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Abstract

Large Language Models (LLMs), often show001
strong performance on English tasks, while ex-002
hibiting limitations on other languages. What003
is an LLM’s multilingual capability when it is004
trained only on certain languages? The under-005
lying mechanism remains unclear. This study006
endeavors to examine the multilingual capa-007
bility of LLMs by conducting an exhaustive008
analysis across 101 languages. Through the009
investigation of the performance gap before010
and after embedding fine-tuning, we discov-011
ered four distinct quadrants. By delving into012
each quadrant we provide actionable and effi-013
cient guidelines for tuning these languages. Ex-014
tensive experiments reveal that existing LLMs015
possess multilingual capabilities that surpass016
our expectations, and we can significantly im-017
prove the multilingual performance of LLMs018
based on these attributes of each quadrant 1.019

1 Introduction020

Large Language Models (LLM), such as021

GPT (Brown et al., 2020; OpenAI, 2023),022

PaLM (Chowdhery et al., 2022), and LLaMA (Tou-023

vron et al., 2023a,b), are trained on massive024

amounts of text data. While these models show025

strong capabilities on English tasks, their perfor-026

mance in other languages is often limited (Zhu027

et al., 2023a; Bang et al., 2023).028

Significant research effort has been dedicated to029

enhancing multilingual capabilities by using meth-030

ods such as continued training with abundant mono-031

lingual data (Cui et al., 2023; Yang et al., 2023),032

or employing instruction-tuning techniques (Zhu033

et al., 2023b; Li et al., 2023). Despite the encour-034

aging results, the underlying mechanism of LLM’s035

multilingual capability remains mysterious.036

Multilingual capability refers to how effectively037

models that have been fine-tuned in one source038

1We will release the model and code to the public.

Figure 1: Multilingual capability quadrant. This graph,
based on the TED dataset, plots the performance of mod-
els fine-tuned with bilingual instructions. Each point
represents a model’s performance gain over the original
LLaMA. The horizontal axis measures the improvement
in bilingual performance, while the vertical axis indi-
cates the enhancement in multilingual performance.

language can be applied to tasks in other lan- 039

guages and achieve decent performance. This abil- 040

ity has been extensively studied in machine transla- 041

tion (Johnson et al., 2017; Gu et al., 2018; Neubig 042

and Hu, 2018; Aharoni et al., 2019; Zhang et al., 043

2020) and multilingual pre-trained models (Pires 044

et al., 2019; Libovický et al., 2019; Wu and Dredze, 045

2020). However, it has not been investigated for 046

English-centric LLMs. Generally, multilingual ca- 047

pabilities are built on two key foundations: the 048

volume of multilingual data used during the pre- 049

training stage (Touvron et al., 2023a,b; Li et al., 050

2023; Scao et al., 2022), and the vocabulary (Pires 051

et al., 2019; Chung et al., 2020; Liang et al., 2023). 052

In this work, we focus on the latter: the vocabulary. 053

To investigate the impact of vocabulary on 054

LLM’s multilingual capability, we only fine-tune 055

the embedding layer and keep the rest of the param- 056

eters frozen, denoted as Embed FT. This approach 057

requires fewer adjustments to the model parameters 058

than full fine-tuning, and unlike LoRA, it doesn’t 059

require any additional model structure. This makes 060

it an ideal method for us to delve into the inherent 061
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multilingual capabilities of LLM.062

To examine the multilingual capabilities of063

LLMs without loss of generality, we applied Em-064

bed FT to a 10k en→x bilingual instruction transla-065

tion dataset across four distinct datasets: Lego-MT,066

Wikimatrix & Newcommentary, and TED. We eval-067

uated the bilingual and multilingual performance068

of each model to determine if there was a signifi-069

cant positive or negative change compared to the070

original model. From the results, all languages can071

be categorized into four distinct quadrants.072

The multilingual capability quadrant of the TED073

dataset, illustrated in Figure 1, includes four quad-074

rants: the reciprocal quadrant, the altruistic quad-075

rant, the stagnant quadrant, and the selfish quadrant.076

The full definition of each quadrant is in Section 3.077

The selfish quadrant refers to scenarios where the078

fine-tuned model only improves on the fine-tuning079

language directions but not other languages. It is080

considered a default quadrant, as languages that fall081

into the selfish quadrant exhibit behavior that aligns082

intuitively with the effects of bilingual fine-tuning.083

Certain languages such as Bulgarian fall into the084

reciprocal quadrant, where training with bilingual085

data (e.g. English→Bulgarian) not only enhances086

bilingual performance but also boosts the multi-087

lingual capabilities of other languages. The ma-088

jority of these languages in this quadrant are from089

the Indo-European family, benefiting from the pre-090

training data and vocabulary sharing. For these091

languages, we find that there is no need to fine-tune092

all parameters, which could lead to overfitting to a093

specific language. We recommend fine-tuning only094

the embedding layer, which yields bilingual perfor-095

mance on par with full fine-tuning while preserving096

the model’s multilingual capabilities.097

Remarkably, certain languages exhibit altruis-098

tic characteristics. When we use these languages099

as training data, their primary effect is to enhance100

multilingual performance. Upon further analysis,101

we discovered that the decline in bilingual perfor-102

mance is primarily due to a change in error types:103

from those that are easy to score to those that are104

more challenging. The improvement in multilin-105

gual performance, on the other hand, stems from106

vocabulary sharing. For such languages, employ-107

ing a small dataset for full fine-tuning can be more108

effective for multilingual capabilities.109

Indeed, there are certain languages located in110

the stagnant quadrant that are quite stubborn. This111

means that using data from these languages doesn’t112

improve bilingual performance or bring about 113

multilingual benefits. Regardless of parameter- 114

effective tuning strategies (LoRA) or extensive 115

fine-tuning on large datasets, the results are still 116

disappointing. Interestingly, even expanding the 117

vocabulary for full fine-tuning doesn’t lead to bet- 118

ter results. Then, we find that existing LLMs of- 119

ten over-tokenized these languages, which reduces 120

the density of information they carry. By simply 121

removing the common prefix of tokenized repre- 122

sentation, we have seen an average improvement 123

of 2.5 spBLEU points. Our main contributions are: 124

• We conduct a systematic analysis of the impacts 125

of LLM’s vocabulary on their multilingual ca- 126

pabilities, and discover four quadrants based on 127

their embedding fine-tuning performance gap. 128

• We provide practical and efficient technical 129

guides to improve multilingual capabilities for 130

each quadrant. 131

• We perform extensive experiments to verify the 132

effectiveness of quadrant-specific fine-tuning 133

techniques (e.g. 2.5 spBLEU improvement in 134

stagnant quadrant). 135

2 Background 136

Multilingual Large Language Model Large lan- 137

guage models (LLMs) (OpenAI, 2023; Zhang et al., 138

2022; Brown et al., 2020; Chowdhery et al., 2022; 139

Touvron et al., 2023a,b) have shown demonstrated 140

performance in English, but the performance in 141

other languages is limited. To address this limita- 142

tion, researchers have proposed multilingual lan- 143

guage models (MLLMs) that can handle multiple 144

languages simultaneously. The first line of re- 145

search proposes to learn a shared representation 146

space for multiple languages by first pre-training 147

on multilingual data and then fine-tuning for spe- 148

cific tasks or languages. Representative works in- 149

clude mBERT (Devlin et al., 2019), XLM (Lam- 150

ple and Conneau, 2019), XLMR (Conneau et al., 151

2020), BLOOM (Scao et al., 2022), XGLM (Lin 152

et al., 2022b), and PolyLM (Wei et al., 2023). An- 153

other line of research adopted existing monolin- 154

gual LLMs to multilingual using techniques such 155

as prompt engineering (Muennighoff et al., 2023; 156

Yong et al., 2023), instruction tuning (Zhu et al., 157

2023b; Li et al., 2023; Jiao et al., 2023), or continue 158

training (Cui et al., 2023; Yang et al., 2023). 159

The Multilingual Foundation of LLM The ro- 160

bust multilingual capabilities of LLM are founded 161

on: the presence of diverse multilingual data (Tou- 162
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vron et al., 2023a,b; Li et al., 2023; Scao et al.,163

