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ABSTRACT

Pretrained vision-language models, e.g., CLIP, show promising zero-shot transfer
capability across various unseen classification datasets. However, there is an in-
herent limitation: CLIP image encoders are typically designed to extract generic
image-level features that summarize superfluous or confounding information for
target tasks. This results in degradation of classification performance, especially
when objects of interest cover small areas of input images. In this work, we
propose CLIP with Guided Cropping (GC-CLIP), where we use an off-the-shelf
zero-shot object detection model in a preprocessing step to increase the focus of
zero-shot classifiers on the object of interest and minimize the influence of extra-
neous image regions. We empirically show that our approach improves zero-shot
performance across architectures and datasets, most favorably for small objects.

1 INTRODUCTION

CLIP (Radford et al., 2021) is one of the most popular open-vocabulary classifiers. However, it
has one limitation due to its too generic image encoder, which, by design, encompasses the entire
information of a given image regardless of the target task. While this behavior is desirable for some
problems, it can pose a limitation when applied on unseen datasets where only certain labels are of
interest. In these cases, encoding entire image content can lead to suboptimal performance, partic-
ularly for small objects. In Figure 1a, the large water region in the image dominates the similarity
between images and texts of water-related classes, leading to an incorrect zero-shot prediction.

How can we reduce the impact of irrelevant information? We observe that reducing areas of context
regions by cropping input images around objects of interest can be beneficial. Figure 1b illustrates
that the cropped image with reduced water regions decreases the similarity scores of incorrect water-
related classes and results in the dominant similarity score of the correct class (i.e., canoe).

We aim to improve CLIP zero-shot object classification by guiding its focus to objects of interest and
reducing the influence of unrelated visual information. One possibility is to employ open-vocabulary
object detection (OVD) models directly for classification. However, we found that these approaches
are suboptimal for classification (see appendix A.6). Instead of directly using the OVD model, we
propose to employ it as a preprocessing cropping module, so that cropped images are processed by
CLIP (Figure 1b). We refer to this approach as CLIP with Guided Cropping (GC-CLIP).

Our contributions are as follows: We provide evidence that generic CLIP encoders can lead to
suboptimal zero-shot transfer performance, particularly on images with small objects. We propose
a method to improve zero-shot CLIP using bounding boxes estimated from a state-of-the-art open-
vocabulary object detector. We conduct experiments and ablation studies to show that our approach
outperforms other baselines, as well as the conditions under which our approach works well.

2 BACKGROUND

Problem Formulation Given a test dataset {(xi, yi)}Ns
i=1, where xi ∈ X = Rw×w and yi ∈ Y =

{1, 2, . . . , Nc} is an image and its corresponding label, our task is to construct a classifier F : X →
Y based on pretrained CLIP models to maximize P (ŷ|x) = P (F (x)|x) without further training.

Conventional CLIP CLIP (Radford et al., 2021) is a multi-modal model with zero-shot transfer
capability consisting of an image and a text encoders (G and H). To perform classification on a
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Figure 1: Logits from CLIP (ViT-B/32) before and after cropping around objects of interest

Figure 2: Guided Cropping pipeline to obtain a guided cropped image with margin ratio α

target dataset, a text prompt pclsj needs to be defined for each target class j ∈ Y . Then, an embedding
of each prompt can be obtained by: etextj = H(pclsj ). During inference, an input image xi will be
projected into its embedding eimage

i = G(xi) so that its predicted logit lCLIP
i can be computed as:

lCLIP
i = (Etext)T eimage

i =
[
etext1 etext2 . . . etextNc

]T
eimage
i . (1)

Each entry lCLIP
ij of the logit indicates the similarity score between the (embedded) input image and

the j-th prompt. The final class prediction can then be obtained as ŷi = argmaxj∈Y lCLIP
ij .

3 METHODOLOGY

3.1 CLIP WITH GUIDED CROPPING

Conventionally, an image embedding eimage
i is computed directly from the full image xi without

any task-specific constraints. This implies that potentially unrelated information is also encoded
into eimage

i , especially in cases of a small object image (see appendix A.7). Minimizing the amount
of unrelated concept information in image embeddings is desirable in this case. Our approach GC-
CLIP achieves this by using bounding box estimates from a Guided Cropping component.

In our work, we employ OWL-ViT (Minderer et al., 2022), a widely-used OVD model, to localize
target objects. Given an image and text prompts of target classes as inputs, it can produce a set of
bounding boxes together with their scores and classes. In this work, we only use OWL-ViT as a
bounding box extraction module as its class predictions are not accurate enough (see appendix A.6).
The overall GC-CLIP pipeline is shown in Figure 2. We only consider top-k classes (we use k=5) to
refine the preliminary CLIP predictions (ablation studies in appendix A.5).

Candidate box extraction Bounding boxes of each top-k class are detected independently (see
appendix A.8). Formally, a set of bounding box candidates Bi for an image xi can be obtained
based on OWL-ViT as Bi =

⋃
j∈Jk

i
bij =

⋃
j∈Jk

i
OWL(xi, p

det
j ) where Jk ⊆ Y is a set of top-k

classes with respect to lCLIP
i and pdetj is a text prompt for detection of class j and OWL is OWL-

ViT detection function returning a max-score bounding box with respect to an input image and a
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Figure 3: Results when forwarding multiple random crops of the same images (from ImageNetS919
dataset) to CLIP (ViT-B/32) demonstrating CLIP sensitivity to non-semantic changes.

prompt. All bounding boxes are adjusted to squares (keeping the longest sides) to avoid skewing
images when they are, afterward, transformed into a CLIP-compatible image size (224× 224).

