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Abstract

Mapping clinical documents to standardised001
clinical vocabulariesis an important task, as002
it provides structured data for information re-003
trieval and analysis, which is essential to clin-004
ical research, hospital administration and im-005
proving patient care. However, manual coding006
is both difficult and time-consuming, making007
it impractical at scale. Automated coding can008
potentially alleviate this burden, improving the009
availability and accuracy of structured clini-010
cal data. The task is difficult to automate, as011
it requires mapping to high-dimensional and012
long-tailed target spaces, such as the Interna-013
tional Classification of Diseases (ICD). While014
external knowledge sources have been readily015
utilised to enhance output code representation,016
the use of external resources for representing017
the input documents has been underexplored.018
In this work, we compute a structured represen-019
tation of the input documents, making use of020
document-level knowledge graphs (KGs) that021
provide a comprehensive structured view of a022
patient’s condition. The resulting knowledge023
graph efficiently represents the patient-centred024
input documents with 23% of the original text025
while retaining 90% of the information. We026
assess the effectiveness of this graph for auto-027
mated ICD-9 coding by integrating it into the028
state-of-the-art ICD coding architecture PLM-029
ICD. Our experiments yield improved Macro-030
F1 scores by up to 3.20% on popular bench-031
marks, while improving training efficiency. We032
attribute this improvement to different types of033
entities and relationships in the KG, and demon-034
strate the improved explainability potential of035
the approach over the text-only baseline.036

1 Introduction037

Clinical coding is the process of allocating stan-038

dardized codes to diagnoses, treatments, proce-039

dures, and medical services detailed in patient elec-040

tronic records or paper notes. This multi-label041

classification task offers advantages across various042

Discharge Summary
Admission Date: [**2191-11-18**]        Discharge Date: [**2191-11-18**]
Date of Birth:  [**2155-12-31**]              Sex:  M.              Service:  TRA

CHIEF COMPLAINT: Fall from approximately a third story building.

PRESENT ILLNESS: This is a young male of unknown age, brought by EMS after
having sustained an approximately three story fall. The patient was intubated in the
field and forwarded to the [**Hospital1 **] Emergency Department arriving in
extremis. The patient … the operating room. The patient had a right chest tube
placed and there was seen to be a moderate amount of bleeding out of the right
chest. The patient … cavity. There was seen to be no significant intra-abdominal
pathology. However, there was seen to be a large retroperitoneal hematoma
extending from the pelvis up to the level of the kidneys retroperitoneally. The patient
was packed. However, because of the patient's initial arterial pH of 6.94, all
resuscitation efforts were in vain and the patient expired intraoperatively. The case
was referred to the coroner and an intraoperative death.

[**First Name11 (Name Pattern1) 449**] …
Job#:  [**Job Number 88466**]

Suicide and self-inflicted injuries by jumping from other man-made structures.E957.1

Traumatic pneumohemothorax without mention of open wound into thorax.860.4

Injury to other intra-abdominal organs without mention of open wound into
cavity, peritoneum.

868.03

Intracranial injury of other and unspecified nature without mention of open
intracranial wound, with prolonged [more than 24 hours] loss of consciousness
without return to pre-existing conscious level.

854.05

Figure 1: Example of ICD Coding over MIMIC-III. The
discharge summary (HADM ID: 104128) is annotated
with four ICD codes.

domains, including audit procedures, decision sup- 043

port systems and medical billing (Blundell, 2023). 044

Various coding systems are designed to encode spe- 045

cific information within patient records. Our work 046

focuses on the International Classification of Dis- 047

eases (ICD-9) (Organization et al., 1978), a widely 048

recognized coding system that holds a pivotal role 049

in encoding diagnostic and procedural information. 050

This process is commonly known as ICD coding. 051

An example is shown in Figure 1. 052

Manual code assignment is typically costly, 053

labor-intensive, and error-prone (Nguyen et al., 054

2018). In recent years, automated clinical coding, 055

powered by cutting-edge deep learning techniques, 056

has significantly advanced the field, improving ac- 057

curacy, increasing efficiency, and reducing overall 058

costs (Ji et al., 2022; Teng et al., 2022). 059

The main challenge in clinical coding arises 060

from the extremely imbalanced distribution of the 061

label space. For instance, in the case of MIMIC-III 062
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(Johnson et al., 2016), there are 8,692 unique ICD-063

