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Abstract

Neural codec language models have revolutionized speech synthesis but face significant
challenges when adapted to music generation, particularly in achieving precise timbre con-
trol while preserving melodic content. We introduce Neural Code Language Model for
Controllable Timbre Transfer (NCLMCTT), a novel architecture that enables zero-shot
instrument cloning through direct audio conditioning without explicit timbre learning. Our
approach combines a 385M-parameter transformer for coarse musical structure modeling
with a specialized upsampler for fine timbral detail, achieving flexible control through 1-5
second reference audio segments. We establish the first comprehensive benchmark dataset
for controllable timbre transfer evaluation, comprising 62,500 high-fidelity samples across
50 synthesizer presets with ground truth targets. Extensive experiments demonstrate sub-
stantial improvements over the TokenSynth baseline: 27.1% reduction in SI-SDR, 50.9%
in Mel Distance, and 59.4% in STFT Distance, while maintaining strong melodic coher-
ence (Chroma Similarity: 0.85). Our method achieves robust zero-shot generalization, with
performance on unseen instrument presets matching that of seen presets. Ablation stud-
ies confirm that extended reference audio duration (40.8% improvement), cross-attention
mechanisms (11.9% improvement), and increased model capacity contribute meaningfully
to overall performance. By separating melodic content from timbral characteristics and
enabling implicit timbre control, NCLMCTT provides both immediate practical value for
music creators and a methodological foundation for advancing controllable neural audio
synthesis.

Keywords: Neural codec language models, Timbre transfer, Controllable music synthesis,
Zero-shot generalization, Audio generation

1. Introduction

The democratization of music creation through AI has reached a critical juncture. While
commercial systems like Suno and Udio generate impressive musical compositions Nugroho
and Manggala (2024), the field lacks precise controllable synthesis mechanisms that separate
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Figure 1: NCLMCTT architecture for controllable timbre transfer. The pipeline processes
MIDI input and control signals through four stages: (1) Dataset augmentation
and DAC conversion, (2) Feature extraction from MIDI, control (reference audio),
and melody (source audio) into tokenized representations, (3) Embedding with
positional encoding, and (4) Transformer-based modeling with multi-head self-
attention and cross-attention mechanisms.

melodic content from timbral characteristics. Current text-to-music models struggle with
fine-grained instrument control due to natural language ambiguity Schneider et al. (2024);
Agostinelli et al. (2023).

Neural codec language models revolutionized speech synthesis by treating audio gener-
ation as discrete token prediction Wang et al. (2023). Recent efforts to adapt these models
to music generation show promise but face critical challenges: existing approaches either
rely on token-level manipulation without explicit conditioning mechanisms or require pre-
trained timbre encoders that limit flexibility. The need for music-specific architectures that
can leverage the efficiency of neural codec models while providing precise timbre control
remains largely unaddressed.

The evaluation crisis compounds these challenges. Current metrics like Fréchet Audio
Distance (FAD) show poor correlation with human judgment, while commercial systems now
outperform reference datasets Grötschla et al. (2025). The lack of standardized protocols
for controllable synthesis has hindered rigorous comparison and slowed progress in the field.

Our contributions advance neural codec language models for music synthesis across
technical and methodological dimensions. We introduce Neural Code Language Model for
Controllable Timbre Transfer (NCLMCTT)(Fig. 1), featuring flexible control signal du-
rations, zero-shot instrument control through direct audio conditioning. We establish the
first comprehensive benchmark dataset for controllable timbre transfer evaluation, com-
prising 62,500 high-fidelity samples with standardized metrics. Our empirical validation
demonstrates substantial improvements over the TokenSynth Kim et al. (2025) baseline:
27.1% reduction in Scale-Invariant Signal-to-Distortion Ratio (SI-SDR), 50.9% in Mel Dis-
tance, and 59.4% in Short-Time Fourier Transform (STFT) Distance, while maintaining
strong melodic preservation. These improvements are achieved through music-specific ar-
chitectural modifications including hierarchical token generation, explicit cross-attention
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mechanisms for timbre conditioning, and flexible reference audio duration from 1 to 5 sec-
onds.

