In

Proceedings of the International Conference on Machine
Learning, PMLR, pp. 4324–4341. ML Research Press,
November 2020. (page 9)

Jin, J. On the convergence of first order methods for
quasar-convex optimization. (arXiv:2010.04937), Octo-
ber 2020. (page 5)

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graph-
ical models. Machine Learning, 37(2):183–233, 1999.
(pages 1, 2)

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-Łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases, Lecture
Notes in Computer Science, pp. 795–811, Cham, 2016.
Springer International Publishing. (page 5)
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A. Detailed Comparison Against Domke 2019
Under the assumption that 𝑓H is 𝐿H-smooth and the linear full-rank Cholesky parameterization, under our notation,
(Domke, 2019) prove the following bound:

𝔼‖𝙜𝑀=1‖
2
2 ≤ 𝐿2H ((𝑑 + 1)‖𝒎 − 𝜻H‖

2
2 + (𝑑 + 𝜅)‖𝑪‖2F) .

We extend Domke’s analysis in three original directions.

❶ Generalization to Nonlinear Parameterizations First, we generalize the bounds to support nonlinear parameteriza-
tions. In particular, Lemma 1 and Lemma 2 generalize Lemma 1 of Domke (2019) to 1-Lipschitz nonlinear conditioners.
From here, the analysis becomes identical to Domke’s setup, until we reach our original analysis we discuss in Item ❸.

❷ Tighter Bound for the Mean-Field Parameterization Second, for the mean-field parameterization, we prove a bound
that is tighter in the large 𝑑 regime,

𝔼‖𝙜𝑀=1‖
2
2 ≤ 𝐿2H ((

√
𝑑𝜅 + 𝜅

√
𝑑 + 1)‖𝒎 − 𝜻H‖

2
2 + (2𝜅

√
𝑑 + 1)‖𝑪‖2F) ,

as a direct consequence of Lemma 5.

❸ Connecting with the ABC Condition Furthermore, we extend the bounds above and establish the ABC condition
(Assumption 2) for the ELBO, through the quadratic function growth condition (Definition 11). Specifically, in our proof
of Theorem 1, the derivation past Equation (27) is original.
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B. Additional Simulation Results
B.1. Synthetic Problem

We provide additional results for the simulations with quadratics in Section 4.1.

DKL(𝑞𝝀, 𝑝)
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Iteration

ℎ (𝝀) − ℎ∗
𝐶

1 100 200 300 400 500
104
105
106
107
108
109

Iteration

DKL(𝑞𝝀, 𝑝)
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Linear Cholesky 𝜙 (𝑥) = 𝑥 Matrix Square Root

Theorem 1 Theorem 3 Theorem 1

𝔼‖𝙜‖22 2𝐴 (𝐹 (𝝀) − 𝐹∗) + 𝐵‖∇𝐹‖22 + 𝐶

Figure 3: Evaluation of the bounds for a perfectly conditioned quadratic target. The blue regions are the loosenesses
resulting from either using (Theorem 1) or not using (Theorem 3) the bounded entropy assumption (Assumption 5), while
the red regions are the remaining “technical loosesnesses.” The gradient variance was estimated from 103 samples.

B.2. Real Datasets

We provide detailed information and additional results for the linear regression problem in Section 4.2. The constants for
the linear regression datasets are shown in Table 2, while additional results for the nonlinear Cholesky (Figure 4), linear
Cholesky (Figure 5), nonlinear mean-field (Figure 6), and matrix square root (Figure 7) parameterizations are displayed.

Table 2: Properties of the Linear Regression Datasets

Dataset 𝑑 𝑁 𝐿H 𝜇KL 𝜅cond. ‖𝜻KL − 𝜻H‖
2

2

Constants for Theorem 1

𝐴 𝐶

FERTILITY 9 100 1.840 × 103 5.017 × 102 4 5.167 × 10−9 1.620 × 104 1.313 × 106
PENDULUM 9 630 1.525 × 104 1.897 × 103 8 1.243 × 10−10 2.942 × 105 2.858 × 107
AIRFOIL 5 1,503 3.520 × 104 2.909 × 103 12 2.937 × 10−10 6.815 × 105 3.936 × 107
WINE 11 1,599 5.526 × 104 1.786 × 103 31 6.628 × 10−9 4.787 × 106 6.054 × 108

* 𝑁 is the number of datapoints in the dataset, 𝜅cond. = 𝐿H∕𝜇KL is the condition number.
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Figure 4: Evaluation of Theorem 1 with the nonlinear Cholesky (𝜙 (𝑥) = sof tplus (𝑥)) parameterization on linear
regression datasets. The gradient variance was estimated from 4 × 103 samples.
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Figure 5: Evaluation of Theorem 1 with the linear Cholesky (𝜙 (𝑥) = 𝑥) parameterization on linear regression
datasets. The gradient variance was estimated from 4 × 103 samples.
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Figure 6: Evaluation of Theorem 1 with the nonlinear mean-field (𝜙 (𝑥) = sof tplus (𝑥)) parameterization on linear
regression datasets. The gradient variance was estimated from 4 × 103 samples.
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Figure 7: Evaluation of Theorem 1 matrix square root parameterization on linear regression datasets. The gradient
variance was estimated from 4 × 103 samples.
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C. Proofs
C.1. External Lemmas