9 codes, of which 4,115 codes (47.3%) occur fewer064

than 6 times (Yang et al., 2022). Considering this065

long-tailed distribution of codes, previous work has066

explored integrating diverse external knowledge to067

enhance the representation of codes and patients.068

Among these external knowledge sources, knowl-069

edge graphs play an important role in improving070

the performance of ICD coding by providing not071

only semantic information but also structured infor-072

mation. However, most research focuses on repre-073

senting ICD codes through various graphs that are074

built based on these codes themselves (Rios and075

Kavuluru, 2018; Xie et al., 2019; Cao et al., 2020;076

Lu et al., 2020; Song et al., 2021; Michalopou-077

los et al., 2022). Efforts to construct patient-level078

knowledge graphs remain largely underexplored in079

both ICD coding and the broader clinical domain.080

The patient-level knowledge graph offers an intu-081

itive representation and visualization of a patient’s082

clinical condition, providing healthcare profession-083

als with valuable insights. Meaningful causal re-084

lationships between entities, such as symptoms085

that support a diagnosis, tests performed, and treat-086

ments derived from these findings, enable patient-087

level knowledge graphs to facilitate more efficient088

decision-making for physicians and medical staff.089

However, critical questions remain unanswered:090

what elements should constitute a patient’s knowl-091

edge graph, including problems, symptoms, tests,092

treatments, drugs, dosages, and frequencies? And093

how to evaluate the quality of such graphs and094

assess their utility and impact on tasks such as095

patient-level classification and explainability?096

To the best of our knowledge, Yuan et al. (2021)097

is the only work which proposes a medical graph098

specifically designed for individual patients in ICD099

coding task. The graph integrates a disease hierar-100

chy based on ICD-10 and a causal graph of diseases.101

Entities in the causal graph, including symptoms,102

signs, and diseases are identified from documents103

using named-entity recognition (NER) technique.104

The model also leverages GCN to represent the105

nodes in the graph. It enhances the patient rep-106

resentation by integrating it with the raw clinical107

text and patient information. However, it does not108

cover a wide range of entity categories and capture109

the diverse relationships among them, which can110

provide a more comprehensive understand about a111

patient’s medical history. Additionally, this work112

lacks a systematic evaluation of graph quality and113

an analysis of the determination of its constituent114

components. 115

To close these gaps, we construct patient-level 116

knowledge graphs that provide a wide range of en- 117

tity types and relationships. This comprehensive 118

graph offers explicit context to a patient’s situation, 119

by providing diagnostic, posology, anatomical and 120

the temporal information of clinical events identi- 121

fied in the patient records. We integrate this patient- 122

level knowledge graph into the state-of-the-art ICD 123

coding architecture, PLM-ICD (Huang et al., 2022), 124

demonstrating improved coding performance. 125

The contributions of this work are: 126

(i) We develop a comprehensive patient-level 127

knowledge graph encompassing a wide coverage 128

of 14 distinct entity types connected by five types 129

of relationships. We evaluate the informativeness 130

of graph by measuring the information loss rela- 131

tive to the patient notes from which the graph is 132

retrieved. Our results demonstrate that the knowl- 133

edge graph effectively distills essential informa- 134

tion from patient notes into a more concise and 135

structured format, achieving a significant reduc- 136

tion in size—extracting only 23% of the original 137

content—while retaining 90% of the critical infor- 138

mation. This represents a Statistical Perspective 139

for evaluating the quality of the graph. 140

(ii) We conducted experiments to assess the ef- 141

fectiveness of integrating graph representations into 142

ICD coding. The results demonstrate that the ad- 143

ditional structured information provided by the 144

graph significantly enhances coding performance 145

by 1.36% on F1-Score compared to its base model. 146

This also serves as an evaluation of the patient- 147

level knowledge graph from a Representational 148

Perspective, capturing both semantic and structural 149

information. 150

(iii) We address the question of ‘What elements 151

should constitute a patient’s knowledge graph?’ 152

through an ablation study from both two evalua- 153

tion perspectives. We analyse the impact of various 154

types of entities and relationships on the informa- 155

tion retaining and coding performance. 156

(iv) We perform a case study and showcase the 157

model’s ability to offer high-quality explanations 158

by providing accurate and concise evidence which 159

supports the model’s prediction. 160

2 Related Work 161

Architecture Over the past decade, the field of 162

clinical coding has witnessed significant advance- 163

ments, evolving from traditional rule-based meth- 164
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ods (Pereira et al., 2006; Crammer et al., 2007) to165

advanced machine learning and deep learning ap-166

proaches. Researchers have recently explored the167

application of cutting-edge NLP techniques, includ-168

ing attention mechanisms and transformer models.169

The architecture of these models has become in-170

creasingly sophisticated, with common architec-171

ture incorporating CNN-based (Mullenbach et al.,172

2018), LSTM-based (Catling et al., 2018), and173

transformer-based encoders (Zhang et al., 2020;174

Chalkidis et al., 2020; Ji et al., 2021), often paired175

with label-wise attention layers (Vu et al., 2020;176

Sun et al., 2021; Dong et al., 2021; Liu et al., 2021;177

Van Aken et al., 2022). Recent studies also high-178

light the challenge of efficiently applying trans-179

former models to represent the inherently lengthy180

clinical documents. These approaches leverages181

transformers adept at handling long sequences, no-182

tably Longformer (Yang et al., 2022) and BigBird183

(Michalopoulos et al., 2022).184

External Knowledge Representations A ma-185

jor challenge in this field is classifying within a186

large target space, where the distribution of codes187

is highly uneven, commonly described as a ‘big-188

head long-tail’ distribution. This imbalance hinders189

the model’s effectiveness in recognising patterns190

associated with categories with few samples. To191

address this issue, researchers have turned to ex-192

ternal knowledge to enhance the representations of193

both patients and codes. For patient representation,194

this includes data augmentation (Falis et al., 2022;195

Song et al., 2021) and knowledge graphs (Yuan196

et al., 2021). In terms of code representation, ex-197

ternal knowledge is drawn from code descriptions198

(Feucht et al., 2021), synonyms (Yuan et al., 2022),199

relevant documents (Wang et al., 2022), code hierar-200

chy (Falis et al., 2019; Yang et al., 2022), synthetic201

data (Falis et al., 2022), and knowledge graphs.202

Knowledge Graph in ICD Coding Rios and203

Kavuluru (2018) represents of ICD codes using204

their hierarchical structure, applying two layers205

of graph convolutional networks (GCN) to lever-206

age this structured knowledge. Song et al. (2021)207

improves this model by replacing the GCN with208

graph gated recurrent neural networks (GRNN)209

(Li et al., 2015). Cao et al. (2020) introduces210

Co-Graph, which models co-occurrence correla-211

tions between codes. This graph is represented by212

its adjacency matrix and GCN. Lu et al. (2020)213

constructs three types of graphs: a label hierar-214

chy graph of class taxonomy, a semantic similarity215

graph derived from code descriptions, and a code 216

co-occurrence graph similar to the approach in Cao 217

et al. (2020). Michalopoulos et al. (2022) estab- 218

lishes connections between codes using normalized 219

point-wise mutual information and also employs 220

GCN to capture the representations of codes from 221

this graph. 222

3 Methodology 223

In this section, we detail the construction of patient- 224

level knowledge graphs and their integration into 225

the PLM-ICD coding architecture. 226

Patient-Level Knowledge Graph Construction 227

We aim to construct patient-level knowledge graphs 228

that comprehensively represent a patient’s medical 229

history, encompassing diseases, treatments, tests, 230

drugs, dosages, frequencies, strengths, and so on, 231

as well as the relationships between these entities. 232

We employ named-entity recognition (NER) and 233

relation extraction (RE) models provided by Health- 234

care NLP library (John Snow Labs, 2024) to extract 235

these concepts. 236

Out of the available RE models in Healthcare 237

NLP, we select five models based on the quan- 238

tity of triples extracted and their uniformity across 239

all documents. The selected RE models are (or- 240

dered by frequency) ‘Clinical Relationship’ (CR), 241

‘Temporal Events’ (TE), ‘Posology Relationship’ 242

(PR), ‘Bodypart-Directions’ (BD) and ‘Bodypart- 243

Problem’ (BP). These models collectively identify 244

14 different types of entities. Detailed information 245

about model selection, selected RE models and 246

statistics of the extracted entities and relationships 247

can be found in in Appendix A.1. 248

The output of these relationship extraction (RE) 249

models includes two identified entities, their re- 250

spective types, and the relationship between them. 251

When constructing a patient’s knowledge graph, 252

we represent this information as triples in the for- 253

mat < entity1, relationship, entity2 > (e.g., 254

< lisinopril, drug-strength, 40mg >). The re- 255

sulting patient-level knowledge graphs contain four 256

types of information (For a visualisation, consult 257

Appendix A.2): 258

Diagnostic Information (CR): Revealing the 259

interrelationships among problems, treatments, and 260

tests; 261

Temporal Information (TE): Capturing the se- 262

quence of clinical events; 263

Posology Information (PR): Providing details 264

on drug regimens, including dosage, duration, 265
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admission date discharge date date of birth sex m
service tra chief complaint fall from approximately a
third story building present illness this is a young