We provide open-source access to our curated dataset, evaluation protocols, and com-
plete implementation, establishing a reproducible foundation for advancing controllable
neural music synthesis research. By positioning neural codec language models as a bridge
between symbolic music representation and audio synthesis, our work provides both im-
mediate practical value for music creators and a methodological foundation for advancing
controllable audio generation research.

2. Related Work

Neural Codec Language Models: VALL-E Wang et al. (2023) pioneered neural codec
language models for speech synthesis, using EnCodec’s hierarchical representations for zero-
shot voice cloning with 3-second enrollment. VALL-E 2 Chen et al. (2024) achieved hu-
man parity through repetition-aware sampling and grouped code modeling, reducing word
error rates by 50%. AudioLM Borsos et al. (2023) introduced semantic-acoustic decompo-
sition using w2v-BERT and SoundStream tokens, enabling controllable synthesis without
text transcripts but requiring computationally expensive cascaded models. Text-to-Music
Generation: MusicLM Agostinelli et al. (2023) adapts AudioLM’s hierarchical approach
but struggles with precise instrument control due to language ambiguity. MusicGen Copet
et al. (2023) revolutionized efficiency through single-stage architecture with token interleav-
ing across EnCodec’s 4 codebooks, achieving superior performance while reducing compu-
tational requirements. Moûsai Schneider et al. (2024) employs latent diffusion with 64×
compression for high-quality stereo generation but requires complex sampling procedures.
Controllable Music Synthesis and Audio Codecs: NSynth Engel et al. (2017) estab-
lished timbre control through 16-dimensional embeddings, while DDSP approaches Engel
et al. (2020) enable interpretable control through synthesizer parameters. However, most
methods require explicit timbre learning and lack zero-shot generalization. Recent audio
codecs have achieved extreme compression: EnCodec Défossez et al. (2022) provides 16-
32× compression, Descript Audio Codec (DAC) Kumar et al. (2023) achieves 90× ratios
with superior quality, and WavTokenizer reduces audio to 40-75 tokens per second Ji et al.
(2024). Instrument Cloning: TokenSynth Kim et al. (2025) performs zero-shot poly-
phonic instrument cloning using CLAP-conditioned transformers that generate DAC tokens
autoregressively, enabling text-guided timbre manipulation through cross-modal embedding
interpolation. However, the method relies on pretrained CLAP embeddings for timbre con-
ditioning, requiring explicit timbre representations learned during pretraining. In contrast,
our approach achieves adaptive timbre transfer without explicit timbre learning, enabling
more flexible generalization. We benchmark against TokenSynth as the most closely related
work to our framework. Evaluation and Our Approach: Current evaluation method-
ologies suffer from significant limitations, with FAD showing poor correlation with human
judgment and lack of standardized protocols for controllable synthesis Gui et al. (2024);
Grötschla et al. (2025). Our work addresses these gaps through music-specific architectural
components and audio-based conditioning for zero-shot generalization. Most importantly,
we introduce the first comprehensive benchmark specifically designed for controllable timbre
transfer, enabling systematic evaluation of both melodic preservation and timbral fidelity.
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3. Problem Formulation

Task Definition: We address timbre-conditioned melody synthesis in neural audio gen-
eration, where timbre control is derived directly from reference audio rather than text
descriptions or predefined instrument categories. Given a dataset containing 1,250 MIDI
melodies M = {m1, . . . ,m1250}, 50 synthesizer presets P = {p1, . . . , p50}, and correspond-
ing rendered waveforms W = {wi,j | i ∈ [1, 1250], j ∈ [1, 50]}, we formalize the task as
learning a mapping function fθ that transforms a MIDI melody mi and a reference audio
snippet ca,j (1-5s crop from wa,j) into a synthesized waveform:

ŵi,j = fθ(mi, ca,j) (1)

Timbre Transfer Mechanism: The reference audio ca,j serves as the sole source of
timbre information, enabling the model to extract and transfer timbral characteristics with-
out relying on intermediate representations such as text embeddings or explicit instrument
labels. When a ̸= i, the control signal contains different melodic content compared to the
input MIDI mi, enabling adaptive timbre transfer without explicit timbre learning.

