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ABSTRACT

Existing perceptual similarity metrics assume an image and its reference are well
aligned. As a result, these metrics are often sensitive to a small alignment error
that is imperceptible to the human eyes. This paper studies the effect of small
misalignment, specifically a small shift between the input and reference image,
on existing metrics, and accordingly develops a shift-tolerant similarity metric.
This paper builds upon LPIPS, a widely used learned perceptual similarity metric
and explores architectural design considerations to make it robust against imper-
ceptible misalignment. Specifically, we study a wide spectrum of neural network
elements, such as anti-aliasing filtering, pooling, striding, padding, and skip con-
nection, and discuss their roles in making a robust metric. Based on our studies,
we develop a new deep neural network-based perceptual similarity metric1. Our
experiments show that our metric is tolerant to imperceptible shifts while being
consistent with the human similarity judgment.

1 INTRODUCTION

Image similarity measurement is a common task for many computer vision and computer graphics
applications. General similarity metrics like PSNR and RMSE, however, do not match the human
visual perception well when assessing the similarity between two images. Therefore, many dedi-
cated image similarity metrics, such as Structural Similarity (SSIM) and its variations (Wang et al.,
2004; 2003; Zhang et al., 2011; Wang & Simoncelli, 2005), were developed in order to more closely
reflect the human perception. However, manually crafting a perceptual similarity metric remains a
challenging task as it involves the complex human cognitive judgement (Medin et al., 1993; Tversky,
1977; Wang et al., 2004; Zhang et al., 2018). I0 Iref I1
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Figure 1: Whether two images I0 and I1,
are shifted by 1-pixel or not, viewers al-
ways consider I1 as more similar to Iref
than I0. However, existing metrics often
switch their predictions after the impercep-
tible 1-pixel shift.

Recently, learning-based image similarity metrics have
been developed. These metrics learn from a large set of
labelled data and predict the similarity between images
that correlates well with human perception (Bhardwaj
et al., 2020; Ding et al., 2020; Kettunen et al., 2019;
Prashnani et al., 2018; Zhang et al., 2018; Czolbe et al.,
2020). Among them, the Learned Perceptual Image
Patch Similarity metric (LPIPS) by Zhang et al. (2018)
is now widely adopted as a perceptual similarity metric
and used in computer graphics and vision literature.

This paper studies how image similarity metrics work
on a pair of images that are not perfectly aligned. For
instance, a tiny misalignment in the image pair such as
a one-pixel translation between them, is imperceptible
to the human eyes. But, will such a visually imperceptible misalignment compromise any existing
similarity metrics? For PSNR and RMSE, since they assume pixel-wise registration, naturally they
are sensitive to as small as a one-pixel misalignment. As we will detail in this paper, our study
found that the learned perceptual similarity metrics, such as LPIPS, are also sensitive to a small
misalignment. Figure 1 shows such an example through a two-alternative forced choice test. In this
test, viewers were asked “which of the two distorted images, I0 or I1, is more similar to the reference
image Iref?” Then, we shifted I0 and I1 by one pixel and obtained their opinions again. None of

1We will make our code and data publicly available.
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the participants flipped their opinions from I0 to I1 or vice versa, which is intuitive as a one-pixel
shift is imperceptible to viewers. But existing metrics, such as MS-SSIM and LPIPS, flipped their
judgments after the one-pixel shift.

Our problem is related to the recent work on making deep neural networks shift invariant (Islam
et al., 2020; Kayhan & Gemert, 2020; Vasconcelos et al., 2021; Zhang, 2019; Zou et al., 2020; Lee
et al., 2020). In a recent study, Azulay & Weiss (2019) found that an image classifier can change
its top-1 prediction if the image is translated by only one pixel. Their results showed that after
translating an image by one pixel, the classifier made a different top-1 prediction for 30% of the
1000 validation images. Zhang (2019) introduced anti-aliasing filters into a deep neural network
to make the feature extraction network shift-equivariant, which in term makes the whole network
shift-invariant for the down streaming tasks. Compared to these works, our problem is different in
that 1) a perceptual similarity metric takes two images as input instead of working on a single input
image, and 2) only one of the two images is shifted, thus introducing imperceptible misalignment
instead of shifting the two images simultaneously.

This paper aims to develop a shift-tolerant perceptual similarity metric that correlates well with the
human judgement on the similarity between images while being robust against imperceptible mis-
alignment between them. We build our metric upon LPIPS, a deep neural network-based metric that
is now widely adopted for its close correlation with the human perception. We investigate a variety
of elements that can be incorporated into a deep neural network to make it resistant to an impercepti-
ble misalignment. These elements include anti-aliasing filters, striding, pooling, padding, placement
of anti aliasing, etc. Based on our findings on these elements, we develop a shift-tolerant perceptual
similarity metric that not only is more consistent with human perception but also is significantly
more resistant to imperceptible misalignment between a pair of images than existing metrics.

In the remainder of this paper, we first report our study that verifies that viewers are not sensitive to
small amount of shifts between two images when comparing them, in Section 3. We then benchmark
existing visual similarity metrics and show that these metrics are sensitive to imperceptible shifts
between a pair of images in Section 4. We then study several important elements that make a deep
neural network-based similarity metric both tolerant to imperceptible shifts and consistent with the
human perception of visual similarity in Section 5. We finally report our experiments that thoroughly
evaluate our new perceptual similarity metric by comparing it to state of the art metrics and through
detailed ablation studies in Section 6.

2 RELATED WORK

Visual similarity metrics are commonly used to compare two images or evaluate the performance
of many image and video processing, editing and synthesis algorithms. While there are already
many established metrics for these tasks, such as PSNR, MSE, SSIM and its variations (Wang et al.,
2004; 2003; Wang & Simoncelli, 2005), there is still a gap between their prediction and the human’s
judgement. This section provides a brief overview of the recent advances in learned perceptual
similarity metrics that aim to bridge the gap mentioned above.

In their influential work, Zhang et al. (2018) reported that features from a deep neural network can be
used to measure the similarity between two images that is more consistent with the human perception
than other commonly used metrics. Accordingly, they developed LPIPS, a perceptual metric learned
from a large collection of labelled data. Specifically, LPIPS uses a pre-trained network for image
classification tasks or learns a neural network to compute the features for each of the two images or
patches, and also learns to aggregate the feature distances into a similarity score. Since its debut,
LPIPS has been widely used as a perceptual quality metric. On a related note, the computer vision
and graphics community also calculate the difference between the deep features of two images as
a loss function to train deep neural networks for image enhancement and synthesis. Such a loss
function, often called perceptual loss, enables the neural networks to learn to generate perceptually
pleasing images (Dosovitskiy & Brox, 2016; Johnson et al., 2016; Ledig et al., 2016; Niklaus et al.,
2017; Sajjadi et al., 2016; Zhu et al., 2016).

