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Abstract— Language-specified mobile manipulation tasks in
novel environments simultaneously face challenges interacting
with a scene which is only partially observed, grounding
semantic information from language instructions to the partially
observed scene, and actively updating knowledge of the scene
with new observations. To address these challenges, we propose
HELIOS, a hierarchical scene representation and associated
search objective to perform language specified pick and place
mobile manipulation tasks. We construct 2D maps containing
the relevant semantic and occupancy information for navigation
while simultaneously actively constructing 3D Gaussian repre-
sentations of task-relevant objects. We fuse observations across
this multi-layered representation while explicitly modeling the
multi-view consistency of the detections of each object. In order
to efficiently search for the target object, we formulate an objec-
tive function balancing exploration of unobserved or uncertain
regions with exploitation of scene semantic information. We
evaluate HELIOS on the OVMM benchmark in the Habitat
simulator, a pick and place benchmark in which perception is
challenging due to large and complex scenes with comparatively
small target objects. HELIOS achieves state-of-the-art results
on OVMM. As our approach is zero-shot, HELIOS can also
transfer to the real world without requiring additional data,
as we illustrate by demonstrating it in a real world office
environment on a Spot robot.

I. INTRODUCTION

Consider an autonomous robot tasked with bringing a mug
from a coffee table to the kitchen counter in a home. If
that robot sees a coffee table but cannot currently detect
a mug on it, should it go closer to investigate if the mug
is actually present? Or should it look in new parts of the
home? An autonomous robot should be able to efficiently
reason through this question using environment cues. In
addition, the robot should be able to successfully perform
this task of language-specified pick and place for mobile
manipulation using the observations it accumulates during
this search process.

Methods for embodied physical intelligence can accumu-
late information about a novel scene and act on it though
observation history with no explicit scene representation [1],
[2], [3], only 2D maps [4], [5] or 3D scene graphs [6], [7],
[8]. However, these methods all assume dense associations
between language, observation, and action. Very different
representations for long horizon spatio-temporal reasoning
have been developed in problems for semantic search where
language grounding is sparse [9], [10], [11]. In order to per-
form mobile manipulation which includes semantic search,
reasoning over vision, language, and action must occur
simultaneously in both long and short horizons. Low success
rates on new benchmarks targeting open vocabulary pick and

place tasks in novel environments have demonstrated that
combining this long and short horizon reasoning is still an
open challenge [7], [4].

Reasoning jointly over short and long spatio-temporal
contexts requires very different policy objectives in addition
to the differences in scene representations. Prior work in
object search explicitly manages local and global search
problems distinctly [12], [13], [14]. Search policies must
figure out when to switch between local and global reasoning
by deciding the likelihood of being close to the target object.
In addition to exploring unobserved regions, efficient search
policies also exploit semantic information about the scene
in order to search more likely locations of the target object
first [15], [16], [17], [18], [9], [19], [10]. This exploration-
exploitation tradeoff adds additional complexity to the task
of performing object search as a component of mobile
manipulation.
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Fig. 1: Hierarchical scene representation.

Contributions. We present HELIOS, a hierarchical scene
representation and search objective for language specified
mobile pick and place tasks in novel environments. We create
a hierarchical scene representation using layered 2D value
and occupancy maps to efficiently navigate and explore, and
sparse collections of 3D Gaussians to represent objects of



interest (see fig. 1). We then formulate an objective func-
tion on our hierarchical scene representation that balances
exploring the scene to find regions which might contain the
target object with exploiting observed semantic information.
We introduce an uncertainty-weighted object score to take
into account the multi-view consistency of the detections of
an object before interacting with it. We conduct an ablation
study to verify that each of these components increases our
method’s performance. Through our experiments, we show
the contribution of uncertainty-based reasoning over our
novel visual representation in improving robust perception in
mobile manipulation. We evaluate HELIOS on the HomeR-
obot Open-vocabulary Mobile Manipulation benchmark [4],
[20] in the Habitat simulator [21], achieving state-of-the-art
results. We use HELIOS in semantic navigation as a stop
decision, improving overall search success on the Habitat-
Matterport 3D [22] object search benchmark. The zero-shot
nature of our approach means it can transfer to the real
world without requiring additional data, as we show by
demonstrating HELIOS in a real world office environment
on a Spot robot.

II. RELATED WORK

Language-grounded open world pick and place. Recent
advancements in vision and language have opened up chal-
lenges in natural language instruction following for robots in
novel environments. Many methods focus on parsing com-
plex or ambiguous language and accurately grounding this
language to observations made during task execution [23],
[6], [24], [25], [8]. Others focus on improving execution
of language specified pick and place skills [26], [27], [25].
However, benchmarks for targeted instantiations of this prob-
lem have identified that a major cause of failure in this task is
correctly finding and identifying objects for performing pick
and place [4], [7], [5]. Our work addresses this challenge by
modeling the multi-view consistency of object detections,
allowing us to only interact with objects once we have
obtained enough views that we are confident in the results
of the object detection.

Object search and detection. To find an object with an
RGB camera, that camera needs to record sufficient obser-
vations in the environment to correctly identify the object.
Active object detection methods obtain additional views of
a scene in order to capture an image from which a target
object can be correctly identified [28], [29], [30]. When these
observations are accumulated in a map of the environment,
it enables a larger scale search problem in which the camera
is systematically moved to possible locations in the map.
Hierarchical object search methods explicitly perform global
and local object search to ensure sensor coverage of the
scene [12], [13], [14]. To perform object search efficiently,
semantic information can be used as a prior about where
objects are more likely to be [31]. This semantic prior
naturally yields an exploration and exploitation tradeoff [15],
[16], [17], [18], [9], [19], [10]. In our work, we perform
object search and detection as part of pick and place mobile
manipulation tasks. Therefore, we construct an objective for

switching between global object search and local object
detection while simultaneously trading off exploration of the
scene and exploitation of semantic information.