Evaluation Framework: Critically, this formulation enables objective evaluation by
providing ground truth waveforms wi,j for direct comparison with generated outputs ŵi,j

across multiple metrics (see Section 5 for details), eliminating the need for costly and po-
tentially inconsistent human subjective evaluations that plague many timbre transfer and
music generation benchmarks. We measure success through four complementary metrics:
SI-SDR (↓) for time-domain fidelity, MEL Distance (↓) for perceptual quality, STFT
Distance (↓) for time-frequency accuracy, and Chroma Similarity (↑) for melodic preser-
vation, ensuring both timbral fidelity and melodic accuracy are rigorously assessed.

4. Proposed Method

4.1. Preprocessing and Feature Extraction

Our pipeline transforms 1,250 MIDI melodies and 50 synthesizer presets into 62,500 unique
audio waveforms. Training triplets consist of (mix,C,mex) where mix is input MIDI
melody, C is tiled control signal from potentially any melody using preset x, and mex
is target waveform with preset consistency. DAC Encoder processes three modalities (MIDI
files, complete audio, and cropped audio) into features with shape (B,L,C), where B is
batch size, L is number of codebooks (9 when using DAC), and C is sequence length.

4.2. Architecture Overview

Our NCLMCTT architecture separates coarse musical structure generation from fine tim-
bral detail synthesis. The first stage employs a 385M-parameter transformer-based LLM for
autoregressive coarse codebook token generation, establishing musical structure while in-
corporating timbre conditioning. The second stage utilizes a specialized upsampling module
for non-autoregressive fine token prediction, transforming coarse structure into high-fidelity
audio.

Stage 1 - LLM for Coarse Token Generation: Our LLM employs a decoder-only
transformer (L = 24 layers, dmodel = 1024, h = 16 heads) designed for musical token
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prediction. The model autoregressively generates coarse codebook sequences:

p(z11:T ) =
T∏
t=1

p(z1t |z1<t,mi, ca,j) (2)

For stereo audio, we implement channel dependency modeling. Input tokens are processed
through learnable embeddings with sinusoidal positional encodings. Our model incorporates
control tokens enabling flexible conditioning, with cross-attention layers integrating timbre
control signals with MIDI input. Training employs standard autoregressive language mod-
eling with cross-entropy loss, while inference uses temperature scaling and top-k filtering
with Gumbel-max sampling.

Stage 2 - Specialized Upsampling Module: The upsampling module transforms
coarse tokens into high-fidelity audio through non-autoregressive fine token prediction.
Given coarse tokens z11:T , the upsampler predicts fine tokens through:

Pθ(ẑ
2
1:T , . . . , ẑ

9
1:T |z11:T ) =

9∏
i=2

Pθ(ẑ
i
1:T |z11:T , ẑ2:i−1

1:T ) (3)

The module incorporates three conditioning types: Metrical Conditioning using beat
phase information, Harmonic Conditioning through pitch class histograms and root note
embeddings, and Channel Conditioning for stereo generation. Training employs masked
token prediction with selective masking of fine tokens while preserving coarse structure.

4.3. Data Augmentation and Training

Figure 2: Data augmentation strategy for NCLMCTT

We implemented a data augmen-
tation strategy (Figure 2) creat-
ing triplets of MIDI input mix,
tiled control signal C, and tar-
get melody mex. Control signals
are extracted crops (tc seconds)
from target waveforms using the
same synthesizer preset but poten-
tially different melodies, then tiled
to match the target length. This
technique decouples timbre from
specific melodic content. By pair-
ing each MIDI sequence with different preset renderings, we expanded our dataset from
62,500 to approximately 1.25 million samples (strategically selected from a theoretical 3
million possibilities), while varying crop lengths (1-5 seconds) to teach the model to extract
timbral characteristics from control signals of different duration.
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5. Experiments

5.1. Training Configuration

5.1.1. First Codebook Model Training

We trained our transformer-based model for first codebook token prediction using dis-
tributed data parallel across 8 NVIDIA L40S GPUs, completing in 4-6 hours with a per-
GPU batch size of 16-24 (global batch size 128-192) for 200-500 steps per epoch. The
training used a learning rate of 1 × 10−4 with 200 warm-up steps in cosine scheduling,
implemented bfloat16 mixed-precision via PyTorch AMP for efficient memory usage, and
employed Adam optimizer with CrossEntropyLoss, while monitoring all metrics through
TensorBoard to ensure training stability.