Lemma 5 (Domke 2019, Lemma 9). Let 𝙪 =
(𝘶1, 𝘶2,… , 𝘶𝑑) be a 𝑑-dimensional vector-valued ran-
dom variable with zero-mean independently and iden-
tically distributed components. Then,

𝔼𝙪𝙪⊤ =
(
𝔼𝘶2𝑖

)
𝐈

𝔼‖𝙪‖22 = 𝑑 𝔼𝘶2𝑖
𝔼𝙪

(
1 + ‖𝙪‖22

)
=
(
𝔼𝘶3𝑖

)
𝟏

𝔼𝙪𝙪⊤𝙪𝙪⊤ = ((𝑑 − 1)
(
𝔼𝘶2𝑖

)2
+ 𝔼𝘶4𝑖 ) 𝐈.

Lemma 6 (Domke 2019, Lemma 1). Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑

be a location-scale reparameterization function (Defini-
tion 1). Also, let 𝑓 ∶ ℝ𝑑 ↦ ℝ be some differentiable
function. Then,

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2

= ‖∇𝑓 (𝒕𝝀 (𝒖))‖
2
2

(
1 + ‖𝒖‖22

)
.

Lemma 7 (Domke 2019, Lemma 1). Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑

be a location-scale reparameterizaiton function (Defini-
tion 1). Also, let 𝒛 ∈ ℝ𝑑 be some vector and 𝙪 ∼ 𝜑
satisfy Assumption 1. Then,

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22
(
1 + ‖𝙪‖22

)
= (𝑑 + 1) ‖𝒎 − 𝒛‖22 + (𝑑 + 𝜅) ‖𝑪‖2F.

Lemma 8. Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 be a location-scale repa-
rameterizaiton function (Definition 1). Also, let 𝒛 ∈ ℝ𝑑

be some vector, and let 𝙪 ∼ 𝜑 satisfy Assumption 1.
Then,

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22 = ‖𝒎 − 𝒛‖22 + ‖𝑪‖2F.

Proof.

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22 = 𝔼‖𝑪𝙪 +𝒎 − 𝒛‖22
= 𝔼𝙪⊤𝑪⊤𝑪𝙪 + 2𝔼𝙪⊤𝑪⊤𝒎 − 2𝔼𝙪⊤𝑪⊤𝒛

+𝒎⊤𝒎 − 2𝒎⊤𝒛 + 𝒛⊤𝒛. (7)

The first three terms follow as

𝔼𝙪⊤𝑪⊤𝑪𝙪 + 2𝔼𝙪⊤𝑪⊤𝒎 − 2𝔼𝙪⊤𝑪⊤𝒛
= 𝔼tr

(
𝙪⊤𝑪⊤𝑪𝙪

)
+ 2𝔼𝙪⊤𝑪⊤𝒎 − 2𝔼𝙪⊤𝑪⊤𝒛

= tr
(
𝑪⊤𝑪𝔼𝙪𝙪⊤

)
+ 2𝔼𝙪⊤𝑪⊤𝒎 − 2𝔼𝙪⊤𝑪⊤𝒛,

applying Lemma 5,
= tr

(
𝑪⊤𝑪

)

= ‖𝑪‖2F.

Applying this to Equation (7),

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22 = 𝒎⊤𝒎 − 2𝒎⊤𝒛 + 𝒛⊤𝒛 + ‖𝑪‖2F
= ‖𝒎 − 𝒛‖22 + ‖𝑪‖2F.
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C.2. Proof of Key Lemmas

C.2.1. PROOF OF LEMMA 1

Lemma 1. Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 be a location-scale
reparameterization function (Definition 1) with some dif-
ferentiable function 𝑓 ∶ ℝ𝑑 → ℝ. Then, for 𝒈𝑓 ≜
∇𝑓 (𝒕𝝀 (𝒖)),

(i) Mean-Field
‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖

2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝑼𝜱𝒈𝑓 ,

(ii) Cholesky

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝜮𝒈𝑓 + 𝒈⊤𝑓𝑼 (𝜱 − 𝐈)𝒈𝑓 ,

where 𝑼, 𝜱,𝜮 are diagonal matrices, which the diago-
nals are defined as

𝑈𝑖𝑖 = 𝑢2𝑖 , Φ𝑖𝑖 = 𝜙′ (𝑠𝑖)
2, Σ𝑖𝑖 =

∑𝑖
𝑗=1𝑢

2
𝑗 ,

and 𝜙 is a diagonal conditioner for the scale matrix.

Proof. The proof starts by applying the Chain Rule and
then computing the quadratic norm of the gradient as

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2

= (
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

∇𝑓 (𝒕𝝀 (𝒖)))
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀
∇𝑓 (𝒕𝝀 (𝒖))

= ∇𝑓⊤ (𝒕𝝀 (𝒖))(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀
∇𝑓 (𝒕𝝀 (𝒖))

= 𝒈⊤𝑓(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀
𝒈𝑓 . (8)

Naturally, the derivative of the reparameterization function
will depend on the specific parameterization used.

