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Abstract

The acquisition of training data is crucial for machine learning applications. Data
markets can increase the supply of data, particularly in data-scarce domains such
as healthcare, by incentivizing potential data providers to join the market. A major
challenge for a data buyer in such a market is choosing the most valuable data points
from a data seller. Unlike prior work in data valuation, which assumes centralized
data access, we propose a federated approach to the data acquisition problem that
is inspired by linear experimental design. Our proposed data acquisition method
achieves lower prediction error without requiring labeled validation data and can
be optimized in a fast and federated procedure. The key insight of our work is that
a method that directly estimates the benefit of acquiring data for test set prediction
is particularly compatible with a decentralized market setting.

1 Introduction

While massive training datasets enable major machine learning breakthroughs, they remain largely
inaccessible outside of large companies, motivating mechanisms for broader data access. A related
point is that many data owners have become resistant to having their data collected indiscriminately
without their consent or without their participation in the fruits of predictive modeling, resulting in
legal challenges against prominent AI companies [16, 33]. These trends motivate the study of data
marketplaces, which aim to incentivize data sharing between sellers, that provide access to data, and
buyers, that pay compensation for data access [11, 1, 54].

For practical data acquisition scenarios, a data buyer has a specific goal in mind and, in particular,
wants training data to predict their test data in a specified context. Accessing different datapoints may
require varying prices associated with each datapoint, which may reflect heterogeneous cost, quality,
or privacy levels for each datapoint [44, 40].

For example, consider a hospital that wants to make a prediction for a specific patient’s X-ray. The
hospital can submit this X-ray as an unlabeled test query to the marketplace, along with a budget to
access relevant training data. The marketplace selects useful training data to build a model for this
specific prediction task, sharing only the final prediction rather than the raw data to protect privacy.
This process can be repeated for each new patient query (see Figure 1). However, not all X-ray
images will be equally relevant. Thus, we want to select only those seller datapoints that are most
useful for answering the buyer’s query and fit the buyer’s budget.

This goal of data acquisition has motivated the development of many data-valuation techniques
(e.g., [23, 29, 38, 60, 52, 39, 57, 46, 30]). However, we argue that current data valuation techniques
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Figure 1: Overview of Data Marketplace Approach. A buyer brings their test query (e.g., a
patient’s chest X-ray needing diagnosis) and a budget to the marketplace. DAVED selects the most
relevant subset of seller training data to minimize prediction error on the buyer’s specified test
query while respecting budget constraints. Unlike prior methods that require labeled validation data,
DAVED directly optimizes for test performance. This enables targeted, cost-effective data acquisition
compared to purchasing entire datasets.

are misaligned with the data acquisition problem, particularly in the context of data marketplaces.
They all face at least one of the following limitations:

• The selection process may not be adaptive to the buyer’s (unlabeled) test queries, potentially
failing to identify the most relevant data. In a data marketplace, buyers typically need to
purchase only a small subset of datapoints most relevant to their test data, which may follow
a significantly different distribution than the overall seller data.

• When adaptive selection is implemented, these techniques rely on labeled validation data,
which is often impractical. Further, when a small quantity of such data is available, the
selection may overfit the validation data and result in poor performance on the test queries.

• The algorithms are not scalable and typically require retraining the ML model numerous
times. Hence, they are unable to select from realistic seller corpora (>100K+ datapoints).

Instead, we propose data acquisition via experimental design (DAVED) method that overcomes all
of these limitations. Unlike most previous work in data valuation, our approach does not require a
labeled validation dataset and instead directly optimizes data selection for the buyer’s unlabeled test
queries.

Additionally, our approach accounts for budget constraints and is able to weigh the price of each
seller’s datapoint against its potential benefit, simultaneously solving the budget and revenue al-
location problems [64]. Moreover, it can be implemented in a federated manner, achieving lower
prediction error even compared to centralized baselines.

Our contributions are the following:

1. Formulate the data acquisition problem for data marketplaces and demonstrate that data
valuation methods make a fundamental theoretical mistake of “inference after selection”
(Theorem 1).

2. Design a novel, highly scalable, and distributed data selection procedure that eliminates the
need for validation data by directly selecting the most cost-effective seller data to answer
the buyer’s test queries (Algorithm 1).

3. Demonstrate state-of-the-art performance on synthetic data and medical data in various
modalities (X-rays, images, and text).
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Figure 2: Failures of Current Validation-based Data Valuation Methods. Current data valuation
methods overfit when data dimensionality is high or validation sets are small. Using 1,000 seller
datapoints (each with cost 1) of Gaussian distributed data, we compare test error across methods as
buyers acquire data under different budgets. (Left) Validation-based data valuation methods overfit
when the data is too high dimensional (d = 30). (Right) Even with low-dimensional data (d = 10),
overfitting occurs when the validation set is too small (n = 10), resulting in worse performance
than random selection. Our validation-free method (DAVED) method maintains low error in both
scenarios.

2 Data Acquisition versus Data Valuation

In a decentralized data marketplace, data acquisition must be performed before full data access is
granted to the buyer [36]. This relates to Arrow’s Information Paradox [7] — sellers are unwilling to
share data before payment, while buyers need to evaluate utility before purchasing. This distinction
between data valuation and data acquisition for data marketplaces is also discussed in a recent data
acquisition benchmark, where data value must be estimated without requiring white-box access to
the seller’s data (i.e., full, unrestricted access to the data) [12].

A more fundamental issue with validation-based data valuation approaches is exemplified by the
Data Shapley value approach [23, 29, 38, etc.], which measures the marginal contribution of each
training datapoint’s improvement to a validation metric. They are great for after-the-fact attributing
the relative influence of the training data. However, they cannot be used to make decisions about
which datapoints should be included in the training. This is because of, as noted earlier, the “inference
after selection” issue. Using validation data to select training data leads to substantial over-fitting to
the validation data.

Illustrative example: Suppose that we only have a single validation datapoint. Then, it is clear that we
will select training data similar to this singular datapoint, and our selection has no hope of working
on the test dataset. While this clearly demonstrates overfitting in an extreme scenario, we show in
Figure 2 that increasing the validation set size does not circumvent this issue. We see that other data
valuation techniques have poor test prediction errors—some techniques even underperform even a
random selection baseline! This clearly demonstrates overfitting. Our proposed method maintains
low test error as more seller training data is selected. In Section 3, we will dig in deeper into this
phenomenon and prove a very strong theoretical lower bound. We show that any approach that relies
upon validation data for data selection can perform as badly as throwing away all the training data
and simply training on the validation data alone! This is especially true when our budget is small
compared to the dimensionality of the problem, as is likely in a data market setting — the data is
typically high dimensional, and we can only select a very small fraction of the total available data.

3 Setup and Limitations of Prior Methods

Description of Data Acquisition Setting. As shown in Figure 1, in our setting of data acquisition, a
buyer has a budget and test data. The platform uses the buyer’s data to select training datapoints from
the seller that optimize buyer test error. The interaction proceeds as follows:

1. The buyer brings their test data Xtest = [xtest
1 , . . . , xtest

m ] and a budget B to the market
platform. This test data is associated with unknown target labels Y test = [ytest1 , . . . , ytestm ].
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2. The platform also has access to n datapoints from data sellers Ztrain = {(xj , yj)}j=1,...,n

and their associated costs {cj}j=1,...,n.