5.1.2. Upsampler Training

The upsampler predicts fine codebook tokens (z2 through z9) conditioned on the first code-
book z1 using masked token prediction. We selectively mask tokens in codebooks z2-z9
while preserving z1, with masking rates from 0.5-99.3%. The model optimizes cross-entropy
loss per codebook level via non-autoregressive parallel prediction. Implementation uses a
20-layer transformer (dimension 1280) with AdamW optimizer (learning rate 3e-5), trained
on 2048-token segments (∼24s) using bfloat16 precision and an 80/20 train/test split (350
test samples).

5.2. Identifying the First Codebook as Bottleneck

To validate our hierarchical design, we evaluated upsampler performance when conditioned
on ground truth (GT) first codebook tokens. Figure 3 shows results across all 50 presets.
Upsampling from GT tokens achieves near-perfect reconstruction (median Chroma Similar-
ity: 0.9879, SI-SDR: -2.7 dB, Mel Distance: 0.9234, STFT Distance: 1.711), demonstrating
that the upsampler effectively generates fine timbral details when provided with accurate
coarse structure. This validates our architectural decomposition: the first codebook cap-
tures the primary bottleneck for timbre transfer quality. Based on this analysis, we use
end-to-end evaluation for baseline comparison (Section 5.5.1) and first codebook evaluation
for architectural analysis (Section 6).
5.3. Evaluation Metrics
To assess our method quantitatively, we employ four complementary metrics capturing
different aspects of audio quality:

SI-SDR(↓): Scale-Invariant Signal-to-Distortion Ratio measures time-domain fidelity
while being invariant to scaling (the SI-SDR is negated, so lower value indicates better
performance):

SI-SDR(x, x̂) = −10 log10
|αx|2

|αx− x̂|2
, where α =

x̂Tx

|x|2
(4)

MEL Distance(↓): Evaluates perceptual differences in the mel-frequency domain using
multi-scale mel spectrograms:

dMEL(x, x̂) =
1

TM

∑
t,m

|MELt,m(x)−MELt,m(x̂)|1 (5)
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(a) (b) (c) (d)

Figure 3: Upsampling from ground-truth first codebook tokens across 50 presets. Near-
perfect reconstruction (median Chroma Similarity: 0.9879) confirms first code-
book modeling as the key bottleneck in timbre transfer. (a) SI-SDR, (b) MEL
Distance, (c) STFT Distance, (d) Chroma Similarity.

STFT Distance(↓): Measures time-frequency representation discrepancies:

dSTFT(x, x̂) =
1

TF

∑
t,f

|STFTt,f (x)− STFTt,f (x̂)|1 (6)

Chroma Similarity(↑): Quantifies musical similarity through chromagram cosine simi-
larity:

ChromaCosSim(X, X̂) =
1

T

∑
t

xt · x̂t
|xt|2 · |x̂t|2 + ϵ

(7)

We implemented SI-SDR, MEL Distance, and STFT Distance using the audiotools li-
brary1, specifically from the spectral.py and distance.py modules. For SI-SDR, we used
the default parameters with zero-mean normalization and mean reduction across batches.
For MEL Distance, we employed a multi-scale approach using two resolutions (150 and
80 mel bands) with window lengths of 2048 and 512, combining both magnitude and log-
magnitude L1 losses. Similarly, the STFT Distance was calculated using multi-scale STFT
with window lengths of 2048 and 512, also combining magnitude and log-magnitude losses
with equal weighting.