Proof for Cholesky Let 𝑝 denote the number of scalar
variational parameters such that 𝝀 = (𝜆1,… , 𝜆𝑝). Then,

(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀

=
𝑑∑

𝑖=1

𝜕𝒕𝝀 (𝒖)
𝜕𝑚𝑖

(
𝜕𝒕𝝀 (𝒖)
𝜕𝑚𝑖

)
⊤

+
𝑑∑

𝑖=1

𝑑∑

𝑗≤𝑖

𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

(
𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

)
⊤

,

where 𝜆𝐶𝑖𝑗 denote the parameter responsible for the 𝑖𝑗-th
entry of 𝑪, 𝐶𝑖𝑗 . Notice that, unlike for the matrix square
root parameterization (Domke, 2019), the sum for 𝐶𝑖𝑗 is
only over the lower triangular section.

For the derivatives with respect to 𝑚𝑖 and 𝐶𝑖𝑗 , Domke
(2020; 2019) show that

𝜕𝒕𝝀 (𝒖)
𝜕𝑚𝑖

= 𝐞𝑖
𝜕𝒕𝝀 (𝒖)
𝜕𝐶𝑖𝑗

= 𝐞𝑖𝑢𝑗 , (9)

where 𝐞𝑖 is the unit basis of the 𝑖th component.

Therefore,

(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀

=
𝑑∑

𝑖=1
𝐞𝑖𝐞⊤𝑖 +

𝑑∑

𝑖=1

∑

𝑗≤𝑖

𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

(
𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

)
⊤

= 𝐈 +
𝑑∑

𝑖=1

𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑖

(
𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑖

)
⊤

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
diagonal of 𝑪

+
𝑑∑

𝑖=1

∑

𝑗<𝑖

𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

(
𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

)
⊤

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
off-diagonal of 𝑪

, (10)

leaving us with the derivatives of the scale term.

The gradient with respect to 𝜆𝐶𝑖𝑗 , however, depends on the
parameterization. That is,

𝜕𝒕𝝀 (𝒖)
𝜕𝜆𝐶𝑖𝑗

=
𝜕𝒕𝝀 (𝒖)
𝜕𝐶𝑖𝑗

𝜕𝐶𝑖𝑗
𝜕𝜆𝐶𝑖𝑗

= 𝐞𝑖𝑢𝑗
𝜕𝐶𝑖𝑗
𝜕𝜆𝐶𝑖𝑗

. (11)

For the diagonal elements, 𝜆𝐶𝑖𝑖 = 𝑠𝑖 . Thus,

𝜕𝐶𝑖𝑖
𝜕𝑠𝑖

=
𝜕𝜙 (𝑠𝑖)
𝜕𝑠𝑖

= 𝜙′ (𝑠𝑖) . (12)

And for the off-diagonal elements, 𝜆𝐿𝑖𝑗 = 𝐿𝑖𝑗 , and

𝜕𝐶𝑖𝑗
𝜕𝐿𝑖𝑗

= 1. (13)

Plugging Equations (11) to (13) into Equation (10),

(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀

= 𝐈 +
𝑑∑

𝑖=1

(
𝑢𝑖𝜙′ (𝑠𝑖)

)2
𝐞𝑖𝐞⊤𝑖

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
diagonal of 𝑪

+
𝑑∑

𝑖=1

∑

𝑗=1,𝑗<𝑖
𝑢2𝑗 𝐞𝑖𝐞

⊤
𝑖

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
off-diagonal of 𝑪

= 𝐈 +
𝑑∑

𝑖=1
𝑢2𝑖
(
𝜙′ (𝑠𝑖)

)2
𝐞𝑖𝐞⊤𝑖

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
diagonal of 𝑪

+
𝑑∑

𝑖=1

∑

𝑗≤𝑖
𝑢2𝑗 𝐞𝑖𝐞

⊤
𝑖 −

𝑑∑

𝑖=1
𝑢2𝑖 𝐞𝑖𝐞

⊤
𝑖

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
off-diagonal of 𝑪

= 𝐈 + 𝑼 𝜱⏟⏟⏟
diagonal of 𝑪

+ 𝜮 −𝑼⏟⏟⏟
off-diagonal of 𝑪

= (𝐈 + 𝜮) +𝑼 (𝜱 − 𝐈) , (14)
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where 𝑼, 𝜱,𝜮 are diagonal matrices defined as

𝜱 = diag
([
𝜙′ (𝑠1)

2,… , 𝜙′ (𝑠𝑑)
2])

𝑼 = diag
([
𝑢21,… , 𝑢

2
𝑑

])

𝜮 = diag
([
𝑢21, 𝑢

2
1 + 𝑢22, … ,

∑𝑑
𝑖=1 𝑢

2
𝑖

])
.

The major difference with the proof of Domke (2019,
Lemma 8) for the matrix square root case is that we only
sum the 𝑢2𝑗𝐞𝑖𝐞

⊤
𝑖 terms over the lower diagonal elements.

This is the variance reduction effect we get from using the
Cholesky parameterization.

Coming back to Equation (8),

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2

= 𝒈⊤𝑓(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀
𝒈

= 𝒈⊤𝑓
(
(𝐈 + 𝜮) +𝑼 (𝜱 − 𝐈)

)
𝒈𝑓

= ‖𝒈𝑓‖
2
2
+ 𝒈⊤𝑓𝜮𝒈𝑓 + 𝒈⊤𝑓𝑼 (𝜱 − 𝐈)𝒈𝑓 . (15)

Proof for Mean-field For the mean-field variational fam-
ily, the covariance has only diagonal elements. Therefore,
Equation (14) becomes

(
𝜕𝒕𝝀 (𝒖)
𝜕𝝀

)
⊤ 𝜕𝒕𝝀 (𝒖)

𝜕𝝀
= 𝐈 +𝑼𝜱,

and Equation (15) becomes

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 = 𝒈⊤𝑓 (𝐈 +𝑼𝜱)𝒈𝑓 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝑼𝜱𝒈𝑓 .

