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Abstract

Large Language Models (LLMs) have transformed science, engineering, and
society through applications from discovery and diagnostics to chatbots. Yet their
mechanisms remain hidden within billions of parameters, making their architecture
and cognitive processes difficult to grasp. We address this by drawing on biological
cognition and introducing a network-based framework linking cognitive skills,
LLM architectures, and datasets. The skill distribution in module communities
shows that, while LLMs lack the highly localized specialization of some biological
systems, they form distinct module clusters whose skill patterns partly mirror
the distributed organization of avian and small mammalian brains. Our results
highlight that skill acquisition in LLMs benefits from dynamic, cross-regional
interactions and plasticity. Integrating cognitive science and machine learning, this
framework offers new interpretability insights and suggests fine-tuning strategies
should emphasize distributed learning over rigid modular approaches.

The widespread adoption of LLMs is a testament to their impressive capabilities in generating
coherent and context-aware text [3], which has led to their use in everything from customer service
chatbots[25] and automated content creation[19] to advanced data analysis[10] and even scientific
research [2]. While the practical benefits of LLMs are recognized, a significant gap remains in our
understanding of what drives their impressive performance. This imbalance, where the focus is
predominantly on leveraging their utility rather than studying their working mechanism, has spurred
many questions about the underlying principles that drive their success[2]. Bridging the gap between
the widespread use of LLMs and the fundamental principles that drive their performance is a critical
challenge. Much like the complexities of the human brain, these systems operate as “black boxes,”
making it difficult to uncover the mechanisms behind their decision-making.

The complexities of understanding LLMs involve exploring the intriguing parallels and distinctions
between artificial neural architectures and the human brain, revealing captivating patterns of resem-
blance [27, 1] despite their inherent differences [33]. Neuroscientists have long used brain mapping to
identify discrete regions with synchronous activity linked to cognitive processes, memory, language,
and motor control[14, 30]. We illustrate the distribution of cognitive skills (i.e., cognitive process
memory, executive function, language communication, and social cognition) alongside their associ-
ated datasets (Figure 1), highlighting the diversity of tasks and the strong alignment between dataset
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categories and core cognitive functions. Moreover, network science approaches have substantially
enriched neuroscience by illuminating how large-scale brain networks exhibit modular structures,
small-world properties, and dynamic connectivity patterns [50, 55]. Building on such insights, recent
studies on LLMs have adopted techniques, employing systematic benchmarks like CogBench[7],
psychological tests such as cognitive reflection and semantic illusions[17], and even neuroimaging
comparisons to evaluate their cognitive capabilities[4]. Yet, many of these efforts remain unsupported
by a cohesive framework rooted in cognitive science and neuroscience, highlighting the importance
of systematically mapping the alignment between LLMs and abstract cognitive skills.

Expanding upon this growing interest, recent studies have explored how cognitive skills are encoded
and localized within these models. For instance, aligning datasets with linguistic and cognitive
skills facilitates targeted training and evaluation of LLM capabilities [5], though such approaches
often overlook the role of neural mechanisms that generate these skills. Efforts to map specific
tasks onto localized regions of a fine-tuned LLM’s architecture [22] reveal the emergence of task-
specialized modules, yet they fall short of explaining the structural neural dynamics that support this
localization. Similarly, linking in-context learning with cognitive skills has offered insights into the
meta-cognitive capabilities of LLMs[22], but these studies primarily focused on behavioral outputs
and self-assessment metrics rather than deeper structural explanations. Despite such advancements in
understanding cognition in LLMs, prior works lack exploration of inter-skill relationships, dynamic
adaptability, cross-domain generalizability, and detailed interpretability of underlying mechanisms.
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Figure 1: Categorization and Frequency of Cognitive Skills Across Datasets The bar plots
illustrate how different cognitive functions are categorized by the frequency of their associated skills
and how often they appear across multiple-choice question datasets.