…
pattern1 initial namepattern1 last name
namepattern1 m dmd number dictated by last name
namepattern1 medquist36 d t job job number

Processed Text

Patient-Level Knowledge Graph DGCNN

Layer 1 Layer 2 Layer N

…

⋮

admission

date

discharge

number

once a day

81 mg

ABPM

Aspirin

Hypertension

		+

⋮
Prediction

Explainability

Pre-trained RoBERTa Attention
Layer

Attention
Layer

Figure 2: Architecture of the proposed model. The processed discharge summary as input is encoded using a
pre-trained RoBERTa, while its corresponding patient-level knowledge graph inputs a DGCNN module, with final
representations obtained by concatenating node features from all layers. Both representations are fed into separate
label-wise attention layers, after which the weighted outputs are concatenated, using for ICD code prediction.

Split Avg |T | Avg |N | Avg T in N Min/Max T Min/Max N

Full 1513.5 183.0 342.3 0/1954 0/903
Top-50 1612.0 196.8 366.8 6/1689 3/774

Table 1: Statistics of nodes and tokens per processed
document in MIMIC-III datasets. T stands for tokens,
N stands for graph nodes. ‘Avg’ represents averages
over all documents.

strength, and frequency, as well as their interre-266

lationships;267

Anatomical Information (BD and BP): Illus-268

trating the connections between problem or direc-269

tions and specific body parts.270

The statistics of the graphs extracted from the271

two MIMIC-III datasets, Full and Top-50, are sum-272

marized in Table 1. On average, the graphs contain273

approximately 190 nodes, with each node typically274

comprising around two tokens. The largest graph275

in the dataset includes 903 nodes, while some doc-276

uments don’t have any extracted graphs.277

Furthermore, we evaluate the quality of the con-278

structed graphs from a Statistical Perspective by279

measuring information loss. Specifically, we calcu-280

late the average information entropy of the original281

text and the serialized graph. As shown in Table 2,282

our analysis indicates that the extracted content ac-283

counts for less than 23% of the original size, yet284

retains approximately 90% of the information. This285

highlights the efficiency of our patient-level knowl-286

edge graph in significantly compressing the text287

while preserving the majority of its informational288

content. (For details of the information entropy289

methodology and further results of the ablation290

study, conducted by removing each type of entity291

and relationship, please refer to Appendix A.3.)292

Task Definition ICD coding is formulated as a293

multi-label classification task. Given a clinical doc-294

ument (discharge summary in MIMIC-III) of a pa-295

Dataset Text Entropy Graph Entropy Ratio (%)
Full 8.33 7.48 89.95

Top-50 8.41 7.61 90.52

Table 2: The Information entropy of processed text
and serialised graph. The ‘Ratio’ measures how much
information is retained.