C.2.2. PROOF OF LEMMA 2

Lemma 2. Let 𝒕𝝀 ∶ ℝ𝑑 → ℝ𝑑 be a location-scale repa-
rameterization function (Definition 1), 𝑓 ∶ ℝ𝑑 → ℝ be
a differentiable function, and let 𝜙 satisfy Assumption 3.

(i) Mean-Field

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 ≤

(
1 + ‖𝑼‖F

)
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2,

where 𝑼 is a diagonal matrix such that 𝑈𝑖𝑖 = 𝑢2𝑖 .
(ii) Cholesky

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 ≤

(
1 + ‖𝒖‖22

)
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2,

where the equality holds for the matrix square root
parameterization.

Proof. The proof continues from the result of Lemma 1.

Proof for Cholesky Lemma 1 shows that

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝜮𝒈𝑓 + 𝒈⊤𝑓𝑼 (𝜱 − 𝐈)𝒈𝑓 ,

where 𝒈𝑓 = ∇𝑓 (𝒕𝝀 (𝒖)).

By the 1-Lipschitz assumption, the entries of the diagonal
matrix Φ satisfy

Φ𝑖𝑖 = 𝜙′ (𝑑𝑖)
2 ≤ 1,

which means

𝜱 ⪯ 𝐈 ⇒ 𝑼 (𝜱 − 𝐈) ⪯ 0 ⇒ 𝒈𝑓⊤𝑼 (𝜱 − 𝐈)𝒈𝑓 ≤ 0.

Therefore, for the full-rank Cholesky parameterization and
a 1-Lipschitz conditioner 𝜙,

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2

= ‖∇𝑓 (𝒕𝝀 (𝒖))‖
2
2 + 𝒈𝑓⊤𝜮𝒈𝑓 + 𝒈𝑓⊤𝑼 (𝜱 − 𝐈)𝒈𝑓

≤ ‖∇𝑓 (𝒕𝝀 (𝒖))‖
2
2 + 𝒈𝑓⊤𝜮𝒈𝑓

≤ ‖∇𝑓 (𝒕𝝀 (𝒖))‖
2
2 + ‖𝜮‖2,2‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2

= ‖∇𝑓 (𝒕𝝀 (𝒖))‖
2
2 +

⎛
⎜
⎝

𝑑∑

𝑖=1
𝑢2𝑖
⎞
⎟
⎠
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2

=
(
1 + ‖𝒖‖22

)
‖∇𝑓 (𝒕𝝀 (𝒖))‖

2
2,

where ‖𝑼‖2,2 is the 𝐿2 operator norm of 𝑼. This upper
bound coincides with that of the matrix square root param-
eteration. Thus, unforunately, this bound fails to acknowl-
edge the lower variance of the Cholesky parameterization,
coinciding with that of the matrix square root parameteri-
zation.
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Proof for Mean-field (Definition 8) For the mean-field
parameterization, Lemma 1 shows that

‖∇𝝀𝑓 (𝒕𝝀 (𝒖))‖
2
2 = ‖𝒈𝑓‖

2
2
+ 𝒈⊤𝑓𝑼𝜱𝒈𝑓 .

For the second term,

𝒈⊤𝑓𝑼𝜱𝒈𝑓 ≤ ‖𝑼‖2,2‖𝜱‖2,2‖𝒈𝑓‖
2
2
.

By the 1-Lipschitzness of 𝜙,

‖𝜱‖2,2 = 𝜎max (𝜱) = max
𝑖=1,…,𝑑

𝜙′ (𝑠𝑖)
2 ≤ 1.

Then,

𝒈⊤𝑓 (𝑼𝜱)𝒈𝑓 ≤ ‖𝑼‖2,2 ‖𝒈𝑓‖
2
2

(16)

≤ ‖𝑼‖F ‖𝒈𝑓‖
2
2
, (17)

which gives the result. Here, unlike the bounds on 𝜱, the
bounds in Equations (16) and (17) are quite loose, and be-
come looser as the dimensionality increases.

C.2.3. PROOF OF LEMMA 3

Lemma 3. Let the assumptions of Lemma 2 hold and
𝙪 ∼ 𝜑 satisfy Assumption 1. Then, for the mean-field
parameterization,

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22
(
1 + ‖𝙐‖F

)

≤
(√

𝑑𝜅 + 𝜅
√
𝑑 + 1

)
‖𝒎 − 𝒛‖22 +

(
2𝜅
√
𝑑 + 1

)
‖𝑪‖2F.

Proof. The key idea is to prove a similar result as Lemma 7,
but with better constants to reflect that the mean-field pa-
rameterization has a lower variance.