Network Formulation
While cognitive science and neuroscience have long benefited from clearly defined network nodes and
edges to uncover the brain’s modular organization, where distinct regions support specific cognitive
functions [50, 11, 55], establishing an analogous structural topology for LLMs remains a significant
challenge. In particular, mapping predefined abstract cognitive skills onto discrete modules within
an LLM’s architecture, such as attention heads, feedforward blocks, and layer-wise substructures,
introduces a novel frontier that challenges conventional approaches to understanding their internal
dynamics.
Skills-Dataset Network, BDM (detailed method in ). To explore such a premise, we employ multi-
layered network analysis to examine interconnected LLM modules based on cognitive skills. This
analysis examines the complex interactions between cognitive skills, datasets, and modules, providing
a detailed perspective on the functional organization within LLMs. As illustrated in Figure 1a., we
map different cognitive skills si ∈ S, previously studied in the cognitive science domain (Table S1),
to individual multiple-choice problem datasets. Formally, let si ∈ S denote a set of abstract cognitive
skills and Dj ∈ D a collection of multiple-choice question datasets. Each question in dataset Dj is
annotated with a binary skill vector over S indicating which skills are required. We define the matrix
BSD ∈ Rn×m such that:

BSD
ij =

rj∑
k=1

q
(x)
i , (1)

where q
(x)
i = 1 if skill si is required to solve question Qx, and 0 otherwise. Thus, BSD

ij quantifies
the frequency with which skill si is required to solve questions within dataset Dj .
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This mapping results in a Skill Dataset bipartite network, where cognitive skills, sampled using
ChatGPT 3.5, are linked to specific datasets, with the connections weighted by the count of matched
skills (detailed in SI 1). The empirical results in Figure 1b show that memory and executive-related
skills, such as reasoning, working memory, problem-solving, and planning, are well-represented in
multiple-choice problems. This highlights the strong alignment of datasets with cognitive functions
that lend themselves to structured evaluation. We also observe notable frequencies in other cognitive
domains, such as language and communication, and certain aspects of social cognition, reflecting a
broader yet still uneven coverage. Importantly, the bar plot on the right of figure 1b underscores the
diversity within these datasets, showcasing how they are not uniformly distributed but instead target
specific clusters of cognitive functions. This reveals an opportunity to leverage these datasets for
analyzing models across a wide range of cognitive abilities. Didolkar et al. provided a similar analysis
on utilizing another pre-trained model to generate different abstract cognitive skills for mathematical
datasets. Our approach provides more general skills and dataset mapping using existing cognitive
science domain literature [22].
Dataset-Modules Network, BDM (detailed method in ): Subsequently, we construct the Datasets
vs. Modules network using LLM-Pruner [44], where the modules, defined as subsets of weights,
Mk ⊆ W,∀k ∈ {1, 2, . . . , |M|}, representing structural units of the model (e.g., layers or blocks),
are analyzed to assess the impact of datasets on these modules (detailed in SI 2). We quantify the
impact of individual multiple-choice question datasets, Dj ∈ D, on the individual weight modules
of LLM, Mk, using two parameters: change in accuracy after pruning the model to the dataset and
fraction of weights pruned within each module. That is, the importance of modules, BDM, is defined
as,

BDM
jk =

(
1− |∆acc(Dj)|

) |Mk ∩Wessential|
|Mk|

(2)

where ∆acc(Dj) denotes the change in accuracy caused by pruning the model with dataset Dj , and
Wessential refers to the set of essential weights identified as critical after pruning the model.

The integration of these two bipartite networks yields a Skills and Modules network, illustrating the
relationship between skills and modules and highlighting which modules are influenced by which
specific skills. Utilizing equation 1 and 2, we define a projection bipartite network BSM, to project
relationship between individual skill s ∈ Sk and individual modules Mk,

BSM
ik =

∑
Dj∈D

BSD
ij ·BDM

jk (3)

Further analysis projects these into Modules and Skills networks, revealing the inter-dependencies
and collaborative dynamics between modules and the co-dependencies among cognitive skills within
the LLM. From equation 3, we describe the relationship between two skills(si1 and si2 ) as PS

i1i2
, and

two modules (Mk1
, Mk2

) as PM
k1k2

.

PS
i1i2 =

|M|∑
k

BSM
i1k ·BSM

i2k, and PM
k1k2

=

|S|∑
i

BSM
ik1

·BSM
ik2

where, PS ∈ Rn×nPM ∈ Rk×k. (4)

Expanding on these definitions, the inter-dependencies between skills and modules are quantitatively
analyzed to uncover the underlying patterns of association and specialization within the modules. The
function PS captures the degree of overlap between skills, offering insights into how cognitive skills
rely on shared or distinct modules. Similarly, PM highlights the co-activation of modules, revealing
the extent to which modules work in sync to support various skills. These relationships quantify a
metric to identify clusters of skills and modules that exhibit tight integration, shedding light on the
modular architecture of LLMs and their alignment with cognitive frameworks. Figure 4 visualizes
the Network formulation of the Llama2 model.