Box selection One box will be picked based on Bi. We start from a primary box b0i ∈ Bi with
the highest OWL-ViT estimated score. We found that using the primary box directly is generally
suboptimal due to its tight box. Thus, slightly enlarging the box is beneficial (see Figure 5). Given
b0i has the width of wb0i

, the box is enlarged to an α-margin box bαi uniformly in all directions to the
size of wb0i

+ α(w − wb0i
), where α ∈ [0, 1] is called the margin ratio (Figure 4a). If a box edge

exceeds image border in one direction, the enlargement will be compensated in opposite direction.

Logit computation bαi is used to crop xi and resize it to a CLIP-compatible size w × w resulting
in a preprocessed image xα

i . The new top-k logit lGC CLIP (k)
i is computed based on xα

i as:

l
GC CLIP (k)
i =

[
etextj1 etextj2 . . . etextjk

]T
G(xα

i ),where j1, j2, . . . , jk ∈ Jk
i . (2)

The prediction is the class in Jk
i corresponding to the maximum entry of lGC CLIP (k)

i .

3.2 TEST-TIME BOX AUGMENTATION

Employing raw input images directly can lead to noisy results. We show this behavior by processing
10 random crops (discard less than 10%) of the same image. One would expect standard deviations
(SD) of its predicted true-label probabilities to be low and its final class predictions not to change
across different crops. However, from Figure 3a, the SD can be relatively high at around 0.2 (the
average true-label probability is 0.55). Also, only around 60% of test samples have no changes in
the predictions across crops (see Figure 3b). Especially, samples with smaller object sizes have less
reliable predictions. These results demonstrate CLIP sensitivity to non-semantic changes. There-
fore, we perform a simple test-time augmentation to help mitigate this issue. The augmented images
are used to compute multiple predicted logits as per equation 2, which can then be equally averaged
to produce the final logit score. Two augmentation strategies in this work are described as follows.

Random Crop Box Augmentation (RAug): With RAug, we augment a single input (raw or pre-
processed) image into Naug total images by cropping the input image with Naug boxes of random
widths within [βw,w], while β ∈ (0, 1).

Multi-Margin Box Augmentation (MAug): In some cases, it is beneficial to consider context
information as long as it does not dominate the object in question (Hoyer et al., 2019). With our
proposed MAug, we need to firstly obtain the primary box b0i . Then, instead of using a margin
ratio α as in section 3.1, we perform an object-centric augmentation by using Naug bounding boxes
obtained from multiple margin ratios, distributed uniformly from 0 to 1 (see Figure 4b). The set of
all final boxes used in this augmentation is

{
bαk
i |αk = k

Naug−1 , k ∈ {0, 1, . . . , Naug − 1}
}

.
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(a) No Augmentation (b) With MAug

Figure 4: Each green square corresponds to a final bounding box bα (or bαk ) which will be used
to crop the original image xi to produce logit for the final prediction. ∆w is the width difference
between the original image and the primary box b0i . α and αk are margin ratios.

Table 1: Zero-shot classification accuracies from different datasets and model configurations.

Model Prompt
Guided

Cropping
Box Aug.

Dataset
ImageNetS919 CUB ImageNetS919-SM CUB-SM

C
L

IP
(V

iT
-B

/3
2) Category

- - 63.62 51.83 52.83 49.57

- Random Crop 64.42 52.45 53.47 50.79

✓ - 63.61 52.40 55.18 51.44

✓ Random Crop 64.46 53.12 56.00 52.81

✓ Multi-Margin 64.66 53.12 56.00 53.09

Descriptions

- - 68.54 53.05 55.70 50.14

- Random Crop 69.15 53.62 57.33 50.79

✓ - 68.59 54.07 58.61 53.38
✓ Random Crop 69.07 54.47 59.08 53.09
✓ Multi-Margin 69.62 54.56 60.07 52.95

It must be noted that, with MAug, regions close to the target object are covered by more boxes
compared to regions far from the object. Therefore, this augmentation strategy allows some context
information to be considered but with lower importance compared to the object’s immediate context.

4 EXPERIMENTS

Datasets: We showcase the effectiveness of GC-CLIP on the images with small objects. There-
fore, we study ImageNetS919 and CUB datasets in which object sizes in images are controllable.
These datasets provide segmentation/bounding box annotations from which object sizes of image
samples can be obtained and enable us to quantify the performance on objects covering small areas.
ImageNetS919-SM and CUB-SM are splits of these datasets with samples whose object sizes are no
more than 20% of the full image size. Details of our dataset splitting is provided in appendix A.1.

Baselines: We employ CLIP (Radford et al., 2021) variations as well as CALIP (Guo et al., 2023)
as our baselines. DataComp represents a recent variation of CLIP from (Gadre et al., 2023). Two
classification prompt types are investigated (1) Category: Each class has a single prompt of its
category name (2) Descriptions: Each class has multiple prompts queried automatically from GPT-3
according to Menon & Vondrick (2022). Implementation details are provided in appendix A.2.

