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Abstract

Reinforcement learning (RL) algorithms assume that users specify tasks by man-
ually writing down a reward function. However, this process can be laborious
and demands considerable technical expertise. Can we devise RL algorithms that
instead enable users to specify tasks simply by providing examples of successful
outcomes? In this paper, we derive a control algorithm that maximizes the future
probability of these successful outcome examples. Prior work has approached
similar problems with a two-stage process, first learning a reward function and
then optimizing this reward function using another RL algorithm. In contrast, our
method directly learns a value function from transitions and successful outcomes,
without learning this intermediate reward function. Our method therefore requires
fewer hyperparameters to tune and lines of code to debug. We show that our method
satisfies a new data-driven Bellman equation, where examples take the place of the
typical reward function term. Experiments show that our approach outperforms
prior methods that learn explicit reward functions.1

1 Introduction

In supervised learning settings, tasks are defined by data: what causes a car detector to detect cars is
not the choice of loss function (which might be the same as for an airplane detector), but the choice of
training data. Defining tasks in terms of data, rather than specialized loss functions, arguably makes it
easier to apply machine learning algorithms to new domains. In contrast, reinforcement learning (RL)
problems are typically posed in terms of reward functions, which are typically manually designed.
Arguably, the challenge of designing reward functions has limited RL to applications with simple
reward functions, and has been restricted to users who speak this language of mathematically-defined
reward functions. Can we make task specification in RL similarly data-driven?

Whereas the standard MDP formalism centers around predicting and maximizing the future reward,
we will instead focus on the problem classifying whether a task will be solved in the future. The user
will provide a collection of example success states, not a reward function. We call this problem setting
example-based control. In effect, these examples tell the agent “What would the world look like if
the task were solved?" For example, for the task of opening a door, success examples correspond to
different observations of the world when the door is open. The user can find examples of success
even for tasks that they themselves do not know how to solve. For example, the user could solve the
task using actions unavailable to the agent (e.g., the user may have two arms, but a robotic agent
may have only one) or the user could find success examples by searching the internet. As we will
discuss in Sec. 3.1, this problem setting is different from imitation learning: we maximize a different
objective function and only assume access to success examples, not entire expert trajectories.

1Project site with videos and code: https://ben-eysenbach.github.io/rce
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Figure 1: Example-based control: Whereas the standard MDP framework requires a user-defined reward
function, example-based control specifies tasks via a handful of user-provided success examples.

Learning from examples is challenging because we must automatically identify when the agent has
solved the task and reward it for doing so. Prior methods (either imitation learning from demon-
strations or learning from success examples) take an indirect approach that resembles inverse RL:
first learn a separate model to represent the reward function, and then optimize this reward function
with standard RL algorithms. Our method is different from these prior methods because it learns to
predict future success directly from transitions and success examples, without learning a separate
reward function. This key difference has important algorithmic, theoretical, and empirical benefits.
Algorithmically, our end-to-end approach removes potential biases in learning a separate reward
function, reduces the number of hyperparameters, and simplifies the resulting implementation. Theo-
retically, we propose a method for classifying future events using a variant of temporal difference
learning that we call recursive classification. This method satisfies a new Bellman equation, where
success examples are used in place of the standard reward function term. We use this result to
provide convergence guarantees. Empirically, we demonstrate that our method solves many complex
manipulation tasks that prior methods fail to solve.

Our paper also addresses a subtle but important ambiguity in formulating example-based control.
Some states might always solve the task while other states might rarely solve the task. But, without
knowing how often the user visited each state, we cannot determine the likelihood that each state
solves the task. Thus, an agent can only estimate the probability of success by making an additional
assumption about how the success examples were generated. We will discuss two choices of
assumptions. The first choice of assumption is convenient from an algorithmic perspective, but is
sometimes violated in practice. A second choice is a worst-case approach, resluting in a problem
setting that we call robust example-based control. Our analysis shows that the robust example-based
control objective is equivalent to minimizing the squared Hellinger distance (an f -divergence).