3D Gaussians in robot perception. 3D Gaussians [32]
have been used in a variety of robotics tasks including
SLAM [33], [34], active mapping [35], [36], [37], and
table-top manipulation [38], [39]. These methods all build a
dense 3D representation of the entire scene. Many methods
also incorporate open-vocabulary semantic features in 3D
Gaussian representations [40], [41], [42], [43]. In contrast to
previous robot perception approaches, we only model target
objects of interest with 3D Gaussians, building a sparse 3D
map. We adapt wilson2024modeling to perform semantic
classification and estimate the associated uncertainty in our
sparse 3D Gaussian object map, which forms one layer of
our scene representation.

Language-grounded scene representations. Language-
grounded scene representations can be dense or sparse.
Dense open-vocabulary 3D scene representations map vision-
language features which can be dynamically queried with
language [44], [45], [46], [47], [41], [48]. However, these
dense 3D representations are not necessarily effective or
efficient for performing planning and control. For semantic
navigation tasks, dense 2D language-grounded scene rep-
resentations are more efficient and have been shown to
be effective [49], [10], [9], [50]. For language specified
manipulation tasks, instance level information about objects
is important [51], [52], [53], [54]. To enable mobile manip-
ulation, 3D scene graphs build globally consistent maps of
object centric representations needed for manipulation [55],
[8], [56], [57], [58], [59]. Our work builds on this direction
in mobile manipulation by using object instance information
to construct a sparse map of 3D Gaussians. In our work, we
combine this information for manipulation in a hierarchical
map with 2D value maps for semantic navigation.

III. METHOD

We address the problem of language specified pick and
place mobile manipulation tasks in novel environments. To
carry out this task, the robot first needs to solve a search
problem to find the target object, including correctly iden-
tifying the target object. It must then navigate to a suitable
grasp position and grasp the object. Finally, it needs to solve
another search problem in order to find the place location,
and then place the object there in a stable orientation. Note
that all of these stages need to be successful, and the
robot must also avoid collisions with the environment when
navigating and interacting with the objects, so this task is
subject to compounding error rates. However the robot can
also use information collected in previous stages of the task
to aid it later. For example, the search to find the place
location can be made more efficient by utilizing information
collected when the robot was searching for the target object.
In order to collate this information into a useful and efficient
format, we propose constructing a hierarchical task-driven
map (see Section III-A) with 2D map layers suitable for the
search problems and 3D Gaussians to represent objects in the



scene relevant to manipulation. We detail how we explicitly
reason over this map to solve a language specified pick and
place task in Section III-B.

A. Hierarchical Task-driven Map

We construct a hierarchical map with three layers, where
each layer corresponds to the three primary tasks that the
robot needs to complete. First, to navigate around obstacles
to a specified goal location, the robot requires an occupancy
map to perform collision free path planning. Second, to
efficiently search for objects, the robot can use seman-
tic information in the environment to prioritize exploring
unobserved regions which are similar to target locations.
Finally, in order to effectively manipulate and perform robust
detection of the objects of interest, we model the components
of the scene where we expect to perform pick and place with
a sparse 3D representation using 3D Gaussians assigned to
instances of classes referenced in the instruction.

1) 2D Occupancy Maps: We construct a 2D bird’s-eye
view (BEV) occupancy map by ground projecting depth
measurements. We use this map to perform collision-free
path planning to navigate around obstacles to goal locations.
We also identify frontiers on the occupancy map, defined as
center-points of boundaries between explored and unexplored
areas, which will enable us to search unknown map regions.

2) 2D Semantic Value Map: To choose between frontier
points, we leverage semantic information about the scene
in order to search efficiently by going to areas more likely
to contain the target of interest first. We construct a layered
semantic value map to enable this frontier-based approach by
extending prior work constructing semantic value maps [10]
to incorporate multiple search targets. Each layer in our
map is a 2D BEV value map constructed by using BLIP-
2 [60] to score the similarity of each observed RGB image
to the prompt Seems like there is a (object)
ahead and fusing the results using a confidence based on
the field-of-view cone for each observation. We construct one
map layer for the pick location and one for the place location.
Since our method is open vocabulary, we can specify the pick
location by either referencing the target object directly or by
referencing components of the scene where the target object
is expected to be.

3) 3D Gaussian representation for modeling objects: In
order to enable reasoning about the multi-view consistency of
semantic classifications, we represent the objects of interest
in the scene using 3D Gaussian Splatting (3DGS) [32]. To
increase efficiency over prior applications of 3DGS to robotic
tasks [38], [39], instead of modeling the entire scene with
3D Gaussians we only use them to model parts of the scene
which have been detected as objects of interest. We assign
Gaussians to object instances, allowing us to reason over ob-
jects in the scene instead of individual Gaussians. Our sparse
3DGS representation supports tracking the semantic class
probability and semantic class uncertainty for each Gaussian
which we use to create a novel uncertainty-weighted object
score for each instance.