tient, automated coding module aims to assign the 296

correct ICD codes which represent the diseases 297

or procedures. Specifically, we define a clinical 298

document with Nt tokens as d = {t1, t2, ..., tNt}. 299

The goal is to predict a distribution of labels 300

p = {p1, p2, ..., pNc}, where Nc denotes the total 301

number of codes in the label space. The final set of 302

assigned codes is the ones that exceed a pre-defined 303

probability threshold. 304

The proposed framework is shown in Figure 2. 305

The subsequent sections will provide a detailed 306

description of each component of the framework. 307

Text Embedding - Pre-trained Language Model 308

To embed the textual data, we utilize RoBERTa- 309

PM (Lewis et al., 2020), a transformer model pre- 310

trained on biomedical abstract and clinical docu- 311

ments. 312

The pre-processing of the raw text in MIMIC-III 313

datasets follows Mullenbach et al. (2018). Fol- 314

lowing PLM-ICD, we divide each document into 315

segments of equal length of l tokens. The number 316

of segments per document is represented as Ns and 317

varies across different samples. Thus, each seg- 318

ment comprises a sequence of tokens that represent 319

a portion of the document: 320

si = {tj |l · i ≤ j < l · (i+ 1)}. (1) 321

The document representation Ht is formed by con- 322

catenating the hidden representations of each seg- 323

4



ment:324

Ht = concat(PLM(s1), ..., PLM(sNs)), (2)325

where PLM(si) denotes the representation for seg-326

ment si embedded by RoBERTa-PM.327

Graph Embedding - Deep Graph Convolutional328

Neural Network The Deep Graph Convolutional329

Neural Network (DGCNN) (Zhang et al., 2018) we330

refer to in this work is an end-to-end architecture331

designed for graph classification tasks. But we rep-332

resent the graph using the hidden state from the333

final layer of DGCNN, just before the SortPooling334

layer in the original framework, as this configura-335

tion is found to yield the best performance based336

on initial experimental results.337

Given a patient’s knowledge graph G, we can338

obtain its adjacency matrix A and diagonal degree339

matrix D. The hidden state of the first graph con-340

volution layer is as follows:341

H1
g = f(D−1AXW), (3)342

where X ∈ RNn×dn denotes the node representa-343

tion matrix with dimension dn; Nn represents the344

number of nodes in the graph; W ∈ Rdn×d′n is a345

trainable parameter matrix, in which d′n defines the346

dimension of code representation for the next con-347

volution layer; f is a nonlinear activation function.348

DGCNN adopts multiple convolution layers, as349

it allows for the extraction of multi-scale local sub-350

structure features. Therefore, the output of the mth351

graph convolution layer is represented as follows:352

Hm+1
g = f(D−1AHm

g Wm), (4)353

where H0
g = X. The final representation of pa-354

tient’s knowledge graph Hg is the concatenation355

of the features from all [H1
g, ...,H

Ny

g ], where Ny356

is the number of graph convolution layers.357

Multi-Head Label-Wise Attention To capture358

label-specific information and assign varying at-359

tention weights to fragments (tokens or nodes) for360

each label, we incorporate a label-wise attention361

layer following the patient representation. Instead362

of just feeding the concatenated representation of363

text Ht and graph Hg to a single attention layer, we364

utilize a multi-head attention mechanism. This ap-365

proach enables the model to focus on information366

from different representation sub-spaces. Conse-367

quently, Ht and Hg are processed through separate368

label-wise attention layers. The attention score ma- 369

trices are defined as follows: 370

αt = softmax(V1 tanh(V2Ht), (5) 371
372

αg = softmax(V3 tanh(V4Hg), (6) 373

where V1−4 are trainable linear transformation ma- 374

trices. The weighted label-specific representations 375

are calculated as follows: 376

Zt = Htα
T
t ,Zg = HgαT

g . (7) 377

Finally we concatenate them to form a representa- 378

tion for the individual patient Z = [Zt,Zg]. The 379

probability of predicting label i is calculated by: 380

pi = σ(Li · Zi), (8) 381

where Li is the representation of the ith label and 382

Zi is the label-specific patient representation. The 383

final predicted soft-maxed probability vector ŷ and 384

true labels y are used to compute the binary cross- 385

entropy loss: 386

L(y,p) = − 1

|y|

|y|∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) .

(9) 387

388

4 Empirical Evaluation 389

4.1 Experiment Setup 390

Datasets and Metrics Like most evaluation 391

methods for multi-label classification tasks, clinical 392

coding is typically assessed using three standard 393

metrics: F1, AUC and Precision@N. In this work, 394

we utilize these metrics to evaluate the models on 395

two commonly used datasets: MIMIC-III Full and 396

MIMIC-III Top-50. 397

MIMIC-III is a publicly accessible database com- 398

prising de-identified health data from patients ad- 399

mitted to critical care units at the Beth Israel Dea- 400

coness Medical Center in Boston, Massachusetts 401

between 2001 and 2012. The standard clinical 402

coding task involves using discharge summaries 403

from the MIMIC-III dataset to assign ICD-9 codes, 404

which include discharge diagnoses and procedures. 405

The MIMIC-III Full dataset includes 52,723 doc- 406

uments from 41,126 patients, with each document 407

containing a median of 1,375 words and 14 codes. 408

The MIMIC-III Top-50 dataset focuses on the top 409

50 most frequent diagnosis and procedure codes 410

from the Full dataset. It consists of 11,368 docu- 411

ments from 10,356 patients, with a median of 1,478 412

words and 5 codes per document. 413
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MIMIC-III Full MIMIC-III Top-50
F1 AUC Precision F1 AUC Precision

Model Macro Micro Macro Micro P@8 Macro Micro Macro Micro P@5
MultiResCNN 9.0 55.2 91.0 98.6 73.4 59.29 66.24 89.30 92.04 61.56
MSATT-KG 8.5 55.3 91.0 98.6 72.8 63.80 68.40 91.40 93.60 64.40
JointLAAT 10.2 57.5 92.1 98.8 73.5 66.95 70.84 92.36 94.24 66.36
MSMN 10.3 58.2 95.0 99.2 74.9 66.68 71.19 92.12 94.21 66.86
PLM-ICD 9.69 59.06 92.12 98.83 76.72 64.61 70.33 91.16 93.63 66.11
Our Model 11.05 59.72 92.37 98.75 76.59 67.81 71.63 92.04 94.22 67.08

Table 3: Results on the MIMIC-III Full and Top-50 test sets. The results of other models, except PLM-ICD and
MSMN, are collected from Yang et al. (2022). The best results are highlighted in bold.

Implementation Details We train our model us-414

ing four 80GB NVIDIA A100 GPUs within an envi-415

ronment configured with CUDA 11.1 and PyTorch416

1.12.0. Detailed implementation hyperparameters417

for both our model and PLM-ICD are provided in418

Appendix A.4.419

Baselines To demonstrate the effectiveness of our420

model, we compare it with five current state-of-the-421

art approaches.422

PLM-ICD (Huang et al., 2022), our base model,423

leverages transformer-based pre-trained language424

models specifically pre-trained on biomedical and425

clinical texts. It achieves state-of-the-art perfor-426

mance on both MIMIC-III and MIMIC-IV datasets,427

as validated by a latest review (Edin et al., 2023).428

MultiResCNN (Li and Yu, 2020) employs a multi-429

filter convolutional layer to capture text patterns of430

varying lengths and a residual convolutional layer431

to expand the receptive field.432

MSATT-KG (Yuan et al., 2022) applies multi-scale433

attention and GCN to capture the relationships be-434

tween codes.435

JointLAAT (Vu et al., 2020) introduces a hierar-436

chical joint learning mechanism to address label437

imbalance.438

MSMN (Yuan et al., 2022) utilizes synonyms with439

multi-head attention mechanism, achieving another440

state-of-the-art performance on MIMIC-III Full441

dataset.442

4.2 Quantitative Results443

A. Does integrating graph-based representation444

enhance the ICD coding performance? This445

experiment aims to verify if integrating the patient-446

level knowledge graph benefits the representation447

of the patient, consequently enhances the perfor-448

mance of ICD coding. The results shown in Ta-449

ble 3 indicate that our model outperforms its base450

model PLM-ICD significantly on the F1-Macro451

Figure 3: By-epoch performance comparison of our
model and PLM-ICD by means of Macro-F1 / P@8
on MIMIC-III Full (top row) and Macro-F1 / P@5 on
MIMIC-III Top-50 (bottom row).