In summary, this paper studies a data-driven framing of control, where reward functions are replaced
by examples of successful outcomes. Our main contribution is an algorithm for off-policy example-
based control. The key idea of the algorithm is to directly learn to predict whether the task will
be solved in the future via recursive classification, without using separate reward learning and
policy search procedures. Our analysis shows that our method satisfies a new Bellman equation
where rewards are replaced by data (examples of success). Empirically, our method significantly
outperforms state-of-the-art imitation learning methods (AIRL [7], DAC [17], and SQIL [28]) and
recent methods that learn reward functions (ORIL [41], PURL [38], and VICE [8]). Our method
completes complex tasks, such as picking up a hammer to knock a nail into a board, tasks that none of
these baselines can solve. Using tasks with image observations, we demonstrate agents learned with
our method acquire a notion of success that generalizes to new environments with varying shapes and
goal locations.

2 Related Work

Learning reward functions. Prior works have studied RL in settings where the task is specified
either with examples of successful outcomes or complete demonstrations. These prior methods
typically learn a reward function from data and then apply RL to this reward function (e.g., Fu et al.
[8], Ziebart et al. [40]). Most inverse RL algorithms adopt this approach [1, 25, 27, 29, 36, 40],
as do more recent methods that learn a success classifier to distinguishing successful outcomes
from random states [8, 16, 31, 41]. Prior adversarial imitation learning methods [7, 12] can be
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viewed as iteratively learning a success classifier. Recent work in this area focuses on extending
these methods to the offline setting [16, 41], incorporating additional sources of supervision [42],
and learning the classifier via positive-unlabeled classification [13, 38, 41]. Many prior methods
for robot learning have likewise used a classifier to distinguish success examples [2, 22, 34, 37].
Unlike these prior methods, our approach only requires examples of successful outcomes (not expert
trajectories) and does not learn a separate reward function. Instead, our method learns a value function
directly from examples, effectively “cutting out the middleman.” This difference from prior work
removes hyperparameters and potential bugs associated with learning a success classifier. Empirically,
we demonstrate that our end-to-end approach outperforms these prior two-stage approaches. See
Appendix D for more discussion of the relationship between our method and prior work.

Imitation learning without auxiliary classifiers. While example-based control is different from
imitation learning, our method is similar to two prior imitation learning methods that likewise avoid
learning a separate reward function [18, 28]. ValueDICE [18], a method based on convex duality,
uses full expert demonstrations for imitation learning. In contrast, our method learns from success
examples, which are typically easier to provide than full expert demonstrations. SQIL [28] is a
modification of SAC [11] that labels success examples with a reward of +1. The mechanics of our
method are similar to SQIL [28], but key algorithmic differences (backed by stronger theoretical
guarantees) result in better empirical performance. Our analysis in Sec. 4.2 highlights connections
and differences between imitation learning and example-based control.

Goal-conditioned RL. Goal-conditioned RL provides one way to specify tasks in terms of data,
and prior work has shown how goal-conditioned policies can be learned directly from data, without a
reward function [4, 15, 21, 30]. However, the problem that we study in this paper, example-based
control, is different from goal-conditioned RL because it allows users to indicate that tasks can be
solved in many ways, enabling the agent to learn a more general notion of success. Perhaps the
most similar prior work in this area is C-learning [4], which uses a temporal-difference update to
learn the probability that a goal state will be reached in the future. Our method will use a similar
temporal-difference update to predict whether any success example will be reached in the future.
Despite the high-level similarity with C-learning, our algorithm will be markedly different; for
example, our method does not require hindsight relabeling, and learns a single policy rather than a
goal-conditioned policy.

3 Example-Based Control via Recursive Classification

We aim to learn a policy that reaches states that are likely to solve the task (see Fig. 1), without relying
on a reward function. We start by formally describing this problem, which we will call example-based
control. We then propose a method for solving this problem and provide convergence guarantees.

3.1 Problem Statement

Example-based control is defined by a controlled Markov process (i.e., an MDP without a reward
function) with dynamics p(st+1 | st,at) and an initial state distribution p1(s1), where st ∈ S and at

denote the time-indexed states and actions. The variable st+∆ denotes a state ∆ steps in the future.