Preliminaries – 3D Gaussian representation rendering.
A 3D Gaussian x(µ,Σ; c, α) is defined by its mean position
µ, covariance Σ, color c and opacity α, these characteristics
can be learned via a rendering loss. A scene is rendered with
many of these 3D Gaussians, the final number determined
by the task specific conditions in which Gaussians are added
and removed. When an image is rendered using 3DGS, the
3D Gaussians comprising the scene representation are first
transformed from the world frame to the camera frame and
then projected into 2D Gaussians (splats) in the image plane,
x(µ,Σ; c, α) 7→ x̃(µ̃, Σ̃; c, α). Each pixel i’s color Qi is then
calculated from the 2D Gaussians using α-blending for the
N ordered points on the 2D splats that overlap the pixel. For
a pixel with position pi and a 3D Gaussian xn, we first find
the opacity α̃n(pi) of the corresponding 2D Gaussian at that
pixel position by weighting based on the pixel’s distance to
the center of the 2D Gaussian with α̃n(pi) = αn · k(pi, x̃n),
where k(pi, x̃n) = exp

(
1
2 (pi − µ̃n)Σ̃

−1
n (pi − µ̃n)

)
. Next,

the N Gaussians are ordered based on depth, with x̃1 being
the closest to the camera, and the final contribution for each
Gaussian is calculated with α-blending to get the final pixel
color Qi =

∑N
n=1 cnκ(pi, x̃n; {x̃j}j∈{1,...,N}) where

κ(pi, x̃n; {x̃j}j∈{1,...,N}) := α̃n(pi)

n−1∏
j=1

(1− α̃j(pi)). (1)

Preliminaries – Semantic classes for 3D Gaussian
representation. We represent the semantic class scores
with our 3DGS model in addition to color. Following wil-
son2024modeling, we explicitly model the distribution of
semantic estimates of each Gaussian using the categorical
distribution. This distribution is then updated using its con-
jugate prior, the Dirichlet distribution. Note that this method
requires specifying number of object classes at the start
of the episode. However, any amount of classes can be
specified, so this approach supports open-vocabulary mobile
manipulation. The probability density function (PDF) of the
Dirichlet distribution is given by

f(θn|γn) =
1

B(γn)

C∏
c=1

θ
γc
n−1

n,c . (2)

where B is the multivariate beta function and C is the num-
ber of classes. In our case, θn is the categorical distribution
for the Gaussian xn. The concentration parameters, γn =
(γ1n, ..., γ

C
n ), of the Dirichlet distribution can be updated

after each measurement using Bayesian Kernel Inference as
follows [43]

γcn ← γcn +

N∑
i=1

yciκ(pi, x̃n; {x̃j}j∈{1,...,N}), (3)

where yci is 1 if pi is of class c and 0 otherwise and κ(·) is
defined in eq. (1).

Then, for a 3D Gaussian xn and class c, the expected
probability of xn being of category c and its variance is
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Fig. 2: Example of multi-view fusion. We show two
observations, in the first a toy rocket is incorrectly identified
as a knife and the table is correctly identified, in the second
the table is again correctly identified. Below this we show the
change in the semantic probability for each class in the 3DGS
part of our scene representation when it is updated with the
second detection. We can see that the incorrect detection of
the object on the table as a knife is not multi-view consistent
and so the probability of this object being a knife goes down
when we include the second detection. The table is correctly
detected across multiple frames so the probability goes up
after fusion.

given by

E[θcn] =
γcn∑C
j=1 γ

j
n

, Var[θcn] =
E[θcn](1− E[θcn])
1 +

∑C
j=1 γ

j
n

. (4)

The variance can be considered a measure of the pixel-
wise uncertainty of that class score based on the multi-view
consistency. During rendering we use E[θcn] and

√
Var[θcn]

in place of the color parameter for rendering the semantic
class scores and uncertainty, respectively. Figure 2 shows an
example of how the semantic class score is updated when
we obtain a new measurement.

Preliminaries – Information gain. Using the Dirichlet
distribution to model the semantic state of the Gaussians
allows us to find the entropy of the concentration parame-

ters [61]

H(θn) =logB(γn) + (T (γn)− C)ψ(T (γn))

−
C∑

c=1

(γcn − 1)ψ(γcn), (5)

where T (γn) :=
∑C

c=1 γ
c
n and ψ is the digamma function.

If we obtain a set of new observations, Y = {y1, ..., ym}
at poses P = {p1, .., pm} then the information gain is

IG(θn, Y |P ) = H(θn)−H(θn|P, Y ). (6)

Given P and Y , H(θn|P, Y ) can be found by updating θn
and then calculating the updated entropy.

Instances for object-level reasoning. We assign 3D
Gaussians to instances so we can reason about objects.
Because the objects are not always perfectly segmented this
assignment is done by clustering in 3D within Gaussians
which have the same most likely semantic class. To prevent
the time requirements becoming intractable for large scenes,
we detect which Gaussians are updated for a new observation
and only perform the clustering with these Gaussians and any
other Gaussians within the same instance.

Using these instances we can reason over the set of objects
our representation is modeling, let us call this set O. Each
object in O consists of 3D Gaussians belonging to the same
instance, and the class of this object is given by the most
common highest-probable class among the 3D Gaussians
belonging to that instance, i.e. for oi ∈ O, its class is given
by modeθ∈oi

(
argmaxc∈{classes}E[θon]

)
.