Zero-Shot Transfer Results: We show ViT-B/32 zero-shot performance in Table 1 (other back-
bones and CALIP are in appendix A.3). Considering datasets with unconstrained sizes, GC-CLIP
is comparable to (or slightly better than) baselines. This is expected since many samples in these
cases could have objects whose sizes already dominate the scene. On the other hand, both box aug-
mentations consistently improve performance in all cases, indicating that raw predictions from CLIP
models are indeed noisy, and smoothing their predictions encourage more robustness to this noise.
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Figure 5: Zero-shot accuracies on ImageNetS919-SM evaluated with different margin ratios.

On datasets with small objects (ImageNetS919-SM, CUB-SM), GC-CLIP demonstrates consistent
improvement over baselines indicating that our approach, as expected, is more beneficial for images
with small objects. This is reasonable since images with small objects leave more space in the im-
ages for context information which should be excised before being encoded. Another interesting
observation is that employing MAug generally increases performance. This infers that hinting con-
text cues with lower importance can indeed complement the focus on target objects to make definite
and correct decisions. Qualitative evaluation are in appendices A.10 and A.11. Also, we conduct
experiments integrating our Guided Cropping with supervised models (see appendix A.4).

Importance of Margin Ratio Margin ratio (α) controls how much primary boxes are enlarged
before they are used to crop input images. Varying margin ratios can help us understand how CLIP
reacts to Guided Cropping from α = 0.0 (crop with a raw OWL-ViT box) to α = 1.0 (no Guided
Cropping at all). We conduct an experiment with different α as shown in Figure 5. We mainly
discuss results from GC-CLIP and GC-CLIP+RAug here as these configurations utilize a single α.

According to the results, when Guided Cropping is applied (α < 1), classification accuracies are
generally better than those without Guided Cropping (α = 1). This confirms the benefit of GC-
CLIP. It must be noted that there are some consistent performance drops when the values of α are
too small (e.g., when α ∈ [0.0, 0.1]). Bounding boxes that are too tight can degrade classification
performance. One explanation of this observation is that to recognize an object, models need to
know the object shape clearly. Too tight bounding boxes can make models have unclear information
on the object boundaries leading to performance drops.

Understanding Object Size Conditions: Above, we conduct experiments on small object images
with one size condition (i.e, relative object sizes < 20%). Here, we also explore the behaviors of
our approach under different object size conditions. We vary the maximum relative object size of
ImageNetS919 from 5% to 100% and observe that the performance gaps between our method and
the baselines increase as the object size decreases. The increase is also more significant when MAug
is applied for box augmentation instead of RAug. This further highlights that our approach works
well for images with small objects. More details are provided in appendix A.7.

5 CONCLUSION

We identify a limitation of CLIP-based models on unseen image classification datasets: as its im-
age encoder is designed for encoding a generic image-level representation, it is prone to encode
non-discriminative context information leading to performance degradation. We propose GC-CLIP
reducing this degradation based on object bounding boxes from an OVD model. We empirically
demonstrate that GC-CLIP outperforms baselines especially in cases of image samples with small
objects. Conditions in which GC-CLIP performs well are analyzed in several ablation studies. We
hope this work sheds a new light on the behavior of large-scale open-vocabulary classifiers and
motivates future research to address this limitation in a more systematic manner.
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A APPENDIX

A.1 CONSTRUCTING DATASET VARIATIONS WITH SMALL OBJECTS
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Figure 6: Example images from ImageNetS919 with different relative object sizes.
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Figure 7: The number of samples in each object size condition of ImageNetS919.

In section 4, we use datasets based on ImageNetS and CUB as well as their small object varia-
tions (e.g., ImageNetS-SM and CUB-SM). In this section, we provide more details how those small
variations are constructed.

For each image sample, its object size is computed based on object bounding box. In case of CUB,
the bounding box is obtained directly from available annotations. However, for ImageNetS, only
its pixel-wise segmentation is provided. In this case, object bounding box can be extracted from
the segmentation in terms of minimum and maximum coordinates along X and Y axes of object-
labelled pixels.

Given an image xi of size w × w with the object bounding box represented in terms of mini-
mum/maximum XY coordinates as (pXmin, p

X
max, p

Y
min, p

Y
max), relative object size of the image sxi

is the ratio between the area of object bounding box and the total image area which can be computed
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as follows:

sxi
=

(pXmax − pXmin)(p
Y
max − pYmin)

w2
. (3)

The value of sxi
will be within the range of [0, 1]. Example images with different values of sxi

are
shown in Figure 6.

We use sxi of individual image samples to control object size characteristic of a dataset. In section
4, the main datasets with small objects (i.e., ImageNetS919-SM and CUB-SM), are obtained by
thresholding sxi

of image samples such that that their values are not larger than 0.2. We also provide
a study when multiple thresholds of sxi

are employed on the ImageNetS919 dataset in order to study
behavior of our models on different object size conditions (more details in appendix A.7). These
thresholds are distributed uniformly from 0.05 to 1.0 with the step size of 0.05. The number of
samples in each of these object size conditions is presented in Figure 7.

A.2 IMPLEMENTATION DETAILS

We apply our Guided Cropping and box augmentation on top of each baseline. For Guided Cropping
variations, the margin ratio α of 0.2 is used unless otherwise specified. We perform box augmen-
tation with Naug = 11. For RAug, β = 0.9 is used. The high value of β makes RAug augmented
boxes less likely to crop object contents away. Different CLIP backbones like ViT-B/32, ViT-B/16
and ViT-L/14 are studied in this work. For OWL-ViT, its backbone is ViT-B/32 for all experiments.
Category names are used as prompts to perform detection with OWL-ViT. In the case of multiple
prompts, the final logit value for a given class is computed by averaging the logit values obtained
from all prompts for that class.