5.4. Baseline Selection

Table 1 compares existing controllable music synthesis methods across key functional dimen-
sions to identify appropriate baselines for benchmarking. Excluded Methods: Speech syn-
thesis methods (VALL-E Wang et al. (2023), VALL-E 2 Chen et al. (2024), AudioLM Borsos
et al. (2023)) are optimized for linguistic structure rather than musical characteristics, oper-
ating on phoneme-aligned inputs and shorter temporal contexts suitable for utterances but
insufficient for musical phrases. Text-to-music methods (MusicLM Agostinelli et al. (2023),
MusicGen Copet et al. (2023), Moûsai Schneider et al. (2024)) cannot perform reference-
based timbre transfer as they rely solely on text descriptions, which introduce ambiguity
for precise instrument specification. Selected Baseline: We benchmark against Token-
Synth Kim et al. (2025), which represents the state-of-the-art in zero-shot instrument syn-
thesis through discrete token manipulation. TokenSynth is the only existing method that

1. https://github.com/descriptinc/audiotools
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Table 1: Functional comparison of controllable music synthesis methods. NCLMCTT
uniquely combines reference audio conditioning, flexible control length, and zero-
shot transfer without explicit timbre learning.

Method Control Signal No Explicit Timbre Flexible Control Zero-shot
Type Learning Length Transfer

VALL-E Wang et al. (2023) Reference Audio ✓ ✗ ✓
VALL-E 2 Chen et al. (2024) Reference Audio ✓ ✗ ✓
AudioLM Borsos et al. (2023) Reference Audio ✗ ✗ ✗
MusicLM Agostinelli et al. (2023) Text ✓ ✓ ✗
MusicGen Copet et al. (2023) Text ✓ ✓ ✗
Moûsai Schneider et al. (2024) Text ✓ ✓ ✗
TokenSynth Kim et al. (2025) Text + Reference ✓ ✓ ✓

NCLMCTT (Ours) Reference Audio ✓ ✓ ✓

combines reference audio control with zero-shot transfer capabilities and flexible control
length, making it functionally most similar to our approach and enabling direct comparison
of timbre transfer quality.

Architectural Inspiration: While VALL-E Wang et al. (2023) inspired our hierar-
chical coarse-to-fine generation strategy, NCLMCTT introduces substantial music-specific
modifications: (1) cross-attention mechanisms for explicit timbre conditioning beyond con-
catenation -based approaches; (2) flexible reference duration (1-5s) for varying musical
phrase lengths; (3) MIDI-based melodic features and extended temporal contexts opti-
mized for musical structure. These deviations address fundamental differences between
speech synthesis (phoneme-to-audio with speaker identity) and music synthesis (MIDI-to-
audio with timbral control), making TokenSynth the appropriate benchmark for timbre
transfer evaluation rather than adapting speech models.

5.5. Benchmarking

5.5.1. Comparison with TokenSynth

Table 2 presents the quantitative comparison between TokenSynth and NCLMCTT. Our
method achieves substantial improvements in timbral fidelity across all spectral metrics:
27.1% lower SI-SDR, 50.9% lower Mel Distance, and 59.4% lower STFT Distance. These
improvements demonstrate that our direct audio conditioning approach enables significantly
more accurate timbre replication than TokenSynth’s CLAP embedding-based method.

TokenSynth achieves marginally higher Chroma Similarity (0.878 vs. 0.850, a 3.2%
difference), indicating slightly better melodic preservation. However, both methods main-
tain strong melodic coherence above 0.85, suggesting that NCLMCTT successfully balances
timbre transfer with melodic integrity. The results validate our hypothesis that avoiding
pretrained timbre encoders enables more flexible and accurate timbre transfer, achieving
50-59% improvements in spectral distance metrics while maintaining competitive melodic
performance.