For each object oi ∈ O we also define the class score
Sc := 1

|oi|
∑

θn∈oi
E[θcn], that is, the mean probability of

the 3D Gaussians which make up the instance oi being
of class c. Likewise, we define the uncertainty Uc :=
1

|oi|
∑

θn∈oi

√
Var[θcn].

a) Uncertainty-weighted object score: To determine
whether we are confident in our estimate of an object’s class
we define our uncertainty-weighted object score, which takes
into account both the class score and uncertainty (balanced
by a hyper-parameter αcs) for an object oi ∈ O for class c:

Ψc(oi) := Sc(oi)− αcsUc(oi). (7)

That is, the lower bound of the αcs-sigma estimate of oi.

B. Hierarchical Search

We plan over our hierarchical scene representation in
a zero-shot manner, searching for the pick location using
our global search objective to balance between exploring
new frontiers and exploiting semantic information. Once we
detect a target object we use our uncertainty-weighted object
score to decide whether we are confident enough in the
classification to attempt to grasp it. Once the target object has
been picked up we perform a similar search procedure until
we are confident we have found the place location. Figure 3
shows the logical flow of our method.

Global search objective. Our global search objective
balances exploring new frontiers with exploiting detections
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Fig. 3: Method flow chart for HELIOS.

of candidate pick locations. First we introduce some new
notion, let A ⊂ O be the set of objects whose class is that
of the pick location and let F be the set of frontiers.

First, we will evaluate the benefit of searching for a de-
tected object. We can work out whether obtaining additional
views Y from poses P of candidate pick location ai ∈ A
is likely to be informative by considering the information
gain (IG). We obtain the proposed poses as described in the
local search section, but we do not have the observations Y
unless we move to these poses. In the case of search, we
prioritize avoiding false negatives more than false positives
since ultimately an effective search policy should provide
coverage of the full search space. Thus, we propose an
optimistic approach where we assume the best-case scenario
that all the observations in Y classify ai as the pick location
a. Specifically, we define the estimated information gain as
IGa(ai|P, Y ∗) :=

∑
θn∈ai

H(θn)−H(θn|P, Y ∗), where Y ∗

classifies ai as class a. We will drop the condition and just
write IGa(ai) for brevity. We can then combine the class
score and the IG by multiplying them, i.e. Sa(ai)IGa(ai), to
get a measure of how much we want to search a candidate
pick location ai.

This information gain weighted object score allows us to
compare candidate objects to each other, but we also want
to be able to compare them to frontiers. When we choose a
frontier fi ∈ F , we store its location and current score from
our value map, denote this F0(fi). During global planning,
the first time each ai ∈ A is detected we store the initial class
score, Sa0(ai), the initial information gain, IGa0(ai) as well
as its initial center position. Then, we want to find the best
candidate object while taking into account the distance to the
frontier. Explicitly, let F ′ be the set of previously chosen
frontiers. Then we can calculate an estimated value for a
previously chosen frontier f ′i ∈ F ′ based on its proximity to

detected candidate objects as:

V0(f
′
i) := maxai∈A

(
Sa0(ai)IGa0(ai)− αddist(aj , f ′i)

)
(8)

where αd is a hyper-parameter which controls the relative im-
portance of candidate object score to distance and dist(aj , f ′i)
is the Euclidean distance between the stored center of aj and
f ′i .

Given this association between previous frontiers and
candidate object scores we can find an association between
frontier scores and candidate object scores by averaging the
ratio of this new score to the frontier score over all the
previous frontiers:

F0 :=
1

|F ′|
∑

f ′
i∈Fp

V0(f
′
i)

F0(f ′i)
(9)

This allows us to associate a frontier fi with a candidate
object score by multiplying its score F (fi) by F0. We
also take into account distance to form the following score
function for ri ∈ A ∪ F :

V (ri) :=

{
Sa(ri)IGa(ri)− αddist(ri) if ri ∈ A
F (ri)F0 − αddist(ri) if ri ∈ F

(10)

where F (fi) is the current score from our value map for
fi ∈ F and dist(ri) is the Euclidean distance from the agent
to the center point of ri.

Local search. When local search is performed on an
identified object we generate and go to gaze point positions
in a contour around the 2D ground-projection of the 3D
Gaussians making up our representation of that object. The
orientation of a gaze point is set so that the agent will look
towards the center of the object in the ground-plane and the
highest point on the object. After performing local search on
an object we mark it as visited and no longer consider it a
candidate for local search.

IV. EXPERIMENTAL RESULTS

A. Open vocabulary mobile pick and place in a novel
environment

Dataset and benchmark. We evaluate HELIOS on the
validation split of the Home Robot OVMM benchmark [4],
[20] which uses scenes from the Habitat Synthetic Scenes
Dataset (HSSD) [62] in the Habitat simulator [63] and
consists of 1199 episodes. In this benchmark, the robot must
carry out an instruction of the form “Move (object) from
the (start receptacle) to the (goal receptacle)”
in an unknown environment. An oracle pick skill is provided,
and we use a simple heuristic place skill to drop the object
above the goal receptacle.

Metrics. We report the following metrics from the OVMM
benchmark [4], [20] indicating the success of each phase
of the task: FindObj if the robot is ever close enough to
the object, Pick if the robot successfully picks up the
object, FindRec if the robot is ever close enough to
a goal receptacle after picking up the object. We



TABLE I: Ablation study for components of our method, with comparison to using the HomeRobot [4] baseline agents
and recent method MoManipVLA [26] on the val split of the OVMM challenge. For HomeRobot the results are included
for different configurations of skills for navigation, gaze and place. E.g. R/N/H uses RL for navigation, no skill for gaze
and heuristic skill for place.