First,

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22
(
1 + ‖𝙐‖F

)

= 𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22 + 𝔼‖𝙐‖F ‖𝒕𝝀 (𝙪) − 𝒛‖22,
applying Lemma 8,

= ‖𝒎 − 𝒛‖22 + ‖𝑪‖F + 𝔼‖𝙐‖F ‖𝒕𝝀 (𝙪) − 𝒛‖22. (18)

The last term decomposes as

𝔼‖𝙐‖F‖𝒕𝝀 (𝙪) − 𝒛‖22 = 𝔼‖𝙐‖F 𝙪
⊤𝑪⊤𝑪𝙪

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
Term ❶

+ 2 𝔼‖𝙐‖F 𝙪
⊤𝑪⊤ (𝒎 − 𝒛)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Term ❷

+ 𝔼‖𝙐‖F⏟ ⏟ ⏟
Term ❸

‖𝒎 − 𝒛‖22. (19)

We will now focus on the stochastic terms ❶-❸ one by one.

First, for Term ❶, notice that the mean-field parameteriza-
tion implies that 𝑪 = diag (𝑐1,… , 𝑐𝑑). Thus,

𝔼‖𝙐‖F 𝙪
⊤𝑪⊤𝑪𝙪 = 𝔼

⎛
⎜
⎜
⎝

√
√√√√

𝑑∑

𝑖=1
𝘶4𝑖

⎞
⎟
⎟
⎠

⎛
⎜
⎝

𝑑∑

𝑖=1
𝑐2𝑖 𝑢

2
𝑖

⎞
⎟
⎠

=
𝑑∑

𝑖=1
𝑐2𝑖 𝔼

⎛
⎜
⎜
⎝

√
√√√√

𝑑∑

𝑗=1
𝘶4𝑗

⎞
⎟
⎟
⎠

𝘶2𝑖 ,

applying Cauchy-Schwarz inequality for expectations,

≤
𝑑∑

𝑖=1
𝑐2𝑖

√
√√√√⎛

⎜
⎝
𝔼

𝑑∑

𝑗=1
𝘶4𝑗
⎞
⎟
⎠

(
𝔼𝘶4𝑖

)

and given Assumption 1,

=
𝑑∑

𝑖=1
𝑐2𝑖
√
𝑑𝜅2

= 𝜅
√
𝑑 ‖𝑪‖2F. (20)
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Term ❷ can be bounded as

𝔼‖𝙐‖F 𝙪
⊤𝑪⊤ (𝒎 − 𝒛)

using the Cauchy-Schwarz inequality for vectors as
≤ 𝔼‖𝙐‖F ‖𝑪𝙪‖2‖𝒎 − 𝒛‖2,

again, applying the inequality for expectations,

=
√
𝔼‖𝙐‖2F 𝔼‖𝑪𝙪‖

2
2 ‖𝒎 − 𝒛‖2

=

√
√√√√𝔼

⎛
⎜
⎝

𝑑∑

𝑖=1
𝘶4𝑖
⎞
⎟
⎠
tr (𝑪⊤𝑪 𝔼𝙪𝙪⊤) ‖𝒎 − 𝒛‖2,

from Assumption 1,

=
√
𝑑𝜅 tr (𝑪⊤𝑪) ‖𝒎 − 𝒛‖2

=
√
𝑑𝜅 ‖𝑪‖F ‖𝒎 − 𝒛‖2

=
√
𝑑𝜅

√
‖𝑪‖2F ‖𝒎 − 𝒛‖22,

and by the arithmetic mean-geometric mean inequality,

=
√
𝑑𝜅
2

(
‖𝑪‖2F + ‖𝒎 − 𝒛‖22

)
. (21)

Finally, Term ❸ follows as

𝔼‖𝙐‖F = 𝔼

√
√√√√

𝑑∑

𝑖=1
𝘶4𝑖 ,

using Jensen’s inequality,

≤

√
√√√√𝔼

𝑑∑

𝑖=1
𝘶4𝑖

=
√
𝑑𝜅. (22)

Combining all the results, Equation (18) becomes

𝔼‖𝒕𝝀 (𝙪) − 𝒛‖22
(
1 + ‖𝙐‖F

)

≤ ‖𝒎 − 𝒛‖22 + ‖𝑪‖2F
+ 𝔼‖𝙐‖F 𝙪

⊤𝑪⊤𝑪𝙪

+ 2𝔼‖𝙐‖F 𝙪
⊤𝑪⊤‖𝒎 − 𝒛‖22

+ 𝔼‖𝙐‖F ‖𝒎 − 𝒛‖22
and applying Equations (20) to (22),

≤ ‖𝒎 − 𝒛‖22 + ‖𝑪‖2F
+ 𝜅

√
𝑑‖𝑪‖F

+ 𝜅
√
𝑑
(
‖𝑪‖2F + ‖𝒎 − 𝒛‖22

)

+
√
𝑑𝜅 ‖𝒎 − 𝒛‖22

=
(√

𝑑𝜅 + 𝜅
√
𝑑 + 1

)
‖𝒎 − 𝒛‖22 +

(
2𝜅
√
𝑑 + 1

)
‖𝑪‖2F.

C.2.4. PROOF OF LEMMA 4

Lemma 4. Let 𝒈𝑀 be the 𝑀-sample gradient estimator
of 𝐹 (Definition 4) for some function 𝑓, ℎ and let 𝙪 be
some random variable. Then,

𝔼‖𝙜𝑀‖
2
2 ≤

1
𝑀𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 + ‖∇𝐹 (𝝀)‖22.