2022) and vocabulary (Pires et al., 2019; Chung164

et al., 2020; Liang et al., 2023).165

The size of multilingual data is a critical factor in166

the multilingual capabilities of LLM. LLaMA (Tou-167

vron et al., 2023a) is pre-trained on a vast scale,168

with over 1.6 trillion tokens, of which less than169

4.5% is multilingual data, spanning 20 different170

languages. LLaMA2 (Touvron et al., 2023b) fur-171

ther enhances the proportion of multilingual data172

to approximately 11% and increases the number173

of languages to around 26. PolyLM (Wei et al.,174

2023) is trained on 640 billion tokens and sup-175

ports 18 of the most commonly spoken languages.176

BLOOM (Scao et al., 2022) is trained with data177

from 46 natural languages. The existing language178

data in the pre-training phase provides LLM with a179

robust foundation for multilingual capabilities.180

Another key factor is vocabulary construction.181

A common approach to constructing vocabulary182

involves tokenizing text into subwords: includ-183

ing Byte-level Byte-Pair-Encoding (BBPE), Byte-184

Pair-Encoding (BPE), SentencePiece (SP) (Sen-185

nrich et al., 2016; Kudo and Richardson, 2018;186

Wang et al., 2019), which are units smaller than187

words that can encapsulate morphological varia-188

tions. Nevertheless, in a multilingual context en-189

compassing a diverse range of scripts, the base190

vocabulary comprising subwords can become ex-191

ceedingly large, leading to inefficiency and sparsity.192

Further Information on BBPE is in Appendix A.193

3 Inherent Multilingual Capabilities194

In this section, we begin by exploring the inherent195

multilingual capabilities of LLMs and give some196

fascinating observations detailed in Section 3.1.197

Drawing on these insights, we then proceed to con-198

duct an in-depth examination of the multilingual199

capability of LLM in Section 3.2.200

3.1 Observation201

Setting We use bilingual translation instruction202

data developed in Lego-MT, covering all 101 lan-203

guages in Flores-101, for fine-tuning. We train204

the LLaMA-7B with en→ro, en→no, en→ms, and205

en→luo data separately, and then thoroughly evalu-206

ate each bilingual-tuned model on all 101 language207

pairs (en→x) to probe its multilingual translation208

performance on Flores-101’s devtest set.209

Phenomena We observe that LLM demonstrates210

superior multilingual capabilities far beyond expec-211

tation. Some interesting phenomena are: 212

Phenomenon 1: Multilingual LLMs can sup- 213

port additional languages beyond those explic- 214

itly mentioned in their pretraining corpus. In 215

the leftmost part of Figure 2, it is evident that the 216

bilingual-finetuned en→ro, en→ms, and en→no 217

models exhibit a significant improvement over the 218

original LLaMA model in en→af translation. This 219

outcome is quite surprising considering that neither 220

LLaMA’s pretraining corpus 2 nor our fine-tuning 221

data contain any text related to af. Similar observa- 222

tions can be made for numerous other languages, 223

as depicted in Figure 2. This indicates that the 224

LLaMA model may possess a more robust capabil- 225

ity for handling multiple languages than previously 226

expected. Eliminating the influence of language 227

information, we compared the performance of the 228

model trained on Alpaca data with the original 229

LLaMA model across 101 languages and discov- 230

ered that LLaMA is capable of supporting 26 lan- 231

guages: pt, fr, sv, ca, da, de, ro, it, cs, es, ru, uk, 232

nl, sl, bs, hr, hu, pl, no, ast, gl, bg, id, af, sk, ms. 233

Appendix C contains more details. 234

Phenomenon 2: The model fine-tuned with bilin- 235

gual data surprisingly exhibits multilingual ca- 236

pabilities. As depicted in Figure 2, the fine-tuned 237

model using en→ro data substantially improved 238

en→ro translation performance compared to the 239

original LLaMA. Interestingly, this improvement 240

is not limited to the en→ro pair. Other language 241

pairs, such as en→fr and en→ca, have also exhib- 242

ited significant gains. 243

Phenomenon 3: The performance distribution 244

of bilingual-tuned models across multiple lan- 245

guages exhibits remarkable consistency. Intu- 246

itively, different bilingual models shall have very 247

different multilingual performance distributions. 248

However, from line plots in Figure 2, we ob- 249

serve that three bilingual models (en→ro, en→no, 250

and en→ms) showcase an exceptional level of 251

consistency. We speculate such a phenomenon 252

might be caused by a similar instruction-tuning pro- 253

cess. However, further experiments on the en→luo 254

model reject the above hypothesis. Therefore, we 255

hypothesize that such a phenomenon only occurs 256

in certain languages and might be related to certain 257

underexplored mechanisms. 258

2LLaMA utilizes Wikipedia for its pre-training data which
includes 20 languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it,
nl, pl, pt, ro, ru, sl, sr, sv, uk.
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Figure 2: We evaluated the multilingual capabilities of various models on the Flores-101 dataset. The bar graph
represents the direct inference results from the original LLaMA, while the line graph illustrates the multilingual
performance of models trained on bilingual instruction data from en→ro, en→ms, en→no, and en→luo.

3.2 Quantify Multilingual Capability at Scale259

Given the phenomena above, we scale our evalua-260

tion to more languages to validate our findings.261

Setting We conduct experiments on LLaMA with262

3 epochs on all 101 language pairs(en→x) in263

Flores-101 using parallel multilingual corpora. For264

each language pair, we sample at most 10k sam-265

ples at random unless it has fewer than 10k sam-266

ples. We then train models using the Embed FT267

method. For evaluation on Flores-101’s devtest in-268

cluding 12 respective languages (details provided269

in Appendix E), we use a beam size of 4 and sp-270

BLEU (SentencePiece BLEU) as the metric.271

Observation Inspecting the large-scale evaluation272

results, we make the following observation: some273

bilingual models exhibit highly similar yet sur-274

prising behaviors. As a counterintuitive example,275

we showcase a group of “selfless” bilingual mod-276

els (see Table 1). In common belief, fine-tuning277

LLM on one language pair shall definitely improve278

its performance. However, to our surprise, fine-279

tuning these “selfless” bilingual models(column280

LG) might even hurt their performance(comparing281

en→LG column with LLaMA column). What’s282

even more interesting is that the multilingual per-283

formance of these models is significantly improved.284

To quantitatively investigate the language cluster-285

ing behavior, as well as dig the root of the phenom-286

ena mentioned above, we propose to categorize lan-287

guages into four quadrants using a two-dimensional288

Cartesian system. As shown in Figure 1, the x-axis289

represents bilingual performance, and the y-axis290

represents multilingual performance. Before clus-291

tering, we first establish a categorization criteria.292

Criteria We use the bilingual/multilingual perfor-293

mance changes before and after fine-tuning to mea-294

Type LG LLaMA en→af en→ro en→LG Multilingual

af 3.5 15.6 20.0 15.6 17.8
ro 3.6 18.6 28.7 28.7 23.7

selfless

ln 2.9 7.9 20.9 0.9 14.4
ns 3.3 7.9 22.6 1.4 15.3
lo 1.8 8.7 17.8 0.1 13.3
km 1.1 9.7 21.3 0.1 15.5
ig 2.0 9.7 19.8 1.2 14.7
ps 0.9 8.9 17.2 0.5 13.1
my 0.3 11.2 22.8 0.0 17.0
lv 0.7 10.5 22.5 0.4 16.5
xh 2.3 9.4 21.7 2.0 15.5
mn 0.2 12.0 22.8 0.0 17.4
am 0.2 8.3 14.9 0.0 11.6
pa 0.3 8.8 18.8 0.1 13.8

Table 1: Consistent performance gains in translation
across multiple languages. Each row represents a model
that has been trained using en→LG bilingual dataset.
Multilingual performance refers to the average result of
en→af and en→ro.

sure whether the tuning results in gain or loss: 295

∆lg =

{
Ppost
Ppre

− 2, if Ppre ≥ T
Ppost−2T

Ppre
, otherwise

(1) 296

where the Ppost represents the translation perfor- 297

mance after fine-tuning, Ppre indicates the perfor- 298

mance before the fine-tuning process, T serves as 299

a threshold for smoothing, and 2 is a hyperparam- 300

eter quantifies the extend for significant changes. 301

We select based on a preliminary study, for further 302

information see Appendix D. The calculation of 303

∆lg for bilingual performance is straightforward, 304

for the multilingual performance, we consider the 305

average performance of en→af and en→ro trans- 306

lations. This is primarily due to our observation 307

that changes in multilingual performance are sig- 308

nificantly mirrored in that of en→af and en→ro, 309

details are in Appendix E. 310

Quadrant Details We calculate the above crite- 311

ria on four multilingual corpora: Lego-MT (Yuan 312

et al., 2023), Wikimatrix (Schwenk et al., 2021) and 313

Newscommentary (Tiedemann, 2012), and Ted (Ye 314
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Dataset Reciprocal Quadrant Selfish Quadrant Altruistic Quadrant Stagnant Quadrant

Lego-MT af, bs, bg, ca, hr, cs, da, mk, ms, no, oc, pl, pt, ro, sk,
sl

ast, be, tl, fr, gl, de, hu, id, it,
ky, lt, ml, mt, mi, ny, fa, ru,
sr, es, sw, sv, tg, uk

am, ar, hy, as, bn, my, ceb, zh, et, fi, gu, he, is,
ig, ga, jv, km, ko, lo, lv, ln, mr, mn, ne, ns, ps,
pa, sd, so, tr, ur, uz, vi, cy, xh, zu

te, zhtrad, ff, lg, el, ja, kam,
kk, luo, lb, or, om, sn, ku, ta,
th, umb, wo, yo

New bs, bg, ca, hr, cs, da, nl, fr, gl, de, el, hi, hu, id, it, ja,
mk, no, pl, pt, ro, ru, sr, sk, sl, es, sv, uk

ar, az, be, zh, et, tl, fi, ka, he, is, jv, kk, ko, lt, lb,
mr, ne, oc, fa, sw, tg, te, tr, vi

bn, ml, ta

Ted bg, hr, cs, da, nl, fr, de, el, hu, id, it, ja, mk, pl, pt, ro,
ru, sk, sl, es, sv

hi ar, et, fi, gl, ka, he, ko, lt, mr, fa, sr, th, tr, uk, vi hy, az, be, bn, bs, my, zh, kk,
ms, mn, ku, ta, ur

Summary bg, id, de, ru, da, mk, hu, it, pl, cs, hr, sl, es, sk, sv, ro, pt, fr mr, ko, he, fi, et, vi, tr, ar -

Table 2: The distribution of various languages across different quadrants. Various factors such as data influence
and tuning strategy can lead to instability in some language quadrants. However, we concentrate on languages
that demonstrate consistent stability within these quadrants. In the stagnant quadrant, given that different datasets
encompass varying numbers of languages, we also take into account the observations.