The agent is given a set of success examples, S∗ = {s∗} ⊆ S. The random variable et ∈ {0, 1}
indicates whether the task is solved at time t, and p(et | st) denotes the probability that the current
state st solves the task. Given a policy πφ(at | st), we define the discounted future state distribution:

pπ(st+ | st,at) , (1− γ)

∞∑
∆=0

γ∆pπ(st+∆ = st+ | st,at). (1)

Using this definition, we can write the probability of solving the task at a future step as
pπ(et+ | st,at) , Epπ(st+|st,at)[p(et+ | st+)]. (2)

Example-based control maximizes the probability of solving the task in the (discounted) future:
Definition 1 (Example-based control). Given a controlled Markov process and distribution over
success examples p(st | et = 1), the example-based control problem is to find the policy that
optimizes the likelihood of solving the task:

arg max
π

pπ(et+ = 1) = Ep1(s1),π(a1|s1) [pπ(et+ = 1 | s1,a1)] .
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Although this objective is equivalent to the RL objective with rewards r(st,at) = p(et = 1 | st),
we assume the probabilities p(et | st) are unknown. Instead, we assume that we have samples of
successful states, s∗ ∼ pU (st | et = 1). Example-based control differs from imitation learning
because imitation learning requires full expert demonstrations. In the special case where the user
provides a single success state, example-based control is equivalent to goal-conditioned RL.

Since interacting with the environment to collect experience is expensive in many settings, we
define off-policy example-based control as the version of this problem where the agent learns from
environment interactions collected from other policies. In this setting, the agent learns from two
distinct datasets: (1) transitions, {(st,at, st+1) ∼ pU (st,at, st+1)}, which contain information
about the environment dynamics; and (2) success examples, S∗ = {s∗ ∼ pU (st | et = 1)}, which
specify the task that the agent should attempt to solve. Our analysis will assume that these two datasets
are fixed. The main contribution of this paper is an algorithm for off-policy example-based control.

An assumption on success examples. The probability of solving the task at state st, p(et = 1 | st),
cannot be uniquely determined from success examples and transitions alone. To explain this ambiguity,
we define pU (st) as the state distribution visited by the user; note that the user may be quite bad at
solving the task themselves. Then, the probability of solving the task at state st depends on how often
a user visits state st versus how often the task is solved when visiting state st:

p(et = 1 | st) =
pU (st | et = 1)

pU (st)
pU (et = 1). (3)

For example, the user may complete a task using two strategies, but we cannot determine which of
these strategies is more likely to succeed unless we know how often the user attempted each strategy.
Thus, any method that learns from success examples must make an additional assumption on pU (st).
We will discuss two choices of assumptions. The first choice is to assume that the user visited states
with the same frequency that they occur in the dataset of transitions. That is,

pU (st) =

∫∫
pU (st,at, st+1)datdst+1. (4)

Intuitively, this assumption implies that the user has the same capabilities as the agent. Prior work
makes this same assumption without stating it explicitly [8, 24, 31]. Experimentally, we find that our
method succeeds even in cases where this assumption is violated.

However, many common settings violate this assumption, especially when the user has different
dynamics constraints than the agent. For example, a human user collecting success examples for a
cleaning task might usually put away objects on a shelf at eye-level, whereas transitions collected
by a robot interact with the ground-level shelves more frequently. Under our previous assumption,
the robot would assume that putting objects away on higher shelves is more satisfactory than putting
them away on lower shelves, even though doing so might be much more challenging for the robot. To
handle these difference in capabilities, the second choice is to use a worst-case formulation, which
optimizes the policy to be robust to any choice of pU (st). Surprisingly, this setting admits a tractable
solution, as we discuss in Sec. 4.2.

3.2 Predicting Future Success by Recursive Classification

We now describe our method for example-based control. We start with the more standard first choice
for the assumption on pU (st) (Eq. 4); we discuss the second choice in Sec. 4.2. Our approach
estimates the probability in Eq. 2 indirectly via a future success classifier. This classifier, Cπθ (st,at),
discriminates between “positive” state-action pairs which lead to successful outcomes (i.e., sampled
from p(st,at | et+ = 1)) and random “negatives” (i.e., sampled from the marginal distribution
p(st,at)). We will use different class-specific weights, using a weight of p(et+ = 1) for the
“positives” and a weight of 1 for the “negatives.” Bayes-optimal classifier is

Cπθ (st,at) =
pπ(st,at | et+ = 1)p(et+ = 1)

pπ(st,at | et+ = 1)p(et+ = 1) + p(st,at)
. (5)

These class specific weights let us predict the probability of future success using the optimal classifier:

Cπθ (st,at)

1− Cπθ (st,at)
= pπ(et+ = 1 | st,at). (6)
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Algorithm 1 Recursive Classification of Examples
Input: success examples S∗
Initialize policy πφ(at | st), classifier Cπθ (st,at), replay buffer D
while not converged do

Collect a new trajectory: D ← D ∪ {τ ∼ πφ}
Sample success examples: {st(1) ∼ S∗,at