Modular localization characterizes the module network.
Studies in neuroscience have shown that the brain is both modular and functionally specialized.
Different regions form tightly connected groups (i.e., modules) that are linked to specific tasks, such
as vision, language, memory, and attention [14, 12]. This architecture, observed across species from
C. elegans to primates, supports the brain processes information efficiently within each module
while still communicating across the whole network [18, 13, 32]. Inspired by this, we examine how
skills are distributed across different parts of a LLM to better understand their specialized regions
and global connectivity of modules through three network metrics of the Modules network: (1)
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spectral property of PM for understanding the global structural connectivity and robustness; (2)
the participation coefficient that quantifies the extent to which individual modules bridge across
community boundaries [53]; and (3) the Z-score for the local connectivity [53].

The eigenvalue distributions in Figures 2(a–c) are obtained from the adjacency matrix of the mod-
ule–module projection network, constructed as described in Equation (4). Figures 2(a–c) show the
Eigenvalue distribution of the Llama, Llama Chat, and Vicuna models, respectively. All three LLMs
consistently show that the modules within communities interact extensively with other communities,
indicating that the modules within these networks are tightly knit within communities but loosely
connected across different communities. The participation coefficient quantifies the extent of cross-
community interactions, while the Z-score captures the relative importance of nodes within their
respective communities. Together, these measures provide a more detailed understanding of the
roles individual modules play in the community structure of LLM architecture, as shown in Figures
2(d–f). The broader distribution of participation coefficient values reflects diverse and well-integrated
community dynamics, consistent with the spectral gap, and suggests a network topology that fa-
cilitates robust inter-community communication. This pattern is consistent across all three models
and is further supported by extended analyses presented in the Supplementary Information(see SI
Section 5 and SI Section 6). There, we explore the effects of channel-versus block-level pruning,
provide theoretical justification and robustness checks for the observed network properties, and
present additional simulations and visualizations that reinforce these findings.

The brain’s modular architecture balances functional specialization and global integration, supporting
complex yet stable cognitive functions[14]. Our three metrics illustrate comparable patterns of
modular localization in LLMs, indicating similar organizational principles emerging across biological
and artificial systems [31]. These findings carry significant implications for both fields. In AI, they
highlight the potential for designing more efficient and adaptable models by leveraging modularity,
mimicking how the brain organizes specialized functions while maintaining flexible interconnectivity.
For neuroscience, understanding the extent to which artificial systems replicate biological modularity
could inform the study of brain function and network organization, offering insights into how cognitive
processes emerge from modular networks.
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Figure 2: Spectral property and influence of modules within each community of Modules
Network.(a–c) Eigenvalue distributions highlight distinct community structures. (d–f) Participation
coefficients and Z-scores show bridge modules and identify influential or peripheral nodes.

Reveal the functional specialization through cognitive Skill-Based Fine-Tuning
To rigorously validate and deepen the impact of our analysis, we must extend our focus beyond
network topology and cognitive skills, examining how module communities inform fine-tuning
strategies aimed at emulating neural behaviors. In biological systems, we observe three distinct
neural architectures: (1) the strong-localization architecture, characterized by isolated subgraphs
executing autonomous tasks like octopus [15, 20]; (2) the small-world architecture, which includes a
few interconnectivity between communities as seen in the human brain [13, 31]; and (3) the weak-
localization architecture, with extensive interconnectivity between communities, typical of avian and
small mammalian brains [29]. A key question arises: How can insights from biological functional

4



Community 0 

Community

Dataset 
Related
 to the 

Community disambiguation  
qa 

Community 1 

language 
identification 

Community 2 

formal fallacies 
syllogisms 
negation 

Community 3 

mathematical 
induction 

Community 4 

moral 
permissibility 

Community 5 

swedish to 
german

 proverbs 

Modules Network
LLM Model with Community-

Based Modules Selection

a)

e)

All

Without 
Finetuning

Random

Random 1 Random 2 Random 3 Random 4 Random 5 Random 0 

b)

c)

d)

A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8Av
er

ag
e 

M
ag

ni
tu

de
(L

2)
D

iff
er

en
ce

0

1

2

3

llama llama chat vicuna

f)

Figure 3: Comparison of accuracy and magnitude of weight change across fine-tuned LLMs
using different cognitive skill-based finetuning. (a–d) Schematic of fine-tuning approaches:
Community (modules aligned to skills), Random (size-matched random subsets), All (all modules),
and Without Finetuning (baseline). (e–f) Average L2 weight differences and corresponding accuracies
using block pruning across community-aligned datasets, highlighting performance differences across
fine-tuning strategies.

specialization help explain how cognitive-skill-based communities in LLMs support targeted learning
and affect model performance?