et al., 2018), and obtain a consistent language315

classification results as in Table 2. The details316

of datasets and categorization are in Appendix E.317

We summarize the behavior of four quadrants be-318

low (also shown in Figure 1):319

• Reciprocal Quadrant: Models trained on lan-320

guages from reciprocal quadrant, demonstrate321

strong bilingual and multilingual performance at322

the same time.323

• Altruistic Quadrant: Models trained on these lan-324

guages prioritize enhancing others, with minimal325

impact on their bilingual performance.326

• Stagnant Quadrant: Existing tuning strategies ap-327

pear to have minimal impact on these languages.328

• Selfish Quadrant: The selfish quadrant is the most329

intuitive one: training in a specific language typi-330

cally improves the performance of that language331

and merely affects other languages.332

Please note that the categorization proposed is333

merely one possibility derived from certain crite-334

ria, and there might exist alternatives that lead to335

slightly different classification results. Nonethe-336

less, We only focus on the consistent classification,337

produced by Eq. 1, across four distinct datasets for338

our later analysis. We leave the exploration of a339

better classification metric as future work.340

4 Enhancing Multilingual Capability341

This section conducts a comprehensive analysis342

of the properties and training strategies of each343

quadrant to effectively enhance the multilingual344

capability of LLMs.345

4.1 Reciprocal Quadrant346

Language within the reciprocal quadrant indicates347

that using any of these languages as training data in-348

variably improves performance in other languages349

within the same group. We will delve into this350

relationship to uncover some intriguing insights.351

Interpretation: Reciprocal quadrant consists352

Figure 3: Comparing the Embed FT and Full FT Strate-
gies. In the realm of bilingual performance, both strate-
gies prove equally effective. However, when it comes to
multilingual performance, the Embed FT strategy stands
out for its adaptability across various languages, while
the Full FT strategy tends to over-specialize the model
to a single language. The numerical results for each
language pair can be found in Appendix G.

of linguistically similar languages. The recipro- 353

cal quadrant is predominantly occupied by Indo- 354

European languages. These languages are grouped 355

mainly due to their shared vocabulary and gram- 356

matical affixes. Furthermore, the original 20 lan- 357

guages supported by LLaMA are predominantly 358

Indo-European, providing a solid foundation. Con- 359

sequently, tuning one language within the Indo- 360

European family can effectively enhance the perfor- 361

mance of other languages within the same family. 362

Practice Guidance 1: The recommended train- 363

ing strategy for reciprocal languages is Em- 364

bed FT, which achieves the best performance- 365

generalization trade-off. Figure 3 illustrates the 366

performance disparity between the models obtained 367

through Embed FT and Full FT strategies under 368

varying amounts of training data. We randomly 369

selected 11 languages from the reciprocal quadrant 370

for testing, including es, pt, ca, de, da, cs, bg, pl, 371

fr, ru, nl, and averaged the bilingual/multilingual 372

performance across all 11 languages. 373

For bilingual performance, the Embed FT strat- 374
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egy works as well as the Full FT strategy. As de-375

picted by the bar in Figure 3, the results indicate376

that when working with a limited dataset, the model377

trained by Embed FT demonstrates a slightly infe-378

rior performance compared to Full FT. However,379

as the size of the dataset increases, the model de-380

veloped using Embed FT not only matches but may381

even exceed the performance of Full FT.382

For multilingual performance, the Embed FT383

strategy excels in adapting to various languages,384

while the Full FT strategy tends to make the model385

overly specialized to a particular language. As illus-386

trated by the line in Figure 3, the findings suggest387

that full fine-tuning of a bilingual dataset may lead388

to overfitting, but this can be effectively mitigated389

by using the Embed FT strategy.390

Practice Guidance 2: While the Full FT model’s391

multilingual capabilities are influenced by lan-392

guage quantity, the Embed FT model remains393

unaffected. Considering Phenomenon 3, which394

observes a consistent multilingual distribution, we395

are curious to explore whether a richer language396

number could bring additional performance gains.397

To investigate this, we randomly select some lan-398

guages from the reciprocal quadrant to establish a399

multilingual setting, and the results of this experi-400

ment are displayed in Table 3. In the Full FT, the401

performance of the multilingual model improves402

with an increase in the number of languages. How-403

ever, in the Embed FT, the number of languages404

does not have a significant impact.405

4.2 Altruistic Quadrant406

Languages that fall into this quadrant demonstrate a407

"selfless" characteristic. Training based on the data408

from these languages does not necessarily improve,409

and may even decrease their performance. Inter-410

estingly, it can lead to performance enhancements411

in other languages. We will conduct a thorough412

examination of the underlying causes of this phe-413

nomenon and propose potential solutions.414

Interpretation for bilingual performance de-415

cline: The model transitions from an error type416

that is easy to score to a less score-friendly er-417

ror type. The primary error for LLaMA is “source418

copy”, which simply duplicates the source sentence419

as the translation. This error often leads to mod-420

erate scores when there are names, numbers, and421

punctuation in the translation tasks. However, after422

tuning, the main error shifts to “oscillatory hallu-423

cination” (Li et al., 2023), a state where the model424

Figure 4: Analyzing linguistics in altruistic languages.
A significant overlap in tokenized results with English
may enhance performance in Indo-European languages.

becomes stuck in a specific translation state and 425

generates repeated n-grams until it reaches the max- 426

imum length. This error is challenging to score. 427

Therefore, the performance of the fine-tuned model 428

is lower than that of the original model. 429

Interpretation for multilingual performance im- 430

provement: Those languages’ vocabulary en- 431

compasses the majority of English tokens. We 432

estimate the linguistics of these languages on the 433

Flores-101 benchmark, a multilingual parallel cor- 434

pus translated by professional translators through 435

a controlled process. For an altruistic language, 436

LG we first employ LLaMA’s tokenizer to segment 437

the words in both the LG and English data from 438

Flores. This allows us to compile the sets of tokens 439

that belong to the LG language, denoted as SLG, 440

and the English language, denoted as SEn. Finally, 441

we calculate the ratios of the size of SLG
⋂
SEn to 442

the size of SLG and the size of SEn respectively. 443

Intriguingly, as shown in Figure 4, we discovered 444

that most tokenized results used in these languages 445

exhibit a high degree of consistency with English. 446

Practice Guidance: Full FT with a minimal 447

dataset can effectively enhance bilingual per- 448

formance and maintain a robust multilingual 449

effect. As shown in Table 4, the altruistic trait 450

is exemplified across different training strategies. 451

However, with Full FT and LoRA, as the dataset 452

size increases, the model tends to overfit the spe- 453

cific language, thereby diminishing its multilingual 454

capabilities. For Embed FT, an increase in data 455

volume does not significantly alter bilingual perfor- 456

mance, but it does markedly enhance the multilin- 457

gual effect. Interestingly, the multilingual effect is 458

not significantly different from that of Full FT with 459

a small dataset. In summary, by employing a small 460

dataset for full fine-tuning, we can strike a balance 461

between bilingual and multilingual performance. 462
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# Lang Data Size en→hr en→da en→no en→ro en→ca en→cs en→bg en→pl en→es en→fr en→de en→pt en→nl AVG.

Bilingual Full Fine-Tuning

20k 20.2 32.2 22.2 28.8 35.8 24.5 26.5 18.4 23.8 31.7 24.8 41.1 18.9 26.8
40k 21.2 32.8 24.0 29.6 37.0 25.4 27.4 18.8 25.2 34.1 25.9 41.3 22.1 28.1
80k 22.4 34.8 25.6 30.8 38.5 26.4 29.3 19.1 23.6 32.9 30.8 40.6 23.5 29.1
160k 23.8 36.4 28.4 34.3 39.2 27.1 31.8 19.7 25.9 39.1 31.2 39.7 24.3 30.8

Multilingual Full Fine-Tuning

2 160k 22.9 17.2 8.7 19.0 24.9 17.8 5.1 8.7 10.7 4.5 5.4 9.6 23.7 13.7
4 40k 20.0 31.1 18.6 28.6 35.6 24.0 20.6 18.4 26.4 36.2 27.3 38.3 23.6 26.8
8 80k 20.2 28.1 21.7 28.8 36.4 24.9 27.1 19.4 25.9 37.1 25.5 41.2 24.8 27.8
16 160k 21.3 33.2 22.3 29.8 35.7 25.7 27.7 19.3 26.0 38.2 25.5 41.7 23.5 28.4

Multilingual Embedding Fine-Tuning

2 160k 21.5 33.1 18.5 29.5 36.0 25.6 20.5 18.8 26.9 41.8 30.7 41.5 24.8 28.4
4 40k 19.9 33.3 19.2 29.7 37.1 24.9 26.7 19.6 26.8 42.8 30.8 41.0 25.3 29.0
8 80k 20.3 32.8 19.2 28.6 34.6 24.6 27.0 19.1 27.0 40.0 29.9 40.7 24.5 28.3
16 160k 20.9 34.0 20.0 29.5 37.6 25.1 27.7 19.3 27.2 41.6 30.6 41.6 24.7 29.2

Table 3: Performance comparison of bilingual and multilingual models. In full fine-tuning, multilingual models
improve with more languages. However, in embedding fine-tuning, language quantity doesn’t significantly affect
performance. Notably, multilingual models slightly underperform compared to bilingual models. In the table, a data
size of 160k for 2 languages implies that each language contributes 80k entries.