(1) ∼ πφ(at | st(1))}
Sample transitions: {(st(2),at

(2), st+1) ∼ D,at+1 ∼ πφ(at+1 | st+1)}
w ← Cπθ (st+1,at+1)

1−Cπ
θ
(st+1,at+1)

. Eq. 9

L(θ)← (1− γ)CE(Cθ(st(1),at
(1)); y = 1) + (1 + γw)CE(Cθ(st(2),at

(2)); y = γw
1+γw

)

Update classifier: θ ← θ + η∇θL(θ) . Eq. 8
Update policy: φ← φ+ η∇φEπφ(at|st)[Cθ(st,at)]

return πφ

Importantly, the resulting method will not actually require estimating the weight p(et+ = 1). We
would like to optimize the classifier parameters using maximum likelihood estimation:

Lπ(θ) , p(et+ = 1) Ep(st,at|et+=1)[logCπθ (st,at)] + Ep(st,at)[log(1− Cπθ (st,at))]. (7)
However, we cannot directly optimize this objective because we cannot sample from
p(st,at | et+ = 1). We convert Eq. 7 into an equivalent loss function that we can optimize us-
ing three steps; see Appendix A for a detailed derivation. The first step is to factor the distribution
p(st,at, et+ = 1). The second step is to decompose pπ(et+ = 1 | st,at) into two terms, corre-
sponding to the probabilities of solving the task at time t′ = t + 1 and time t′ > t + 1. We can
estimate the probability of solving the task at the next time step using the set of success examples.
The third step is to estimate the probability of solving the task at time t′ > t+ 1 by evaluating the
classifier at the next time step. Combining these three steps, we can equivalently express the objective
function in Eq. 7 using off-policy data:
Lπ(θ) =(1− γ)EpU (st|et=1)

p(at|st)
[logCπθ (st,at)︸ ︷︷ ︸

(a)

] + Ep(st,at,st+1)[γw logCπθ (st,at)︸ ︷︷ ︸
(b)

+ log(1− Cπθ (st,at))︸ ︷︷ ︸
(c)

],

(8)

where

w = Ep(at+1|st+1)

[
Cπθ (st+1,at+1)

1− Cπθ (st+1,at+1)

]
(9)

is the classifier’s prediction (ratio) at the next time step. Our resulting method can be viewed as
a temporal difference [33] approach to classifying future events. We will refer to our method as
recursive classification of examples (RCE). This equation has an intuitive interpretation. The first
term (a) trains the classifier to predict 1 for the success examples themselves, and the third term
(c) trains the classifier to predict 0 for random transitions. The important term is the second term
(b), which is analogous to the “bootstrapping” term in temporal difference learning [32]. Term (b)
indicates that the probability of future success depends on the probability of success at the next time
step, as inferred using the classifier’s own predictions.

Our resulting method is similar to existing actor-critic RL algorithms. To highlight the similarity to
existing actor-critic methods, we can combine the (b) and (c) terms in the classifier objective function
(Eq. 8) to express the loss function in terms of two cross entropy losses:

min
θ

(1− γ)E p(st|et=1),
at∼π(at|st)

[CE(Cπθ (st,at); y = 1)] + (1 + γw)Ep(st,at,st+1)

[
CE
(
Cπθ (st,at); y =

γw

γw + 1

)]
.

(10)

These cross entropy losses update the classifier to predict y = 1 for the success examples and to
predict y = γw

1+γw for other states.

Algorithm summary. Alg. 1 summarizes our method, which alternates between updating the
classifier, updating the policy, and (optionally) collecting new experience. We update the policy to
choose actions that maximize the classifier’s confidence that the task will be solved in the future:
maxφ Eπφ(at|st)[C

π
θ (st,at)]. Following prior work [5, 35]), we regularized the policy updates

by adding an entropy term with coefficient α = 10−4. We also found that using N-step returns
significantly improved the results of RCE (see Appendix F for details and ablation experiments.).
Implementing our method on top of existing methods such as SAC [11] or TD3 [9] requires only
changing the standard Bellman loss with the loss in Eq. 10. See Appendix E for implementation
details; code is available on the project website.
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4 Analysis

In this section, we prove that RCE satisfies many of the same convergence and optimality guarantees
(for example-based control) that standard RL algorithms satisfy (for reward-based MDPs). These
results are important as they demonstrate that formulating control in terms of data, rather than rewards,
does preclude algorithms from enjoying strong theoretical guarantees. Proofs of all results are given
in Appendix B, and we include a further discussion of how RCE relates to prior work in Appendix D.