Kettunen et al. (2019) developed the E-LPIPS metric that adopts the LPIPS network and uses ran-
domly transformed samples to calculate expected LPIPS distance over them. They showed that E-
LPIPS is robust against the Expectation Over Transformation attack (Athalye et al., 2018). Different
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from LPIPS, Prashnani et al. (2018) use the differences between features to generate patch-wise
errors and corresponding weights, via two different fully-connected networks. Their final similarity
score is a weighted average of the patch-wise distances. Czolbe et al. (2020) developed a similarity
metric based on Watson’s perceptual model (Watson, 1993), by replacing discrete cosine transform
with discrete fourier transform (DFT). They posit that their metric is robust against small transla-
tions and is sensitive to large translations. Czolbe et al. (2020) used Watson-DFT as a differentiable
loss function for image generation via variational autoencoders (Kingma & Welling, 2013).

In earlier work, Wang & Simoncelli (2005) improved SSIM (Wang et al., 2004) by replacing the
spatial correlation measures with phase correlations in wavelet subbands which made the metric
less sensitive to geometric transformations. Ma et al. (2018) developed a geometric transformation
invariant method (GTI-CNN). Our work is closely related to theirs, as GTI-CNN is a similarity met-
ric that is invariant to the misalignment between a pair of images. In their method, Ma et al. (2018)
train a fully convolutional neural network to extract deep features from each image and calculate
the mean squared error between them as their final similarity. They showed that training the fully
convolutional neural network directly on aligned samples leads to a metric that is sensitive to the
misalignment, which is consistent with what we found in our study. They reported that augment-
ing the training samples with small misalignment can make the learned metric significantly more
resistant to the misalignment. Compared to this method, our work focuses on designing a deep neu-
ral network architecture that is robust to misalignment without any data augmentation. Bhardwaj
et al. (2020) followed the understanding of the physiology of the human visual system and devel-
oped a fully convolutional neural network that generates a multi-scale probabilistic representation
of an input image and then calculates the symmetric Kullback–Leibler divergences between such
representations of two images to measure their similarity. They found that such a similarity metric
is robust against small shifts between a pair of images. While benchmarking existing metrics, our
study also finds that their metric is most robust against small shifts among all the metrics we tested.
We posit that the robustness of their method partially comes from training their metric on neighbor-
ing video frames that might already have small shifts among them, thus effectively serving as data
augmentation, as done by Ma et al. (2018). We consider these as orthogonal efforts in developing a
robust similarity metric. Also, as shown in our study, our metric is more consistent with the human
judgement and more robust against imperceptible misalignment than these methods, even though
our metric is trained on aligned samples directly without any data augmentation.

Our work is most related to deep image structure and texture similarity (DISTS) metric by Ding
et al. (2020). They used global feature aggregation to make DISTS robust against mild geometric
transformations. They also replaced the max pooling layers with l2 pooling layers (Hénaff & Si-
moncelli, 2016) in their VGG backbone network for anti-aliasing and found that blurring the input
with l2 pooling makes their network more robust against small shifts. Gu et al. (2020) found that
existing metrics like LPIPS do not perform well with images generated by GAN-based restoration
algorithms. They attributed it to the small misalignment between the GAN results and the ground
truth. Therefore, they used l2 pooling (Ding et al., 2020; Hénaff & Simoncelli, 2016) and Blur-
Pool (Zhang, 2019) to improve LPIPS. They found that both can improve LPIPS while BlurPool
performs better. Compared to these two recent papers, our paper systematically investigates a broad
range of neural network elements besides BlurPool. By integrating these elements together, we de-
velop a perceptual similarity metric that is both robust against small shifts and is consistent with the
human visual similarity judgement. Our method outperforms existing metrics, and a variety of re-
cently developed learned metrics. Integrating multiple network elements together makes our metric
better than individual ones, including BlurPool.

3 HUMAN PERCEPTION OF SMALL SHIFTS

As commonly expected, shifting one image by a few pixels will not alter human similarity judgement
on a pair of images (Bhardwaj et al., 2020; Xiao et al., 2018). We conducted a user study to verify
this common belief. Our hypothesis is that it is difficult for people to detect a small shift in images.

In our study, we randomly picked 50 images from the MS-COCO test dataset (Lin et al., 2014). For
each participant, we randomly divided these 50 images into 10 groups, each with 5 images. For
each image in Group n with n ∈ [0, 10), we cropped a 256 × 256 patch as a reference image and
shifted the cropping window by n pixels to produce its shifted version. In this way, we generated
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50 pairs of images for each participant. In the end, since we always cropped the reference from
the same location, we had an n-pixel shifted version for each of the 50 images, and thus in total,
we have 500 pairs of images in our study. During the study, each participant was presented with
a pair of images one at a time. The order of the 50 pairs of images is also randomized for each
participant. In each trial, a pair of images were placed side by side. The position of the reference
image, e.g., right or left, is randomized to avoid any bias. We asked our participants to judge
whether a pair of images are the same or not. We refer the reader to Appendix A.1 for more details.
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Figure 2: Human perception of small shifts. Im-
age pairs with 1- and 2-pixel shift are deemed the
same in 80.7% and 56.0% of the responses, resp.

We report the user responses in Figure 2. When
the amount of shift is small, participants find it
difficult to detect the shift. For pairs of images
with the 1-pixel shift and 2-pixel shift, they were
considered the same in 80.7% and 56.0% of the
responses, respectively. As expected, the shifts
become easier to detect as the size of the shifts
increases. But even for pairs of the 5-pixel shift,
they were still not identified in 26.7% of the re-
sponses. As shown in our study, even after being
informed about the possible shifts, participants
still had difficulty in detecting small shifts. This
verifies our hypothesis that it is difficult for peo-
ple to detect a small shift in images. In addition,
we use this data and test the consistency of various metrics with the sensitivity of human perception
to pixel shifts in Appendix A.1.1. The results of this test provide further evidence that our metric is
more consistent in regards to this.