A.3 ADDITIONAL ZERO-SHOT TRANSFER RESULTS

Results with other CLIP backbones From table 1, we presented zero-shot performance of GC-
CLIP variations with different model configurations. In this section, we provide full version of the
results including performance of ViT-L/14 and DataComp in Table 2.

Results with CALIP In Table 3, we conduct an experiment with CALIP. Some observations can
be seen from the results. Firstly, compared to Table 1, CLIP with Guided Cropping performance on
ImageNetS919-SM and CUB-SM (55.18, 51.44) is better than CALIP performance (53.81, 50.36)
even without box augmentation. Secondly, CALIP can be integrated with Guided Cropping to fur-
ther improve performance. This demonstrates flexibility of our approach for combining with other
classifiers.

Additional computational costs Additional parameters are required for OWL-ViT that attributes
to a total of 153M model parameters. When performing a single sample inference, additional infer-
ence time required on top of CLIP is 0.15 and 0.16 seconds without and with box augmentation on
a single Tesla V100-SXM2 GPU respectively.

A.4 GUIDED CROPPING WITH SUPERVISED MODELS

In the main paper, we mainly focus on applying our Guided Cropping to zero-shot models, i.e., CLIP
and CALIP. We argue that Guided Cropping can be helpful in this case as image encoders of these
models are designed to be generic so that they potentially encode non-discriminative information of
input images.

Concerning our Guided Cropping component alone, it is, in fact, orthogonal to supervision strate-
gies. Theoretically, our Guided Cropping can be employed with supervised models as well. In this
case, models can be supervisedly trained as normal but, during inference, their input images can
be cropped with our Guided Cropping component before forwarding to the models. In this section,
we study behaviors of Guided Cropping when it is integrated with few-shot and fully-supervised
models.
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Table 2: Zero-shot classification accuracies from different datasets and model configurations.

Model Prompt
Guided

Cropping
Box Aug.

Dataset
ImageNetS919 CUB ImageNetS919-SM CUB-SM

C
L

IP
(V

iT
-B

/3
2) Category

- - 63.62 51.83 52.83 49.57

- Random Crop 64.42 52.45 53.47 50.79

✓ - 63.61 52.40 55.18 51.44

✓ Random Crop 64.46 53.12 56.00 52.81

✓ Multi-Margin 64.66 53.12 56.00 53.09

Descriptions

- - 68.54 53.05 55.70 50.14

- Random Crop 69.15 53.62 57.33 50.79

✓ - 68.59 54.07 58.61 53.38
✓ Random Crop 69.07 54.47 59.08 53.09
✓ Multi-Margin 69.62 54.56 60.07 52.95

C
L

IP
(V

iT
-B

/1
6) Category

- - 68.60 56.51 57.75 55.54

- Random Crop 68.81 56.89 58.05 57.41

✓ - 68.06 56.09 58.65 55.97

✓ Random Crop 68.19 56.78 58.35 57.12

✓ Multi-Margin 68.94 57.30 59.81 57.63

Descriptions

- - 72.67 57.78 61.61 56.55

- Random Crop 73.17 58.87 62.13 57.99

✓ - 72.61 58.70 63.28 59.35
✓ Random Crop 72.86 58.99 63.32 58.78

✓ Multi-Margin 73.49 59.34 64.05 59.06

C
L

IP
(V

iT
-L

/1
4)

Category

- - 75.15 63.08 64.78 62.16

- Random Crop 75.30 63.32 64.70 62.59

✓ - 75.00 62.96 66.02 62.16

✓ Random Crop 75.04 63.24 66.54 62.73

✓ Multi-Margin 75.71 63.63 66.92 63.17

Descriptions

- - 78.48 64.65 67.78 63.17

- Random Crop 78.65 64.60 67.65 63.96
✓ - 78.32 64.67 69.07 63.31

✓ Random Crop 78.28 64.88 69.41 63.96
✓ Multi-Margin 79.06 64.76 69.88 62.95

D
at

aC
om

p
(V

iT
-L

/1
4) Category

- - 82.05 85.57 69.88 85.18

- Random Crop 82.10 86.07 69.84 86.04

✓ - 81.87 85.85 71.04 86.26

✓ Random Crop 81.75 85.99 71.04 86.04

✓ Multi-Margin 82.36 86.19 71.51 86.62

Descriptions

- - 82.66 86.04 70.01 86.12

- Random Crop 82.82 86.45 70.48 86.98

✓ - 82.33 86.57 71.25 87.19

✓ Random Crop 82.23 86.62 71.25 87.19

✓ Multi-Margin 82.93 86.83 71.68 87.41

A.4.1 FEW-SHOT MODELS

In this section, we conduct an experiment based on few-shot models, Tip-Adapter and Tip-Adapter-F
(Zhang et al., 2021), to learn classification on ImageNetS919-SM and CUB-SM datasets in few-shot
(n-shots=16 in our experiment). Its performance without and with Guided Cropping (α = 0.2 with
no box augmentation) is shown in the table below. According to the table, our Guided Cropping
generally improves performance of Tip-Adapter variations. This empirically demonstrates benefits
of our Guided Cropping for few-shot models.