Setting Size en→vi en→tr en→ar AVG.
B M B M B M B M

LLaMA 1.9 3.6 2.4 3.6 0.26 3.6 1.5 3.6

FT
10k 14.8 24.4 7.2 19.9 5.4 24.7 9.1 23.0
20k 18.5 22.3 8.3 9.3 6.9 22.9 11.2 18.2
40k 22.3 15.9 10.1 6.6 9.3 21.5 13.9 14.7

LoRA
10k 4.9 24.8 4.1 23.8 4.3 23.3 4.4 24.0
20k 6.5 24.4 4.6 23.0 5.3 23.5 5.5 23.6
40k 7.2 18.0 5.1 17.0 5.8 21.0 6.0 18.7

Embed
10k 3.1 14.5 2.7 14.2 3.1 11.9 3.0 13.5
20k 3.6 23.3 2.8 23.5 4.2 23.0 3.5 23.3
40k 3.5 24.7 2.9 24.8 4.5 23.6 3.6 24.4

Table 4: The altruistic characteristic is evident in a
range of training strategies when trained with the en→vi,
en→tr, and en→ar bilingual datasets. Here, “B” denotes
the bilingual performance, while “M” signifies the aver-
age performance of en→af and en→ro.

4.3 Stagnant Quadrant463

Languages in this quadrant exhibit remarkable iner-464

tia, as training with their data neither enhances their465

own performance nor influences the performance466

of other languages. In this section, we will delve467

deeper into the inertia phenomenon, examining its468

potential causes and proposing possible solutions.469

Interpretation: Most languages in the stag-470

nant quadrant are characterized by over-471

tokenization. The LLaMA tokenizer, based on the472

BBPE algorithm, is fundamental for multilingual473

language processing tasks. Its universal applicabil-474

ity to all languages and the lack of a need for an475

‘unknown’ token make it optimal for vocabulary476

sharing and increase its robustness. Despite being477

suitable for multilingual learning, BBPE results in478

byte sequence representation of text that is often479

much longer (up to 4x) than a character sequence480

representation. Upon investigation, we find that481

the over-tokenization phenomenon is prevalent in482

LLaMA. In an extreme case, a sentence in lo that483

contains 6 words expands to 352 tokens after tok-484

Setting Ratio LLaMA Full Bilingual Fine-Tuning LoRA Bilingual Tuning
10k 20k 40K 80k 160k 10k 20k 40K 80k 160k

en→es 1.7 4.8 23.5 23.8 25.2 23.6 25.9 26.4 25.8 26.6 26.3 26.9
en→pt 1.9 6.0 41.3 41.1 41.3 40.6 39.7 42.0 42.0 42.4 42.0 41.6
en→ca 1.9 5.7 34.9 35.7 37.0 38.5 39.2 37.3 37.7 38.1 38.6 39.2
en→de 2.0 4.7 22.5 24.8 25.9 30.8 31.2 27.8 26.8 27.3 31.9 32.6
en→no 2.2 3.2 21.2 22.2 24.0 25.6 28.4 19.6 20.1 21.0 22.1 24.0
en→ro 2.3 3.5 28.3 28.7 29.6 30.8 34.3 29.8 30.0 30.9 31.2 32.7
en→da 2.3 4.9 31.9 32.2 32.8 34.8 36.4 33.4 34.0 34.5 35.3 36.1
en→bs 2.6 2.0 23.2 25.2 26.5 28.5 30.0 21.7 22.8 24.2 25.0 25.2

en→gu 15.0 0.3 2.3 2.2 4.4 10.0 13.2 1.0 1.1 1.5 1.9 3.1
en→kn 16.9 0.3 1.0 1.5 3.0 5.6 9.9 0.5 0.4 0.5 0.8 1.0
en→te 17.4 0.7 4.2 8.2 12.8 17.3 20.3 0.6 0.8 1.7 2.9 5.3
en→ku 17.6 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
en→my 21.7 0.3 1.0 2.0 4.1 7.3 9.4 0.1 0.1 0.3 0.3 0.4
en→mr 38.8 0.3 5.0 7.2 10.7 13.7 15.8 1.8 1.9 2.2 2.0 1.7
en→lo 39.8 1.8 1.5 2.3 3.7 7.1 9.8 0.4 0.7 0.7 0.6 0.7
en→km 43.0 1.1 1.6 3.1 6.2 10.1 13.4 0.2 0.2 0.5 0.9 1.5

Table 5: The relationship between stagnant languages
and the characteristic of over-tokenization. The “Ratio”
is defined as the number of tokens in a sequence after
applying the tokenizer, divided by the sentence length,
which is measured by the number of words for space-
separated languages and characters.

enization. Additional details in Appendix F. 485

A comparison between active and stagnant lan- 486

guages, as shown in Table 5, reveals that 1) ac- 487

tivating a stagnant language with full fine-tuning 488

requires more data; 2) the performance improve- 489

ment with increasing data is modest; and 3) cer- 490

tain parameter efficiency fine-tuning strategies, like 491

LoRA, do not affect them. 492

Practice Guidance 1: Expanding the vocabu- 493

lary is not an effective strategy for stagnant 494

languages. When a language is not adequately 495

represented by its vocabulary, the common ap- 496

proach is to expand the lexicon (Tai et al., 2020; 497

Cui et al., 2023; Ji et al., 2023). Regrettably, in 498

most instances, this strategy of vocabulary enlarge- 499

ment proves ineffective for stagnant languages. As 500

shown in Table 6, we present three distinct methods 501

to expand the vocabulary: 1) BBPE (Wang et al., 502

2019): This follows the approach used in LLaMA 503

for vocabulary construction and involves learning 504

a vocabulary for stagnant language; 2) BPE (Sen- 505

nrich et al., 2016)): This utilizes the BPE algorithm 506
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Source Type 3k 6k 12k Source Type 3k 6k 12k

km - 10.1 lo - 7.1

MC4
BBPE 5.2 3.7 2.3

MC4
BBPE 6.2 1.7 3.6

BPE 4.7 11.0 2.1 BPE 6.7 1.8 3.6
SP 6.2 11.8 10.3 SP 7.0 6.4 4.9

Flores
BBPE 4.6 3.5 8.5

Flores
BBPE 4.6 3.9 1.5

BPE 4.4 3.7 8.8 BPE 4.3 1.5 1.6
SP 5.5 4.4 - SP 2.4 4.2 -

gu - 10.0 te - 17.3

MC4
BBPE 0.4 0.3 0.3

MC4
BBPE 9.6 8.4 6.0

BPE 0.4 0.2 0.3 BPE 9.7 7.7 6.7
SP 0.3 0.2 0.4 SP 10.0 9.7 8.1

Flores
BBPE 0.3 0.3 0.3

Flores
BBPE 9.0 8.8 7.1

BPE 0.3 0.3 0.3 BPE 8.9 8.2 7.2
SP 0.4 - - SP 9.8 - -

Table 6: Exploring various strategies for vocabulary
expansion: The term “km - 10.1” denotes the bilin-
gual performance (10.1) of full fine-tuning on Lego-MT
80k bilingual data (en→km) without any vocabulary
extension. “3k”, “6k”, and “12k” refer to the extended
vocabulary size. Most vocabulary expansion methods
do not significantly enhance the performance of stag-
nant languages. Due to the limited data in Flores dev,
some settings are missing in the table.

and is based on subword units to learn a vocabulary;507

3) SP (Kudo and Richardson, 2018): this method508

learns a vocabulary using the SentencePiece algo-509

rithm. Meanwhile, to mitigate potential issues from510

data quality, we have utilized both MC4 and Flores-511

101 dev to construct vocabulary.512

After training LLaMA on Lego-MT 80k bilin-513

gual data, the experimental results indicate that:514

1) When there is a substantial amount of data, the515

impact of data quality on vocabulary expansion can516

be disregarded; 2) Among all the vocabulary ex-517

pansion methods, SP tends to yield better results518

compared to other solutions; 3) Almost all vocabu-519

lary expansion techniques fail to enhance the per-520

formance of stagnant languages significantly.521

Practice Guidance 2: Shortening the subword522

sequences can significantly boost the perfor-523

mance of stagnant languages. Given the exis-524

tence of the over-tokenization problem, we find525

that among these over-tokenized languages, there526

are a large amount characters. For example, a Chi-527

nese character “X” is encoded into three code units528

“[227, 234, 260]”. We refer to such characters529

as ‘over-tokenized characters’ for the sake of sim-530

plicity. We then gather all these over-tokenized531

characters along with their three-byte represen-532

tations. Interestingly, these over-tokenized char-533

acters constitute a significant proportion, about534

63.8%, of the corpus, as indicated in Table 7. More-535

over, in the case of over-tokenized languages, all536

over-tokenized characters begin with the same to-537

ken (e.g., 227). Therefore, the obtained three-byte538

representations are very sparse and result in low539

Setting en→km en→lo en→gu en→te AVG.