4 EFFECT OF SMALL SHIFTS ON SIMILARITY METRICS

To understand how existing similarity metrics handle small shifts between a pair of images, we
benchmarked representative metrics, including off-the-shelf metrics, such as L2 and SSIM, and
recent deep learning-based metrics. We derived a new dataset from the Berkeley-Adobe Perceptual
Patch Similarity Dataset (BAPPS) (Zhang et al., 2018) in our study. The original BAPPS dataset
consists of 36,344 examples, each with a reference image Ir, and two distorted images I1 and I2.

Table 1: Accuracy (2AFC) & shift-tolerance
(rrf ) of various metrics on the BAPPS valida-
tion dataset. 2AFC is computed on the BAPPS
dataset resized 64 × 64 while rrf scores are ob-
tained from its shifted version of size 64× 61.

Network 2AFC
rrf

1 pixel 2 pixel 3 pixel

L2 62.91 12.27 23.07 28.83
SSIM (Wang et al., 2004) 63.08 13.08 25.50 32.74
CW-SSIM (Wang & Simoncelli, 2005) 60.55 11.33 18.28 23.22
E-LPIPS (Kettunen et al., 2019) 69.23 8.72 10.67 12.34
GTI-CNN (Ma et al., 2018) 63.74 9.37 12.32 16.25
DISTS (Ding et al., 2020) 68.89 5.57 8.20 10.07
PIM-1 (Bhardwaj et al., 2020) 69.45 1.63 3.06 4.39
PIM-5 (Bhardwaj et al., 2020) 69.47 2.28 3.56 5.19
LPIPS (Alex) (Zhang et al., 2018) 69.83 6.79 8.90 9.70
LPIPS (Alex) retrained from scratch∗† 70.04 9.25 9.34 11.55
LPIPS (Alex) ours∗† 69.83 3.48 4.75 6.84

∗ Trained on image patches of size 64 using author’s (†) setup.

These samples cover a wide range of common
distortions, including traditional, CNN-based,
and from real-algorithms such as superresolution,
frame interpolation, deblurring, and colorization.
Please refer to Zhang et al. (2018) for more de-
tails. For each sample in the BAPPS dataset, we
shifted the distorted images horizontally by k pix-
els where k ∈ {1, 2, 3}. To avoid any boundary
artifacts from shifting, we cropped each shifted
image Ii as follows.

Îi = Ii[ 0 : h, k : (w + k − 3)] (1)
where w and h are the original image size. In
this way, all the images in our test were of size
(w−3)×h without regard to the amount of shift,
which eliminates the effect of image sizes when
we test how the amount of shift affects the per-
formance of metrics. The reference images were
also cropped to the same size as the distorted images but no shifts were applied. In addition, we also
cropped all the images in each original sample to the size of (w−3)×h in order to make the shifted
sample and the original sample the same size to avoid the effect of the image size on a similarity
metric in our late experiments. No shift was introduced to the original samples. A 3-pixel shift in
our setting is equivalent to shifting 1.2% of the pixels for the images of size 256 x 256 pixels.

When evaluating a similarity metric, we applied it to both the original sample in the BAPPS dataset
as well as its corresponding shifted once. Specifically, for each sample, we obtained two pairs of
similarity scores, (s1, s2) and ŝ1, ŝ2. (s1, s2) are the similarity scores between I1 and its reference
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image Ir, and I2 and Ir, respectively. (ŝ1, ŝ2) are the corresponding pair of similarity scores for
the shifted sample. Each pair of scores indicates which of the two distorted images is more similar

Table 2: Accuracy (2AFC) & shift-tolerance
(rrf ) across various metrics on the BAPPS vali-
dation dataset. 2AFC is computed on the BAPPS
dataset of original size 256×256 while rrf is ob-
tained from its shifted version of size 256× 253.

Network 2AFC
rrf

1 pixel 2 pixel 3 pixel

L2 62.92 3.59 7.55 10.82
SSIM (Wang et al., 2004) 61.41 3.16 7.20 13.73
CW-SSIM (Wang & Simoncelli, 2005) 61.48 3.91 6.88 9.47
MS-SSIM (Wang et al., 2003) 62.54 2.22 5.83 10.66
PIEAPP Sparse (Prashnani et al., 2018) 64.20 2.83 3.19 3.81
PIEAPP Dense (Prashnani et al., 2018) 64.15 2.97 1.37 3.33
PIM-1 (Bhardwaj et al., 2020) 67.45 0.79 1.70 2.52
PIM-5 (Bhardwaj et al., 2020) 67.38 1.01 1.88 2.96
GTI-CNN (Ma et al., 2018) 63.87 3.95 4.91 7.88
DISTS (Ding et al., 2020) 68.83 2.85 2.89 4.03
E-LPIPS (Kettunen et al., 2019) 68.22 5.84 5.86 5.77
LPIPS (Alex) (Zhang et al., 2018) 68.59 2.81 3.41 3.84
LPIPS (Alex) retrained from scratch∗† 70.54 2.58 3.59 3.53
LPIPS (Alex) ours∗† 70.39 0.66 1.24 1.79
LPIPS (Alex) retrained from scratch∗‡ 70.65 2.87 3.92 3.74
LPIPS (Alex) ours∗‡ 70.48 0.57 1.06 1.50

∗ Trained on patches of size 256 using author’s (†) / our (‡) setup.

to the reference image according to the metric
used in the test. We count the number of samples
for which the similarity rank flips when a sam-
ple was shifted and compute the rank-flip rate as
follows.

rrf =
1

N

N∑
l=1

(sl1 < sl2) 6= (ŝl1 < ŝl2) (2)

where rrf is the rank-flip rate and N is the num-
ber of samples in the test set. We use rrf to eval-
uate how robust a metric is against the small shift
between a pair of images.

For all the learned metrics involved in this study,
we used the trained models shared by their au-
thors unless otherwise noted. While the image
size of the BAPPS dataset is 256 × 256, some
models shared by their authors were trained on
64× 64 resized images. Therefore we conducted
studies on these two sizes separately to provide
fair and informative comparisons.