3. Given only the covariates Xtest, the platform assigns a selection weight wj to each datapoint
(xj , yj). This weight wj ∈ {0, 1} represents the discrete action of selecting datapoint j.

4. The platform selects datapoints from the sellers according to w = (w1, . . . , wn), trains a
model fθ̂(w), makes the predictions fθ̂(w)(X

test), and distributes cj · wj payment for each
datapoint used in training.

In general, we do not make i.i.d assumptions between the train and test - we expect the test queries will
not be similar to the total available train data. The goal then is to pick the weights w, which minimizes
the prediction error for the buyer while adhering to their budget constraint

∑n
j=1 wjcj ≤ B. This

gives rise to the following problem:

min
w∈{0,1}n

L(w) :=
1

m

m∑
i=1

E
[
l
(
fθ̂(w)(x

test
i ), ytesti

)]
s.t.

n∑
j=1

wjcj ≤ B, (1)

where l is squared loss. Here, the expectation is over the conditional label distribution of ytesti |xtest
i ,

and the potential randomness of the algorithm. Note that this problem can not be solved because
we do not know the targets Y test. Instead, we need to rely on a surrogate objective function (proxy)
L̂(w). One approach to constructing such a proxy is by using validation data.

Folly of Relying on Validation Data. In most data valuation methods, e.g., Data Shapley [23], the
value of data is evaluated using a labeled validation set Zval = {(xval

j , yvalj )}nval
j=1. Implicitly, these

methods assume that the known Zval is drawn from the same distribution as the unknown Ztest. Then
using this validation data, scores (s1, . . . , sn) are assigned to the seller training datapoints Ztrain.
For two datapoints i, j ∈ train, the score si > sj if the datapoint i is more valuable than j [46, 30].
More concretely, si > sj implies that training with i would lead to a smaller validation loss than if j
was used instead. Thus, these scores can used to select the most valuable datapoints.

However, note that we used the validation dataset to compute the scores. Thus, selecting the top-k
scores results in implicitly minimizing the validation loss i.e., all validation-based data valuation
schemes implicitly optimize the following proxy loss

min
w∈{0,1}n

L̂val(w) :=

nval∑
j=1

l
(
fθ̂(w)(x

val
j ), yvalj

)
s.t.

n∑
j=1

wjcj ≤ B. (2)

This approach heavily relies on the quantity and quality of the validation dataset in order to generalize
to the actual test dataset. In fact, we have the following minimax lower bound even when restricting
ourselves to simple linear models.

Theorem 1 (Informal version of Theorem A.1). Let w∗ denote the solution of our original
problem (1) and ŵ solve (2). Suppose that all our data Ztrain, Zval, Ztest are drawn i.i.d. from
some distribution DX,Y where DX is supported on Bd

R (zero-centered ball with radius R in
Rd), and Y = θ⊤X + ε where ε is independent zero-meaned noise with variance σ2. For any
training algorithm, when the number of training data is sufficiently large, with high probability,

inf
θ̂

sup
DY |X

EXtest [L(ŵ)− L(w∗)] ≳
σ2d

nval
.

This result implies that the expected test error for any validation-based approach can in the worst-case
scale as d/nval with high probability. This dependence on the dimension d and the number of
validation points nval highlights that this method may be suboptimal in high-dimensional settings
or when the validation dataset is small. In fact, we would get the same error scaling if we threw
away the training data and trained a model θ̂ on the nval validation datapoints alone. This explains
the striking overfitting we observed earlier in Figure 2. Furthermore, obtaining a large amount of
ground-truth labeled data may be challenging in many real-world applications. Instead, we propose a
validation-free approach to data acquisition based on experimental design.
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4 Our Methods and Implementations

We propose an alternative approach based on a proxy objective. Our key assumption is that the
conditional distribution Dy|x: y = fθ∗(x) + ϵ is identical across Ztrain and Ztest. This is a natural
assumption in many domains — for instance, if an X-ray exhibits indicators of a specific disease, it
should receive the same diagnosis regardless of whether it appears in the training or test set. Without
this assumption, our problem becomes intractable since the same xj could map to arbitrarily different
labels across train and test sets. Under this framework, we can reformulate our problem using
V-optimal experiment design [47].

Step 1: Linearizing the problem. Our goal is to design a proxy loss function L̂(w) which
approximates the true test loss L(w). To do this, we have to reason about how different choices of
training data S ⊂ Ztrain could impact the prediction on a particular test datapoint in Xtest. This is
a notoriously challenging problem for general deep learning models [9]. Instead, we use a linear
approximation and model the complicated training dynamics with kernelized linear regression. We
suppose we have a known feature-extractor ϕ : X → Rd0 and an unknown θ∗ ∈ Rd0 such that the
data is generated as

y = θ∗⊤ϕ(x) + ε , (3)
where ε is independent noise with mean zero and d0 is the embedding dimensionality. The function
ϕ(·) can be the empirical Neural Tangent Kernel (eNTK) [27, 41, 58] of the model, or even the
embeddings extracted from a deep neural network such as CLIP [49]. While this may be a bad
approximation in general [61], a recent line of work has shown that such eNTK representation very
closely approximates the fine-tuning dynamics of pre-trained models both theoretically [58, 42] as
well as emperically [22, 63]. In fact, such linear approximations have also been used to speed up
validation-based data attribution computations [46].

Step 2: Experimental design proxy. Given the assumption on our data from Eqn. (3), we can use the
V-optimal experiment design framework [51, 47, 26] to define a proxy objective. First, suppose that
S ⊆ (ϕ(Xtrain), Y train) is the subset selected by w and then we performed least-squares regression.
The resulting estimate θ̂(w) can be computed in closed form as

θ̂(w) =
(∑n

j=1 wjϕ(xj)ϕ(xj)
⊤)†(∑n

j=1 wjϕ(xj)yj) .

Henceforth, we will drop the ϕ when obvious from context and simply use x. We can further use
Eqn. (3) to compute the expected error on an arbitrary test query x0, y0 as follows:

E[(θ̂(w)⊤x0 − y)2|Xtrain, x0]
a1= E[

(
(θ̂(w)− θ∗)⊤x0 + ε

)2
]

a2= x⊤
0 E[(θ̂(w)− θ∗)(θ̂(w)− θ∗)⊤]x0 + E∥ε∥2

a3= x⊤
0 E[θ̂(w)θ̂(w)⊤]x0 + E∥ε∥2

a4= x⊤
0

(∑n
j=1 wjxjx

⊤
j︸ ︷︷ ︸

=:I(w)

)†
x0 + E∥ε∥2

Here a3 uses the unbiasedness of the ordinary least squares (OLS) estimator and a4 plugs in the
closed form of θ̂(w) and simplifies. With this, we end up with a very clean expression for the
expected test error on an arbitrary point x0, and the matrix I(w) is known as the Fisher information
matrix. While regression suffices for our use case, the procedure can be extended to general linear
models. Dropping the fixed E∥ε∥2, we can use this to build our proxy function L̂ED(w) and arrive
at the following optimization problem

min
w∈{0,1}n

{
L̂ED(w) := 1/m

∑m
i=1(x

test
i )⊤I(w)†(xtest

i )
}

s.t.
∑n

j=1 wjcj ≤ B. (4)

This optimization objective directly measures how useful each training point would be for predicting
the specified test query. The matrix I(w) captures how much information each selected datapoint
provides about the test point in the embedded feature space.