5.6. Zero-shot Generalization Performance

NCLMCTT demonstrates robust generalization to unseen instrument presets, validating its
ability to transfer learned timbre modeling capabilities to novel sounds without additional
training. Figure 4 presents a comprehensive comparison between zero-shot performance on
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Figure 4: Zero-shot performance comparison between seen training presets (groups 1-10,
11-20, 21-30, 31-40) and unseen test presets (41-50). Box plots show distribution
of SI-SDR, Mel Distance, STFT Distance, and Chroma Similarity across preset
groups, demonstrating robust generalization to novel instrument timbres.

unseen presets (presets 41-50) and performance on four groups of seen presets from the
training set (presets 1-10, 11-20, 21-30, 31-40).

The results reveal strong zero-shot generalization across all metrics. For SI-SDR and
Mel Distance, unseen presets achieve performance comparable to seen presets, with distri-
butions largely overlapping. STFT Distance shows particularly robust generalization, with
zero-shot performance matching or exceeding several seen preset groups. Chroma Similar-
ity maintains consistent performance across both seen and unseen presets, indicating that
melodic preservation is not degraded when transferring to novel timbres.

5.7. Qualitative Analysis

Figure 5 presents detailed spectral and waveform visualizations for four representative sam-
ples, demonstrating NCLMCTT’s accurate reconstruction capabilities across diverse tim-
bral characteristics. Spectral comparisons (panels a, c, e, g) reveal close alignment between
generated and ground truth spectrograms, with predicted outputs preserving harmonic
structure, formant characteristics, and temporal spectral evolution. Chromagram analysis
(bottom rows of spectral panels) confirms strong melodic preservation across all samples,
with Chroma Similarity scores ranging from 0.96 to 0.99. Waveform comparisons (panels

Table 2: Comparison of audio quality metrics between TokenSynth and NCLMCTT. Lower
values indicate better performance for SI-SDR, Mel Distance, and STFT Distance,
while higher values are better for Chroma Similarity. Bold indicates best perfor-
mance.

Metric TokenSynth NCLMCTT (Ours) Improvement

SI-SDR ↓ 29.22 21.30 27.1%
Mel Distance ↓ 3.69 1.81 50.9%
STFT Distance ↓ 6.41 2.60 59.4%
Chroma Similarity ↑ 0.878 0.850 -3.2%
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b, d, f, h) show faithful reproduction of temporal envelopes, though absolute difference
plots reveal notable deviations concentrated at note onsets where precise transient mod-
eling remains challenging—a common limitation in autoregressive token-based generation.
Additionally, subtle high-frequency artifacts are visible in some spectrograms (particularly
Sample 1), suggesting that extremely fine timbral details occasionally suffer minor degra-
dation. Despite these localized imperfections, the consistent overall performance across
samples (SI-SDR: -3.64 to -4.72 dB, Mel Distance: 2.35-2.49, STFT Distance: 3.05-3.26)
validates NCLMCTT’s robust generalization, successfully transferring timbre while main-
taining melodic integrity across varying melodic patterns and instrumental characteristics
without major artifacts such as spectral smearing or temporal jitter.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 5: Audio visualization for all samples. Each sample shows spectral features (left)
and waveform (right). Sample 1 (SI-SDR: -4.72, MEL: 2.35, STFT: 3.05, Chroma:
0.98), Sample 2 (SI-SDR: -3.69, MEL: 2.48, STFT: 3.19, Chroma: 0.96), Sample
3 (SI-SDR: -3.68, MEL: 2.48, STFT: 3.19, Chroma: 0.98), Sample 4 (SI-SDR:
-3.64, MEL: 2.49, STFT: 3.26, Chroma: 0.99)