We report the results in Tables 1 and 2. All scores
are obtained by averaging over examples in each distortion category in the BAPPS dataset and then
averaging over all the categories. The two-alternative forced choice (2AFC) scores were obtained
from the original BAPPS dataset that indicates how a metric’s prediction correlates with the human
opinion (Zhang et al., 2018). The rank-flip rate (rrf ) is calculated from the shifted dataset. It shows
how robust a metric is to the shift between a distorted image and its reference image. As reported
in Table 2, the learned metrics match the human perception better than the non-learned ones such as
L2, SSIM, and MS-SSIM. However, even these learned metrics are sensitive to small shifts except
for the recent metric, PIM (Bhardwaj et al., 2020). Compared to these existing metrics except
PIM, our metrics are more consistent with human perception as per 2AFC scores and more robust
against small shifts. Overall, our method is comparable to PIM. Our method outperforms PIM on
images of size 256 × 256 (Table 2) but does not work as well as it on smaller images (Table 1).
As discussed in Section 2, PIM is trained from neighboring video frames which often contain small
shifts, which makes it robust against the imperceptible shifts. Our work is orthogonal to PIM in that
we investigate neural network elements to build a robust similarity metric. Therefore, we purposely
trained our metrics on the BAPPS dataset without any data augmentation.

5 ELEMENTS OF SHIFT-TOLERANT METRICS
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Figure 3: LPIPS framework. The same feature
extraction network (AlexNet) is used to extract
feature embeddings from Idst and Iref . The
difference between these embeddings is calcu-
lated at different levels and is combined to-
gether as the similarity between Idst and Iref .

Some recent papers reported that training a deep
neural network using samples with shifted images
through either data augmentation or neighboring
video frames can make a learned similarity met-
ric robust against small shifts between a pair of im-
ages (Ma et al., 2018; Bhardwaj et al., 2020). This
paper aims to solve this problem from a different
perspective; we investigate how one can design a
deep neural network that can be resistant to small
shifts. We select the LPIPS network architecture as
our baseline framework as it correlates with the hu-
man visual similarity judgment well (Zhang et al.,
2018). To make this paper self-complete, we briefly
describe the LPIPS framework. As illustrated in
Figure 3, LPIPS first uses a backbone network, such
as AlexNet (Krizhevsky et al., 2012) and VGG (Si-
monyan & Zisserman, 2015), to extract multi-level
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feature embeddings from a distorted image Idst or its reference image Iref . We denote the resulting
feature embeddings as Fdst and Fref , respectively. It then calculates the difference between Fdst

and Fref at all the levels and linearly combines the embedding difference at different levels into a
final similarity / difference score, denoted as d(Fdst, Fref ). The combination coefficients and the
feature extraction network are learned or fine-tuned.

Below we discuss how various neural network elements affect a similarity metric and how they
can be improved to handle imperceptible shifts between a pair of images. Our focus is to develop a
feature extraction network to generate feature embeddings from a pair of images that 1) are invariant
to imperceptible shifts and 2) lead to a metric that correlates well with the human judgements.

Reducing Stride. Striding is widely used in a deep neural network to reduce the input size. For
instance, AlexNet has a strided convolution (stride=4) in its first convolutional layer (conv-1) and
many max pooling operators with stride=2 in the rest of the network. However, it is commonly
known that striding with size >1 leads to the sampling rate falling well below the Nyquist rate,
which causes aliasing artifacts. In their experiments with image classification tasks, Azulay & Weiss
(2019) showed that AlexNet without any subsampling is significantly less sensitive to translations
and also maintains its accuracy. Similarly, we also investigate the reduction of the stride size in the
convolutional layers in the LPIPS framework to make it more resistant to imperceptible shifts at no
expense of its consistency with the human visual similarity perception.

Original

Shifted

Conv Layer 1 Conv Layer 2 Conv Layer 3

(a) (c)

(b)

Figure 4: Feature embedding difference maps
at different levels. (a) an input image and its
one-pixel shifted version. (b) difference maps
between embeddings extracted by the original
AlexNet. (c) difference maps between embed-
dings extracted by AlexNet augmented with anti-
aliased strided convolution and pooling layers.

Anti-aliasing. Convolution is the most common
operator for a deep convolutional neural network.
A pure convolutional operator is shift-equivariant
instead of being shift-invariant (Nair & Hinton,
2010). Shift equivariance makes a learned sim-
ilarity metric sensitive to small shifts as small
shifts between two images Idst and Iref will
be transferred to the shifts between their feature
embeddings Fdst and Fref , which will in term
drastically increase the distance between the fea-
ture embeddings d(Fdst, Fref ) as shown in Fig-
ure 4 (b). Downsampling in a neural network im-
proves its shift invariance. Typically, downsam-
pling can be achieved by a strided convolutional
operator or a strided pooling operator with stride
n (n > 1). However, as discussed earlier in Re-
ducing Stride, striding introduces aliasing. While
reducing stride size lessens aliasing, it prevents the network from reducing the feature size.

To keep the benefit of downsampling while reducing stride, Zhang (2019) invented a BlurPool opera-
tor. Take max pooling with stride n as an example. Such a max pooling operator can be decomposed
into two steps: max pooling with stride 1, followed by a downsampling operator with stride n. To
reduce the aliasing artifacts, Zhang (2019) followed the pre-filtering idea for anti-aliasing and re-
placed this max pooling operator with a sequence of three operators: a max pooling with stride 1,
a Gaussian filter, and a downsampling operator with stride n. The last two operators are combined
into as a single operator, called BlurPool. Similarly, a convolution operator with stride n can be
replaced with its anti-aliased version as a convolution operator with stride b and BlurPool with stride
n/b. Zhang (2019) found that replacing the original convolutional and pooling layers in a feature
extraction neural network with their BlurPool versions helps generate feature embeddings that make
the downstreaming tasks more shift invariant. BlurPool uses a fixed Gaussian filter for blurring
and may lose some spatial features that are important attributes defining the quality of an image.
Zou et al. (2020) developed an adaptive anti-aliasing filter by learning a low-pass filter that is more
content-aware. In this paper, we replace the strided convolution layers or pooling layers in the LPIPS
framework with BlurPool or adaptive anti-aliasing filters to make it invariant to imperceptible shifts
among images in a pair. Figure 4 (c) shows that while anti-aliased convolution and pooling layers
cannot make the feature network completely shift-invariant, they significantly reduce the difference
between the feature embeddings from a pair of shifted images.