4.1 Bellman Equations and Convergence Guarantees

To prove that RCE converges to the optimal policy, we will first show that RCE satisfies a new
Bellman equation:
Lemma 4.1. The Bayes-optimal classifier Cπ for policy π satisfies the following identity:

Cπ(st,at)

1− Cπ(st,at)
=(1− γ)p(et = 1 | st) + γEp(st+1|st,at)

π(at+1|st+1)

[
Cπ(st+1,at+1)

1− Cπ(st+1,at+1)

]
. (11)

The proof combines the definition of the Bayes-optimal classifier with the assumption from Eq. 4.
This Bellman equation is analogous to the standard Bellman equation for Q-learning, where the
reward function is replaced by (1 − γ)p(et = 1 | st) and the Q function is parametrized as
Qπθ (st,at) =

Cπθ (st,at)
1−Cπθ (st,at) . While we do not know how to compute this reward function, the update

rule for RCE is equivalent to doing value iteration using that reward function and that parametrization
of the Q-function:
Lemma 4.2. In the tabular setting, the expected updates for RCE are equivalent to doing value
iteration with the reward function r(st) = (1− γ)p(et = 1 | st) and a Q-function parametrized as
Qπθ (st,at) =

Cπθ (st,at)
1−Cπθ (st,at) .

This result tells us that RCE is equivalent to maximizing the reward function (1− γ)p(et = 1 | st);
however, RCE does not require knowing p(et = 1 | st), the probability that each state solves the
task. Since value iteration converges in the tabular setting, an immediate consequence of Lemma 4.2
is that tabular RCE also converges:
Corollary 4.2.1. RCE converges in the tabular setting.

So far we have analyzed the training process for the classifier for a fixed policy. We conclude this
section by showing that optimizing the policy w.r.t. the classifier improves the policy’s performance.
Lemma 4.3. Let policy π(at | st) and success examples S∗ be given, and let Cπ(st,at) denote
the corresponding Bayes-optimal classifier. Define the improved policy as acting greedily w.r.t. Cπ:
π′(at | st) = 1(a = arg maxa C

π(st,a)). Then the improved policy is at least as good as the old
policy at solving the task: pπ

′
(et+ = 1) ≥ pπ(et+ = 1).

4.2 Robust Example-based Control

In this section, we derive a principled solution for the case where pU (st) is not known, which will
correspond to modifying the objective function for example-based control. However, we will argue
that, in some conditions, the method proposed in Sec. 3.2 is already robust to unknown pU (st), if
that method is used with online data collection. The goal of this discussion is to provide a theoretical
relationship between our method and a robust version of example-based control that makes fewer
assumptions about pU (st). This discussion will also clarify how changing assumptions on the user’s
capabilities can change the optimal policy.

When introducing example-based control in Sec. 3.1, we emphasized that we must make an assump-
tion to make the example-based control problem well defined. The exact probability that a success
example solves the task depends on how often the user visited that state, which the agent does not
know. Therefore, there are many valid hypotheses for how likely each state is to solve the task. We
can express the set of valid hypotheses using Bayes’ Rule:

Pet|st ,

{
p̂(et = 1 | st) =

pU (st | et = 1)p(et = 1)

pU (st)

}
.
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Previously (Sec. 3.2), we resolved this ambiguity by assuming that pU (st) was equal to the distribution
over states in our dataset of transitions. As discussed in Sec. 3.1, many problem settings violate this
assumption, prompting us to consider the more stringent setting with no prior information about
pU (st) (e.g., no prior knowledge about the user’s capabilities). To address this settting, we will
assume the worst possible choice of pU (st). This approach will make the agent robust to imperfect
knowledge of the user’s abilities and to mislabeled success examples. Formally, we define the robust
example-based control problem as

max
π

min
p̂(et|st)∈Pet|st

Epπ(st+)[p̂(et+ = 1 | st+)] = max
π

min
pU (st)

Epπ(st+)

[
pU (st | et = 1)

pU (st)
p(et = 1)

]
.