10
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Table 3: Performance of CALIP with/without Guided Cropping using category-based prompts.

Model
Guided

Cropping
Box Aug.

Dataset
ImageNetS919-SM CUB-SM

CALIP
(ViT-B/32)

- - 53.81 50.36
- Random Crop 54.97 52.88
✓ - 55.66 52.59
✓ Random Crop 56.08 54.03

Table 4: Few-shot performance with Tip-Adapter variations. Accuracies gain from Guided Cropping
integration are given in parentheses.

Model Approach Guided Cropping Dataset
ImageNetS919-SM CUB-SM

V
iT

-B
/3

2 Tip-Adapter - 56.34 53.45
Tip-Adapter ✓ 58.27 (+1.93) 54.53 (+1.08)
Tip-Adapter-F - 62.43 60.22
Tip-Adapter-F ✓ 63.15 (+0.72) 60.07 (-0.15)

V
iT

-B
/1

6 Tip-Adapter - 62.34 61.44
Tip-Adapter ✓ 64.05 (+1.71) 62.30 (+0.86)
Tip-Adapter-F - 68.04 67.12
Tip-Adapter-F ✓ 68.42 (+0.38) 67.05 (-0.07)

V
iT

-L
/1

4 Tip-Adapter - 68.77 70.72
Tip-Adapter ✓ 70.44 (+1.67) 71.94 (+1.22)
Tip-Adapter-F - 72.24 73.88
Tip-Adapter-F ✓ 72.15 (-0.09) 74.32 (+0.44)

A.4.2 FULLY-SUPERVISED MODELS

In this section, we study behaviors of Guided Cropping when it is integrated with pretrained super-
vised models. In this regard, we utilize ImageNet pretrained models with ViT-B/32, ViT-B/16 and
ViT-L/16 backbones from timm (Wightman, 2019), a deep learning library. These models are eval-
uated on ImageNetS919 and ImageNetS919-SM datsets with/without Guided Cropping. The results
are shown in Table 5.

According to the results, optimal performance generally achieves with models without Guided Crop-
ping or with Guided Cropping using large margin ratio, i.e., 0.8, whose crops already cover large
context regions. We can observe this behavior even in the case of small objects (ImageNetS919-
SM). These results indicate that, for these fully-supervised models, unrelated contexts generally do
not degrade classification performance. In contrast, these contexts even improve their performance.
This observation is actually not new and has been discussed in shortcut learning literature (Geirhos
et al., 2020) that supervisedly trained networks can take unintended visual cues (e.g., background,
texture) as shortcuts to gain classification performance on in-distribution samples.

Comparing to cases of other supervision strategies, zero-shot and few-shot models are less likely to
be affected by shortcut learning since exposing to none (or few) of samples on target datasets make
them less likely to learn unintended visual clues from dataset biases.

A.5 LOGIT REFINEMENT ON TOP-K PREDICTIONS

As per our method mentioned in section 3.1, after computing preliminary logits from conventional
CLIP, only top-k predictions are considered and refined with Guided Cropping. We choose k = 5 in
this work. In this section, we will provide reasons why we adopt this top-k refinement strategy. Two
main reasons are given below.

• Potential Accuracy: We found that there is already high chances that the correct classes
are among predicted top-5 classes. To demonstrate this, we analyze top-1, top-5 and top-
10 accuracies of conventional CLIP in Table 6. According to the results, large accuracy
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Table 5: Classification accuracies of ImageNet pretrained models with/without Guided Cropping on
ImageNet919.

Architecture Guided
Cropping

Margin
Ratio

Box
Aug.

Dataset
ImageNetS919 ImageNetS919-SM

ViT-B/32 - - - 76.82 61.53
ViT-B/32 - - Random Crop 77.71 62.21
ViT-B/32 ✓ 0.2 - 77.11 64.05
ViT-B/32 ✓ 0.2 Random Crop 77.99 65.04
ViT-B/32 ✓ 0.8 - 76.91 62.81
ViT-B/32 ✓ 0.8 Random Crop 78.14 63.84
ViT-B/16 - - - 81.72 68.89
ViT-B/16 - - Random Crop 82.11 69.37
ViT-B/16 ✓ 0.2 - 81.08 68.42
ViT-B/16 ✓ 0.2 Random Crop 81.16 68.85
ViT-B/16 ✓ 0.8 - 81.63 68.51
ViT-B/16 ✓ 0.8 Random Crop 81.94 69.37
ViT-L/16 - - - 86.09 75.62
ViT-L/16 - - Random Crop 86.35 76.35
ViT-L/16 ✓ 0.2 - 85.67 75.92
ViT-L/16 ✓ 0.2 Random Crop 85.69 75.54
ViT-L/16 ✓ 0.8 - 86.21 76.26
ViT-L/16 ✓ 0.8 Random Crop 86.37 76.35

Table 6: Top-k accuracies from conventional CLIP (ViT-B/32) with category prompts.

Dataset Accuracy
Top-1 Top-5 Top-10

ImageNetS919 63.62 88.15 92.98
CUB 51.83 83.62 90.63

gaps can be noticed between top-1 and top-5 accuracies (24.53% for ImageNetS919 and
31.79% for CUB). In other words, by considering only 5 classes for refinement with Guided
Cropping, upper bounds of final accuracies are already high. It must be noted that, while
this upper bound accuracies can be raised further by considering top-10 classes, the gains
compared to top-5 classes are relatively small. This may not worth introducing additional
computation to the pipeline. Therefore, we decide to perform Guided Cropping based on
predicted top-5 classes in this work.