Method FindObj Pick FindRec Place SR
HomeRobot H/N/H 28.7 15.2 5.3 - 0.4
HomeRobot H/R/R 29.4 13.2 5.8 - 0.5
HomeRobot R/N/H 21.9 11.5 6.0 - 0.6
HomeRobot R/R/R 21.7 10.2 6.2 - 0.4
MoManipVLA1 23.7 12.7 7.1 - 1.7

1
pi

ck Trusting agent 13.7 ± 1.0 12.3 ± 0.9 6.8 ± 0.7 2.1 ± 0.4 1.3 ± 0.3
W/o global search objective 16.8 ± 1.1 12.0 ± 0.9 6.8 ± 0.7 2.6 ± 0.5 1.7 ± 0.4
HELIOS 23.8 ± 1.2 17.2 ± 1.1 10.0 ± 0.9 3.3 ± 0.5 2.5 ± 0.5

5
pi

ck
s Trusting agent 20.4 ± 1.2 18.3 ± 1.1 10.2 ± 0.9 3.2 ± 0.5 1.8 ± 0.4

W/o global search objective 27.8 ± 1.3 21.2 ± 1.2 12.8 ± 1.0 4.9 ± 0.6 2.3 ± 0.4
HELIOS 39.2 ± 1.4 28.7 ± 1.3 17.4 ± 1.1 5.8 ± 0.7 3.1 ± 0.5

U
nl

im
. Trusting agent 21.9 ± 1.2 19.3 ± 1.1 10.8 ± 0.9 3.3 ± 0.5 1.8 ± 0.4

W/o global search objective 29.6 ± 1.3 22.0 ± 1.2 13.2 ± 1.0 5.0 ± 0.6 2.3 ± 0.4
HELIOS 42.3 ± 1.4 30.5 ± 1.3 18.6 ± 1.1 6.3 ± 0.7 3.2 ± 0.5

additionally report Place which indicates if the robot placed
the object on the goal receptacle and the object
remained stationary on the goal receptacle after the set
wait period. We also report the success rate (SR) as defined
in the OVMM benchmark – if all of these stages succeeded
without collisions, then episode is considered a success.

Baselines and ablations. We evaluate the performance of
HELIOS compared to the HomeRobot [4] baseline agents
and MoManipVLA [26]. HomeRobot provides modular im-
plementations of the skills required to carry out the OVMM
task, we compare to the results for their reported configura-
tions. Additionally, to isolate the effects of our hierarchical
scene representation and global search objective, we include
the following ablations of our method:

• Trusting agent: this agent uses the same 2D maps
and methods for local navigation and place as our full
method, but without the 3D portion of our hierarchi-
cal scene representation, our gaze points and global
search objective. It goes to the frontier with the highest
value for the start receptacle until it detects
an object (fully trusting the output of the object
detector), at which point it picks up the object. If
the pick succeeds, it then goes to the frontier with
the highest value for the goal receptacle until it
detects a goal receptacle, at which point it places
the object on it.

• W/o global search objective: this agent uses everything
from our full method except for the global search ob-
jective. Instead, it always prioritizes searching candidate
objects over going to frontiers.

• HELIOS: our full method, which uses our global search
objective to balance when to collect views of a detected
start receptacle and when to go to a frontier.

Pick Attempts. In the OVMM benchmark, the agent is
allowed an unlimited number of pick attempts. We report
results for our method and its ablations with limited numbers
of pick attempts (1 and 5) as well as unlimited attempts.
With limited pick attempts, if the agent exceeds the limit,

we set all metrics for that episode to 0. A benefit of our
hierarchical objective is the incorporation of retry logic when
we move back and forth between global and local reasoning.
In contrast, the baselines do not re-attempt picking. In
Table I, we see that allowing 5 pick attempts provides a
significant improvement over 1 pick attempt for HELIOS in
all metrics. However, the further benefit of unlimited pick
attempts is marginal.

Note that the physical process of grasping the object is
not modeled during pick attempts in the OVMM benchmark.
The pick action only fails when the target object is not in
frame, revealing ground truth information about the scene.
Thus, our method has access to ground truth information
not accessed by the baselines (which in the real world only
corresponds to our method making additional observations)
when attempting greater than 1 pick attempt.

Results. Table I shows the results of our benchmarking
and ablation study. Our full method limited to 1 pick
outperforms the baselines on all metrics except for FindObj.
Adding our hierarchical scene representation and gaze points
improves performance compared to our trusting agent, and
adding our global search objective results in further im-
provement for all metrics. This supports our claims that our
hierarchical scene representation and global search objective
are beneficial for this task.

The place skill is a major cause of failure for our method.
We used a simple approach of dropping the object above
the highest detected point in a region in front of the agent.
Because we did not adjust the orientation of the gripper
before dropping, we qualitatively observed that the object
sometimes rolled off the the goal receptacle. Due
to the modularity of HELIOS, we could incorporate other
modular solutions to picking without changing our novel
contributions.

B. Semantic object search stop decision

Experiment setting. We investigate the ability of
our sparse 3DGS scene representation and associated



TABLE II: Adaptation of our method as a stop decision
for semantic object goal navigation. We compare to the
original implementation of VLFM, as well as a variant that
removes the filtering of detections of objects which are at
the sides of images which VLFM uses.

Method SPL ↑ SR ↑
VLFM without detection filtering 29.6 50.4
VLFM [10] 30.4 52.5
VLFM with our stop decision 28.4 54.0

uncertainty-weighted object score to contribute to robust
object detection in the stopping decision during semantic
object search. We replace the stop decision in VLFM [10], a
leading modular semantic object search method, with our
approach. Specifically, when a potential target object is
identified the robot goes to generated gaze points around
the object and then only stops if the uncertainty-weighted
object score is high enough. We evaluate on the validation
split of the HM3D dataset [22], consisting of 2000 episodes.