Proof. From the definition of variance,

𝔼‖𝒈𝑀‖
2
2

= tr𝕍 [𝒈𝑀] + ‖𝔼𝒈𝑀‖
2
2,

following the definition in Equation (4),

= tr𝕍
⎡
⎢
⎣

1
𝑀

𝑀∑

𝑚=1
𝒈𝑚

⎤
⎥
⎦
+ ‖∇𝐹 (𝝀)‖22,

and then the definition in Equation (5),

= tr𝕍
⎡
⎢
⎣

1
𝑀

𝑀∑

𝑚=1
∇𝝀𝑓 (𝒕𝝀 (𝙪𝑚)) + ∇ℎ (𝝀)

⎤
⎥
⎦
+ ‖∇𝐹 (𝝀)‖22,

by the linearity of variance,

= 1
𝑀 tr𝕍 [∇𝝀𝑓 (𝒕𝝀 (𝙪))] + ‖∇𝐹 (𝝀)‖22

= 1
𝑀

(
𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 − ‖𝔼∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2

)

+ ‖∇𝐹 (𝝀)‖22 (23)

≤ 1
𝑀𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 + ‖∇𝐹 (𝝀)‖22.
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C.3. Proof of Theorems

C.3.1. PROOF OF THEOREM 1

Theorem 1. Let 𝙜𝑀 be an𝑀-sample estimate of the gra-
dient of the ELBO in entropy regularized form (Defini-
tion 5). Also, assume that Assumption 3 and 4 hold,

• 𝑓H is 𝐿H-smooth, and

• 𝑓KL is 𝜇KL-quadratically growing.

Then,

𝔼‖𝙜𝑀‖
2
2 ≤

4𝐿2H
𝜇KL𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2H
𝑀 𝐶 (𝑑, 𝜅) ‖𝜻KL − 𝜻H‖

2

2

+
4𝐿2H
𝜇KL𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗KL

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky and matrix square root,

𝜁KL, 𝜁H are the stationary points of 𝑓KL, 𝑓H, respec-
tively, 𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗KL = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof. The proof uses the 𝐿H-smoothness of 𝑓H such that

𝔼‖∇𝑓H (𝒕𝝀 (𝙪))‖
2
2 = 𝔼‖∇𝑓H (𝒕𝝀 (𝙪)) − ∇𝑓H

(
𝜻H
)
‖
2
2

≤ 𝐿2H𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2, (24)

where 𝜻H is a stationary point of 𝑓H such that ∇𝑓H
(
𝜻H
)
=

𝟎. These steps have been previously used by Domke (2019,
Theorem 3) to prove the special case for the matrix square
root parameterization.

For the mean-field parameterization, we start from
Lemma 2 and apply Equation (24) as

𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2

≤ 𝔼‖∇𝑓H (𝒕𝝀 (𝙪))‖
2
2
(
1 + ‖𝙐‖F

)

≤ 𝐿2H 𝔼‖𝒕𝝀 (𝙪) + 𝜻H‖
2
2
(
1 + ‖𝙐‖F

)
,

applying Lemma 3,

≤ 𝐿2H
(
𝜅
√
𝑑 +

√
𝜅𝑑 + 1

)
‖𝒎 − 𝜻H‖

2
2

+ 𝐿2H
(
2𝜅
√
𝑑 + 1

)
‖𝑪‖2F,

and since the kurtosis satisfies 𝜅 ≥ 1 and thus 𝜅 ≥
√
𝜅,

≤ 𝐿2H
(
2𝜅
√
𝑑 + 1

)
(‖𝒎 − 𝜻H‖

2
2 + ‖𝑪‖2F) . (25)

Similarly, for the full-rank parameterizations, we start from

Lemma 2 and apply Equation (24) as

𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2 (26)

≤ 𝔼‖∇𝑓H (𝒕𝝀 (𝙪))‖
2
2

(
1 + ‖𝙪‖22

)
,

≤ 𝐿2H 𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2

(
1 + ‖𝙪‖22

)
,

applying Lemma 7,

= 𝐿2H ((𝑑 + 1) ‖𝒎 − 𝜻H‖
2
2 + (𝑑 + 𝜅) ‖𝑪‖2F) ,

and since the kurtosis satisfies 𝜅 ≥ 1,

≤ 𝐿2H (𝑑 + 𝜅) (‖𝒎 − 𝜻H‖
2
2 + ‖𝑪‖2F) . (27)

Both Equations (25) and (27) can now be denoted as

𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2 ≤ 𝐿2H 𝐶 (𝑑, 𝜅) (‖𝒎 − 𝜻H‖

2
2 + ‖𝑪‖2F) ,

where by Lemma 8,

= 𝐿2H 𝐶 (𝑑, 𝜅)𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2, (28)

and the constants are 𝐶 (𝑑, 𝜅) = 𝜅
√
𝑑 + 1 for mean-field

and 𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the full-rank parameterizations.