Note that our proxy function L̂ED(w) can be computed using just Xtrain, Xtest and does not even
need access to training labels. Unfortunately, the objective in (4) is NP-hard to optimize [4]. We next
see how to derive fast and provably good approximation algorithms for (4).
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Step 3: Fast approximation. To make Eq. 4 amenable to gradient-based optimization, we
drop the constraint that wj ∈ {0, 1} and allow it to be a continuous positive vector i.e., w ≥
0 and

∑n
j=1 wjcj ≤ B. With this relaxation, the proxy objective L̂ED(w) is continuous and convex

in w [10]. We then run the “herding” variant of the Frank-Wolfe algorithm [59, 37, 53, 8, 65]. To do
this, define (w̃t := wt/c) for any t. We start from a w̃0 = e0 and iteratively update as2

w̃t+1 ← (1− αt)w̃t + αtejt , where jt = argmax
j∈[n]

(−∇wj L̂(wt)/cj) (5)

Note that if we use the step-size αt =
1

t+1 in (5), wt satisfies a special property at any iteration t:

w̃t ∈ ∆n and further (t+ 1)w̃t ∈ {0, 1}n .
Run the procedure until the last iteration t = to for which we still have ∥wt0∥1 ≤ B. We can adapt
the theory from [8, 28] to analyze the above procedure and show the following.

Theorem 2 (Informal). Let us run Frank-Wolfe herding update (5) for t0 steps such that it is
last step which satisfies ∥wt0∥1 ≤ B. We use w̃t0 = ((t0 + 1)wt0/c) as our selection vector
and we would have selected t0 datapoints. Then, under some assumptions, we have

L̂ED
(
(t+ 1)w̃t0

)
≤ min

w∈{0,1}n,
∑n

j=1 wjcj≤B
L̂ED(w) +O

(
log t0
t0

)
.

The above theorem shows that our continuous relaxation does not significantly affect the optimality
of our result — we get O( log t0

t0
) close to the optimal solution to the original NP-hard (4). If all

datapoints have equal cost c, then t0 = ⌊B/c⌋, and so our approximation quality improves as we
increase the budget. While better approximation guarantees are attainable [3], their procedure is
significantly more involved and is not easily amenable to efficient federated implementations as ours
is.

Step 4: Efficient federated implementation. Our practical implementation directly restricts w ∈ ∆n

instead of w̃ in the theoretical implementation above i.e., we run

wt+1 ← (1− αt)wt + αtejt , where jt = argmax
j∈[n]

(−∇wj
L̂(wt)/cj) (6)

This way w can be directly interpreted to be the sampling probability for different seller training
datapoints. The bottleneck to efficiently implementing (6) is computing the gradient. At step t, the
negative gradient can be shown to be

gj := −∇wj L̂(wt) = 1/m
∑m

i=1

(
(xtest

i )⊤I(wt)
†(xtrain

j )
)2

. (7)

Thus, if we have the inverse information matrix I(wt)
† pre-computed, gj as well as the update (6)

can be trivially computed by seller j using only their data xtrain
j (and the test data). Next, we show

how to efficiently maintain the inverse information matrix. Note that the update (6) has a special
structure: all coordinates are shrunk, and then only a single coordinate of wt is increased. We can
relate the resulting I matrices with a rank-one update as:

I(wt+1) = (1− αt)I(wt) + αtxjtx
⊤
jt .

Define Pt := I(wt)
†. We can use the Sherman–Morrison formula [50] to compute Pt+1 = I(wt+1)

†

as

Pt+1 =
1

1− αt
Pt −

αtPtxjtx
⊤
jt
Pt

1− αt + αtx⊤
jt
Ptxjt

. (8)

For each round t, this update only involves the current matrix Pt = I(wt)
† and the single datapoint

xjt selected for the round. Thus, the seller can also locally compute this update as well as the updated
cost L̂(w) as in Eq. (4) for any αt:

L̂(w) = 1
m(1−αt)

∑m
i=1

(
xi

⊤ Pt xi

)
− αt

1+αtx⊤
jt
Ptxjt

∑m
i=1

(
xi

⊤Pt xjt

)2
(9)

2Here, ej is the standard basis vector along axis j, and in w̃ := w/c, the division is performed element-wise.
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Algorithm 1 DAVED: Iterative Optimization Procedure
1: Input: buyer test datapoint Xtest ∈ Rm×d, seller training data X ∈ Rn×d, seller weights

w ∈ ∆n, iteration steps T , regularization parameter λReg ∈ [0, 1], and seller datapoint costs
c ∈ Rn

+
2: w0 ← 1/n # Initialize weight vector to uniform distribution
3: P0 ←

(
(1− λReg)X

⊤ diag(w0) X + λReg · σXIn×n

)−1
# Initialize P (Eq. 10)

4: for t ∈ {1, 2, . . . , T} do
5: g ← −∇L̂(wt) # Compute negative gradients (Eq. 7)
6: jt ← argmaxj (gj/cj) # Select coordinate based on costs
7: αt ← LINE_SEARCH(L̂) # Find optimal step size (Eq. 9)
8: wt+1 ← (1− αt)wt + αtejt # Shrink weights and upweight the chosen coordinate (Eq. 6)
9: Pt+1 ← SHERMAN_MORRISON(Pt, xjt , αt) # Update inverse information matrix (Eq. 8)

10: end for
11: Output: Sample seller data according to wT ∈ ∆n without replacement until budget B runs out.

Thus, a line search can be performed to determine the optimal step size αt ∈ [0, 1] to minimize the
proxy loss as. This differs from (5) where we used a specific choice of αt. Frank-Wolfe is known
to be more stable with the line search [53, 65]. The seller can communicate this αt and xjt to the
platform to compute the updated Pt+1 using only O(d) communication.

An additional practical consideration is that by initializing w0 = c1e1, we have an ill-conditioned
inverse information matrix P0. We instead use an initialization of w0 = 1n/n ∈ ∆n and further add
a feature-wise regularization term. This makes the initial P0

P0 =
(
(1− λReg)X

⊤ diag(w0)X + λReg · diag(σ̂)
)−1

, (10)

where σ̂i =
√

1
n

∑n
j=1(Xji − X̄i)2 is the empirical standard deviation of feature i. The complete

details are summarized in Algorithm 1.

Single-step variant. We can also forgo the iterative process and instead linearly approximate the
cost function (Eq 4) with a single step that selects the top k datapoints under the budget B,

single_step(xtest, X,B) = top_k
({∑m

i=1

[
(xtest

i )⊤P0xj

]2}n
j=1

)
. (11)

This simplified version is extremely fast while still maintaining relatively good performance.

5 Experiments

We evaluate our proposed method for data acquisition (DAVED) against common data valuation
methods on both synthetic data and four real-world medical:

1. Fitzpatrick17K [24], a skin lesion dataset, where the task is to predict Fitzpatrick skin tone
on a 6-point scale from dermatology images.