6. Ablation Studies

To validate our design choices, we conduct ablation studies examining control signal du-
ration, cross-attention mechanisms, and model capacity. Table 3 presents first codebook
reconstruction performance across different NCLMCTT configurations. Control Signal
Duration. We evaluate reference audio lengths from 1s to 5s with fixed architecture
(0.3B parameters, no cross-attention). Performance improves consistently with longer ref-
erences: nclmctt 5s achieves 40.8% lower SI-SDR than nclmctt 1s (5.27 → 3.12 dB), with
corresponding improvements in Mel Distance (3.81 → 3.52) and Chroma Similarity (0.86
→ 0.88). This validates that extended reference signals provide richer timbral informa-
tion for more accurate transfer. Cross-Attention Mechanism. Adding explicit cross-
attention layers (nclmctt cross attn) further reduces SI-SDR from 3.12 to 2.75 dB (11.9%
improvement over nclmctt 5s), with gains in Mel Distance (3.52 → 3.46). This demon-
strates that explicit attention to reference audio enhances timbre conditioning beyond
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Table 3: Ablation study of NCLMCTT design choices on first codebook reconstruction.
Configurations vary by control signal duration (1s-5s), cross-attention mechanism,
and model size (0.3B vs. 1.2B parameters). Best values are highlighted in bold.

Model SI-SDR Mel STFT Chroma
(dB) ↓ Dist. ↓ Dist. ↓ Sim. ↑

Control Signal Duration (0.3B params, no cross-attn)
nclmctt 1s 5.27 ± 4.18 3.81 ± 1.30 4.70 ± 1.74 0.86 ± 0.08
nclmctt 2s 4.50 ± 2.92 3.77 ± 1.13 4.72 ± 1.65 0.86 ± 0.08
nclmctt 3s 4.37 ± 2.66 3.53 ± 0.95 4.51 ± 1.39 0.87 ± 0.06
nclmctt 4s 4.33 ± 3.57 3.70 ± 1.19 4.65 ± 1.63 0.87 ± 0.07
nclmctt 5s 3.12 ± 2.51 3.52 ± 1.03 4.54 ± 1.55 0.88 ± 0.06

Architecture Enhancements (5s reference)
nclmctt cross attn 2.75 ± 2.63 3.46 ± 1.02 4.55 ± 1.56 0.88 ± 0.06
nclmctt cross attn large 2.75 ± 2.13 3.28 ± 0.87 4.41 ± 1.32 0.89 ± 0.06

concatenation-based approaches. Model Capacity. Scaling from 0.3B to 1.2B param-
eters (nclmctt cross attn large) maintains SI-SDR (2.75 dB) while achieving best overall
performance: Mel Distance improves to 3.28 (5.2% better), STFT Distance to 4.41 (3.1%
better), and Chroma Similarity to 0.89 (1.1% better). Increased capacity enables better
spectral modeling and melodic preservation without overfitting.

7. Conclusion

We introduced NCLMCTT, a neural codec language model that advances controllable tim-
bre transfer through implicit audio conditioning without pretrained timbre encoders and
the first comprehensive benchmark dataset for systematic evaluation. Compared to Token-
Synth, NCLMCTT achieves substantial improvements in timbral fidelity (27.1% reduction
in SI-SDR, 50.9% in Mel Distance, 59.4% in STFT Distance) while maintaining strong
melodic coherence (Chroma Similarity: 0.85). Zero-shot evaluation on unseen presets con-
firms robust generalization without performance degradation. Ablation studies reveal that
control signal duration provides the largest impact (40.8% improvement), followed by cross-
attention mechanisms (11.9%) and model scaling (up to 5.2%). The analysis demonstrates
that first codebook modeling represents the primary bottleneck, with upsampling from
ground truth tokens achieving near-perfect reconstruction. By establishing rigorous evalua-
tion protocols and providing open-source access to our dataset and implementation, NCLM-
CTT serves as both a practical tool for music creators and a methodological foundation for
advancing controllable neural audio synthesis.

8. Limitations and Future Work

While NCLMCTT demonstrates strong performance, several directions warrant further
investigation: incorporating explicit pitch-aware mechanisms to close the 3.2% melodic
preservation gap with TokenSynth and scaling to longer musical phrases with real-time
generation capabilities. By establishing a rigorous evaluation framework and providing
open-source access to our dataset, protocols, and implementation, we aim to accelerate
progress in controllable neural music synthesis. Our work demonstrates that neural codec
language models can effectively bridge symbolic music representation and audio synthesis,
enabling precise timbre control while maintaining melodic integrity, positioning NCLMCTT
as both a practical tool for music creators and a methodological foundation for advancing
controllable audio generation research.
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