Metrics. Following VLFM [10] we report the Success
Rate (SR) and Success weighted by inverse Path Length
(SPL). The SPL is a measure of the robot’s efficiency, for
a successful episode it is given by the ratio of the length of
the shortest successful path for that episode to the path the
robot took. It is zero for unsuccessful episodes.

Results. Table II shows the results. We can see that
using our stop decision improves the success rate by 1.5%
compared to VLFM and 3.6% compared to VLFM without
detection filtering, the proposed approach in [10] to perform
robust object detection. SPL decreases in both cases since our
method collects additional views of the objects, prioritizing
accuracy over efficiency.

C. Hardware demonstrations

We demonstrate HELIOS on a Boston Dynamics Spot
robot in a real-world office environment. In these experi-
ments, we utilize the Spot API to perform grasping and
to navigate to the waypoints output by our path planner.
We also utilize Bochkovskii2024 for monocular depth es-
timation. Videos of these demonstrations are provided in the
supplementary material.

V. CONCLUSION

We present HELIOS, a hierarchical scene representa-
tion and associated search objective, to perform language-
specified pick and place mobile manipulation. HELIOS
achieves state-of-the-art results on the Open Vocabulary
Mobile Manipulation (OVMM) benchmark [20], [4] and im-
proves the success rate for modular approaches to semantic
object search when used as a stop decision. We demonstrate
HELIOS performing language-specified pick and place in a
real-world office environment with a Spot robot.

Limitations. The performance of HELIOS is limited
by errors during execution of subskills including collision

1We use the reported result for their method without GT semantics for
a fair comparison. They do not specify which split of the dataset they use
for their evaluation so we assume they use the val split as is standard.

avoidance and physical placing which can be improved by
integrating better component methods for physical subskills
in future work. In addition, since we restrict the total time
for executing the pick and place tasks in our work, all of
our metrics measure success within a restricted period of
time. Therefore, another avenue for increasing performance
is by optimizing the choice of gaze points during local
search. Filtering for informative gaze points or considering
the information gain when generating the gaze points could
enable us to achieve improved confidence during local search
with fewer total gaze points. Reducing the number of gaze
points would allow additional time to enable exploration of
more regions in the environment.

Acknowledgments: The authors gratefully appreciate sup-
port from the Samsung LEAP-U program and through the
following grants: NSF FRR 2220868, NSF IIS-RI 2212433,
ONR N00014-22-1-2677.

REFERENCES

[1] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong,
P. Wohlhart, S. Kirmani, B. Zitkovich, F. Xia et al., “Open-world
object manipulation using pre-trained vision-language models,” CoRL,
2023.

[2] Physical Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia,
D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai et al., “π0. 5: a
vision-language-action model with open-world generalization, 2025,”
https://www.physicalintelligence.company/download/pi05.pdf , 2025.

[3] G. R. Team, S. Abeyruwan, J. Ainslie, J.-B. Alayrac, M. G. Arenas,
T. Armstrong, A. Balakrishna, R. Baruch, M. Bauza, M. Blokzijl et al.,
“Gemini robotics: Bringing ai into the physical world,” arXiv preprint
arXiv:2503.20020, 2025.

[4] S. Yenamandra, A. Ramachandran, K. Yadav, A. S. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. Clegg, J. M. Turner, Z. Kira,
M. Savva, A. X. Chang, D. S. Chaplot, D. Batra, R. Mottaghi,
Y. Bisk, and C. Paxton, “Homerobot: Open-vocabulary mobile
manipulation,” in 7th Annual Conference on Robot Learning, 2023.
[Online]. Available: https://openreview.net/forum?id=b-cto-fetlz
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VI. APPENDIX

We provide implementation details of our method includ-
ing our hyper-parameter choices (Section VI-A), compute
details (Section VI-B), an additional ablation using ground
truth semantics (Section VI-C) and details including licenses
of existing assets we use in this work (Section VI-D).

A. Implementation details

a) Hyperparameters: The value of the hyper-
parameters used in our experiments are given in Table III.

b) Once the target object has been detected: First we
introduce some new notion, let G ⊂ O be the set of objects
whose class is that of the target object and A ⊂ O be the
set of objects whose class is that of the place location.

Once a candidate target gi ∈ G has been detected we check
if it’s uncertainty-weighted object score (given by eq. (7)) is
over some threshold τg , and if Ψg(gi) ≥ τg we will treat gi
as the target object.

If Ψg(gi) < τg we can calculate the class score, S′(gi),
and the uncertainty, U ′(gi), if we take m observations Y
from poses P and again assume the best-case scenario that
each classified gi as class g. Then we can obtain the class
score this would give us as

Ψ′
g(gi) := S′(gi)− αcsU

′(gi). (11)

When deciding where to obtain additional views, we consider
both if obtaining these views could increase the uncertainty-
weighted object score to above the threshold and if the
increase in uncertainty-weighted object score is larger than a
threshold τinc. This second condition is so that the agent can
obtain views of objects which have not been observed much,
and so will have a lower uncertainty-weighted object score
due to higher uncertainty. If Ψ′

g(gi) ≥ min(τg,Ψg(gi) +
τinc) then we will obtain the additional observations of gi,
otherwise we return to global search.