Location of Anti-aliasing. In a deep neural network, such as AlexNet used in LPIPS, a convolution
layer is usually followed by an activation function like ReLU. According to Zhang (2019), the activa-
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tion function is inserted between the stride-reduced convolutional layer and BlurPool, as illustrated
in Figure 5 (a). Vasconcelos et al. (2021) created variants of the anti-aliased strided convolution by
placing the anti-aliasing filter at different locations, specifically, before or after the convolution op-
eration. They found that some variants can lead to stronger learned inductive priors. But, will they
provide significant improvements in shift tolerance? We build upon their findings and design varia-
tions of the anti-aliased strided convolutions. Specifically, we modify AlexNet conv-1 as illustrated
in Figure 5 and explain the variants below. Ii

ReLU

11x11 Conv, S=2

BlurPool, S=2

Ii

ReLU

11x11 Conv, S=2

BlurPool, S=2

Ii

ReLU

11x11 Conv, S=2

BlurPool, S=2

(a) Original

-

- -

(b) Feature After Blur (c) Blur Before Activation

Figure 5: Alternative positions of BlurPool.

Original. As shown in Figure 5 (a), we follow
the original design of BlurPool and put it after
ReLU (Zhang, 2019). For anti-aliasing, the stride
size of conv-1 is reduced from 4 to 2 and the Blur-
Pool layer has a stride of 2 so that the total stride of 4
is preserved in this anti-aliased version. We take the
output of ReLU as the feature embedding to calculate
the similarity.

Feature after blur. In the above design, the feature embedding is used before BlurPool. This ef-
fectively reduces the anti-aliasing effect on the feature embeddings although the reduced stride size
in conv-1 still offers some level of anti-aliasing. Therefore, we investigated a variation of the anti-
aliased convolution by taking the output of BlurPool as the feature embedding to be used for simi-
larity calculation, as illustrated in Figure 5 (b).

Blur before activation. Vasconcelos et al. (2021) suggested that blurring after the non-linearity, as
done in Figure 5 (a) and (b), prevents high frequency from getting passed on to subsequent layers.
Following their findings, we adopted their design by placing BlurPool before ReLU to keep the
high-frequency information from ReLU, as shown in Figure 5 (c).

Border Handling. Islam et al. (2020) reported that feature embeddings extracted by a convolu-
tional neural network encode absolute position information. This has an important implication for
a learning-based similarity metric that feature embeddings from a convolutional neural network are
position-dependent and are not shift-invariant. They found that zero padding can relieve this bound-
ary problem for computer vision tasks that are sensitive to spatial information. Kayhan & Gemert
(2020) further proposed the concept of full convolution (F-Conv), in which every element of the
filter needs to be applied to every pixel in the input image. They implemented F-Conv as a regular
convolutional operator with zero padding of 2k where 2k+1 is the filter kernel size, as illustrated in
Figure 7 (Appendix A.2). Note, F-Conv will make the output of an un-strided convolution operator
2k larger than the input. They reported that F-Conv is least sensitive to the absolute position of the
objects for image classification tasks. Inspired by these works, we replace the regular convolution
operators with F-Conv in the LPIPS framework and increase the padding size in BlurPool operators
to achieve better shift-invariance.

ReLU

Conv 3x3

Conv 3x3

BlurPool, S=2

ReLU

-

Ii

ReLU

Conv 3x3

Conv 3x3

Ii

Conv 1x1, S=2

BlurPool, S=2

ReLU

-

ReLU

Conv 3x3

Conv 3x3

Ii

Conv 1x1, S=2

BlurPool, S=2

ReLU

-

BlurPool, S=2

(a) (b) (c)

Figure 6: Anti-aliased skipped connection. (a)
VGG-like network with AvgBlurPool, (b) with
skip connection, and (c) with anti-aliased skip.

Pooling. Max pooling is well known for be-
ing more shift invariant than average pooling.
We investigate whether its anti-aliased version,
MaxBlurPool (described earlier in Anti-aliasing)
is also more shift invariant than AvgBlurPool,
the anti-aliased version of average pooling when
used in the LPIPS framework. Average pool-
ing in its original form already supports anti-
aliasing. We follow Zhang (2019) and imple-
ment AvgBlurPool with a stride of n as Gaussian
filtering followed by downsampling with a factor
of n.

Strided-skip Connections. Skip connection is widely used in a deep neural network to speedup
training and obtain a high quality neural network model. We investigate whether skip connection
helps improve shift invariance of a learned similarity metric. As discussed in Vasconcelos et al.
(2021), a strided skip connection introduces aliasing for the same reason discussed earlier in Anti-
aliasing. We therefore explore anti-aliased strided skip connections, as shown in Figure 6.
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6 EXPERIMENTS

We built upon the LPIPS framework and incorporated the elements discussed in Section 5 to inves-
tigate how these elements help develop a similarity metric that is consistent with the human visual
similarity judgement and is robust against imperceptible shifts. We first compare our metrics to both
off-the-shelf metrics, such as SSIM and MS-SSIM, and the recent learned similarity metrics. We
then conduct ablation studies to evaluate how these elements work.

Table 3: Experiments on the CLIC dataset.

Network Accuracy(%)
Number of rank flips

1 pix 2 pix 3 pix

L2 58.16 833 2102 2214
SSIM (Wang et al., 2004) 60.00 349 931 1109
PIEAPP (Prashnani et al., 2018) 75.44 91 134 158
E-LPIPS (Kettunen et al., 2019) 74.44 212 251 317
DISTS (Ding et al., 2020) 75.63 28 36 50
PIM-1 (Bhardwaj et al., 2020) 73.79 13 22 33
LPIPS(Alex) (Zhang et al., 2018) 73.68 90 108 121
LPIPS(Alex) retrained from scratch∗† 76.53 59 51 62
LPIPS(Alex) ours∗† 76.97 17 14 21

∗ Trained on image patches of size 64 using author’s (†) setup.

Comparisons to Existing Metrics. In Sec-
tion 4, we derived a shifted dataset from
the BAPPS dataset and compared our metrics
to representative existing metrics (Bhardwaj
et al., 2020; Ding et al., 2020; Ma et al., 2018;
Kettunen et al., 2019; Prashnani et al., 2018;
Wang et al., 2004; 2003; Zhang et al., 2018).
In our experiments, we adopt the 2AFC metric
to evaluate how consistent a metric is with hu-
man judgment, and the rank-flipping rate, rrf ,
to evaluate how robust it is against small shifts.
As shown in Table 1 and 2, our metrics are
both more consistent with human visual similarity judgment and more robust against imperceptible
shifts than most of them, except a recent metric PIM (Bhardwaj et al., 2020), to which our method is
comparable. PIM achieves shift robustness by training on neighboring video frames that often have
small shifts. We work on an orthogonal solution by investigating neural network elements to make
the learned metric robust and therefore only train our metrics on the examples without any shift
through data augmentation. We further evaluated the metrics on the perceptual validation dataset
from the Challenge on Learned Image Compression (CLIC, 2021). The results in Table 3 are con-
sistent with previous results, i.e., our method outperforms all the other methods in terms of accuracy
and is more shift-robust than others except PIM, which is similarly robust to ours.