To investigate, we fine-tuned models under four configurations (Figure 3 a–d). Learning strengthens
synaptic connections via Hebbian learning[8] and long-term potentiation[26], improving neural
communication and supporting memory and skill acquisition. Similarly, weight changes after fine-
tuning reveal that community-based fine-tuning induces the most substantial adjustments, whereas
all-module and random fine-tuning exhibit comparable but lower sensitivity (Figure 3e). However,
fine-tuning across all modules yields the highest overall accuracy among all configurations (Figure
3f), indicating a distinction between distributed knowledge representation in LLMs and the highly
localized organization observed in the human brain. However, it aligns with prior findings that task-
relevant knowledge in LLMs is redundantly encoded across multiple attention heads in Transformer
models [6, 21]. The discrepancy between the extent of structural modifications and the resulting
accuracy gains suggests that, although targeting the modules associated with specific cognitive skills
induces pronounced parameter changes, these changes do not confer a clear performance advantage.
While learning-induced neural plasticity in the human brain is task-specific and efficiency-driven
– minimizing disruption to unrelated cognitive functions [11] – community-based fine-tuning in
LLMs does not exhibit explicit modular specialization. This result aligns with characteristics of
weak-localization architectures, reflecting the compensatory plasticity and cross-regional adaptation
observed in large-scale brain networks [30].

Although pre-trained LLMs encode cognitive skills within module communities, targeted inter-
ventions do not result in strict functional specialization, prompting a reevaluation of the relative
advantages of the three architectural paradigms. In strong-localization architectures like the octopus
nervous system, subgraphs function independently, enabling localized learning but limiting global
intelligence due to the lack of inter-module support. Small-world architectures, exemplified by the
human brain, support task-specific, efficiency-driven learning while minimizing interference with
unrelated cognitive functions. Weak-localization architectures, as seen in avian and small mammalian
brains, feature specialized neural modules that process distinct cognitive functions but rely heavily on
dynamic, cross-regional integration for intelligent behavior [16, 12]. These biological insights align
with our observations in LLMs, suggesting that cognitive capabilities do not necessarily benefit from
strictly localized fine-tuning. Instead, in weak-localization-like systems, functionality arises from
distributed yet interdependent interactions among modular components, underscoring the importance
of network-wide coordination for robust cognitive performance.
Conclusion
This study advances our understanding of LLMs by moving beyond output-based evaluations to
probe their internal mechanisms. By integrating concepts from network science and cognitive
science, we demonstrated how cognitive skills, datasets, and model modules interrelate, revealing
that LLMs exhibit structured communities of modules whose skill activation patterns echo, but do
not replicate, biological systems. Our multipartite network analysis showed that while skill clusters
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consistently engage similar modules and community-based fine-tuning induces substantial weight
changes, these targeted interventions do not outperform random module selections. This underscores
a key observation that LLMs’ representations are less plastic and more distributed, adapting broadly
even when only subsets of modules are tuned.

Code and Data Availability

Data files and the Python script have been deposited in
https://github.com/KBhandari11/LLMNeuron
The finetuned weights of all the models have been uploaded in
https://huggingface.co/KBhandari11/collections.
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Figure 4: Multipartite Network of Skills, Dataset and Modules of Llama2 model. The network
depicts modules (squares), datasets (triangles), and skills (circles) as nodes. Edges are weighted by
the normalized values derived from the bipartite relationships between skills and datasets and between
datasets and modules, reflecting the structural importance and interactions within the multiple types
of nodes. The projection network simplifies the multipartite structure by collapsing intermediary
nodes(datasets) to focus on the direct interactions between skills and modules using Block-based
pruning strategy. This projection highlights key dependencies and structural patterns within the
model, offering insights into which modules are most influential for specific skills.

Supplementary Note 1: Skills vs Dataset Network

Skills

Skills can be conceptualized as abstract cognitive abilities that are essential for solving specific tasks.
Formally, we define the set of these abstract skills, denoted by (S), as,

S = {s1, s2, s3, ..., sn}, (5)

where n is the total number of skills. Given the inherently abstract nature of si ∈ S, we empirically
ground a subset of predefined skills as identified in prior literature. In addition, we also categorize
cognitive function as higher-order cognitive skills representing different lower-order cognitive skills
(si) that have been characterized across various domains within cognitive science. Table 1 provides
an overview of the subsets of abstract skills considered in this study.