• Common Bounding Boxes: We notice that visual appearances of top-5 classes are relatively
similar in most cases. OWL-ViT is also likely to produce similar boxes for these classes.
This makes the use of common bounding boxes (e.g., the primary box b0i or the α-margin
box bαi ) among these classes reasonable. To illustrate this, considering each sample in
Figure 13 and 14, its primary box generally contains visual features which are (partially)
similar to each top class making the box become a decent box candidate for all top classes.

GT : Scorpion
OWL  -ViT: Stick insect

GT : Spoonbill
OWL  -ViT: Goose

GT : Tiger shark
OWL  -ViT: Snoek fish

Figure 8: Examples of failure modes of
the OWL-ViT based classifier.
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Figure 9: Accuracies (ViT-B/32) on subsets of ImageNetS919 with various object size conditions.

A.6 PERFORMANCE OF OWL-VIT DIRECTLY AS A CLASSIFIER

Here, we show that OWL-ViT, when adopted as a classifier directly, has subpar performance. In
this case, we need to transform its outputs from sets of bounding box locations, scores and class
labels into class-wise logits. Given an input image, the prediction logit of a class can be obtained
as follows. We first iterate whether there are any bounding boxes exist for that class. If any exist,
the class logit value is assigned as the maximum score among its boxes. Otherwise, its logit is zero.
This simple extension encourages classes of bounding boxes with high scores to have high logits.

This classifier obtains 20.34% and 40.78% as top-1 and top-10 ImageNetS919 accuracies respec-
tively which are low relative to baseline performance in Table 1. Figure 8 shows that OWL-ViT gives
reasonable bounding boxes, but its class predictions are inaccurate and often confused with other se-
mantically similar classes (e.g. tiger shark as a snoek fish). These results confirm that OWL-ViT is
not optimal to be used as a classifier on standard classification benchmarks.

We hypothesize that this behavior might be attributed to the multi-task nature of the model. OWL-
ViT utilizes a single image encoder to extract features that are used for both bounding box prediction
and classification. Due to the limited capacity of the encoder or the choice of training strategies, it
may compromise performance of individual tasks so that the average performance across tasks are
reasonable but the performance of individual tasks may not be maximized.

A.7 PERFORMANCE UNDER DIFFERENT OBJECT SIZE CONDITIONS
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Figure 10: Accuracies (ViT-B/16) on subsets of ImageNetS919 with various object size conditions.

At the end of section 4, we discuss the performance of GC-CLIP under various object size conditions
and claim that GC-CLIP variations outperform baselines especially when target object sizes are
small. In this section, we provide quantitative evidence to support our claim. Figures 9, 10 and
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Figure 11: Accuracies (ViT-L/14) on subsets of ImageNetS919 with various object size conditions.

Table 7: Accuracies from GC-CLIP (ViT-B/32) with different OWL-ViT inference strategies.

Dataset Prompt Type Box
Aug.

OWL-ViT Inference
Single-Pass Multi-Pass

ImageNetS919-SM Category RAug 54.71 56.00
ImageNetS919-SM Category MAug 55.61 56.00
ImageNetS919-SM Descriptions RAug 57.84 59.08
ImageNetS919-SM Descriptions MAug 59.47 60.07

CUB-SM Category RAug 50.22 52.81
CUB-SM Category MAug 53.09 53.09
CUB-SM Descriptions RAug 51.51 53.09
CUB-SM Descriptions MAug 53.45 52.95

11 compare zero-shot performance of our models and baselines (with ViT-B/32, ViT-B/16 and ViT-
L/14 backbones, respectively) under different thresholds of relative object sizes (Equation 3). In
other words, when the x-axis is equal to 1, there are no constraints on the sizes of objects. A
lower x-axis value indicates smaller object sizes. According to the figures, consistent behavior can
be observed. There are accuracy gaps between conventional CLIP and GC-CLIP and the gaps are
larger on datasets with small objects. This demonstrates that our claim is consistent across different
CLIP backbones.

A.8 INFERENCE WITH OWL-VIT

OWL-ViT performs object detection taking images and text prompts as inputs and producing bound-
ing boxes as well as their scores and class labels as outputs. In this work, for each image sample
xi, we use OWL-ViT to extract bounding box candidates Bi based on a set of detection prompts
of the top-k classes

{
pdetj |j ∈ Jk

i

}
. Theoretically, there are two possible options to obtain Bi from

OWL-ViT.

• Single Forward Pass (Single-Pass): with this option, an input image and all detection
prompts are forwarded to OWL-ViT at once. With a single forward pass, OWL-ViT will
produce a set of bounding boxes which will be used directly as Bi.

• Multiple Forward Passes (Multi-Pass): with this option, OWL-ViT will perform forward
pass with one detection prompt at a time. In other words, there will be k forward passes
in total. Each forward pass will produce a set of bounding boxes bij based on a detection
prompt pdetj . Bounding boxes estimated from all forward passes will be merged to get Bi

according section 3.1.

As mentioned in section 3.1, we decide to adopt Multi-Pass in our Guided Cropping pipeline as
Multi-Pass is more robust to misdetection (if one pass fails, other passes can act as backup passes).
In this section, we demonstrate empirically that Multi-Pass can lead to better performance.
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Table 8: Average similarity scores between images and their corresponding prompts (i.e., maximum
logit values) of correctly classified samples of CLIP (with RAug) and GC-CLIP (with MAug) using
ViT-B/32 backbone.