Remove µF1 mF1 µAUC mAUC P@8
Full 11.05 59.72 92.37 98.75 76.59
−BP 10.38 59.60 92.39 98.86 76.72
−PR 10.33 59.65 92.39 98.84 76.95
−TE 10.34 59.45 92.53 98.86 76.62
−CR 10.07 59.35 92.63 98.89 76.74
−BD 10.61 59.51 92.24 98.79 76.51
−drug 10.52 59.44 92.23 98.77 76.61
−problem 9.77 59.26 92.35 98.86 76.95
−treatment 10.76 59.66 92.33 98.81 76.76
−test 10.72 59.59 92.32 98.81 76.54

Table 4: Results of ablation study on the MIMIC-III
Full dataset. Removing all relationships and entities
of a specified type. µ and m denote Macro and Micro
averages, respectively.

score by 1.36% and 3.20% on the Full and Top-50 452

datasets, respectively. F1-Macro score is the pri- 453

mary metric for this task due to its effectiveness 454

in balancing precision and recall across classes 455

and its robustness in classification problems. Our 456

model exhibits more noticeable performance im- 457

provements on frequent labels and demonstrates 458

overall advancements across all metrics. Moreover, 459

our model remains highly competitive compared to 460
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other state-of-the-art methods, achieving the high-461

est F1 scores on full label set.462

Additionally, our model achieves higher scores463

in the early epochs (see Figure 3), highlighting its464

efficiency when computational resources are con-465

strained. The most significant improvements occur466

within the first three epochs, indicating that the467

structured information is efficiently captured early.468

These findings further validate the quality of the469

constructed graphs, demonstrating their effective-470

ness in patient representation (Statistical Perspec-471

tive) by providing not only semantic information472

but also additional structured information.473

B. What elements should constitute a patient’s474

knowledge graph?475

Relationship We conduct an ablation study to476

assess the impact of different types of relationships477

in the graph on patient representation. By remov-478

ing a singly type of relationship from the complete479

graph, we observe that the removal of any relation-480

ship leads to a noticeable decrease in performance.481

Despite this, the performance still remains superior482

to the base model PLM-ICD by at least 0.4% on483

F1-Macro score. Excluding the ‘Clinical Relation-484

ship’ (CR) results in the most substantial drop in485

performance, indicating its critical importance in486

patient representation.From Table 5 in Appendix A487

we can see that the number of ‘Clinical Relation-488

ships’ (CR) is similar to ‘Temporal Events’ (TE) in489

MIMIC-III Full dataset. But its exclusion causes490

a more pronounced decline, suggesting that its sig-491

nificance lies not only in its quantity but also in492

the quality of information it provides about the pa-493

tient. This is intuitive, as ‘Clinical Relationships’494

(CR) inherently capture the essential aspects of a495

patient’s profile—such as medical problems, treat-496

ments, and diagnostic tests—that are directly rele-497

vant to predicting diseases and procedures codes.498

Conversely, ‘Bodypart-Directions’ (BD) has the499

least impact on ICD coding, indicating its lower500

significance.501

Entity We conduct another ablation study by re-502

moving entities of the four most occurring types:503

‘Problem’, ‘Test’, ‘Treatment’, and ‘Drug’ (ordered504

by frequency). The removal of ‘Problem’ has the505

most significant impact on the F1-Macro score, in-506

dicating that ‘Problem’ plays a crucial role in the507

graph representation. This finding also make sense508

intuitively, as ‘Problem’ constitutes the largest por-509

tion of the graph and is most closely related to the510

equal

Figure 4: F1 performance comparison on each of the
top-50 codes between our model and PLM-ICD, ranked
by the performance difference between the two models.

objective of diagnosing the patient. 511

4.3 Qualitative Results 512

C. How does the patient-level knowledge graph 513

help the classification for specific codes? To 514

further analyse performance at the label level, we 515

compute the F1 scores for our model and PLM-ICD 516

on the MIMIC-III Top-50 dataset for each code (see 517

Figure 4). The results reveal that our model outper- 518

forms PLM-ICD on 37 codes out of 50. Notably, 519

our model achieves scores for codes 285.9 (Ane- 520

mia, unspecified’) and V15.82 (Personal history 521

of tobacco use’), which PLM-ICD totally fails. 522

To better understand how graphs enhance patient 523

representations, we visualize the label-specific rep- 524

resentations of all samples in the test set (see Fig- 525

ure 5). We focus on the codes 412 (Old myocar- 526

dial infarction’) and 39.95 (Hemodialysis’) (see 527

Appendix A.5), where both our model and PLM- 528

ICD demonstrate good performance. This choice 529

avoids complications from low scores, which may 530

result in erratic embeddings that are challenging 531

to visualize, such as the case of 38.91 ‘Arterial 532

Catheterization’. Samples with the correspond- 533

ing labels are highlighted in red. Specifically, we 534

reduce the dimensionality of the original represen- 535

tations Zi using t-SNE. For code 412, our model 536
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Figure 5: Visualisation of label-specific patients repre-
sentation of codes 412 ‘Old myocardial infarction’ and
39.95 ‘Hemodialysis’, without (left) and with (right)
using knowledge graphs as input. Instances with the
corresponding ground-truth label are red.