Ablation Studies. We now examine how individual network elements affect our metrics. In these
studies, we trained all our metrics using the original BAPPS training set on their original size of
256 × 256. We purposely did not train on the shifted version to focus on neural network element
designs. To train our metrics, we used the loss function: MSE(s, h), where s = s1/(s1 + s2), s1
and s2 are the predicted similarity scores of two images I1 and I2 to their corresponding reference
image, and h is the human score. We trained our metrics using the same settings as Zhang et al.
(2018) except we used a lower dropout rate of 0.01. We tested all our metrics on the shifted testing
dataset to obtain the rank-flipping rate. To obtain the 2AFC scores, we ran our metrics on the full-
size images (with no shift) of the original BAPPS dataset so that we could verify whether our metrics
sacrifice consistency with human visual similarity judgment to be robust against imperceptible shifts.

Table 4: Effect of (1) anti-aliasing (AA) via
BlurPool, (2) F-Conv, (3) reduced stride, &
(4) adaptive-AA§ on learned metrics.
AA (BlurPool)
Reflection-Pad F-Conv Stride 2AFC rrf

1 2 in conv-1 1 pixel 2 pixel 3 pixel

4 70.65 2.87 3.92 3.74
X 2 70.53 1.85 2.22 2.58

X 2 70.67 1.46 1.82 2.25
X 4 70.57 2.78 3.92 3.91

X X 2 70.52 1.77 2.15 2.48
2 70.54 1.84 2.28 2.34

X 1 70.42 0.66 1.13 1.83
X X 1 70.44 0.63 1.14 1.68

X§ 2 70.57 2.63 3.36 3.16
X§ 2 70.63 2.80 3.57 3.39
X§ X 2 70.52 2.95 4.13 3.93

§ (Zou et al., 2020)

We first examine elements discussed in Section 5 in-
dividually. We use AlexNet as the backbone fea-
ture extraction network with the LPIPS framework
as it provides the best result among other backbone
networks (Zhang et al., 2018). As reported in Ta-
ble 4, anti-aliasing via BlurPool can greatly improve
LPIPS’s robustness against imperceptible shifts. Re-
ducing stride size in its strided convolutional layer
(conv-1) also helps making it significantly more ro-
bust at little expense of the 2AFC score. Combin-
ing BlurPool with reducing stride size makes the net-
work even more robust against imperceptible shifts
and more consistent with human judgment based on
the 2AFC score. Then a larger reflection padding
size also helps as it reduces the position information
encoded in the feature embeddings from the image
boundaries, as discussed in Section 5. However, F-Conv, also designed to reduce the boundary is-
sue, does not help. While the learned BlurPool (Zou et al., 2020) also helps, it is not as effective as
the original version for our task of making a robust similarity metric.
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Table 5: Anti-aliasing via BlurPool can signif-
icantly improve shift-tolerance and often im-
prove 2AFC scores consistently for different
backbone feature extraction networks.

Network
AA (BlurPool)

2AFCReflection-Pad rrf

1 2 1 pixel 2 pixel 3 pixel

VGG-16 70.03 3.01 3.76 3.44
X 70.05 0.66 1.08 1.44

X 70.07 0.66 1.12 1.82
ResNet-18 69.86 2.67 3.35 3.77

X 69.95 0.82 1.51 2.19
X 70.14 1.07 1.81 2.38

Squeeze 69.61 7.41 7.58 10.35
X 69.24 2.03 3.06 3.93

X 69.44 2.10 2.48 3.42

We test on different backbone feature networks, in-
cluding VGG-16 (Simonyan & Zisserman, 2015),
ResNet-18 (He et al., 2016), and SqueezeNet (Ian-
dola et al., 2016). While reducing the stride size is
effective, not all networks have a strided convolu-
tion layer. Hence, we focus on BlurPool applied to
pooling layers. As shown in Table 5, BlurPool sig-
nificantly improves the robustness of other backbone
networks as well. What is interesting is the effect
of the padding size within these backbone networks.
While a larger padding size improves 2AFC scores,
it does not make shift-invariance better for VGG-16
and ResNet-18. For them, the anti-aliased convolu-
tion layers have a stride size of 1, which leads to mi-
nor boundary issues. We conjecture that this makes
a larger padding size unnecessary. Table 6: Effect of BlurPool locations within an anti-

aliased strided convolution as illustrated in Figure 5.

Anti-Alias Stride BlurPool 2AFC rrf

(BlurPool) in Conv-1 Location 1 pixel 2 pixel 3 pixel

X 2 Original 70.67 1.46 1.82 2.25
X 2 FeatureAfterBlur 70.55 1.73 1.84 2.49
X 2 BlurBeforeActivation 70.50 2.06 2.02 2.74
X 1 Original 70.42 0.66 1.13 1.83
X 1 FeatureAfterBlur 70.52 0.69 1.11 1.60
X 1 BlurBeforeActivation 70.48 0.57 1.06 1.50

We also examine the effect of the location
of BlurPool within AlexNet. As reported
in Table 6, the original version (Figure 5
(a)) works best when the stride size is 2
in conv-1. With a smaller stride size, it
does not work as well as Blur Before Ac-
tivation (Figure 5 (c)). This is in part con-
sistent with what was found by Vasconce-
los et al. (2021). In the original design,
BlurPool is placed after the activation layer for anti-aliasing at the expense of the reduction of the
high-frequency information from the activation layer. With the need for anti-aliasing due to a larger
stride size, this trade-off works out. However, when stride size is 1, the need for anti-aliasing is
reduced; therefore, it is more helpful to place BlurPool before the activation layer to avoid the loss
of high-frequency information. Thus, Blur Before Activation works better when the stride size is 1.

Table 7: Effects of different pooling layers and
anti-aliased strided skip connections.