After the target object has been grasped, we use the same
formulation to decide whether something is the correct class
for a place location as we do for deciding whether to grasp a
target object but potentially with a different threshold. That
is, if we have seen a candidate place location bi ∈ B we
first check if Ψb(bi) ≥ τb and if so we go there to place
the target object, otherwise we check if obtaining additional
views satisfies Ψ′

b(bi) ≥ min(τb,Ψb(bi)+ τinc) and if so we
obtain them. If not or if there is no candidate bi we go to
the frontier with the highest value for the place location.

c) Path Planner: We modify the fast marching squared
[64] motion planner from Home Robot OVMM’s baseline
[20] to generate navigation actions from the map and the
goal pose. Similar to the baseline, our planner also builds
the arrival-time map with velocity directly proportional to
the distance from the closest obstacle, which balances the
efficiency and safety of the motion plan. However, to account
for the fine navigation actions required for mobile manip-
ulation, we make 3 modifications to the baseline: 1. Our
planner doubles the resolution of the map at 2000 x 2000
cells of 2.5cm x 2.5cm, as the map is directly derived from
the depth observations instead of being predicted through
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TABLE III: Hyperparameters. We provide a list of the hyper-parameters of our method with a description and the value
used in our experiments. Some hyperparameters are only referenced in the supplementary material and not in the main paper.

Name Description Value
αcs Weighting of uncertainty for uncertainty-weighted object score 1
αd Weighting of distance term for global search objective 0.001
τg Threshold for uncertainty-weighted object score to pick up an object 0.5

τb
Threshold for uncertainty-weighted object score to place on a 0.5
goal receptacle

τinc
Minimum change in uncertainty-weighted object score that would 0.05cause us to look at an object or goal receptacle

oda Threshold for object detector confidence for start receptacle class 0.35
odg Threshold for object detector confidence for object class 0.25
odb Threshold for object detector confidence for goal receptacle class 0.45

csa
Class score for an object to be considered a candidate start receptacle 0.3for the global search objective

csg
Class score for an object to be considered a candidate object for deciding 0.3whether to obtain additional views

csb
Class score for an object to be considered a candidate goal receptacle 0.3for deciding whether to obtain additional views

αcpa Absolute concentration parameter update scaling 3

a neural network as in the baseline [65]. 2. Our planner
supports continuous actions of moving forward [0.1m, 1.0m]
or rotating [5◦, 30◦], as opposed to fixed actions of moving
forward 0.3m or rotating 30◦ from the baseline. 3. Our
planner explicitly verifies that all intermediate positions for
a forward move are collision-free, greatly improving safety
around tighter choke-points common in home environments.

d) Modifications to 3DGS semantic update: We apply a
scaling αcpa directly to the concentration parameter update
to control the speed of this update, which corresponds to
each observation being repeated αcpa times.

e) Additional details of 3DGS instance creation: We
spatially cluster gaussians into instances by putting the gaus-
sians in a voxel grid based on the gaussian’s center, clustering
them by connected components of neighboring voxels, and
assigning instance labels to the clusters based on previous
assignments. First, we put gaussians of the same semantic
label into a grid of 0.5m x 0.5m x 0.5m (adequate due to
the spatial sparsity of relevant objects) voxels aligned with
the odometry coordinate frame. Then, we take the connected
components on the graph of 26-connected voxels containing
gaussians. Finally, we assign instance labels to each cluster
by taking the minimum of previous instance labels over all
gaussians in the cluster. If no gaussian in a cluster previously
had an instance label, we assign (maximum instance label
over all gaussians) + 1. In practice, this is implemented
as a sequence of max object size=10m

voxel size=0.5m = 20 min pooling
operations on a voxel grid neighborhood graph [66] using the
pytorch geometric library [67]. Note we perform the above
procedure with only the Gaussians which were updated by
the last measurement or which were assigned to the same
instance as any of these updated Gaussians.

f) Gaussian creation: We detect when a new observa-
tion represents data which is not already part of our scene
representation using the depth error. When an observation
is taken, we first make a mask of the pixels which have
been detected as an object of interest. Within this mask, we
calculate the absolute difference between the measured depth
and the rendered depth. We then mask this difference again

to keep only the parts where the measured depth is over 0.
We find the parts of this difference which are over 1m or over
0.001m and remain after an erosion operation, and create a
new Gaussian for each of them. Each Gaussian’s position
is initialized using the measured depth and camera pose to
obtain it’s 3D location.

g) Re-observing previously detected parts of the scene:
As we only model parts of the scene with 3D Gaussians
we need to detect when we are re-observing an area which
is modeled with 3D Gaussians versus looking towards such
an area which is occluded. If we did not do this and only
updated the representation when an object is detected then
we would not include any negative results (i.e. an object not
being detected) and thus we would become over-confident
in the classes of objects. One possibility would be to just
update if there are any 3D Gaussians in the viewing direction
as if they are occluded the new Gaussians should be placed
on the occluding object not on the original object, however
this is inefficient. Thus we render the depth of our 3D
Gaussian scene representation in the viewing direction and
then find the pixels in the measured depth image with less
than 0.5m of difference to this rendering and finally perform
a morphological transformation to close small holes. We then
only update the 3D Gaussians using the rendering which lies
within this mask.

h) Expanded explanation of how we calculate informa-
tion gain: When updating the global objective score we use

IGo(oi|P, Y ∗) :=
∑
θn∈oi

H(θn)−H(θn|P, Y ∗). (12)

To obtain Y ∗, for each θn ∈ oi we create a copy of
the associated 3D Gaussian but with the semantic class
probabilities set to 1 for the class o and 0 for all other classes,
then render using these parameters at pose P – this rendered
image is used as Y ∗. Then using Y ∗ we update a copy of
the concentration parameters using Eq. 3 and re-calculate the
entropy using the updated concentration parameters with Eq.
5 to obtain H(θn|P, Y ∗).