As mentioned in the sketch, it is necessary to convert
the entropy-regularized form into the KL-regularized form
through the following inequality:

𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 ≤ 2𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖

2
2 + 2 ‖𝜻KL − 𝜻H‖

2
2.

where 𝜻KL = Π𝑓KL
(
𝜻H
)

is a projection of 𝜻H to the set of
minimizers of 𝑓KL. Note that the KL-regularized form does
not need to be tractable; only its existence suffices. We can
now apply the quadratic growth assumption as

𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖
2
2 ≤

2
𝜇KL

(
𝔼𝑓KL (𝒕𝝀 (𝙪)) − 𝑓∗KL

)

= 2
𝜇KL

(
𝐹 (𝝀) − ℎKL (𝝀) − 𝑓∗KL

)
,

and since −ℎKL (𝝀) = −DKL(𝑞𝝀, 𝑝) ≤ 0 by definition,

≤ 2
𝜇KL

(
𝐹 (𝝀) − 𝑓∗KL

)
(29)

= 2
𝜇KL

(
(𝐹 (𝝀) − 𝐹∗) +

(
𝐹∗ − 𝑓∗KL

))
.

(30)

Combining Equation (28) with Equation (6),

𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2

≤ 2𝐿2H 𝐶 (𝑑, 𝜅)𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 + 2 𝐿2H 𝐶 (𝑑, 𝜅) ‖𝜻KL − 𝜻H‖

2
2,

and applying Equation (30),

≤
4𝐿2H
𝜇KL

𝐶 (𝑑, 𝜅)
(
(𝐹 (𝝀) − 𝐹∗) +

(
𝐹∗ − 𝑓∗KL

))

+ 2 𝐿2H 𝐶 (𝑑, 𝜅) ‖𝜻KL − 𝜻H‖
2
2
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Plugging this into Lemma 4 yields the result. C.3.2. PROOF OF THEOREM 2

Theorem 2. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in KL-regularized form (Defini-
tion 6). Also, assume that

• 𝑓KL is 𝐿KL-smooth,

• 𝑓KL is 𝜇KL-quadratically growing,

and Assumption 3 and 4 hold. Then, the gradient vari-
ance is bounded above as

𝔼‖𝙜𝑀‖
2
2 ≤

2𝐿2KL
𝜇KL𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2KL
𝜇KL𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗KL

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky and matrix square root,

𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗KL = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof. This proof uses the smoothness of 𝑓KL instead of
𝑓H. That is,

𝔼‖∇𝑓KL (𝒕𝝀 (𝙪))‖
2
2 = 𝔼‖∇𝑓KL (𝒕𝝀 (𝙪)) − ∇𝑓KL

(
𝜻KL

)
‖
2
2

applying Equation (24),

≤ 𝐿2KL 𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖
2
2, (31)

where 𝜻KL is a stationary point of 𝑓KL.

Substituting Equation (31) in Equation (28),

𝔼‖∇𝝀𝑓KL (𝒕𝝀 (𝙪))‖
2
2

≤ 𝐿2KL𝐶 (𝑑, 𝜅)𝔼‖𝒕𝝀 (𝙪) − 𝜻KL‖
2
2,

and by applying Equation (30) for 𝑓KL,

=
2𝐿2KL
𝜇KL

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) +
2𝐿2KL
𝜇KL

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗KL

)
.

Plugging this to Lemma 4 proves the result.
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C.3.3. PROOF OF THEOREM 3

Theorem 3. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in entropy-regularized form (Defi-
nition 5). Also, assume that

• 𝑓H is 𝐿H-smooth,

• 𝑓H is 𝜇H-quadratically growing,

• ℎH is bounded as ℎH (𝝀) > ℎ∗H (Assumption 5),

and Assumption 3 and 4 hold. Then, the gradient vari-
ance of 𝒈𝑀 is bounded above as

𝔼‖𝙜𝑀‖
2
2 ≤

2𝐿2H
𝜇H𝑀

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝐿2H
𝜇H𝑀

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗H − ℎ∗H

)
,

where

𝐶 (𝑑, 𝜅) = 2𝜅
√
𝑑 + 1 for mean-field,

𝐶 (𝑑, 𝜅) = 𝑑 + 𝜅 for the Cholesky parameterization,

𝐹∗ = inf𝝀∈ℝ𝑝 𝐹 (𝝀), and 𝑓∗H = inf 𝜻∈ℝ𝑑 𝑓 (𝜁).

Proof. The proof is similar to that of Theorem 1. As men-
tioned in the proof sketch, we use the fact that the entropic
regularizer is bounded such that

−ℎH (𝝀) < −ℎ∗H.

By applying the quadratic growth assumption directly to
𝑓H,

𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2 ≤

2
𝜇H

(
𝔼𝑓H (𝒕𝝀 (𝙪)) − 𝑓∗H

)

= 2
𝜇H

(
𝐹 (𝝀) − ℎH (𝝀) − 𝑓∗H

)
,

and by Assumption 5,

≤ 2
𝜇H

(𝐹 (𝝀) − 𝐹∗) +
2
𝜇H

(
𝐹∗ − 𝑓∗H − ℎ∗H

)
.

(32)

The proof resumes from Equation (28) as

𝔼‖∇𝝀𝑓H (𝒕𝝀 (𝙪))‖
2
2

≤ 𝐿2H𝐶 (𝑑, 𝜅)𝔼‖𝒕𝝀 (𝙪) − 𝜻H‖
2
2,

and by applying Equation (32),

=
2𝐿2H
𝜇H

𝐶 (𝑑, 𝜅) (𝐹 (𝝀) − 𝐹∗) +
2𝐿2H
𝜇H

𝐶 (𝑑, 𝜅)
(
𝐹∗ − 𝑓∗H − ℎ∗H

)
.