exhibits a noticeably higher density of instances537

with the target label (red), with an average distance538

of 16.44 between positive points compared to 19.14539

for PLM-ICD. For code 39.95, where both mod-540

els perform well, our model still shows a denser541

cluster of the positive (red) instances, and the clus-542

ter is more distinctly separated from other points.543

This case study demonstrates that integrating struc-544

tured information enhances patient representation,545

leading to more accurate classification.546

D. Explainability The ability to provide trust-547

worthy and interpretable explanations is particu-548

larly critical in the clinical domain. To achieve549

this, we highlight text spans based on their atten-550

tion weights, using darker colors to indicate higher551

weights. This suggests that these spans contribute552

more significantly to representing the patient. Our553

model demonstrates the ability to identify the most554

relevant spans more accurately and concisely. To555

illustrate this, we present two non-cherry-picked556

examples from the test set on label 38.91: ‘Arte-557

rial Catheterization’, where our model shows the558

most improvement. In Case 1 (Figure 6, above),559

our model effectively captures key tokens like ‘hy-560

potensive’ and ‘blood pressure’, which are directly561

associated with ‘Arterial Catheterization’, whose562

role is continuous blood pressure monitoring and563

arterial blood gas analysis. In contrast, PLM-ICD564

distributes attention more evenly across the text.565

In Case 2 (Figure 6, below), our model success-566

fully highlights relevant spans across various sec-567

tions, such as ‘invasive procedure’ and ‘placing a568
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admission date discharge date date of birth sex m service neurosurgery allergies patient recorded as
having no known allergies to drugs attending first name 3 l f chief complaint headache major surgical or
invasive procedure none history of present illness year old male from state on vac ation with wife was at
din ner when at pm last evening when he complained of a headache shortly after attempted to stand and
fell to the ground the patient was amn estic to fall but was responsive and oriented when questioned by his
wife who is name 8 m d r n the patient was taken to an outside facility via ambulance mental status
declined in the ambulance but em t was unable to int ub ate him given his body habit us he was intubated
at the outside facility and a head ct showed a large cerebellar hemorrhage with intraventricular extent ion
and herniation shortly after the ct the patients systolic blood pressure dropped to non responsive to fluid
bolus and the pt was started first on dopamine and then neo sy ne phrine for support past medical history
gout obstructive sleep apnea social history married lives with wife here on vac ation from name ni family
history non contributory physical exam on admission physical exam t bp supported on neo sy ne phrine
and dopamine hr r on cm v o 2 s ats gen intubated not sedated he ent pupils right 5 mm nr left 6 mm non
reactive neck sup ple extrem warm and well perfused neuro cranial nerves i not tested ii pupils as above
no cough gag corne als motor flick er toe movement to deep noxious likely reflex ive toes down going
bilaterally upon discharge deceased pertinent results radiology report ct head w o contrast study date of
am impression diffuse subarachnoid hemorrhage with intraventricular extension as described above a
probable focus of left cerebellar intrap arenchymal hemorrhage bilateral subdural hematoma lay ering
along the tent or ium left more than right and blood in the the cal sac in the upper cervical spine lower
extent not included significant mass effect and diffuse cerebral edema with bilateral unc al herniation brief
hospital course this is a year old male with sudden onset headache st aus post fall who was with decline in
mental status he was intubated and hypotensive transferred here on vas opress ors to sustain his blood
pressure upon arrival the patient had no cough corneal or gag reflex he was admitted on to the intensive
care unit his head ct was consistent with diffuse cerebral edema and unc al herniation on exam his pupils
were fixed and dilated the wife made name 2 ni decision to awaiting family before making the patient cm
o the patient was left intubated but the v ential tor was turned off per the w if es request at am the pt
stopped breathing and was as ystolic and expired at am on with the family att he bedside organ bank was
called and the patient will be a tissue donor medications on admission unknown discharge medications
none discharge disposition expired discharge diagnosis expired discharge condition expired discharge
instructions none followup instructions none completed by
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admission date discharge date service medicine allergies no drug allergy information on file attending first
name 3 l f chief complaint arrived unresponsive and intubated suspected cholangitis major surgical or
invasive procedure pt intubated ri j placed history of present illness h x was difficult to ell icit because pt
was non responsive on admission and notes from outside hospital were scant pt is an y o of polym yl ag ia
rheumatic a on 5 mg of prednisone had n v and ab d pain for a 2 days with fevers chills and vomiting was
found down in the supine position em s was called and found patient to have no radial pulses bp hr t 101 f
pt was brought to hospital 3 where she was thought to have been stabilized and transferred to hospital 1
for emergent erc p en route she was emerg ently intubated as she became unstable and in respiratory
distress past medical history polym yalgia rheumatic a social history pt had a daughter who was at
hospital 3 and tra iled behind the ambulance en route to hospital 1 family history unknown physical exam
gen pt unresponsive on admission already intubated he ent pupils 2 mm in diameter unresponsive to light
lungs bil teral equal breath sounds cardiac r r r s 1 s 2 no s 3 s 4 ab d an b ormal protrusion of the inferior
abdomen soft non dist ended ext pulses carotid and femoral difficult to palp ate distal pulses pertinent
results 03 pm blood w bc rbc hg b h ct m cv m ch m ch c rd w pl t ct 03 pm blood neut s bands lymph s
monos e os bas o 03 pm blood pl t sm r low pl t ct 03 pm blood glucose ure an creat na k cl h co 3 ang ap
03 pm blood al t ast l d l dh alk phos tot b ili 03 pm blood calcium ph os mg 36 pm blood type art po 2 p
co 2 ph cal t co 2 base x s 36 pm blood glucose lactate na k cl 36 pm blood hg b cal ch ct 36 pm blood fre
eca brief hospital course pt was admitted to the floor unresponsive and intubated with questionable
diagnosis of cholangitis and biliary sepsis pt hr steadily decreased since admission and her bp steadily
declined pt became as ystolic and resc usc itation began pt received multiple rounds of epinephrine
adenosine h co 3 calcium gluc onate a femoral line was attempted but complicated by hematoma pt ab g
ph p co 2 po 2 h co 3 k lactate pt regained a rhythm and pulse lev op hed was started and a right i j was
placed pt became as ystolic shortly after c pr was resumed multiple rounds of epinephrine h co 3 calcium
given pt was not resc usc itated and the code was called at family arrived during the code and was updated
throughout the event medications on admission prednisone discharge medications pt expired discharge
disposition expired discharge diagnosis pt passed away shor l ty after admission discharge condition pt
passed away shor l ty after admission discharge instructions pt passed away shor l ty after admission
followup instructions pt passed away shor l ty after admission
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Our Model
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…

Case 1 – HADM ID: 129383

Case 2 – HADM ID: 165048

Figure 6: Highlights related to label 38.91 ‘Arterial
Catheterization’, without (above) and with (below) us-
ing knowledge graphs as input.

femoral line’, they are procedures often involved in 569

‘Arterial Catheterization’. Additionally, phrases 570

like ‘intubated rij placed’ and ‘a right IJ was 571

placed’ are highlighted as they pertain to ‘central 572

venous catheterization’, which is another type of 573

catheterization. The model also succinctly high- 574

lights ‘rhythm and pulse’, which is related to blood 575

pressure monitoring. These two cases strongly 576

demonstrate that our model excels in providing 577

high-quality explanations compared to PLM-ICD. 578

5 Conclusion 579

In this work, we construct a patient-level knowl- 580

edge graph comprising wide range of entities and 581

relationships. We integrate it into a state-of-the- 582

art ICD coding architecture, PLM-ICD, which sig- 583

nificantly enhances the patient representation and 584

improve the coding performance. Additionally, 585

we verify the impact of different types of enti- 586

ties and relationships in representing the patient. 587

Furthermore, we showcase how integrating graph 588

improves the patient representation through visual- 589

isation and demonstrate the high-quality explain- 590

ability of our model in case studies. 591

Our patient-level knowledge graph dataset holds 592

significant potential to provide healthcare providers 593

with more precise, data-driven insights, ultimately 594

improving patient outcomes, such as optimizing 595

treatment plans (clinical decision-making) and en- 596

abling early diagnosis (event prediction). 597
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6 Limitations598