Ratio 47.6% 67.0% 66.8% 73.8% 63.8%

Full FT 10.1 7.1 10.0 17.3 11.1
Extend (Best) 11.8 7.0 0.4 10.0 7.3
Our Strategy 12.6 9.2 11.3 21.5 13.7

∆ + 2.5 + 2.1 + 1.3 + 4.2 + 2.6

Table 7: Over-tokenization leads to a decrease in infor-
mation density for LLM. However, by simply removing
the over-tokenized character that shares the same prefix,
we can enhance performance, achieving results that sur-
pass both full fine-tuning and vocabulary extension.

information density in representation. 540

Given the above observation, we propose a 541

post-tokenization technique to address the over- 542

tokenization problem. We simply remove the 543

shared prefix of over-tokenization characters and 544

obtain the shortened yet lossless new representa- 545

tions. As a concrete example, we remove X’s prefix 546

[227] from its three-byte representation [227, 234, 547

260] to get a more compact two-byte representation 548

[234, 260]. Subsequently, we utilized this adjusted 549

representation to train LLaMA on the 80k Lego- 550

MT bilingual dataset. Remarkably, our method 551

outperforms both direct fine-tuning of LLaMA and 552

vocabulary extension, achieving a substantial per- 553

formance boost with an average of 2.5 points. 554

4.4 Guidance Summary 555

• For languages situated in the reciprocal quadrant, 556

the suggested strategy is Embed FT. 557

• For languages residing in the altruistic quadrant, 558

applying full FT with a minimal dataset can ef- 559

fectively enhance bilingual performance while 560

maintaining a robust multilingual effect. 561

• Shortening subword sequences can markedly en- 562

hance the performance of stagnant languages. 563

5 Conclusion 564

In this study, we undertook a comprehensive analy- 565

sis of 101 languages, categorizing them based on 566

shared characteristics into four distinct quadrants: 567

the reciprocal, altruistic, selfish, and stagnant quad- 568

rants. Upon examining each quadrant in-depth, we 569

identified the primary reasons for the placement of 570

languages within their respective quadrants and pro- 571

vided some practical guidance for training. How- 572

ever, the primary focus of this study is the analysis 573

of persistent language characteristics within each 574

quadrant. A thorough investigation into the condi- 575

tions that trigger language migration across various 576

phenomena is a subject for our future research. 577
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Limitation578

In this paper, we found some interesting phenom-579

ena in LLaMA. After expanding our evaluation to580

include more languages, we found that many of581

them demonstrated remarkably similar behaviors.582

Then we grouped them with categorization criteria.583

While language classification is not our primary584

focus, our main interest lies in understanding the585

reasons behind these classifications and enhancing586

the multilingual capabilities of LLMs. Meanwhile,587

to delve deeper into the role of Embed FT, we pro-588

vide a more detailed analysis in Appendix H.589
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A BBPE984

In a multilingual context encompassing a diverse985

range of scripts, the base vocabulary comprising986

subwords can become exceedingly large, leading to987

inefficiency and sparsity. To mitigate this problem,988

BBPE has emerged as the standard practice in most989

modern language modeling efforts (Muennighoff990

et al., 2022; Scao et al., 2022; Zhang et al., 2022;991

Touvron et al., 2023a,b), which leverages UTF-8992

encoding that encodes each Unicode character into993

1 to 4 one-byte (8-bit) code units. BBPE is a tok-994

enization algorithm capable of tokenizing any word995

in any language, thereby eliminating the necessity996

for an unknown token. It optimizes vocabulary997

sharing across numerous languages and delivers su-998

perior performance, facilitating knowledge transfer999

between languages with non-overlapping character1000

sets.1001

B Language Information1002

In this section, we classify languages according1003

to their respective language families, as depicted1004

in Table 8. We standardize all language codes us-1005

ing the ISO 639-1 standard. For clarity, we list all1006

languages by their full names and shade the corre-1007

sponding languages in gray for easy identification.1008

C Supported Languages Analysis1009

To mitigate the potential influence of other lan-1010

guages, we trained LLaMA for three epochs using1011

the Alpaca-En dataset and then tested the trans-1012

lation performance of all en-x on the Flores-1011013

devtest with a beam size of 4. Upon evaluating the1014

original LLaMA’s translation performance, we ob-1015

served a significant improvement in 26 languages:1016

pt, fr, sv, ca, da, de, ro, it, cs, es, ru, uk, nl, sl, bs,1017

hr, hu, pl, no, ast, gl, bg, id, af, sk, ms.1018

D Hyper-parameter Setting1019

We use the criteria to measure the bilin-1020

gual/multilingual performance changes before and1021

after fine-tuning:1022

∆lg =

{
Ppost
Ppre

− 2, if Ppre ≥ T
Ppost−2T

Ppre
, otherwise

1023

The threshold term, T , is used to smooth the1024

dramatic numerical change that might be caused1025

by low-performing languages(e.g., performance1026

change from 0.01 to 0.02, although negligible, will1027

Figure 5: Hyper-parameter setting. “Threshold” refers
to the significant changes before and after tuning, which
are calculated by dividing the performance after tuning
by the performance before the tuning. “# Reciprocal”
denotes the count of languages in the Reciprocal quad-
rant. The experimental result demonstrates that a sub-
stantial increase in the threshold value could lead to all
languages being classified into the Stagnant quadrant.

be considered significant without re-balancing us- 1028

ing T ). We set T to the vanilla model’s average 1029

translation performance on the Flores-101 dataset. 1030

The hyper-parameter, set to a value of 2, defines 1031

the thresholds for determining significant changes 1032

before and after tuning. Here, we consider a lan- 1033

guage to have significant bilingual/multilingual per- 1034

formance changes if the performance after tuning 1035

is twice that of the performance before tuning. In 1036

Figure 5, we have thoroughly tested different sig- 1037

nificance thresholds and found that if we consider 1038

a 20-fold difference (a very large value) in perfor- 1039

mance before and after tuning, then all languages 1040

would be regarded as stagnant languages. 1041

E Quadrant Division 1042

We use some different publicly multilingual 1043

datasets: Lego-MT, Wikimatrix & Newcommen- 1044

tary, and Ted, which come from a different domain, 1045

as shown in Table 10. 1046

Conducting a comprehensive evaluation of the 1047

translation performance for all en→x pairs in 1048

Flores-101 across all models is a task that demands 1049

significant labor and resources. Therefore, we ran- 1050

domly select one representative language from each 1051

language family for subsequent testing, as shown 1052

in Table 11. 1053

The bilingual and multilingual performance of 1054

the model trained on the TED dataset on Flores-101 1055

devtest is shown in Table 12. 1056
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Family-1 Family-2 Family-3 ISO Language Lang Family-1 Family-2 Family-3 ISO Language

Indo-European

Armenian hy Armenian Kartvelian Karto-Zan Georgian ka Georgian

Balto-Slavic

Baltic
lt Lithuanian Koreanic Korean ko Korean
lv Latvian

Kra–Dai Tai Southwestern Tai
lo Lao

Slavic

be Belarusian th Thai
bg Bulgarian Mongolic Central Mongolian mn Mongolian
bs Bosnian

Niger–Congo Atlantic–Congo

Atlantic wo Wolof
cs Czech

Benue–Congo
ln Lingala

hr Croatian ns Northern Sotho
mk Macedonian

Volta-Congo

lg Luganda
pl Polish ny Nyanja
ru Russian sn Shona
sk Slovak sw Swahili
sl Slovenian umb Umbundu
sr Serbian xh Xhosa
uk Ukrainian yo Yoruba

Celtic Insular Celtic
cy Welsh zu Zulu
ga Irish ig Igbo

Germanic

North Germanic
is Icelandic kam Kamba
sv Swedish West Atlantic ff Fulani

Northwest Germanic
da Danish Nilo-Saharan Eastern Nilotic luo Dholuo
no Norwegian Portuguese Afro-Portuguese Upper Guinea Creole kea Kabuverdianu

West Germanic

af Afrikaans
Sino-Tibetan

Sinitic Chinese
zh Chinese

de German zhtrad Chinese
en English Tibeto-Burman Lolo-Burmese my Burmese
lb Luxembourgish

Turkic Common

Karluk uz Uzbek
nl Dutch

Kipchak
kk Kazakh

Graeco-Phrygian Hellenic el Greek ky Kyrgyz
Indo-Aryan Eastern bn Bengali

Oghuz
az Azerbaijani

Indo-Iranian

Indo-Aryan

as Assamese tr Turkish
gu Gujarati

Uralic
Finno-Permic Finno-Samic et Estonian

hi Hindi
Finno-Ugric

Finnic fi Finnish
mr Marathi Ugric hu Hungarian
ne Nepali

Afro-Asiatic

Chadic West Chadic ha Hausa
or Odia

Cushitic Lowland East Cushitic
om Oromo

pa Punjabi so Somali
sd Sindhi

Semitic West Semitic

am Amharic
ur Urdu ar Arabic

Iranian

fa Persian he Hebrew
ku Kurdish mt Maltese
ps Pashto

Austroasiatic
Khmer km Khmer

tg Tajik Vietic Viet–Muong vi Vietnamese

Italic Latino-Faliscan

ast Asturian

Austronesian Malayo-Polynesian

Javanese jv Javanese
ca Catalan

Malayic
id Indonesian

es Spanish ms Malay
fr French Oceanic mi Maori
gl Galician

Philippine
ceb Cebuano

it Italian tl Tagalog
oc Occitan

Dravidian

South-Central Telugu te Telugu
pt Portuguese

Southern Tamil–Kannada
kn Kannada

ro Romanian ml Malayalam
Japonic Japanese ja Japanese ta Tamil

Table 8: This table provides information on the language families of all 101 languages included in FLores-101. The
language family information is presented at three levels, denoted as “Lang Family-x”, where ‘x’ stands for the level
(1, 2, or 3). For ease of reference, we also provide the ISO code and the full name of each language. Languages that
are used in the inherent multilingual analysis are highlighted with a gray background.