2. RSNA Pediatric Bone Age dataset [25], where the task is to assess bone age (in months)
from X-ray images of an infant’s hand.

3. Medical Information Mart for Intensive Care (MIMIC-III) [31], where the task is to
predict the length of hospital stay from 48 attributes such as demographics, insurance, and
medical conditions.

4. DrugLib reviews [34], text reviews of drugs where the task is to predict ratings (1-10).

For validation-based methods, we use a validation set of 100 datapoints. We re-
port mean test errors over 100 buyers. For more details on the experimental setup,
see Appendix C. Our code is available at this repo: https://github.com/clu5/
data-acquisition-via-experimental-design.

Comparing Performance on Data with Homogeneous Costs. In Figure 3, we evaluate our method
and several other data valuation methods on varying amounts of Gaussian data with homogeneous
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Figure 3: Data Acquisition Performance across different Market Sizes on Synthetic Data. We
compare test prediction error as seller training data is selected under varying budgets and amount of
data for sale, with total available seller data of 1K (left), 5K (middle), and 100K (right) points. Our
data selection method (DAVED) consistently achieves lower MSE with fewer purchased datapoints,
i.e., better data acquisition efficiency, than other data valuation methods. Both multi-step and
single-step variants of DAVED achieve lower test MSE with fewer training points compared to
validation-based methods. The performance gap is especially pronounced with small budgets (5-10
points). Unless otherwise specified, all results are averaged over 100 random test points.

fixed costs. Compared to other methods, both multi- and single-step versions of DAVED have lower
test errors across budgets on synthetic data. This performance gap is especially large when the buyer
has a small budget (around 5-10 seller training datapoints). In Figure 4, we evaluate our method on
real image and text data embedded through CLIP and GPT-2 feature representations. We observe that
DAVED has better performance compared to most other baselines on all three datasets, highlighting
that the proposed method is practical for embeddings of high-dimensional data. Table 1 summarizes
our results on all datasets. For the Gaussian data and MIMIC datasets, we report the mean error of
budgets from 1 to 10, while for the embedded datasets (RSNA, Fitzpatrick17K, DrugLib), we report
the mean error of budgets from 1 to 100 in intervals of five.

Comparing Performance on Data with Heterogeneous Costs. Next, we compare methods on
seller data with non-homogeneous costs. We uniformly sample costs c ∈ {1, 2, 3, 4, 5} for each seller
datapoint and consider two cost functions, cj =

√
c and cj = c2, which downweights gradient of

that datapoint xj (see Equation 7). To simulate heterogeneous utility across datapoints, we introduce
cost-dependent label noise, ϵ ∼ N (ȳ, σ2), to each datapoint ỹi := yi + βϵ̃/cj , where ȳ is the mean
target value and β is the overall noise level, which we fix at 30% throughout our experiments. For
these experiments, we did not evaluate Data Shapley [23], LOO [13], and Influence [21] that had
very long runtimes. In Table 2, we report additional mean test error across budgets 1–30 for both cost
functions. We find that our DAVID method is more budget-efficient in choosing cost-effective noisy
datapoints than other methods across datasets. We provide additional plots for heterogeneous costs in
Appendix D.1.

Comparing Runtime. In Figure 5, we compare the optimization runtime of our data selection method
on 1,000 datapoints while increasing the dimensionality of the data as well as when the dimensionality
is fixed to 30, and the number of seller datapoints is increased to 100,000. Data Shapley [23] and
LOO [13] took too long to run for large amounts of datapoints or high dimensional data and are not
reported. In both experiments, our multi-step compares favorably to efficiency-optimized techniques
such as KNN Shapley [29] while our single-step method had the fastest runtime. This demonstrates
that our method can scale to marketplaces with millions of datapoints.

Regularization Strength. In Appendix D.2, we vary the amount of regularization applied on the
MIMIC, DrugLib, and RSNA datasets. We find that applying a moderate amount of regularization
between 0.2 and 0.6 can lead to improved performance. Even when the information matrix is set to
identity, i.e., λ = 1, performance on the DrugLib datasets is still reasonable. Note that for all other
experiments, we do not apply any regularization.

Amount of Buyer Data. In Appendix D.3, we vary how many buyer test datapoints are simultaneously
optimized over on Gaussian-distributed, MIMIC, and RSNA datasets. While all buyer and seller data
is sampled from the same distribution, the number of buyer datapoints still affects the optimization
procedure. In general, we find that increasing the number of datapoints in the “test batch” increases
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Figure 4: Data Acquisition Performance on Real Medical Datasets. DAVED demonstrates strong
performance on real-world medical imaging and drug review datasets. (Left to right) Results on
Fitzpatrick17K (skin lesions), RSNA Bone Age (X-rays), and DrugLib (drug reviews) — where high-
dimensional raw data is embedded via CLIP (images) or GPT-2 (text). Each method selects training
points under budget constraints to train a regression model on the embedded data. DAVED achieves
lower test prediction error using fewer training points compared to validation-based approaches,
demonstrating effectiveness on high-dimensional data.

Table 1: Test Error of Data Valuation Methods. We compared the test mean squared error on the
buyer test point on a synthetic Gaussian-distributed data and four medical datasets: MIMIC, RSNA,
Fitzpatrick17K, and DrugLib. The subheading denotes the number of seller training data available for
that experiment, and “N/A” denotes that the method exceeded runtime constraints for the experiment.
We optimize a separate random sample of training and validation data for each buyer and average
over 100 buyers. Bolded values indicate the best-performing method and underlined values denote
the second-best-performing method.

Method Gaussian MIMIC RSNA Fitzpatrick DrugLib
1K 100K 1K 35K 12K 15K 3.5K

Random baseline 1.38 1.01 301.0 283.7 1309.1 1.49 21.4
Data Shapley [23] 0.87 N/A 294.9 N/A N/A N/A N/A
Leave One Out [13] 1.31 N/A 1125.0 N/A N/A N/A N/A
Influence [21] 1.47 0.97 189.4 876.4 1614.5 1.93 12.8
DVRL [62] 1.33 1.26 229.7 285.5 3528.8 3.00 12.6
LAVA [32] 1.47 1.10 190.9 417.3 1867.5 1.45 17.4
KNN Shapley [29] 1.55 1.18 175.7 229.6 1387.0 1.82 19.0
Data OOB [39] 1.24 0.98 169.7 215.6 1020.3 1.35 10.0
DAVED (single step) 0.58 0.27 277.4 659.9 900.2 0.73 9.0
DAVED (multi-step) 0.37 0.16 206.7 171.4 785.2 0.67 9.2

Table 2: Test Error with Heterogeneous Costs. Comparing data selection methods for two different
cost functions,

√
c and c2. For each budget constraint, we select seller datapoints until the budget

is exceeded and calculate test prediction error on the buyer data. We average over 100 buyers and
report the mean test error across budgets from 1 to 30.