In future work, we aim to enrich the patient-level599

knowledge graph by integrating other knowledge600

sources, such as hierarchical information from on-601

tology systems like SNOMED-CT and UMLS. In602

the current study, we did not account for the seman-603

tic meaning of edges within graph representation,604

as some links merely signify connections between605

entities (e.g., ‘1’ or ‘TREATMENT-TEST’). Mov-606

ing forward, we plan to model the meaning of these607

relationships more explicitly by combining their608

semantic representations with confidence measure-609

ments.610

Additionally, we have not explored other ad-611

vanced graph representation models, such as612

Relational Graph Convolutional Networks (R-613

GCN) (Schlichtkrull et al., 2018) and Graph At-614

tention Networks (GAT) (Veličković et al., 2017).615

The application of GAT, in particular, offers poten-616

tial for further enhancing explainability by identify-617

ing and highlighting the sub-graphs that contribute618

most to final predictions, which we aim to evaluate619

more rigorously in domain expert-centred experi-620

ments.621

Finally, due to resource constraints, we have not622

experimented with adapting other baseline models623

to use the document-level structured representation624

graphs. It is unlikely, but not impossible, that other625

architectures would not benefit from this kind of626

information, and further experiments should be627

conducted to establish this fact empirically.628
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A Appendix829

A.1 Patient-Level Knowledge Graph830

Construction831

Model Selection The Healthcare NLP library in-832

cludes 44 RE models, each integrating both NER833

and RE functionalities. These models are trained834

on various language models across multiple lan-835

guages to extract a wide range of clinical informa-836

tion. We utilize 14 of these models, which cover all837

available relationship types except for ‘drug-drug838

interaction’ and share a consistent architecture. De-839

tails and statistics of these RE models are provided840

in Table 5.841

The top five relationships include ade conversa-842

tional’, which links drugs to their adverse reactions.843

However, we do not select it due to its uneven dis-844

tribution across samples, as only a limited number845

contain this type of triple. Instead, we chose the846

‘bodypart-problem’ relationship, which ranks sixth.847

Selected 5 RE Models Table 8 details the entities848

and relationships that each RE model can extract.849

The entities recognized from the MIMIC-III notes850

include a subset of those listed in this table.851

Statistics of Entities Extracted The complete852

patient-level knowledge graph, which encompasses853

all five relationships, identifies 14 types of entities.854

The statistics of them can be found in Table 6. In855

the ablation study, we study the impact of top four856

types of entities, as they have the highest magnitude857

compared to others.858

A.2 Patient-Level Knowledge Graph 859

Visualisation 860

Figure 8 presents a visualization of a patient-level 861

knowledge graph (HADM ID: 196292). To make it 862

clear, we include type information for the entities, 863

linking each entity to its respective type. Nodes 864

representing types are colored light green, while 865

different types of entities assigned unique colors. 866

A.3 Methodology of Information Entropy and 867

Results of Ablation Study 868

Information Entropy Information entropy, in- 869

troduced by Shannon in 1948, is a fundamental 870

concept in information theory that measures infor- 871

mation loss by quantifying the difference between 872

the expected information and the reduced informa- 873

tion. The entropy H of a discrete source X is given 874

by: 875

H(X) = −
∑
x∈X

P (x) log2 P (x). (10) 876

The entropy of text and serialised graph are calcu- 877

lated as follows: 878

Htext = −
∑

x∈Xtext

Ptext(x) log2 Ptext(x), (11) 879

880
Hgraph = −

∑
x∈Xgraph

Pgraph(x) log2 Pgraph(x).

(12) 881

The ratio of information loss L is defined as: 882

L =
Htext −Hgraph

Htext
. (13) 883

Ablation Study Table 7 displays the information 884

entropy results for different graphs after remov- 885

ing one type of relationship or entity. The ‘Text 886

Entropy’ is 8.33 across all experiments. Notably, 887

the removing ‘posology relationship’ and ‘prob- 888

lem’ have the most significant impact on the results. 889

This analysis emphasizes the loss of textual infor- 890

mation, whereas the ablation study in the main 891

content examines the impact on ICD coding. 892

A.4 Implementation Details and Results of 893

Various DGCNN Configurations 894

Table 9 outlines the hyperparameter settings for 895

both the PLM-ICD baseline and our model. Our 896

model requires a batch size of 1 per process, as 897

we do not adjust the graph representation using 898

padding, unlike typical text inputs. Due to compu- 899

tational resource constraints, we do not use the op- 900

timal hyperparameters for PLM-ICD. However, we 901
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RE Model |Tr| |S|
clinical relatioship 6878467 52721

temporal events 6504349 52720
posology relationship 3939341 51879

ade conversational relationship 2443125 12464
bodypart-directions 355260 42487
bodypart-problem 337041 38719
ade relationship 86062 24259

test-problem-finding 76262 29007
drugprot relationship 42071 16859

bodypart-proceduretest 14739 8861
generic relationship 7004 2897

date relationship 2979 1713
test-result-date 2174 2174

phenotype gene relationship 0 0

Table 5: Statistics of RE model outputs in the MIMIC-III Full dataset. |Tr| refers to the number of triples recognized
by the RE model. |S| indicates the number of samples in the full dataset that contain these triples.