F Stagnant Quadrant1057

The LLaMA tokenizer, built on the BBPE algo-1058

rithm, serves as the foundation for multilingual1059

language processing tasks. Its universal applicabil-1060

ity across all languages, coupled with the elimina-1061

tion of the need for an “unknown” token, enhances1062

vocabulary sharing and boosts its robustness. How-1063

ever, a phenomenon known as over-tokenization,1064

marked by excessive segmentation of text into to-1065

kens, may occur in certain languages, which could1066

potentially affect the efficiency of language pro-1067

cessing tasks.1068

To thoroughly examine the “over-tokenization”,1069

we conduct our research using the MC4 (Xue et al.,1070

2021) and Flores-101 (Goyal et al., 2022) dataset.1071

Despite having only 1012 samples, Flores-101 pro- 1072

vides a high-quality multilingual parallel corpus 1073

that allows for an in-depth exploration of the varia- 1074

tions in expressing the same sentence across differ- 1075

ent languages. 1076

The over-tokenization phenomenon is observ- 1077

able across various datasets and LLMs. For certain 1078

languages, such as te and lo, the length of the tok- 1079

enized sequence that LLaMA processes can extend 1080

to 300 or even more. Interestingly, analysis results 1081

from the Flores-101 dataset reveal that languages 1082

prone to over-tokenization require more tokens to 1083

express the same meaning. The magnitude of this 1084

phenomenon is notably larger than what was ob- 1085

served in the MC4 dataset, as shown in Figure 6. 1086

14



Lang Pair Alpaca LLaMA ∆ Lang Pair Alpaca LLaMA ∆ Lang Pair Alpaca LLaMA ∆

en→pt 40.5 4.7 35.9 en→ko 2.3 0.5 1.8 en→is 1.4 1.6 -0.1
en→fr 40.0 6.0 34.0 en→jv 4.3 3.1 1.2 en→sd 0.2 0.4 -0.2
en→sv 34.8 5.4 29.3 en→zhtrad 1.6 0.4 1.2 en→mt 1.6 1.8 -0.2
en→ca 34.8 6.0 28.8 en→hy 1.1 0.1 1.0 en→my 0.1 0.3 -0.2
en→da 32.2 5.4 26.8 en→he 1.4 0.5 0.9 en→te 0.5 0.7 -0.2
en→de 30.6 4.8 25.8 en→bn 1.1 0.2 0.8 en→ln 2.6 2.9 -0.3
en→ro 28.0 3.6 24.5 en→ky 1.2 0.4 0.8 en→et 1.2 1.6 -0.5
en→it 27.0 4.6 22.4 en→fa 1.5 0.7 0.7 en→ps 0.3 0.9 -0.5
en→cs 24.3 2.4 21.9 en→vi 2.6 1.9 0.7 en→uz 0.4 0.9 -0.6
en→es 26.3 4.8 21.4 en→tl 4.2 3.5 0.7 en→om 0.3 0.9 -0.6
en→ru 21.2 1.0 20.1 en→mr 1.0 0.3 0.7 en→az 0.6 1.1 -0.6
en→uk 20.1 0.5 19.6 en→be 0.8 0.2 0.6 en→ff 2.1 2.7 -0.6
en→nl 22.8 5.5 17.3 en→umb 2.2 1.7 0.6 en→lg 2.3 2.9 -0.6
en→sl 18.8 1.6 17.2 en→mk 1.0 0.5 0.5 en→km 0.3 1.1 -0.7
en→bs 19.1 2.1 17.0 en→ne 1.2 0.7 0.5 en→ga 1.2 2.0 -0.8
en→hr 18.9 2.1 16.8 en→tg 0.7 0.4 0.3 en→wo 1.9 2.7 -0.9
en→hu 17.3 1.2 16.1 en→gu 0.6 0.3 0.3 en→lo 0.9 1.8 -0.9
en→pl 18.0 2.1 15.8 en→mn 0.4 0.2 0.2 en→xh 1.3 2.3 -1.0
en→no 19.1 3.3 15.8 en→kk 0.9 0.7 0.2 en→zu 0.7 1.7 -1.0
en→ast 13.0 2.5 10.5 en→lt 0.9 0.7 0.2 en→kea 1.6 2.7 -1.0
en→gl 12.7 2.6 10.1 en→kn 0.5 0.3 0.2 en→ns 2.1 3.3 -1.2
en→bg 10.8 0.7 10.1 en→sr 0.6 0.4 0.1 en→ceb 2.8 4.0 -1.2
en→id 12.0 2.8 9.2 en→ur 0.3 0.2 0.1 en→kam 1.6 2.9 -1.3
en→af 12.6 3.5 9.1 en→th 0.9 0.8 0.1 en→yo 0.5 1.9 -1.4
en→sk 8.8 1.7 7.1 en→as 0.3 0.2 0.1 en→mi 0.8 2.3 -1.4
en→ms 9.4 3.9 5.5 en→ta 0.4 0.4 0.0 en→ig 0.5 2.0 -1.5
en→ja 4.7 0.1 4.6 en→lv 0.7 0.7 0.0 en→cy 1.0 2.5 -1.6
en→oc 7.0 2.8 4.2 en→pa 0.3 0.3 -0.0 en→sn 1.0 2.6 -1.7
en→el 4.9 0.7 4.1 en→ml 0.2 0.2 -0.0 en→luo 1.4 3.1 -1.7
en→hi 3.6 0.3 3.3 en→or 0.3 0.3 -0.0 en→sw 0.9 2.6 -1.7
en→zh 3.3 0.5 2.8 en→tr 2.4 2.4 -0.0 en→so 0.8 2.6 -1.8
en→ar 2.7 0.3 2.4 en→ku 0.1 0.2 -0.1 en→ny 1.1 3.1 -2.0
en→fi 3.5 1.4 2.1 en→lb 1.8 1.9 -0.1 en→ha 0.6 3.1 -2.5
en→ka 2.3 0.4 1.9 en→am 0.1 0.2 -0.1

Table 9: Performance comparison between the model trained with Alpaca-En and the original LLaMA model across
the Flores-101 devtest. In cases where the score delta is above 5, we suspect that LLaMA inherently possesses some
capability to comprehend these languages.

Dataset # Language Domain

Lego-MT 100 Web
Wikimatrix & 50 Wikipedia and NewsNewscommentary
Ted 55 TED talk

Table 10: Statistics of various publicly accessible paral-
lel multilingual corpora.

Lang Language Family Lang Language Family

ha Afro-Asiatic he Afro-Asiatic
mi Austronesian ta Dravidian
af Indo-European ro Indo-European
th Kra–Dai ns Niger–Congo
luo Nilo-Saharan zh Sino-Tibetan
tr Turkic et Uralic

Table 11: Representative languages information. Within
the Indo-European language family, we choose to in-
clude af in addition to ro, which is a first language in
South Africa and not initially listed as a supported lan-
guage by LLaMA.

We also present tuning results based on our anal-1087

ysis of the Flores-101 dataset, where we examined1088

the effects of full bilingual fine-tuning and Lora1089

tuning on varying amounts of data, as shown in 1090

Table 13. Interestingly, we found that the charac- 1091

teristics of stagnant language are preserved. 1092

G Single-layer Tuning 1093

To determine whether fine-tuning parameters of 1094

layers other than the embedding layer in the model 1095

is equally effective, we conducted a bilingual trans- 1096

lation task on eight language pairs in the Flores101 1097

dataset. These models were fine-tuned on the 1098

Alpaca-En dataset, which was primarily used as 1099

the training set to minimize any potential impact 1100

from language variations. The results of these tests 1101

are displayed in Table 14. In these tests, English 1102

served as the source language, while the target lan- 1103

guages comprised eight different languages. 1104

As observed from the table, the average scores 1105

of fine-tuning the embedding layer and Layer 0 are 1106

the highest, and they are very close to each other. 1107

The model’s performance gradually decreases as 1108

the layer number increases, with a noticeable drop 1109

around the middle layers (Layers 15-17). This 1110

trend is remarkably consistent across all language 1111
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LG en→mi en→luo en→ns en→ha en→ta en→tr en→he en→af en→ro en→th en→zh en→et en→LG

LLaMA 2.3 3.1 3.3 3.1 0.4 2.4 0.5 3.5 3.6 0.8 0.5 1.6 -

ar 0.9 1.5 0.8 0.3 0.4 1.9 2.5 7.8 16.1 0.3 1.4 1.4 2.2
hy 1.0 0.9 0.6 0.0 0.3 1.9 1.2 3.7 4.3 0.1 0.9 1.1 0.9
az 1.2 2.1 1.9 1.3 0.0 1.8 0.0 2.5 0.1 0.0 0.5 1.1 0.0
be 0.9 2.4 1.9 2.1 0.0 1.3 0.0 2.0 0.0 0.0 0.5 0.9 0.0
bn 0.6 2.0 1.4 1.5 0.0 0.9 0.0 1.8 0.0 0.0 0.5 0.7 0.1
bs 1.1 2.2 1.9 1.7 0.0 1.4 0.0 1.8 0.0 0.0 0.4 0.9 0.4
bg 1.5 1.7 1.3 0.5 0.3 2.1 2.0 8.2 12.1 0.2 1.1 1.5 18.8
my 0.3 0.3 0.4 0.0 0.2 1.5 1.1 3.0 0.9 0.1 1.0 0.8 0.0
zh 0.8 1.7 1.4 1.3 0.0 1.7 0.0 1.7 0.1 0.0 0.5 0.9 0.5
hr 2.0 2.6 2.2 1.8 0.4 2.6 2.8 10.4 19.2 0.5 1.5 1.9 13.8
cs 1.6 2.1 1.3 0.9 0.4 2.1 2.0 9.1 14.4 0.3 1.1 1.7 16.5
da 2.2 2.7 2.3 2.1 0.4 2.6 2.6 10.8 18.2 0.5 1.3 1.9 24.5
nl 1.6 2.3 1.6 1.3 0.4 2.0 2.1 10.4 15.8 0.4 1.3 1.7 23.1
et 1.3 2.0 1.7 1.1 0.4 2.5 2.6 8.7 16.9 0.4 1.3 1.9 1.9
fi 1.5 2.4 2.0 1.6 0.4 2.3 2.2 8.0 15.7 0.3 1.2 1.7 2.0
fr 2.2 2.9 2.7 2.3 0.4 2.9 2.6 9.5 18.4 0.5 1.6 1.8 36.8
gl 1.7 2.3 2.0 0.7 0.4 2.7 2.4 8.9 14.9 0.3 1.1 1.8 3.1
ka 0.9 0.7 0.3 0.0 0.4 1.7 1.8 6.7 11.8 0.2 1.2 1.4 0.1
de 1.8 2.4 1.9 1.6 0.4 2.2 2.4 10.1 16.7 0.5 1.6 1.8 25.9
el 1.4 2.2 1.7 0.9 0.4 2.3 2.8 11.2 21.4 0.3 1.8 1.7 5.4
he 1.7 2.4 2.0 1.1 0.4 2.6 3.4 8.2 21.4 0.5 2.3 1.8 3.4
hi 0.3 0.4 0.2 0.0 0.3 1.4 1.6 3.6 5.8 0.1 1.2 0.8 4.1
hu 1.6 2.3 1.6 1.1 0.4 2.2 1.6 8.4 14.2 0.3 1.1 1.6 6.4
id 2.4 3.1 2.9 2.5 0.4 3.0 2.9 9.1 19.9 0.6 1.4 1.8 7.3
it 2.2 2.7 2.5 2.0 0.4 2.7 2.4 9.7 18.6 0.5 1.5 2.0 23.8
ja 1.6 2.0 1.8 1.1 0.4 1.9 3.0 6.7 19.2 0.5 2.3 1.6 5.4
kk 1.2 2.8 2.6 2.6 0.1 1.9 0.1 2.9 0.6 0.3 0.5 1.3 0.3
ko 1.0 1.9 1.4 1.1 0.4 1.9 1.8 7.4 17.3 0.3 1.9 1.5 2.9
lt 1.6 2.3 2.1 1.6 0.4 2.5 2.4 8.9 19.6 0.5 1.4 1.9 1.0