Plugging this to Lemma 4 proves the result.

C.3.4. PROOF OF THEOREM 4

Theorem 4. Let 𝙜𝑀 be an 𝑀-sample estimator of the
gradient of the ELBO in either the entropy- or KL-
regularized form. Also, let Assumption 4 hold where
the matrix square root parameterization is used. Then,
for all 𝐿-smooth and 𝜇-strongly convex functions 𝑓 such
that 𝐿∕𝜇 <

√
𝑑 + 1, the variance of 𝙜𝑀 is bounded below

by some strictly positive constant as

𝔼‖𝙜𝑀‖
2
2 ≥

2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝔼𝑓 (𝒕𝝀∗ (𝒖)) − 𝑓∗) ,

as long as 𝝀 is in a local neighborhood around the
unique global optimum 𝝀∗ = argmin𝝀∈ℝ𝑝 𝐹 (𝝀), where
𝐹∗ = 𝐹 (𝝀∗) and 𝑓∗ = argmin𝜻∈ℝ𝑑 𝑓 (𝜻 ).

Proof. When using the matrix square root parameteriza-
tion, Domke (2020) have shown that if 𝑓 is 𝐿-smooth,
𝔼𝑓 (𝒕𝝀 (𝙪)) is also 𝐿-smooth. Therefore, we have

‖𝔼∇𝝀𝑓 (𝒕𝝀 (𝙪))‖
2
2 ≤ 2𝐿 (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗) . (33)

Furthermore, let 𝜻 be the minimizer of 𝑓, namely 𝑓∗ =
𝑓
(
𝜻
)
. From Lemma 6, we have

𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖
2
2 = 𝔼‖∇𝑓 (𝒕𝝀 (𝙪))‖

2
2

(
1 + ‖𝙪‖22

)
,

by the 𝜇-strong convexity of 𝑓,

≥ 2𝜇𝔼(𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗)
(
1 + ‖𝙪‖22

)

≥ 𝜇2 𝔼‖𝒕𝝀 (𝙪) − 𝜻 ‖
2
2

(
1 + ‖𝙪‖22

)
,

applying Lemma 7,

= 𝜇2 ((𝑑 + 1) ‖𝒎 − 𝜻 ‖
2
2 + (𝑑 + 𝜅) ‖𝑪‖2F) ,

and by the property of the kurtosis that 𝜅 ≥ 1,

≥ 𝜇2 (𝑑 + 1) ‖𝝀 − �̄�‖22,

where �̄� =
(
𝜻 ,𝐎

)
.

Observe that �̄� is the minimizer of 𝔼𝑓 (𝒕𝝀 (𝙪)) such that

𝔼𝑓 (𝒕�̄� (𝙪)) = 𝑓
(
𝜻
)
= 𝑓∗ ≤ 𝔼𝑓 (𝒕𝝀 (𝙪))

for any 𝝀. Furthermore, from the 𝐿-smoothness of
𝔼𝑓 (𝒕𝝀 (𝙪)), we have

𝜇2 (𝑑 + 1) ‖𝝀 − �̄�‖22

≥
2𝜇2 (𝑑 + 1)

𝐿 (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝔼𝑓 (𝒕�̄� (𝙪))) .
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Thus, we have

𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖
2
2 ≥

2𝜇2 (𝑑 + 1)
𝐿 (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗) .

(34)

Now, from Equation (23),

𝔼‖𝒈𝑀‖
2
2 =

1
𝑀

(
𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 − ‖𝔼∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2

)

+ ‖∇𝐹 (𝝀)‖22,
applying Equation (33),

≥ 1
𝑀

(
𝔼‖∇𝝀𝑓 (𝒕𝝀 (𝙪))‖

2
2 − 2𝐿2 (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗)

)

+ ‖∇𝐹 (𝝀)‖22
applying Equation (34),

≥
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝔼𝑓 (𝒕𝝀 (𝙪)) − 𝑓∗)

+ ‖∇𝐹 (𝝀)‖22

≥
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹 (𝝀) − ℎ (𝝀) − 𝑓∗)

+ ‖∇𝐹 (𝝀)‖22

=
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹 (𝝀) − 𝐹∗) + ‖∇𝐹 (𝝀)‖22

+
2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹∗ − 𝑓∗ − ℎ (𝝀)) .

The last term

2𝜇2 (𝑑 + 1) − 2𝐿2

𝑀𝐿 (𝐹∗ − 𝑓∗ − ℎ (𝝀))

can be shown to be positive if 𝝀 is sufficiently close to the
optimum. Let 𝝀∗ = argmin𝝀 𝐹 (𝝀) be the minimizer of 𝐹.
Then, we have

𝐹∗ − 𝑓∗ − ℎ (𝝀) = 𝔼𝑓 (𝒕𝝀∗ (𝒖)) + ℎ (𝝀∗) − 𝑓∗ − ℎ (𝝀)
= (𝔼𝑓 (𝒕𝝀∗ (𝒖)) − 𝑓∗) + (ℎ (𝝀∗) − ℎ (𝝀)) ,

where the first term is strictly positive and the second term
goes to zero as 𝝀→ 𝝀∗.
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