Dataset Prompt Type Accuracy with
CLIP GC-CLIP

ImageNetS919-SM Category 29.39 29.71
ImageNetS919-SM Descriptions 30.17 30.51

CUB-SM Category 33.71 33.89
CUB-SM Descriptions 34.30 34.55

CLIP: Amphibious vehicle
GC-CLIP: Container ship

CLIP: Leaf beetle
GC-CLIP: Ladybug

(a) Improved cases

CLIP: Space Shu�le
GC-CLIP: Missile

CLIP: Miniskirt
GC-CLIP: Hoop skirt

(b) Failure cases

Figure 12: Predictions of CLIP (with RAug) and GC-CLIP (with MAug) with ViT-B/32 on Ima-
geNetS919 samples. Red boxes represent primary boxes b0 estimated from our GC-CLIP.

In this regard, we conduct an experiment to compare GC-CLIP accuracies when Single-Pass and
Multi-Pass are employed. The results are shown in Table 7. According to the results, GC-CLIP with
Multi-Pass is consistently better across datasets and model configurations. This confirms our design
choice to use Multi-Pass in our Guided Cropping pipeline.

A.9 SIMILARITY BETWEEN CROPPED IMAGES AND THEIR PROMPTS

One motivation of our Guided Cropping is that, by minimizing unrelated information, CLIP im-
age encoder can focus more on target objects leading to better image representations. In section
4 better image representations can be indirectly inferred via the improvement of the classification
performance. In this section, we would like to analyze image representations in another perspective.

We argue that, if image representations are better, the representations should be not only less similar
to prompts of other classes but also more similar to prompts of their own classes. In this regard,
we investigate similarities of image embeddings (of the correctly classified samples) to their own
prompts. Here, similarity scores are obtained in terms of maximum predicted logit values. Similar-
ity score results of CLIP and GC-CLIP are shown in Table 8. We can notice that similarity scores
between images and their corresponding prompts in case of GC-CLIP are consistently higher. This
indicates that image representations after Guided Cropping are more similar to their prompts ac-
cording to our assumption.

A.10 QUALITATIVE EVALUATION

We quantitatively evaluate GC-CLIP by visualizing some samples that are predicted differently than
standard CLIP. Corrected samples are in Figure 12a. In the container ship image, “land” and “sea”
are contexts spanning large image regions making standard CLIP falsely predict the input as am-
phibious vehicle. However, GC-CLIP categorizes the image by focusing on primary box at the
watercraft.

On the other hand, samples whose predictions are incorrectly changed by GC-CLIP are in Figure
12b. These failures are due potentially to the distances between target objects and important con-
texts. While MAug allows some contexts to be considered, large distances between target objects
reduce importance of the contexts for GC-CLIP (less boxes cover the contexts). E.g., considering
the space shuttle image, the target object is so small that lacking any additional context, it is quite
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Table 9: Performance of GC-CLIP (ViT-B/32) on additional datasets using category-based prompts.

Guided
Cropping

Box Aug.
Dataset

ImageNet ImageNetV2 Stanford Dogs ImageNet-A ImageNet-R
- - 58.79 51.88 52.46 29.37 65.26
- Random Crop 59.31 52.21 53.43 29.28 66.24
✓ - 58.95 52.84 53.92 31.41 65.47
✓ Random Crop 59.46 52.94 54.73 31.81 65.99
✓ Multi-Margin 59.84 53.30 54.12 31.97 66.67

difficult to distinguish between a missile and a space shuttle (which is usually launched orthogo-
nal to the ground). However, large distance between the ground and the object box reduces effects
from the ground in GC-CLIP. Strategies to weight contexts dynamically can be investigated in future
works.

A.11 VISUALIZING EXAMPLE RESULTS

In this section, we present top-5 logits estimated from CLIP and GC-CLIP on example samples
from ImageNetS919 to demonstrate qualitatively that GC-CLIP can refine logits to make correct
predictions. The results are illustrated in Figure 13 and 14.

A.12 RESULTS ON ADDITIONAL DATASETS

In section 4, we aim to study the cases when objects of interest cover small areas of input images.
Therefore, image classification datasets with segmentation/bounding box annotations are chosen for
evaluation that enable us to quantify the performance on objects covering small areas. Hence, we
choose ImageNetS919 and CUB for our evaluation as these datasets provide segmentation/bounding
box annotations from which object sizes of image samples can be obtained. These annotations
enable more insight studies with different object sizes. These datasets are also commonly used in
weakly supervised object localization task (Zhu et al., 2022) as it needs similar annotations during
evaluation.

For completeness, we perform evaluation on additional classification datasets without object size
annotations as well. However, it must be noted that we may not be able to decouple effects of object
size and extraneous image regions in this case. In this section, we present performance of GC-CLIP
on ImageNet (Russakovsky et al., 2015), ImageNetV2 (Recht et al., 2019), Stanford Dogs (Khosla
et al., 2011), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a)
datasets. The results are shown in Table 9. According to the results, even object sizes of these
datasets are not controlled, our GC-CLIP is generally still better than the baselines. The magnitudes
of improvement are generally similar to results in Table 1 in the main paper (refering unconstrained
variants of ImageNetS919 and CUB).