mk 1.1 0.2 0.2 0.0 0.3 1.7 1.9 7.7 9.8 0.2 1.2 1.2 4.4
ms 1.3 2.6 2.1 1.9 0.1 1.7 0.0 2.5 0.1 0.0 0.5 1.1 2.7
mr 0.8 2.5 2.5 1.3 0.3 2.2 2.2 5.8 9.4 0.4 1.1 1.4 1.1
mn 1.1 1.5 1.2 0.1 0.2 2.0 0.7 4.3 2.3 0.1 0.9 1.1 0.0
fa 0.7 0.9 0.3 0.1 0.4 1.6 1.8 7.3 15.9 0.2 1.7 1.3 2.6
pl 1.8 2.4 2.1 1.7 0.4 2.3 2.3 9.2 15.0 0.4 1.4 1.7 12.6
pt 2.0 2.6 2.2 1.9 0.3 2.6 2.5 11.6 20.7 0.5 1.7 1.9 36.1
ro 1.8 2.3 1.6 1.1 0.4 2.1 2.1 8.9 15.5 0.4 1.2 1.6 15.5
ru 1.3 2.0 1.3 0.7 0.4 1.9 1.5 7.2 9.7 0.3 1.1 1.5 16.6
sr 1.8 2.2 1.7 1.3 0.4 2.3 2.6 10.3 17.7 0.5 1.3 1.7 2.0
sk 1.9 2.3 2.1 1.5 0.4 2.5 2.5 9.0 16.9 0.4 1.2 1.9 5.7
sl 1.8 2.4 1.9 1.4 0.3 2.3 2.3 8.3 16.1 0.4 1.3 1.8 8.0
ku 0.4 1.2 1.5 0.4 0.3 1.6 2.0 4.5 6.1 0.3 1.2 1.2 0.0
es 2.2 2.8 2.5 2.1 0.4 2.8 2.8 11.3 20.8 0.6 1.8 1.9 24.8
sv 1.9 2.6 2.1 1.9 0.4 2.3 2.6 10.4 18.2 0.5 1.3 1.8 24.7
ta 1.3 2.9 2.4 2.1 0.1 2.1 0.0 2.9 0.4 0.0 0.6 1.5 0.1
th 0.7 0.8 0.7 0.1 0.4 2.2 1.8 4.5 13.2 0.4 1.5 1.3 0.4
tr 1.7 2.3 1.8 1.4 0.4 2.4 2.3 8.2 17.1 0.4 1.4 1.7 2.4
uk 1.3 1.9 1.4 0.8 0.4 1.8 1.4 7.0 8.8 0.2 0.9 1.3 3.0
ur 0.6 0.9 0.5 0.3 0.0 1.0 0.0 0.7 0.0 0.0 0.6 0.4 0.0
vi 1.8 2.7 2.4 1.9 0.3 2.5 2.6 8.5 15.6 0.5 1.2 1.8 2.6

Table 12: Assessing the bilingual and multilingual capabilities: a performance evaluation of the model trained on
the TED dataset across all representative languages using the Flores-101 devtest. The experimental results show the
significant improvement in multilingual performance embodied in the en→af and en→ro.

pair tests.1112

The aforementioned results suggest that solely1113

fine-tuning the parameters of the lower layers can1114

also activate the model’s multilingual capabilities,1115

and its effectiveness is comparable to that of em-1116

bedding fine-tuning. Furthermore, the activation of1117

different language capabilities in the model through1118

single-layer fine-tuning occurs synchronously.1119

Additionally, we fine-tuned all the lower layers,1120

from Layer 0 to Layer 14, together. As shown in1121

Table 15, this strategy did not yield any additional1122

gains compared to the other tuning strategies.1123

H More Analysis1124

The performance of Embed FT remains stable1125

across reciprocal languages, regardless of the1126

dataset being utilized. As depicted in Table 16, 1127

the Embed FT strategy delivers performance that 1128

is competitive with the FT and LoRA strategies 1129

across all training sets: Alpaca-En, Alpaca-X, and 1130

Bilingual. Alpaca-En is a comprehensive English 1131

dataset with 52k instructions and demonstrations. 1132

Alpaca-X is derived from Alpaca-En through trans- 1133

lation, with X denoting the target languages. The 1134

Bilingual dataset comprises 52k instruction data for 1135

translation tasks, based on the open-source Lego- 1136

MT dataset. Unlike the FT strategy, which updates 1137

all model parameters. Furthermore, it avoids the 1138

need for an additional model structure, like the 1139

LoRA strategy. This implies that Embed FT is a 1140

more effective strategy for activating multilingual 1141

capabilities. 1142
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(a) Tokenization analysis on MC4 dataset.

(b) Tokenization analysis on Flores-101 dataset.

Figure 6: An over-tokenization phenomenon in low-resource languages across different datasets and LLMs. The
tokenization ratios of LLaMA, ChatGLM2, and MPT are calculated by dividing the length of the tokenized sequence
by the sentence length. For space-separated languages, the sentence length is measured by the number of words,
while for other languages it is measured by the number of characters. The length of the tokenized sequence refers
to the number of tokens obtained after applying the tokenizer. Languages characterized by over-tokenization will
exhibit this trait across various LLMs.

Setting Ratio LLaMA Full Bilingual Fine-Tuning LoRA Bilingual Tuning
10k 20k 40K 80k 160k 10k 20k 40K 80k 160k

en→es 1.7 4.8 23.5 23.8 25.2 23.6 25.9 26.4 25.8 26.6 26.3 26.9
en→pt 1.9 6.0 41.3 41.1 41.3 40.6 39.7 42.0 42.0 42.4 42.0 41.6
en→ca 1.9 5.7 34.9 35.7 37.0 38.5 39.2 37.3 37.7 38.1 38.6 39.2
en→de 2.0 4.7 22.5 24.8 25.9 30.8 31.2 27.8 26.8 27.3 31.9 32.6
en→no 2.2 3.2 21.2 22.2 24.0 25.6 28.4 19.6 20.1 21.0 22.1 24.0
en→ro 2.3 3.5 28.3 28.7 29.6 30.8 34.3 29.8 30.0 30.9 31.2 32.7
en→da 2.3 4.9 31.9 32.2 32.8 34.8 36.4 33.4 34.0 34.5 35.3 36.1
en→bs 2.6 2.0 23.2 25.2 26.5 28.5 30.0 21.7 22.8 24.2 25.0 25.2

en→as 10.0 0.2 3.2 4.7 6.8 8.2 9.6 0.5 0.6 0.9 1.4 2.2
en→ta 11.0 0.4 2.2 4.3 9.6 15.3 21.4 0.4 0.6 1.0 1.9 3.4
en→pa 11.4 0.3 2.3 4.2 6.8 9.7 14.5 0.4 0.8 1.2 1.7 2.7
en→ml 11.6 0.2 3.1 7.4 13.5 20.3 22.5 0.6 0.9 1.7 3.3 4.1
en→am 13.1 0.2 1.3 4.6 9.6 14.5 18.2 0.1 0.1 0.2 0.4 1.1
en→gu 15.0 0.3 2.3 2.2 4.4 10.0 13.2 1.0 1.1 1.5 1.9 3.1
en→or 18.4 0.3 0.9 1.6 1.6 1.0 0.8 0.3 0.5 0.5 0.1 0.1
en→te 19.7 0.7 4.2 8.2 12.8 17.3 20.3 0.6 0.8 1.7 2.9 5.3
en→kn 21.1 0.3 1.0 1.5 3.0 5.6 9.9 0.5 0.4 0.5 0.8 1.0
en→my 25.7 0.3 1.0 2.0 4.1 7.3 9.4 0.1 0.1 0.3 0.3 0.4
en→th 45.9 0.8 2.6 4.0 6.0 8.4 12.3 1.2 1.5 1.9 2.8 4.1

en→km 73.3 1.1 1.6 3.1 6.2 10.1 13.4 0.2 0.2 0.5 0.9 1.5
en→lo 86.5 1.8 1.5 2.3 3.7 7.1 9.8 0.4 0.7 0.7 0.6 0.7

Table 13: This refers to the relationship between stagnant languages and the characteristic of over-tokenization.
Here, the "Ratio" is defined as the number of tokens in a sequence after applying the tokenizer, divided by the
sentence length. The sentence length is measured by the number of words for space-separated languages and
characters for others.