(12)

This objective can be understood as having the adversary assign a weight of 1/pU (st) to each success
example. The optimal adversary will assign lower weights to success examples that the policy
frequently visits and higher weights to less-visited success examples. Intuitively, the optimal policy
should try to reach many of the success examples, not just the ones that are easiest to reach. Thus,
such a policy will continue to succeed even if certain success examples are removed, or are later
discovered to have been mislabeled. Surprisingly, solving this two-player game corresponds to
minimizing an f -divergence:

Lemma 4.4. Define H2[p(x), q(x)] =
∫

(
√
p(x)−

√
q(x))2dx as the squared Hellinger distance,

an f -divergence. Robust example-based control (Eq. 12) is equivalent to minimizing the squared
Hellinger distance between policy’s discounted state occupancy measure and the conditional distri-
bution p(st | et = 1):

min
p̂(et|st)∈Pet|st

pπ,p̂(et+) = 1− 1

2
H2[p(st|et = 1), pπ(st+ = st)].

The main idea of the proof (found in Appendix C) is to compute the worst-case distribution pU (st)
using the calculus of variations. Preliminary experiments (Fig. 5 in Appendix C) show that a version of
RCE with online data collection finds policies that perform well on the robust example-based control
objective (Eq. 12). In fact, under somewhat stronger assumptions, we can show that the solution of
robust example-based control is a fixed point of iterated RCE (see Appendix C.2). Therefore, in our
experiments, we use RCE with online data collection.

5 Experiments

Our experiments study how effectively RCE solves example-based control tasks, especially in
comparison to prior methods that learn an explicit reward function. Both RCE and the prior methods
receive only the success examples as supervision; no method has access to expert trajectories of
reward functions. Additional experiments in Sec. 5.2 study whether RCE can solve tasks using image
observations. These experiments test whether RCE can solve tasks in new environments that are
different from those where the success examples were collected, and test whether RCE learns policies
that learn a general notion of success rather than just memorizing the success examples. We include
videos of learned policies online2 and include implementation details, hyperparameters, ablation
experiments, and a list of failed experiments in the Appendix.

We compare RCE against prior methods that infer a reward function from the success examples and
then apply an off-the-shelf RL algorithm; some baselines iterate between these two steps. AIRL [7]
is a popular adversarial imitation learning method. VICE [8] is the same algorithm as AIRL, but
intended to be applied to success examples rather than full demonstrations. We will label this method
as “VICE” in figures, noting that it is the same algorithm as AIRL. DAC [17] is a more recent,
off-policy variant of AIRL. We also compared against two recent methods that learn rewards from
demonstrations: ORIL [41] and PURL [38]. Following prior work [16], we also compare against
“frozen” variants of some baselines that first train the parameters of the reward function and then
apply RL to that reward function without updating the parameters of the reward function again.
Our method differs from these baselines in that we do not learn a reward function from the success
examples and then apply RL, but rather learn a policy directly from the success examples. Lastly,
we compare against SQIL [28], an imitation learning method that assigns a reward of +1 to states
from demonstrations and 0 to all other states. SQIL does not learn a separate reward function and
structurally resembles our method, but is derived from different principles (see Sec. 2.).

2https://ben-eysenbach.github.io/rce

7



Figure 2: Recursive Classification of Examples for learning manipulation tasks: We apply RCE to a range
of manipulation tasks, each accompanied with a dataset of success examples. For example, on the sawyer_lift
task, we provide success examples where the object has been lifted above the table. We use the cumulative task
return (↑ is better) solely for evaluation. Our method (blue line) outperforms prior methods across all tasks.

5.1 Evaluating RCE for Example-Based Control.

Figure 3: Manipulation Environments

We evaluate each method on five Sawyer ma-
nipulation tasks from Meta-World [39] and two
manipulation tasks from Rajeswaran et al. [26].
Fig. 3 illustrates these tasks. On each task,
we provide the agent with 200 successful out-
comes to define the task. For example, on
the open_drawer task, these success examples
show an opened drawer. As another example,
on the sawyer_push task, success examples not
only have the end effector touching the puck, but
(more importantly) the puck position is different.
We emphasize that these success examples only reflect the final state where the task is solved and
are not full expert trajectories. This setting is important in practical use-cases: it is often easier
for humans to arrange the workspace into a successful configuration than it is to collect an entire
demonstration. See Appendix E.3 for details on how success examples were generated for each task.
While these tasks come with existing user-defined reward functions, these rewards are not provided to
any of the methods in our experiments and are used solely for evaluation (↑ is better). We emphasize
that this problem setting is exceedingly challenging: the agent provided only with examples of
success states (e.g., an observation where an object has been placed in the correct location). Most
prior methods that tackle similar tasks employ hand-designed reward functions or distance functions,
full demonstrations, or carefully-constructed initial state distributions.