Gaussian MIMIC RSNA Fitzpatrick DrugLib

COST FUNCTION
√
c c2

√
c c2

√
c c2

√
c c2

√
c c2

Random baseline 2.36 77.7 288 285 2254 2065 2.14 2.11 16.5 18.4
DVRL 1.67 2.1 214 215 24003 5588 1.46 8.90 22.5 20.7
LAVA 2.13 3.3 482 475 1667 1587 2.09 2.21 35.7 34.8
KNN Shapley 2.13 69.0 217 956 2754 2506 1.85 2.15 13.6 13.0
Data OOB 2.19 3.3 243 246 1695 1205 2.08 2.52 10.8 10.8
DAVED (single) 1.54 251.5 598 585 1734 1550 0.75 0.71 9.4 10.1
DAVED (multi) 0.04 0.2 169 168 1076 942 0.76 0.75 12.6 11.4
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Figure 5: Computational efficiency comparison. DAVED has significantly lower computational
overhead compared to model-based data valuation methods. (Left) Runtime scaling with data
dimensionality (fixed 1,000 datapoints). (Right) Runtime scaling with the amount of seller data (fixed
30 dimensions). Our single-step variant is faster than even optimized methods like KNN Shapley,
while the multi-step variant remains efficient while achieving better performance. Our optimization
procedure only requires O(d) communication per round, which makes it particularly suited for
decentralized data market settings. For Data Shapley and Leave-One-Out, some experiments were
omitted due to prohibitively long runtimes.

test errors. Therefore, we recommend keeping the number of test datapoints in the buyer’s “query”
between 1–8 for each data acquisition.

Number of Steps. In Appendix D.4, we vary the number of optimization steps in our method on the
Gaussian-distributed and RSNA datasets. We find that more iterations generally improve prediction
performance. Intuitively, one expects that selecting T points requires at least T steps of iterative
optimization. We recommend setting the number of steps to be 2–5 times the desired budget for
homogeneous costs.

Convex versus Iterative Optimization In Appendix D.6, we compare the iterative optimization
procedure against a convex optimization solver [18]. We find that our iterative approach results in
several orders of magnitude speedup while maintaining similar levels of test error.

Finetuning versus Linear Probe. In Figure 14, we evaluate fine-tuning versus linear probing for
datapoints selected using DAVID and random selection. We find that using DAVID for fine-tuning
performs similarly to linear probing results on DrugLib with BERT [17].

6 Discussion

While other validation-free methods exist [60, 5], our method uniquely combines test-adaptivity,
theoretical grounding, and superior empirical performance. Moreover, a major advantage of our
method is that it is amenable to federated optimization requiring O(d) communication per round,
making it well-suited for decentralized data marketplaces, unlike other methods that require seller
data to be centralized in order to repeatedly train models to estimate data value. Additionally, our
method does not require labeled data, whereas other data valuation methods assume that all datapoints
come with corresponding ground-truth labels. As discussed in Section 2 and Section 3, the existing
paradigm of valuing data with a validation set is suboptimal. Incidentally, the second-best performing
method, Data OOB [39], is the only other method that does not use a validation set.

Limitations. However, our algorithm comes with some limitations that form exciting directions for
future work. Our approach currently communicates every step. Instead, integrating local steps like in
FedAvg [43] or Scaffold [35] would decrease communication costs. Further, integrating differential
privacy techniques would provide formal privacy guarantees to the buyers and sellers [19]. While
DAVED shows strong performance across datasets, its effectiveness depends on having a good feature
extractor that captures relevant aspects of the data. We recommend using pre-trained foundation
models (e.g., CLIP, GPT-2) as they can extract general-purpose features. Future work could explore
adapting the feature extraction to specific domains or handling cases where key features are missing
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A Proof of Theorem 1

Theorem A.1. Let w∗ denote the solution of Problem (1) and let ŵ denote the solution of Problem (2).
Let the data Zval, Ztest are drawn i.i.d. from the distribution DX,Y where DX is supported on Bd

R

(zero-centered ball with radius R in Rd), and Y = θ⊤X + η where η is independent zero-meaned
noise with variance σ2. Suppose DX and the training data Xtrain is supported on Bd

R (zero-centered
ball with radius R in Rd) and l is square loss, then there exist numerical constants, c1, c2, c3, such
that:

1. With probability at least 1− exp
(
−c1nval/R

2
)
,

inf
θ̂

sup
DY |X ,Xtrain

EXtest [L(ŵ)− L(w∗)] ≥ c2σ
2d

nval
.

2. If there exists κ > 0 such that λ(Ex∼DX
[x⊗4]) ≤ κ · λ

(
Ex∼DX

[x⊗2]⊗2
)

(here λ denotes
the largest eigenvalue and ⊗ denotes the outer product), then for any training algorithm
used by the platform, with probability at least 0.99− exp

(
−c1nval/R

2
)
− c3κ

κ+m , we have

sup
DY |X ,Xtrain

L(ŵ)− L(w∗) ≥ c2σ
2d

nval
.

Proof. Let fθ(x) = θ⊤x and E = N(0, σ2). Define the parameter space resulting from the training
algorithm:

Θ =
{
θ̂(w) : w ∈ ∆([m])

}
.

When n is sufficiently large, Lemma A.2 implies that there exists {θ1, θ2, . . . , θK} ⊂ Θ such that∥∥θ⊤i Xval
∥∥
2
≲ δ
√
nval, ∀i ∈ [K]∥∥(θi − θj)

⊤Xval
∥∥
2
≍ δ
√
nval, ∀i < j ∈ [K].

Let Pθi denote the conditional distribution Dy|x of the target when the underlying model parameter is
θi, it then follows that

KL(Pθi∥Pθj ) ≲
nδ2

σ2
.

Applying Lemma A.3, we obtain that

inf
θ̂

sup
DY |X ,Xtrain

E
[

1

nval

∥∥∥(θ̂(ŵ)− θ∗)⊤Xval
∥∥∥2
2

]
≳

c2σ
2d

nval
. (12)

Now define Σ = Ex∼DX
[xx⊤], by Lemma A.4, we have that with probability at least 1 −

exp(−Ω(nval/R
2)),

1

2
Σ ⪯ Xval(Xval)⊤ ⪯ 2Σ. (13)

Notice that

EXtest [L(ŵ)− L(w∗)] =
∥∥∥(θ̂(ŵ)− θ∗)⊤

∥∥∥2
Σ
.

Therefore, under the event of Eq. (12), Eq. (13) implies that

inf
θ̂

sup
DY |X ,Xtrain

EXtest [L(ŵ)− L(w∗)] ≥ inf
θ̂

sup
DY |X ,Xtrain

1

2
E
[

1

nval

∥∥∥(θ̂(ŵ)− θ∗)⊤Xval
∥∥∥2
2

]
≳

c2σ
2d

nval

This establishes the first inequality.
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For the second inequality, we have that under the condition λ(Ex∼DX
[x⊗4]) ≤ κ ·

λ
(
Ex∼DX

[x⊗2]⊗2
)
, the following holds

Varx∼DX

(〈
θ̂(ŵ)− θ∗, x

〉2)
= E

[〈
θ̂(ŵ)− θ∗, x

〉4]
− E

[〈
θ̂(ŵ)− θ∗, x

〉2]2
= E

[〈
(θ̂(ŵ)− θ∗)⊗4, x⊗4

〉]
− E

[〈
θ̂(ŵ)− θ∗)⊗2, x⊗2

〉2]
=
〈
(θ̂(ŵ)− θ∗)⊗4,E

[
x⊗4

]
− E

[
x⊗2

]⊗2
〉

≤ (κ− 1) · E
[〈

θ̂(ŵ)− θ∗, x
〉2]2

.