TABLE IV: Ablation study for including ground-truth semantics. We show the performance increase from using ground-
truth semantics (with gt) for both our trusting agent, which does not reason about the uncertainty of object detections, and
our full method HELIOS, which does. We show the results for our methods with unlimited picks. We also include results
of the recent method MoManipVLA [26] for additional comparison. The standard error of the mean is indicated.

Method FindObj Pick FindRec Place SR
MoManipVLA 23.7 12.7 7.1 - 1.7
MoManipVLA with gt 66.1 62.6 53.1 - 15.8
Trusting agent 21.9 ± 1.2 19.3 ± 1.1 10.8 ± 0.9 3.3 ± 0.5 1.8 ± 0.4
Trusting agent with gt 57.5 ± 1.4 56.5 ± 1.4 44.7 ± 1.4 20.9 ± 1.2 12.8 ± 1.0
HELIOS 42.3 ± 1.4 30.5 ± 1.3 18.6 ± 1.1 6.3 ± 0.7 3.2 ± 0.5
HELIOS with gt 66.3 ± 1.4 58.3 ± 1.4 53.4 ± 1.4 29.8 ± 1.3 21.0 ± 1.2

i) Object detector: We use the DETIC [68] object
detector as implemented in the HomeRobot codebase. We
set separate thresholds for the detections for each class, with
the thresholds for the object and start receptacle
a bit lower than the default used by HomeRobot (0.45) as
our method is designed to filter out false positives but does
not address false negatives as shown in Table III.

B. Compute resources

The experiments presented in this paper ran on 8 nodes in
a cluster, each with a 2080ti GPU with 16GB of VRAM and
32GB of RAM. Each full run of our method or its ablations
on the val split took around 288 hours for 1199 episodes.

C. Ablation using Ground Truth Semantics

We perform an ablation study to show the effect of using
ground-truth semantics on performance, the results are shown
in Table IV. We can see that our full method our-performs
our trusting agent when both use ground truth semantics, this
may be due to fact that HELIOS performs local search of
detected pick locations whereas our trusting agent doesn’t.
The gap between the pick success of our trusting agent
and our full method is much smaller with ground truth
semantics (11.2% without ground truth semantics and 1.8%
with ground truth semantics). Likewise, the gap in pick
success with and without semantics is much higher for both
MoManipVLA and our trusting agent than for HELIOS
(49.9% for MoManipVLA, 37.2% for our trusting agent
and 27.8% for HELIOS). These results indicate that our
full method is less of an improvement when ground truth
semantics are used. This makes sense because alleviating
issues from imperfect object detections is the main focus
of the components of HELIOS which are included in the
full method but not in our trusting agent. Addressing this
challenge is not necessary when ground truth semantics are
provided.

The relatively low overall success rates with ground truth
semantics for both MoManipVLA and our method indicate
there is still more work required to increase search efficiency
and the success rate of physical subskills such as collision-
free navigation and place. However the large gap between the
results with and without ground truth semantics for MoMa-
nipVLA and our trusting agent, especially for the pick skill,
still shows that robust object detection is a key bottleneck
for this task. While HELIOS still has a performance gap

when not using ground truth semantics it takes a step towards
addressing this issue.

D. Details of existing assets used

Directly-used assets:
• Home Robot OVMM benchmark and code [4],

[20]: MIT License, commit ede6a67a (main
branch as of submission). https://github.com/
facebookresearch/home-robot

• Habitat Synthetic Scenes Dataset (HSSD) [62]: cc-by-
nc-4.0, obtained using Home Robot’s download script
https://huggingface.co/datasets/hssd/
hssd-hab

• Habitat [69], [63], [70]: MIT License, for habitat-lab
we used HomeRobot’s modified code, for habitat-sim
we use v0.2.5.
https://github.com/facebookresearch/
habitat-lab
https://github.com/facebookresearch/
habitat-sim

• VLFM [10]: MIT License
https://github.com/bdaiinstitute/vlfm

• gsplat [71]: Apache License 2.0
https://github.com/
nerfstudio-project/gsplat

• SplaTAM [34]: BSD 3-Clause License, some code used
with modifications rather than directly importing
https://github.com/spla-tam/SplaTAM/

Key assets used in above works that we also use:
• BLIP2 [60]: BSD 3-Clause License, v1.0.2
https://github.com/salesforce/LAVIS

• DETIC [68]: Apache License 2.0, installed via Home-
Robot
https://github.com/facebookresearch/
Detic

https://github.com/facebookresearch/home-robot
https://github.com/facebookresearch/home-robot
https://huggingface.co/datasets/hssd/hssd-hab
https://huggingface.co/datasets/hssd/hssd-hab
https://github.com/facebookresearch/habitat-lab
https://github.com/facebookresearch/habitat-lab
https://github.com/facebookresearch/habitat-sim
https://github.com/facebookresearch/habitat-sim
https://github.com/bdaiinstitute/vlfm
https://github.com/nerfstudio-project/gsplat
https://github.com/nerfstudio-project/gsplat
https://github.com/spla-tam/SplaTAM/
https://github.com/salesforce/LAVIS
https://github.com/facebookresearch/Detic
https://github.com/facebookresearch/Detic
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