One interesting observation which must be noted here is GC-CLIP performance on out-of-
distribution datasets (i.e., ImageNet-A and ImageNet-R). We can observe that amounts of accuracy
gains from GC-CLIP are different depending on out-of-distribution conditions. GC-CLIP benefits
better on natural adversarial condition (ImageNet-A) than on rendition condition (ImageNet-R). We
attribute this behavior to our dependency of OWL-ViT. In the rendition condition, objects are in
unusual contexts such that OWL-ViT performance is not always consistent.

A.13 COMPARISON WITH CENTRAL CROP

In our work, we demonstrate that image cropping guided by object locations can improve classifica-
tion performance. To further support this argument, we perform experiments comparing our guided
cropping with a deterministic cropping strategy, Central Crop, commonly used for classification (Jia
et al., 2021; Zhai et al., 2022; Touvron et al., 2019).

Central Crop benefits under the assumption that target objects likely to locate at the center of input
images. During inference, an input image will be cropped around its center according to a prede-
fined cropping ratio from 0.0 to 1.0 (The crop ratio of 1.0 refers to the usage of the full images
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Figure 13: Top-5 logits on example samples improved by Guided Cropping (set 1). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

without cropping). Then, the processed image will be resized to a compatible size for employed
models before performing the inference. We conduct experiments with Central Crop using different
cropping ratios on ImageNetS919-SM. Its performance can be visualized as in Figure 15.
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Figure 14: Top-5 logits on example samples improved by Guided Cropping (set 2). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

According to the results, we can see that, models with Central Crop can slightly improve perfor-
mance compared to vanilla models. For example, according to Figure 15b, the model without Cen-
tral Crop (ratio=1.0) achieves the accuracy of 55.61 while the model with Central Crop (ratio=0.9)
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(c) Prompt: Category (ViT-B/16)
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(d) Prompt: Descriptions (ViT-B/16)
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(e) Prompt: Category (ViT-L/14)
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Figure 15: Central crop performance with different cropping ratios compared to GC-CLIP (without
box augmentation) on ImageNetS919-SM.

achieves the higher accuracy of 56.30. However, on Figure 15, models with Guided Cropping (with-
out box augmentation) consistently outperform Central Crop. This supports the argument that our
cropping approach guided by object locations is preferable over simple cropping at a predefined
location.

A.14 LIMITATION OF GC-CLIP

Guided Cropping can be viewed as a strategy to refine image features conditioned to classes of
interest. Therefore, it is ideal to be employed in the setting of classification task since all classes
of interest are known in advance. For some generic tasks (image-text retrieval, image-conditioned
detection) that all classes of interest are not defined, it would not be straigtforward to employ Guided
Cropping in general.

However, on the specific scenarios that domains of interest are known in advance, Guided Cropping
can also be beneficial. For example, in case of image-conditioned detection, if we already know
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that the domain of interest is animal, we can use Guided Cropping to refine image features using
generic animal prompts (e.g., the word ”animal” itself). In this case, information of unrelated con-
texts of query images can be discarded by Guided Cropping which could lead to better detection
performance.

A.15 RELATED WORK

Zero-Shot Learning and Zero-Shot Transfer In conventional zero-shot learning, models recog-
nize images of unseen classes based on their known semantics

(Akata et al., 2015; Li et al., 2021; Naeem et al., 2021; Mancini et al., 2021). In this work, we focus
on zero-shot transfer and aim to evaluate model performance on unseen datasets - classes in those
datasets may not be completely unseen to the model, however images of target datasets are unseen.

Open-Vocabulary Classification Open-vocabulary classification models enable zero-shot trans-
fer by using natural language to define class semantics, affording greater flexibility in the task def-
inition without requiring expensive annotations. Images and text prompts can be projected by im-
age/text encoders into a joint embedding space so that their similarities can be computed. CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021) encourage similarity between image-text pairs
based on contrastive losses. Menon & Vondrick (2022) improves zero-shot performance by using
multiple text prompts per category based on queries from large language models. Florence (Yuan
et al., 2021) considers more modalities in addition to images and texts.

While these models perform well in open-world scenarios, their performance can be limited for
certain inputs as their encoders may encode extraneous information. CALIP (Guo et al., 2023) looks
for discriminative information by incorporating attention information in feature-level. This relies on
the quality of CLIP attention maps which can be poor in many cases (Chen et al., 2022). On contrary,
we seek discriminative information directly at an image-level, which is more interpretable.

Open-Vocabulary Object Detection Open-vocabulary object detectors produce bounding boxes
given input text prompts (Gu et al., 2021; Zhong et al., 2022; Li et al., 2022; Kuo et al., 2022;
Zhang et al., 2022). ViLD (Gu et al., 2021) trains an object detector based on knowledge distillation
from pretrained open-vocabulary classification models. In OWL-ViT (Minderer et al., 2022), simple
modifications of standard vision transformers are fine-tuned with large-scale image-text datasets for
object detection. GLIPv2 (Zhang et al., 2022) extends models to handle various localization tasks.

Object detection models have innate ability to not only localize, but classify localized objects based
on local information. A question may be raised, whether they are in general sufficient to solve the
zero-shot classification task alone. In section A.6, we conduct experiments based on OWL-ViT,
a recent off-the-shelf model, and demonstrate its poor performance on classification tasks. In this
work, we use the open-vocabulary object detection models only for bounding box extraction.
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