Network elements 2AFC
rrf

1 pixel 2 pixel 3 pixel

AvgBlurPool 69.88 1.24 1.86 2.18
MaxBlurPool 69.58 0.95 1.54 2.12
AvgBlurPool & Strided Skip 69.82 1.38 2.06 2.61
AvgBlurPool & Anti-aliased Skip 70.05 1.26 1.89 2.32
MaxBlurPool & Anti-aliased Skip 69.86 1.07 1.66 2.35

Table 7 shows that MaxBlurPool has better
shift tolerance but lower 2AFC scores (accuracy)
than AvgBlurBool. Moreover, using anti-aliased
strided-skip connections leads to higher accuracy
with a negligible drop in shift tolerance.

Summary. Among the network elements we in-
vestigated, anti-aliased strided convolution, anti-
aliased pooling, and reduction of stride size are
most effective to develop a perceptual similarity
metric that is robust against imperceptible shifts. These findings are consistent across a variety of
backbone network architectures. A larger padding size helps reduce the position information due to
the boundary issues encoded in the feature embeddings. Anti-aliased skip connection can help im-
prove accuracy but with little effect on shift invariance. The position of BlurPool matters. It should
be placed before the activation layer if its precedent convolution uses a small stride size.

7 CONCLUSION

This paper reported our investigation on how to design a deep neural network as a learned percep-
tual image similarity metric that is both consistent with the human visual similarity judgement and
robust against the imperceptible shift among a pair of images. We discussed various neural network
elements, such as anti-aliased strided convolution, anti-aliased pooling, the placement of BlurPool,
stride size, and skip connection and studied their effect on a similarity metric. We found that using
anti-aliasing strided convolutions and pooling operators and reducing stride size are very helpful
to make a learned similarity metric shift-invariant. Our experiments show that by integrating these
elements into a neural network, we are able to develop a learned metric that is more robust against
imperceptible shifts and more consistent with the human visual similarity judgement.
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A APPENDIX

A.1 USER STUDY

We recruited 32 participants for our study. These participants have a wide range of professional
background, including computer science, business, medicine, arts and education. Most of them are
between 20 to 35 years old.

To ensure the quality of this user study, we removed the responses from two participants who failed
to pass a validation test. Specifically, if a participant identified a pair of images with 0-pixel shift
as different or a pair of images with 9-pixel shift as the same for more than two-thirds of the time
in the study, we did not include the response from that participant. In total, 30 participants passed
our validation test. We obtained responses to 1500 trials in total, with 150 responses for each of the
n-pixel shifts.

It is important to disclose that before the study, we informed our participants that there might be
shifts between some pairs of images to raise their alertness to the potential difference created by the
shift. While this might bias participants, we found it helpful to obtain a more informative under-
standing of the human perception of small shifts; otherwise, participants tended to overly overlook
the difference between a pair of images.

In total, we have 500 samples with a pair of images where one of the images is shifted. Each user
was presented with 5 samples for each 0-9 pix-shift randomly. We made sure that no user saw the
same sample twice in our study. The number of responses to each sample varied and the mean
number of responses per sample is 3 and the standard deviation is 1.33.

Why we chose 50 images? We generated 500 pairs of images, with 0-9 pixel shifts from them. To
maintain the quality of our study and avoid boring the users, we only presented 50 samples to each
user. Interestingly, humans managed to detect the shift for a 2 pixel shift in 50% of cases. We
attribute this partially to the fact that the users were informed that there might or might not be a shift
between a pair of images. This indeed introduced biases into the study such that their sensitivity to
the shifts is likely increased. We chose to do so as, in our pilot study, we found that users were very
confused when we asked them if a pair of images looked the same or not. Many of them thought

12



Under review as a conference paper at ICLR 2022

if we were asking them to compare high-level features such as objects in the two images or if there
were some artifacts in one of the pair of images.

Furthermore, we analyzed the variability of the user responses. In our analysis, if a user noticed
the shift between a pair of images, we label the response as 1 and 0 otherwise. We then calculate
the standard deviation of the user responses for each image. The average (avg.) of the standard
deviation (std.) in the responses per sample is 0.2 with a standard deviation of 0.23.

Table 8: Variability in user responses.

Pixel-shift Avg. of std. per sample Std. of std. per sample

0 0.09 0.17
1 0.19 0.23
2 0.34 0.21
3 0.24 0.23
4 0.3 0.24
5 0.23 0.24
6 0.21 0.24
7 0.12 0.2
8 0.18 0.23
9 0.13 0.21

Finally, we compute the average standard deviation for the whole group of samples with the same
amount of shift and report the results in Table 8. With no or only a 1-pixel shift, users were con-
sistently sure that the images in each pair were the same. Similarly, with a very large shift (6 to 9
pixels), users consistently indicated that the images were shifted. In contrast, we see more variability
in user responses when the shift is 2 to 5 pixels. Hence, for images with a 2 to 5-pixel shift, users
were doubtful whether images were shifted or not, and their responses had a high variation.

A.1.1 JUST NOTICEABLE DIFFERENCES (JND)

Table 9: Consistency of perceptual similarity metrics with the sensitivity of human perception to
pixel shifts.

Metric JND mAP%

SSIM (Wang et al., 2004) 0.722
LPIPS (Alex) (Zhang et al., 2018) 0.757
LPIPS (Alex) retrained from scratch∗† 0.740
LPIPS (Alex) ours∗† 0.771
LPIPS (VGG) (Zhang et al., 2018) 0.770
LPIPS (VGG) retrained from scratch∗† 0.769
LPIPS (VGG) ours∗† 0.775
DISTS (Ding et al., 2020) 0.766
PIM-1 (Bhardwaj et al., 2020) 0.773

∗ Trained on image patches of size 64 using author’s (†) setup.

We conducted the following test to study how consistent our shift-tolerant perceptual similarity
metric is with the human perception results reported in Figure 2. In our study reported in Figure
2, we had asked our participants if the two images, which may be shifted by a few pixels, were the
same or not. Using these responses, we perform a just noticeable difference test. We make use of
only those samples which have at least 3 human responses. There were 301 such samples, and the
mean number of samples per pixel-shift (0 to 9) is 30.1 with a standard deviation of 1.6 (maximum
33 and minimum 28). Following Zhang et al. (2018), we rank the pairs by a perceptual similarity
metric and compute the area under the precision/recall curve (mAP) (as used by Everingham et al.
(2010) and Zhang et al. (2018)). The results in Table 9 show that our shift-tolerant LPIPS metrics
follow the sensitivity of human perception to pixel shifts more accurately than their vanilla versions.
The accuracy of PIM-1 and DISTS is comparable to ours.
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A.2 FULL CONVOLUTION

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0 0
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2k

F-Conv

input

2k +1
kernel
size

padding 
size

Figure 7: Illustration of Full Convolution (F-Conv), where every value of the filter needs to be
applied to each value of an input image. Hence, the input needs to be padded first with padding size
2k for a filter with size 2k + 1 (Kayhan & Gemert, 2020).