The results in Fig. 2 show that RCE significantly outperforms prior methods across all tasks. The
transparent lines indicate one random seed, and the darker lines are the average across random seeds.
RCE solves many tasks, such as bin picking and hammering, that none of the baselines make any
progress towards solving. The most competitive baseline, SQIL, only makes progress on the easiest
two tasks; even on those tasks, SQIL learns more slowly than RCE and achieves lower asymptotic
return. To check that all baselines are implemented correctly, we confirm that all can solve a very
simple reaching task described in the next section.

5.2 Example-Based Control from Images

Our second set of experiments studies whether RCE can learn image-based tasks and assesses the
generalization capabilities of our method. We designed three image-based manipulation tasks. The
reach_random_position task entails reaching a red puck, whose position is randomized in each
episode. The reach_random_size task entails reaching a red object, but the actual shape of that
object varies from one episode to the next. Since the agent cannot change the size of the object and
the size is randomized from one episode to the next, it is impossible to reach any of the previously-
observed success examples. To solve this task, the agent must learn a notion of success that is more
general than reaching a fixed goal state. The third task, sawyer_clear_image, entails clearing an
object off the table, and is mechanically more challenging than the reaching tasks.

Fig. 4 shows results from these image-based experiments, comparing RCE to the same baselines. We
observe that RCE has learned to solve both reaching tasks, reaching for the object regardless of the
location and size of the object. This task is mechanically easier than the state-based tasks in Fig. 2,
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sawyer_reach_random_position_image sawyer_reach_random_size_image sawyer_clear_image

Figure 4: Example-based control from images: We evaluate RCE on three manipulation tasks using image-
observations. (Top) We show examples of the initial state and success examples for each task. (Bottom) RCE
(blue line) outperforms prior methods, especially on the more challenging clearing task. For the random_size
task (center), this entails reaching for new objects that have different sizes from any seen in the success examples.

and all the baselines make some progress on this task, but learn more slowly than our method. The
good performance of RCE on the reach_random_size task illustrates that RCE can solve tasks in
a new environment, where the object size is different from that seen in the success examples. We
hypothesize that RCE learns faster than these baselines because it “cuts out the middleman,” learning
a value function directly from examples rather than indirectly via a separate reward function. To
support this hypothesis, we note SQIL, which also avoids learning a reward function, learns faster
than other baselines on these tasks. On the more challenging clearing task, only our method makes
progress, suggesting that RCE is a more effective algorithm for learning these image-based control
tasks. In summary, these results show that RCE outperforms prior methods at solving example-based
control tasks from image observations, and highlights that RCE learns a policy that solves tasks in
new environments that look different from any of the success examples.

5.3 Ablation Experiments

We ran seven additional experiments to study the importance of hyperparameters and design decisions.
Appendix F provides full details and figures. These experiments highlight that RCE is not an imitation
learning method: RCE fails when applied to full expert trajectories, which are typically harder to
provide than success examples. Other ablation experiments underscore the importance of using n-step
returns and validate the approximation made in Sec. 3.2.

6 Conclusion

In this paper, we proposed a data-driven approach to control, where examples of success states are
used in place of a reward function. Our method estimates the probability of reaching a success
example in the future and optimizes a policy to maximize this probability of success. Unlike prior
imitation learning methods, our approach is end-to-end and does not require learning a reward
function. Our method is therefore simpler, with fewer hyperparameters and fewer lines of code to
debug. Our analysis rests on a new data-driven Bellman equation, where example success states
replace the typical reward function term. We use this Bellman equation to prove convergence of our
classifier and policy. We believe that formulating control problems in terms of data, rather than the
reward-centric MDP, better captures the essence of many real-world control problems and suggests a
new set of attractive learning algorithms.

Limitations and future work. One limitation with RCE is that, despite producing effective policies,
the classifier’s predictions are not well calibrated. This issue resembles the miscalibration in Q-
functions observed in prior work [9, 20]. Second, both RCE and the baselines we compared against
all struggled to learn more challenging image-based tasks, such as image-based versions of the tasks
shown in Fig. 3. Techniques such as explicit representation learning [19, 23] may be important for
scaling example-based control algorithms to high-dimensional tasks.
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