Entity Type |En|
problem 3422556
treatment 1665523

test 1371889
drug 1039115

strength 636491
frequency 338332

form 229420
dosage 217178

internal organ or component 192503
route 166454

direction 135903
symptom 106114

external body part or region 86367
duration 41727

Table 6: Statistics of entities identified in the MIMIC-III Full dataset. |En| represents the number of entities.

maintain consistent hyperparameters within their902

shared architecture to ensure a fair comparison.903

The value of DGCNN indicates the size of the node904

representation for each convolution layer. A sin-905

gle DGCNN layer with a size of 768 achieves the906

best performance on the full dataset, while two907

DGCNN layers, each with a size of 384, performs908

best on the Top-50 dataset. Additionally, we initial-909

ize the node representation in the first layer using910

RoBERTa-base.911

Tables 10 and 11 present additional experimental912

results for different configurations of the DGCNN913

architecture. The experiments utilize a complete914

graph with five types of relationships. In our initial915

experiment, we fix the final node size at 768 and916

compare the performance of DGCNN with differ- 917

ent numbers of layers. The results indicate minimal 918

performance differences between multi-layer and 919

single-layer DGCNN models. However, models 920

with evenly distributed layer sizes show slightly 921

better performance. We also conduct experiments 922

by varying the final node size and incrementally 923

adding layers, each with an embedding size of 384. 924

The results reveal an initial increase in performance, 925

which subsequently decreases, with the optimal per- 926

formance observed using two layers. Additionally, 927

a similar trend is evident in a third experiment, 928

which investigates varying sizes for each layer. 929
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Remove Graph Entropy Ratio (%)
Full 7.48 89.95

clinical relationship 7.42 89.07
temporal events 7.33 88.07

posology relationship 7.15 85.80
bodypart-directions 7.47 89.68
bodypart-problem 7.48 89.80

problem 6.80 81.62
treatment 7.27 87.25

test 7.27 87.30
drug 7.36 88.40

Table 7: Results of the ablation study on information entropy: impact of removing each type of relationship or entity
(MIMIC-III Full).

Figure 7: Visualisation of label-specific patients rep-
resentation of code 38.91 ‘Arterial Catheterization’,
without (left) and with (right) using knowledge graphs
as input. Instances with the corresponding ground-truth
label are red.

A.5 Patient visualisation - Code 38.91930

We present a negative example of patient visualiza-931

tion for code 38.91 ‘Arterial Catheterization’ in932

Figure 7, where both models exhibit poor perfor-933

mance. Our model achieves an F1-score of 38.14%,934

compared to 18.89% for PLM-ICD.935
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Figure 8: Visualisation of a Patient-Level Knowledge Graph.
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RE Model Entity Relationship
clinical relationship PROBLEM, TREATMENT, TEST TrAP: TREATMENT-PROBLEM

TeRP: TEST-PROBLEM
TrIP: TREATMENT-PROBLEM
TrCP: TREATMENT-PROBLEM
TeCP: TEST-PROBLEM
TrWP: TREATMENT-PROBLEM
PIP: PROBLEM-PROBLEM
O: No Relationship

temporal events EVIDENTIAL, OCCURRENCE , DATE, BEFORE, AFTER, OVERLAP
TREATMENT, TIME, ADMISSION,
TEST, FREQUENCY, CLINICAL_DEPT,
DURATION, PROBLEM, DISCHARGE

posology relationship drug, dosage, duration, strength, frequency DOSAGE-DRUG
DRUG-DURATION
DRUG-STRENGTH
DRUG-FREQUENCY

bodypart-directions direction-external_body_part_or_region, 1,0
external_body_part_or_region-direction,
direction-internal_organ_or_component,
internal_organ_or_component-direction

bodypart-problem link between external_body_part_or_region 1,0
or internal_organ_or_component
and diseases entities (cerebrovascular_disease
, communicable_disease, diabetes...)

Table 8: Entities and relationships that RE models can extract.

Input Parameter Value
number of processes 4

train/evaluation batch size 1
Common gradient accumulation steps 1

train epochs 20 (Full) / 10 (Top-50)
warmup steps 2000
random seed 42
max length 5120

Text chunk size 512
model mode LAAT

pretrained model (text) RoBERTa-base-PM
DGCNN 768 (Full) / 384-384 (Top-50)

Graph pretrained model (node) RoBERTa-base

Table 9: Parameter settings for PLM-ICD (Common + Text) and our model (Common + Text + Graph) on the
MIMIC-III Full and Top-50 datasets.
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F1 AUC Precision Recall
3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@8 R@8

1 layer 768 11.05 59.72 92.37 98.75 76.59 40.52
256-512 10.69 59.52 92.42 98.78 76.79 40.56

2 layers 384-384 10.98 59.64 92.65 98.83 76.63 40.53
128-256-384 10.42 59.51 92.55 98.79 76.47 40.39

3 layers 256-256-256 10.53 59.70 92.47 98.84 76.81 40.56
128-128-256-256 10.46 59.47 92.23 98.78 76.58 40.37

4 layers 192-192-192-192 10.58 59.21 92.14 98.78 76.47 40.37
1 layer 384 10.77 59.77 92.30 98.77 76.88 40.62
2 layers 384-384 10.82 59.43 92.54 98.78 76.63 40.53
3 layers 384-384-384 10.49 59.37 92.35 98.75 76.11 40.15
4 layers 384-384-384-384 10.46 59.58 92.23 98.74 76.79 40.55
1 layer 128 10.23 59.06 92.22 98.82 76.65 40.46
2 layers 128-256 10.60 59.69 92.47 98.83 76.85 40.57
3 layers 128-256-384 10.42 59.51 92.55 98.79 76.47 40.39
4 layers 128-256-384-512 10.47 59.31 92.21 98.76 76.30 40.27

Table 10: Performance of Various DGCNN Architecture Configurations (MIMIC-III Full).

F1 AUC Precision Recall
3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@5 R@5

1 layer 768 66.64 71.37 91.77 94.16 66.52 64.33
256-512 67.64 71.72 92.12 94.30 66.82 64.74

2 layers 384-384 67.81 71.63 92.04 94.22 67.08 65.11
128-256-384 66.30 70.94 91.71 93.98 66.58 64.39

3 layers 256-256-256 67.54 71.83 92.19 94.37 67.04 65.14
128-128-256-256 66.79 71.39 92.28 94.31 66.87 64.92

4 layers 192-192-192-192 67.67 72.03 92.30 94.44 66.79 65.07
1 layer 384 66.91 71.12 92.04 94.19 66.47 64.63
2 layers 384-384 67.81 71.63 92.04 94.22 67.08 65.11
3 layers 384-384-384 66.89 71.41 92.26 94.32 67.09 65.20
4 layers 384-384-384-384 66.55 71.24 92.15 94.37 66.86 64.85
1 layer 128 66.62 70.79 91.89 94.10 66.50 64.45
2 layers 128-256 67.63 71.72 92.00 94.25 66.71 64.63
3 layers 128-256-384 66.30 70.94 91.71 93.98 66.58 64.39
4 layers 128-256-384-512 65.80 71.34 92.05 94.32 66.14 64.22

Table 11: Performance of Various DGCNN Architecture Configurations (MIMIC-III Top-50).
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