By Lemma A.5, for any θ and θ∗, we have that with probability at least 0.99−O
(

κ
κ+m

)
,

L(ŵ)− L(w∗) =
1

m

∥∥(θ − θ∗)⊤Xtest
∥∥2
2

=
1

m

m∑
i=1

〈
θ − θ∗, xtest

i

〉2
≥ 0.0001 ·

∥∥∥(θ̂(ŵ)− θ∗)⊤
∥∥∥2
Σ

≳
c2σ

2d

nval
.

Combining this and the first inequality by union bound, we establish the second inequality.

A.1 Supporting Lemma

Lemma A.2 (Metric entropy, Wainwright [56]). Let ∥ · ∥ denote the Euclidean norm on Rd and let B
be the unit balls (i.e., B = {θ ∈ Rd|∥θ∥ ≤ 1}). Then the δ-covering number of B in the ∥ · ∥-norm
obeys the bounds

d log

(
1

δ

)
≤ logN(δ;B, ∥ · ∥) ≤ d log

(
1 +

2

δ

)
.

Lemma A.3 (Fano’s inequality, Cover [14]). When θ is uniformly distributed over the index set [M ],
then for any estimator θ̂ such that θ → Z → θ̂

P[θ̂(Z) ̸= θ] ≥ 1− I(Z; θ) + log 2

logM
.

Lemma A.4 (Matrix-Chernoff bound, Tropp [55]). Consider an independent sequence {Xi}ki=1 of
random, self-adjoint matrices in Mn satisfying Xi ≥ 0 and λmax(Xi) ≤ R almost surely, for each
i ∈ {1, . . . , k}. Define

µmin := λmin

(
k∑

i=1

EXi

)
,

µmax := λmax

(
k∑

i=1

EXi

)
.

Then,

P

{
λmax

(
k∑

i=1

Xi

)
≥ (1 + δ)µmax

}
< n

(
eδ

(1 + δ)1+δ

)µmax
R

for δ ≥ 0;

P

{
λmin

(
k∑

i=1

Xi

)
≤ (1− δ)µmin

}
< n

(
e−δ

(1− δ)1−δ

)µmin
R

for δ ∈ [0, 1].
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Lemma A.5 (Paley–Zygmund inequality, Paley and Zygmund [45]). If Z is a random variable with
finite variance and Z ≥ 0 almost surely, then

P(Z > θ E[Z]) ≥ (1− θ)2
E[Z]2

E[Z2]
, ∀θ ∈ (0, 1).

B Convergence Rate of Frank-Wolfe (Proof of Theorem 2

Setup. We mostly follow the proof technique in Bach et al. [8] and Jaggi [28]. Recall the optimization
problem for the optimal design loss Eq. (4):

min
w∈D

L(w).

Here, D is the scaled simplex defined by the constraints w ∈ Rn
≥0 and

∑n
j=1 cjwj ≤ B. The

Frank-Wolfe update on this function is then: For t = 1, 2, . . . , repeatedly perform the following steps

• Compute st = argmaxu∈D⟨∇L(wt),wt − u⟩.
• update wt+1 = (1− αt)wt + αtst

Note that this update procedure is identical to the updates in Eq. 5. We can then define the duality
gap as

g(w) = sup
s∈D
⟨w − s,∇L(w)⟩.

We also define the curvature constant

Cl = sup
s,w∈D
γ∈(0,1)

u=(1−γ)w+γs

2

γ2
(L(u)− L(w)− ⟨u−w,∇L(w)⟩) .

We assume that the curvature constant is finite, i.e., Cl < ∞. This is true for L(w) as long as
both the algorithm and the true optimum are bounded away from the boundary of D— see detailed
discussions on this in Ahipaşaoğlu and Todd [2]. A better analysis might be able to avoid this
assumption, e.g., Zhao and Freund [65] use certain homogeneity properties of L(w) to derive better
assumption-free convergence rates for the FW method on D-optimal experiment design. We leave
the question of adapting these results to our setting (V-optimal experiment design) for a challenging
future work.
Lemma B.1 (Lemma 5, [28]). For any α ∈ (0, 1),

L(wt+1) ≤ L(wt)− αtg(wt) +
α2
t

2
Cl.

Theorem B.2. In the Frank-Wolfe algorithm, our update algorithm in Eq. 5 uses αt =
1

t+1 . For this,
we have

L(wt) ≤ min
w∈D

L(w) +
Cl(1 + log t)

2t
.

Proof. Define h(w) = L(w)−minw∈D L(w). Using Lemma B.1,

h(wt) ≤ h(wt−1)− αt−1g(wt−1) +
α2
t−1

2
Cl

≤ h(wt−1)− αt−1h(wt−1) +
α2
t−1

2
Cl

= (1− αt−1)h(wt−1) +
α2
t−1

2
Cl

Here we used the convexity of L as follows:
g(wt−1) = sup

s∈D
⟨wt−1 − s,∇L(wt−1)⟩

≥ ⟨wt−1 −w∗,∇L(wt−1)⟩
≥ L(wt−1)− min

w∈D
L(w) .
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Continuing our derivation, recall we have

h(wt) ≤ (1− αt−1)h(wt−1) +
α2
t−1

2
Cl

=
t− 1

t
h(wt−1) +

1

2t2
Cl ≤ t− 2

t
h(wt−1) .

Thus we have

t · h(wt) ≤ (t− 1)h(wt−1) +
Cl

2t
.

Unrolling this recursion, we get

t · h(wt) ≤
t−1∑
k=1

∑ Cl

2k
≤ Cl(1 + log t)

2
.

This yields the theorem claim.

Finally, to finish the proof of Theorem 2, note that adding additional constraints only increases the
loss, i.e.,

min
w∈D

L(w) ≤ min
w∈D and w∈{0,1}n

L(w).

Hence, we showed a O(log t/t) approximation to the otherwise intractable combinatorial problem.
With additional assumptions on the structure of the loss function, one can even show improved
quadratic or even exponential approximations [15, 8]. Finally, we note that Frank-Wolfe is a well-
known method to efficiently approximate the optimal experiment design objective [59, 20, 2] and this
also motivates using this approach in practice [2, 6].

C Experimental Setup

For each buyer test point, we optimize each selection algorithm over the 1,000 seller datapoints and
select the highest value data based on the validation set of 100 datapoints (our method and Data OOB
do not use the validation set). For each test point, we train a linear regression model on the selected
seller points and report test mean squared error (MSE) on the buyer’s data and average test error over
100 buyers.

For reproducibility, our full implementation is available at: https://github.com/clu5/
data-acquisition-via-experimental-design.

C.1 Implementation Details

We conduct all experiments on an Intel Xeon E5-2620 CPU with 40 cores and a Nvidia GTX 1080 Ti
GPU. For implementation of baseline data valuation methods, we use the OpenDataVal package [30]
version 1.2.1. We use the default hyperparameter settings for all methods except for Data Shapley
(changed 100 Monte-Carlo epochs with 10 models per iteration), Influence Subsample (from 1000 to
500 models), and Data OOB (from 1, 000 to 500 models) to reduce computational runtime.