In the Flores-101 dataset, the same evaluation1143 metric, spBLEU, is used. Before calculating 1144
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Setting en→ro en→es en→de en→ca en→pt en→da en→no en→bs AVG.

FT 27.1 23.5 24.5 34.3 40.5 32.3 20.9 22.4 28.2
LoRA 28.8 26.6 30.3 36.6 40.3 31.5 18.2 20.3 29.1
Embed FT 29.1 26.8 31.0 35.9 41.1 32.1 18.3 19.4 29.2

Layer 0 29.2 26.6 30.9 37.2 41.5 32.4 18.7 20.8 29.7
Layer 1 28.9 26.2 30.1 36.2 40.5 32.1 19.0 20.3 29.2
Layer 2 28.9 26.7 30.6 36.4 40.6 32.2 18.9 21.4 29.5
Layer 3 28.8 26.6 30.4 36.6 40.6 31.8 18.6 20.6 29.2
Layer 4 29.0 26.8 30.4 36.7 40.5 32.1 18.9 20.4 29.3
Layer 5 28.9 27.0 30.9 37.1 41.3 32.1 19.0 20.8 29.6
Layer 6 29.0 26.8 30.5 36.7 40.8 31.5 19.0 20.3 29.3
Layer 7 28.7 26.4 30.7 36.1 40.3 32.0 18.7 19.6 29.1
Layer 8 29.1 26.2 30.0 36.4 40.4 31.6 19.2 19.7 29.1
Layer 9 28.8 26.3 30.2 35.8 40.2 31.6 19.1 19.5 28.9
Layer 10 27.8 25.8 29.7 35.5 39.9 30.8 18.7 16.1 28.0
Layer 11 28.0 25.6 29.9 35.5 39.4 30.9 18.8 17.1 28.2
Layer 12 27.9 25.5 29.2 34.8 38.2 30.6 17.2 15.4 27.4
Layer 13 27.8 25.6 29.1 34.1 38.3 30.4 17.3 16.5 27.4
Layer 14 25.1 24.7 28.5 32.1 36.2 29.4 15.8 10.1 25.2

Layer 15 15.7 22.6 25.4 27.2 27.7 24.2 11.2 2.5 19.6
Layer 16 15.2 20.3 23.2 26.5 18.9 20.2 10.4 3.2 17.2
Layer 17 19.0 21.0 23.1 23.6 22.1 20.2 11.1 5.0 18.1
Layer 18 7.1 6.7 8.9 7.5 5.8 10.1 5.6 3.1 6.8
Layer 19 6.2 4.0 6.4 3.0 4.5 4.7 3.9 1.7 4.3
Layer 20 6.1 5.4 4.0 3.9 6.0 5.9 4.7 2.5 4.8
Layer 21 5.0 5.0 3.2 2.5 4.2 5.1 3.9 2.2 3.9
Layer 22 5.4 5.3 2.9 3.7 6.6 7.7 3.9 2.6 4.8
Layer 23 4.2 2.6 0.8 1.4 2.8 6.1 3.2 1.7 2.9
Layer 24 4.3 3.5 2.9 1.8 5.2 5.1 3.4 2.1 3.5
Layer 25 4.7 2.7 2.0 1.9 7.7 6.3 3.1 2.0 3.8
Layer 26 4.7 2.7 3.8 2.2 6.3 4.7 3.0 2.4 3.7
Layer 27 5.1 1.3 4.4 2.5 6.3 5.6 4.6 2.3 4.0
Layer 28 4.6 1.6 4.3 2.7 4.9 3.8 3.3 2.6 3.5
Layer 29 4.1 2.9 5.2 4.3 6.7 6.8 3.6 2.9 4.6
Layer 30 4.8 2.6 5.6 4.2 6.1 5.3 4.1 2.8 4.4
Layer 31 4.3 2.8 3.8 4.2 4.6 6.3 3.9 2.8 4.1

Table 14: Single-layer fine-tuning results on Alpaca-En dataset. The layers of the LLaMA-7B model, excluding the
embedding layer, are numbered according to their distance from the embedding layer, with the closest being Layer
0 and the furthest being Layer 31. The term “+ Layer i” indicates that only the i th layer is fine-tuned, with the other
parts of parameters fixed.

Size en→da en→ca en→cs en→bg en→pl en→es en→fr en→de en→pt en→ru en→nl AVG.

Bilingual Full Fine-Tuning

10k 31.9 34.9 23.9 26.0 17.0 23.5 32.5 22.5 41.3 24.3 18.7 27.0
20k 32.2 35.8 24.5 26.5 18.4 23.8 31.7 24.8 41.1 24.2 18.9 27.4
40k 32.8 37.0 25.4 27.4 18.8 25.2 34.1 25.9 41.3 24.1 22.1 28.6

160k 36.4 39.2 27.1 31.8 19.7 25.9 39.1 31.2 39.7 24.6 24.3 30.8

Bilingual Embedding Fine-Tuning

10k 26.4 30.1 16.6 19.6 12.6 23.7 34.7 23.1 33.3 19.1 21.2 23.7
20k 33.1 37.3 24.4 26.5 18.6 26.4 41.1 30.4 40.8 24.7 24.4 29.8
40k 33.9 36.9 25.5 27.3 19.5 26.7 39.7 28.3 40.7 25.4 22.6 29.7

160k 34.7 37.7 26.2 28.2 19.9 27.0 40.9 31.3 40.7 25.7 24.9 30.7

Bilingual Lower Layers [0-14] Fine-Tuning

10k 33.4 36.2 25.6 27.1 18.4 24.2 32.8 23.1 42.1 25.5 18.5 27.9
20k 33.1 36.9 25.4 27.2 18.3 24.1 33.1 25.6 41.8 25.1 19.3 28.2
40k 33.9 37.8 25.6 27.5 19.2 25.7 34.8 25.8 41.2 25.3 21.7 29.0

160k 35.5 39.3 27.0 30.1 19.7 25.9 39.4 31.3 39.9 25.2 24.6 30.7

Table 15: The bilingual performance under different training strategies shows that fine-tuning the embedding layer
performs as well as full fine-tuning in terms of bilingual performance. Interestingly, fine-tuning all lower layers
does not yield additional gains.

BLEU, all data is de-tokenized and sentence piece1145

tokenization is applied to each language. This1146

allows for a more accurate assessment of model1147

quality on the long tail of low-resource languages. 1148

NLU: We evaluate various tasks to test different as- 1149

pects of the model. These include XCOPA (Ponti 1150
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et al., 2020), a multilingual common reasoning1151

task supporting 11 languages; XStoryCloze (Lin1152

et al., 2022a), a story completion task in 11 lan-1153

guages; XNLI (Conneau et al., 2018), a cross-1154

lingual natural language inference task for 15 lan-1155

guages; PAWS-X (Yang et al., 2019), a paraphrase1156

identification task in 7 languages; and MGSM (Shi1157

et al., 2022), a mathematical reasoning task in 111158

languages.1159

Models XCOPA MGSM XStoryCloze PAW-X XNLI Flores-101 AVG.

Parrot-7B 54.2 3.7 56.1 56.5 39.0 25.2 46.9
LLaMA-7B 53.9 5.8 55.5 53.2 37.1 4.4 35.0

LLaMA-7B + Alpaca-En

FT 54.5 4.5 57.6 57.1 40.3 28.2 48.4
LoRA 54.4 6.0 57.0 54.1 38.4 29.1 47.8
Embed FT 54.0 6.2 55.9 54.4 38.0 29.2 47.6

LLaMA-7B + Alpaca-X

FT 54.4 4.9 57.2 57.1 40.2 28.0 48.4
LoRA 54.5 5.6 57.0 53.8 38.3 28.0 47.4
Embed FT 54.1 5.9 55.9 54.6 38.3 27.9 47.3

LLaMA-7B + Bilingual

FT 53.9 3.4 55.6 55.9 38.8 30.1 47.6
LoRA 54.3 4.7 55.9 54.3 38.0 31.1 47.6
Embed FT 54.3 4.7 55.9 54.3 38.0 31.4 47.7

Table 16: Comparative analysis of training strategies.
XCOPA, MGSM, XStoryCloze, PAW-X and XNLI
are natural language understanding tasks, evaluated on
all languages with accuracy metric; Flores-101 is an
NLG task, each score in the cell represents an aver-
age spBLEU, encompassing bilingual translation perfor-
mances from en→{ro, es, de, ca, pt, da, no, bs}. The
experimental result reveals that Embed FT can perform
as well as another strategy.

Besides fine-tuning the embedding layer, adjust-1160

ing the lower layers can also be effective. To1161

further investigate the functionality of the Embed1162

FT strategy, we separately fine-tuned each layer1163

of LLaMA using the Alpaca-En dataset and then1164

tested on the Flores-101 en→ro devtest. The layers1165

of the LLaMA model, excluding the embedding1166

layer, are numbered from 0 to 31, with 0 being the1167

closest to the embedding layer and 31 being the1168

furthest. The bilingual performance of en→ro is1169

illustrated in Table 16. Our experiments showed1170

that fine-tuning the lower layers is just as effec-1171

tive as fine-tuning the embedding layer. However,1172

we found that fine-tuning the higher layers did not1173

produce satisfactory results.1174
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