A.3 ADDITIONAL ABLATION STUDIES

We provide a few additional ablation studies to help examine the network elements discussed in our
main paper.

A.3.1 PADDING SIZE

Table 10: Effects of increasing reflection-pad size. This test is conducted for our learned metric
using AlexNet as its backbone network.

AA (BlurPool) 2AFC rrf

w/ Reflection-Pad 1 pixel 2 pixel 3 pixel

None 70.53 2.11 2.51 2.58
1 70.53 1.85 2.22 2.58
2 70.67 1.46 1.82 2.25

To further examine the effect of the padding size, we added a new variation where no padding is
used in all the BlurBool layers. As shown in Table 10, padding in the BlurPool layers makes our
learned metric more robust against small shifts.

A.3.2 BLUR KERNEL SIZE

Table 11: Effects of increasing the blur kernel size.

AA (BlurPool)

Stride Blue Kernel Size 2AFC rrfReflection-Pad

1 2 in Conv-1 in Conv-1 1 pixel 2 pixel 3 pixel

X 2 3 70.53 1.85 2.22 2.58
X 2 5 70.60 1.57 1.67 2.21

X 2 3 70.67 1.46 1.82 2.25
X 2 5 70.54 1.61 1.55 2.16
X 1 3 70.42 0.66 1.13 1.83
X 1 5 70.57 0.73 1.16 1.71

BlurPool is used for anti-aliasing for strided convolution and strided pooling operators (Zhang,
2019). Anti-aliasing is achieved by employing a Gaussian filter to remove the high-frequency in
the intermediate result from its previous step of non-striding pooling or convolution operators. A
key parameter is the size of Gaussian filter kernel. In our paper, we used a fixed kernel size of 3. We
add a new test to examine the effect of the kernel size in conv-1 on our learned metric. As shown in
the first group of Table 11, a large kernel helps anti-aliasing in general and thus makes our metric
more shift-tolerant. However, when combined with a reduced stride size (=1), a large kernel can
also be counter productive and make our metric less shift-invariant, as shown in the bottom group in
Table 11. This is because when the stride size is 1, aliasing is not a big issue. Then a large kernel
size removes useful high-frequency information with little gain from anti-aliasing.
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A.3.3 PADDING TYPE

Table 12: Comparing the type of padding, Zero vs. Reflection, in the BlurPool layers.

AA (BlurPool)

F-Conv 2AFC

rrf

Refl-Pad Zero-Pad 1 pixel 2 pixel 3 pixel
Size 2 Size 2 shift shift shift

X 70.67 1.46 1.82 2.25
X 70.55 2.05 2.28 2.70

X X 70.52 1.77 2.15 2.48
X X 70.72 1.80 2.24 2.40

In all our experiments, we set the default padding type as reflection padding. We now examine if zero
padding performs better or not by replacing reflection padding with zero padding in the BlurPool
layers. As shown in Table 12, we found that reflection padding in general outperforms zero padding.
In a recent study, Alsallakh et al. (2021) found reflection pad to be more effective in reducing line
artifacts in feature maps. We believe it reduces aliasing that improves shift tolerance.

A.3.4 ANTI-ALIASING OPERATOR TYPE

Table 13: Comparing BlurPool against l2 pooling.

Anti-alias Blur Kernel Size 2AFC
rrf

BlurPool l2 Pooling in all layers 1 pix 2 pix 3 pix

X 3 70.53 1.85 2.22 2.58
X 3 70.69 2.92 3.90 3.60

X 5 70.51 1.68 1.59 2.17
X 5 70.55 1.87 1.89 2.38

We use BlurPool for anti-aliasing in all our experiments. Here we compare the effect of anti-aliasing
via BlurPool versus l2 Pooling. As observed in Table 13, when the blur kernel size is 3, the shift
tolerance of the network having BlurPool is substantially better than the network with l2 Pooling
layers, but at the expense of accuracy. This maybe due to a weaker blurring by l2 Pooling. As the
blur kernel size is increased to 5, the strength of the blurring effect increases in both, and we observe
the performance gap reducing, in terms of both accuracy and shift tolerance.

A.4 RESULTS ON OTHER IQA DATASETS

Table 14: Performance comparison on the TID-2013 (Ponomarenko et al., 2015) dataset.

Metric SRCC KRCC PLCC

LPIPS (VGG) retrained from scratch∗ 0.86 0.66 0.87
LPIPS (VGG) ours∗ 0.86 0.67 0.87
DISTS (Ding et al., 2020) 0.83 0.64 0.85

∗ Trained on Kadid-10k.

Table 15: Performance comparison on the LIVE dataset (Sheikh, 2003).

Metric SRCC KRCC PLCC

LPIPS (VGG) retrained from scratch∗ 0.94 0.0.79 0.93
LPIPS (VGG) ours∗ 0.95 0.80 0.94
DISTS (Ding et al., 2020) 0.95 0.81 0.91

∗ Trained on Kadid-10k.

For an apples-to-apples comparison with DISTS (Ding et al., 2020), we train the LPIPS metric on
the Kadid-10k dataset (Lin et al., 2019). We use the pre-trained model for DISTS that is trained on
Kadid-10k and uses a VGG backbone network. As shown in Tables 14 and 15, our shift-tolerant
LPIPS metric improves the baseline LPIPS metric and outperforms DISTS on both datasets.
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Table 16: Performance comparison on the shifted LIVE dataset (Sheikh, 2003).

Metric SRCC

Original No shift 1-pixel shift 2-pixel shift

LPIPS (VGG) retrained from scratch∗ 0.94 0.94 0.90 0.91
LPIPS (VGG) ours∗ 0.95 0.95 0.95 0.94
DISTS (Ding et al., 2020) 0.95 0.95 0.95 0.95

∗ Trained on Kadid-10k.

We conducted a test using the SRCC metric on the shifted version of the LIVE dataset. As reported
in Table 16, our upgraded LPIPS metric significantly improves the robustness against small shifts
over the baseline LPIPS metric. Our results are comparable to DISTS.
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