In our experiments, we use the following setting of hyperparameters for DAVED:

• 500 iterations for multi-step variant, 1 iteration for single-step variance

• Line search for step size α ∈ (0, 0.9)

• Regularization λ = 0 (unless otherwise specified)

• No early stopping

For experiments with heterogeneous costs, we uniformly sample costs c ∈ {1, 2, 3, 4, 5} for each
seller datapoint and apply either h(c) =

√
c or h(c) = c2 as the cost function. Noisy labels are

generated by adding Gaussian noise scaled inversely proportional to the cost, with overall noise level
set to 30%.
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C.2 Dataset Details and Processing

For Fitzpatrick17K and RSNA Bone Age datasets, each image was embedded through a CLIP
ViT-B/32 model [49], while for the DrugLib dataset, each text review was embedded through GPT-2
model [48] with a max context length of 4096.

For the Gaussian dataset, we generate a regression dataset according to the following Python code:

1 import numpy as np
2

3 def get_gaussian_data(num_samples=100, dim=10, noise=0.1, costs=None):
4 X = np.random.normal(size=(num_samples, dim))
5 X /= np.linalg.norm(X, axis=1, keepdims=True)
6 if costs is not None:
7 X *= costs
8 coef = np.random.exponential(scale=1, size=dim)
9 coef *= np.sign(np.random.uniform(low=-1, high=1, size=dim))

10 y = X @ coef + noise * np.random.randn(num_samples)
11 return dict(X=X, y=y, coef=coef, noise=noise, dim=dim, costs=costs)

The RSNA Pediatric Bone Age Challenge (2017) dataset [25] may be down-
loaded here https://www.rsna.org/rsnai/ai-image-challenge/
rsna-pediatric-bone-age-challenge-2017. We use the training set for our ex-
periments, resulting in 12,611 images in total. Using the following function, each image was
embedded through a pre-trained CLIP ViT-B/32 model.

1 import clip
2 import torch
3 from PIL import Image
4

5 def embed_images(img_paths, device="cuda"):
6 model, preprocess = clip.load("ViT-B/32", device=device)
7 inference_func = model.encode_image
8 embeddings = []
9 with torch.inference_mode():

10 for img_path in tqdm(img_paths):
11 img = Image.open(img_path)
12 embedding = inference_func(preprocess(img)[None].to(device))
13 embeddings.append(embedding.cpu())
14 return torch.cat(embeddings)

The Fitzpatrick17K [24] can be downloaded from here https://github.com/mattgroh/
fitzpatrick17k. Missing or corrupted images were excluded, resulting in 16,536 total images.
Some images were annotated with two separate annotation platforms. We averaged the two skin type
ratings for these images, resulting in 12 possible labels (0–6 in 0.5 increments). Each image was
embedded in a fashion similar to the RSNA Bone Age dataset.

The MIMIC dataset [31] can be accessed here https://physionet.org/content/
mimiciii/1.4/. The task is to predict the length of stay (LOS) in the number of days a pa-
tient stays in the Intensive Care Unit. The dataset contains 51,036 rows with both real-valued and
one-hot-encoded attributes with the following names:

“LOS” , “blood” , “circulatory” , “congenital” , “digestive” , “endocrine” , “gen-
itourinary” , “infectious” , “injury” , “mental” , “misc” , “muscular” , “neo-
plasms” , “nervous” , “pregnancy” , “prenatal” , “respiratory” , “skin” , “GEN-
DER” , “ICU” , “NICU” , “ADM_ELECTIVE” , “ADM_EMERGENCY” ,
“ADM_NEWBORN” , “ADM_URGENT” , “INS_Government” , “INS_Medicaid”
, “INS_Medicare” , “INS_Private” , “INS_Self Pay” , “REL_NOT SPECI-
FIED” , “REL_RELIGIOUS” , “REL_UNOBTAINABLE” , “ETH_ASIAN”
, “ETH_BLACK/AFRICAN AMERICAN” , “ETH_HISPANIC/LATINO”
, “ETH_OTHER/UNKNOWN” , “ETH_WHITE” , “AGE_middle_adult” ,
“AGE_newborn” , “AGE_senior” , “AGE_young_adult” , “MAR_DIVORCED”
, “MAR_LIFE PARTNER” , “MAR_MARRIED” , “MAR_SEPARATED” ,
“MAR_SINGLE” , “MAR_UNKNOWN (DEFAULT)” , “MAR_WIDOWED”

19

https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://github.com/mattgroh/fitzpatrick17k
https://github.com/mattgroh/fitzpatrick17k
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/


Each attribute was min-max scaled to lie in the range [0, 1].

The DrugLib dataset [34] can be downloaded here https://archive.ics.uci.edu/
dataset/461/drug+review+dataset+druglib+com. The task is to predict overall pa-
tient satisfaction with a drug’s side effects and effectiveness on a ten-point scale. We format each
review using the following prompt template to feed GPT-2:

Benefits: $BENEFITS_REVIEW
Side effects: $SIDE_EFFECTS_REVIEW
Comments: $COMMENTS_REVIEW

where $BENEFITS_REVIEW is the corresponding portion of the drug review.

1 import torch
2 from transformers import GPT2Tokenizer, GPT2Model
3

4 def embed_text(text_inputs :list[str], device="cuda"):
5 tokenizer = GPT2Tokenizer.from_pretrained(model_name)
6 model = GPT2Model.from_pretrained(model_name).to(device)
7 embeddings = []
8 for x in tqdm(text_inputs):
9 inputs = tokenizer(x, return_tensors="pt", truncation=True).to(

device)
10 with torch.no_grad():
11 outputs = model(**inputs)
12 embeddings.append(
13 outputs.last_hidden_state.mean(dim=1).cpu()
14 )
15 return torch.cat(embeddings)

C.3 Evaluation Protocol

For all experiments (unless otherwise specified), we use the following evaluation settings:

• Training split: Variable number of seller points (1K–100K)
• Validation split: 100 points for baseline data valuation methods
• Test split: 100 buyer points evaluated independently
• Metrics: Mean squared error averaged over all buyer points
• Budget ranges: 1–30 for cost experiments, 1–150 otherwise Number of random seeds: All

results averaged over 3 seeds

For a fair comparison, we use the same train/validation/test splits across all methods for each random
seed. The validation set is only used by data valuation baseline methods that require it — our method
DAVED operates directly on the test queries without requiring validation data.
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D Additional Experiments

D.1 Budget Results with Heterogeneous Costs
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Figure 6: DAVED maintains performance advantage with heterogeneous costs on synthetic
data. We evaluate data selection methods on 10K synthetic Gaussian datapoints with costs randomly
sampled from {1, 2, 3, 4, 5} and transformed using two cost functions:

√
c (left) and c2 (right). Each

datapoint’s label noise is scaled inversely with cost (ε/cj) to simulate quality differences. DAVED
achieves lower test MSE across budgets 1-30 while respecting cost constraints, demonstrating robust
performance even with varying data quality and costs. Results are averaged over 100 random buyer
test points.
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Figure 7: Comparing performance on MIMIC healthcare data with heterogeneous costs.
Experiments on MIMIC-III dataset (35K patients with 48 normalized clinical features) compare
performance under two cost functions:

√
c (left) and c2 (right). Costs are uniformly sampled from

1, 2, 3, 4, 5 per datapoint. Label noise ε ∼ N (0, σ2) is scaled by ȳ/h(cj) where ȳ is the mean label
value and h(c) is the cost function, modeling how higher-cost data has lower noise. DAVED achieves
lower prediction error for length-of-stay prediction across budgets 1-30. Results averaged over 100
random test patients.
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Figure 8: Comparing performance on Fitzpatrick skin lesion dataset with varying costs.
Evaluation on Fitzpatrick17K dataset (15K images embedded through CLIP) under two cost functions:√
c (left) and c2 (right). Costs sampled from 1, 2, 3, 4, 5 with noise ε ∼ N (0, σ2) scaled by ȳ/h(cj),

where ȳ is the mean Fitzpatrick score and h(c) is the cost function. This scaling ensures higher-
cost images have proportionally less label noise. DAVED achieves consistent performance while
respecting heterogeneous cost constraints. Results averaged over 100 random test images.
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Figure 9: Comparing performance on RSNA bone age prediction with cost variations. Analysis
on RSNA Bone Age dataset (12K X-ray images embedded via CLIP) using cost functions

√
c (left)

and c2 (right). With costs sampled from 1, 2, 3, 4, 5 and label noise ε ∼ N (0, σ2) scaled by ȳ/h(cj),
where ȳ is the mean age and h(c) is the cost function. This models how higher-cost X-rays have
more accurate age labels. DAVED maintains superior prediction accuracy compared to other data
valuation baselines. Results show mean error over 100 random test X-rays.
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Figure 10: Comparing performance on drug review text data with heterogeneous costs. Evalu-
ation on DrugLib reviews (3.5K reviews embedded using GPT-2) under cost functions

√
c and c2.

Costs sampled from 1, 2, 3, 4, 5 with noise ε ∼ N (0, σ2) scaled by ȳ/h(cj), where ȳ is the mean
rating and h(c) is the cost function, reflecting how higher-cost reviews tend to have more reliable
ratings. DAVED achieves robust rating prediction performance despite varying data quality. Results
averaged over 100 random test reviews.

D.2 Regularization
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Figure 11: Regularization strength significantly impacts DAVED performance across domains.
We evaluate prediction error versus budget as λ varies from 0 (no regularization) to 1 (identity infor-
mation matrix) on: MIMIC dataset (length-of-stay prediction), DrugLib reviews (rating prediction
with GPT-2 embeddings), and RSNA Bone Age (age prediction from X-rays using CLIP embed-
dings). Moderate regularization (λ between 0.2–0.6) improves stability and performance by better
conditioning the information matrix, though DAVED remains effective even without regularization.
Results averaged over 100 random test points per budget level.
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D.3 Amount of Buyer Data
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Figure 12: Buyer test set size affects prediction performance of DAVED. We vary the number of
simultaneous test points (1 to 32) being optimized over for: Gaussian synthetic data (30 dimensions),
MIMIC clinical data (48 dimensions), and RSNA Bone Age X-rays (512 dimensions). While all
buyer and seller data follow the same distribution within each dataset, increasing test batch size leads
to higher prediction errors as the optimization problem becomes more challenging. Results suggest
keeping buyer queries to 1-8 test points for optimal performance. Each curve shows mean error over
100 random trials with different test sets.

D.4 Number of Iteration Steps
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Figure 13: Number of optimization steps impacts DAVED performance. We evaluate prediction
error versus budget while varying optimization steps from 1 to 1, 000 on Gaussian data (30 dimen-
sions) and RSNA Bone Age dataset (embedded through CLIP). More iterations generally improve
performance as the algorithm better approximates the optimal selection weights. For homogeneous
costs (cj = 1), we recommend using 2-5 times more optimization steps than the desired budget to
ensure convergence. Results show mean error over 100 random test points per configuration.
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D.5 Linear Feature Space Approximation
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Figure 14: Linear models in feature space approximate full model fine-tuning. We compare
BERT performance on DrugLib reviews using either full fine-tuning (which updates all model
parameters) or linear probing (which only trains a linear layer on frozen embeddings) on data selected
by DAVED versus random selection. The similar performance patterns between these approaches
empirically validates our use of kernelized linear regression in the feature space as a proxy for the full
training dynamics. This aligns with recent theoretical work showing that fine-tuning of pre-trained
models is well-approximated by linear models in the empirical Neural Tangent Kernel (eNTK) regime.
Since our method relies on this linear approximation for efficient data selection, these results support
our choice of feature extractor ϕ and linear modeling approach. Results show test error averaged over
100 random trials using different test reviews.

D.6 Iterative versus Convex optimization
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Figure 15: DAVED’s iterative optimization matches convex solver accuracy. We compare the
prediction error of Frank-Wolfe optimization with a convex optimization solver on 1, 000 datapoints
sampled from 30-dimensional Gaussian distribution. Both single-step and multi-step variants of
our iterative approach achieve comparable accuracy to the optimal convex solution while being
significantly faster to optimize. Results averaged over 100 random trials with homogeneous costs
(cj = 1).
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Figure 16: DAVED provides orders of magnitude runtime speedup over convex optimization.
Runtime comparison between Frank-Wolfe iterative approach and convex solver for the data selection
problem on 1000 datapoints from 30-dimensional Gaussian distribution. Our iterative method
achieves several orders of magnitude speedup while maintaining similar levels of prediction error
(see Figure 15). The single-step variant provides additional acceleration with minimal performance
loss

E Broader Impacts

We believe that AI developers face important ethical questions when acquiring data for AI develop-
ment, as highlighted by recent class-action lawsuits against AI companies regarding data consent
and compensation. Our work presents a scalable and decentralized approach to data acquisition that
can help address these concerns. By enabling targeted selection of the most valuable datapoints,
our method reduces both costs and potential privacy risks compared to broad, indiscriminate data
access [44]. The decentralized nature of our approach enhances transparency and gives individual
data owners more control over how their data is shared and used, while avoiding the privacy and
security risks of centralizing data with brokers. However, while our method enables more efficient
and privacy-preserving data transactions that could democratize access to high-quality training data,
especially in domains like healthcare, several societal and technical challenges remain. These include
ensuring fair compensation for data owners, preventing misuse of acquired data, and developing
appropriate governance frameworks for decentralized data markets. Addressing these challenges will
be crucial for the responsible development of data marketplaces that can sustainably increase the
supply of training data while protecting individual privacy and data rights.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We address the limitations of our methods in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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mental setup in Appendix C. Our code is publicly available at https://github.com/
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the supplemental material, we provide a simplified code example and will
release the full codebase in a public code repository upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of our experimental setup in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are averaged over 100 random test trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Hardware specs and runtime analysis provided in Appendix C and Figure 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix E discusses both the benefits and risks of our work in the context of
data marketplaces.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe this paper does not pose such risks as we do not release any new
models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and provide links to all datasets used in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new datasets or models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects research was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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