Dataset

Prior research has been extensively studied to showcase how multiple-choice-based problems can
be used to assess different lower- and higher-order cognitive skills [14, 68, 69, 8, 30]. Building on
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Table 1: Cognitive Functions with their corresponding cognitive skills. The total number of
cognitive skills considered is n = 53, with each skill si categorized into broader higher-order
cognitive domains based on classifications from prior literature.

Category Cognitive Skills (S) Citation
Cognitive Pro-
cess (Memory)

sustained attention, selective attention, divided atten-
tion, vigilance attention, attention shifting, processing
speed, visual processing speed, auditory processing
speed, prospective memory, working memory, episodic
memory, semantic memory, procedural memory, iconic
memory, echoic memory, spatial memory

[51, 52, 34, 49,
45, 35, 36, 46,
63, 4, 18, 57, 20,
47]

Executive Func-
tion

planning, organization, goal setting, time management,
problem-solving, mental flexibility, strategic thinking,
adaptability, impulse control, decision making, emo-
tional regulation, risk assessment, abstract thinking,
reasoning, concept formation, cognitive flexibility, cre-
ativity

[39, 41, 17, 54,
1, 27, 64, 28]

Language Com-
munication

expressive language, receptive language, naming, flu-
ency, comprehension, repetition, reading, writing, prag-
matics, discourse ability, expressive language, receptive
language, linguistic analysis, narrative skills

[13, 38, 25, 43,
19, 16, 10]

Social Cogni-
tion

recognition of social cues, theory of mind, empathy,
social judgment, intercultural competence, conflict res-
olution, self-awareness, relationship management

[6, 21, 2, 7, 48,
23, 26, 5]

this foundation, we formally define a framework to characterize the relationship between datasets of
multiple-choice questions and the cognitive skills required to answer them.

Let D = {D1,D2, . . . ,Dm} denote a collection of multiple-choice question datasets, where
m = |D|. Each dataset Dj ∈ D contains rj multiple-choice questions, denoted as Dj =
{Q1,Q2, . . . ,Qrj}.

Each question Qx ∈ Dj is associated with a binary skill requirement vector:
Qx = (q1, q2, . . . , qn), (6)

where n = |S| and S is the set of all skills. The value of each component qi indicates whether skill
si ∈ S is necessary to solve question Qx:

qi =

{
1 if skill si is required to answer Qx,

0 Otherwise.
(7)

We then define BSD
ij as the frequency with which skill si appears across all questions in dataset Dj :

BSD
ij =

rj∑
x=1

q
(x)
i , BSD ∈ Rn×m (8)

where q
(x)
i denotes the ith component of the skill vector for question Qx, n = |S| is the number of

distinct skills, and m = |D| is the number of datasets.

Mapping Skills to Dataset

To ensure a comprehensive analysis, we select 174 multiple-choice problem datasets (m = 174)
spanning a diverse range of domains(MMLU[32], BigBench[60], MathQA[3], CommonsenseQA[62],
ScienceQA[42], and TruthfulQA[40]). For each dataset, we select up to rmax questions (or all
available questions if the dataset contains fewer than rmax) and utilize ChatGPT 3.5 to identify and
sample the specific skills required to solve each individual question. That is, for dataset, Dj , number
of question we select is

rj = min

{
|Dj |, rmax

}
. (9)
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This approach enables a systematic exploration of the cognitive skills associated with problem-solving
across various domains. In this study, rmax = 100. Using this sampling approach, we construct
the skills dataset bipartite network BSD

ij , which represents the number of times different skills si are
required for solving each dataset within the set of datasets D. This distribution captures the likelihood
of each subset of skills S being required for solving questions in a given dataset.
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Figure 5: Heatmap of Skills vs. Datasets (BSD
ij ) with Hierarchical Clustering. The bipartite matrix

BSD
ij represents the number of times skill si is required for dataset Dj . Datasets that require similar

cognitive skills exhibit strong associations, as indicated by the clustered patterns in the heatmap.

Figure 5, provides better visualization of how different skills are associated with different datasets.
To validate the mapping, 8, defined using ChatGPT Prompt utilized for mapping S to D:

Supplementary Note 2: Dataset vs Modules

Pruning

To systematically study how different datasets Dj ∈ D influence the internal modular structure of
LLMs, we utilize pruning framework. Prior research has demonstrated that a subset of parameters
within a neural network can achieve satisfactory performance [37, 31, 61, 24, 66]. Building on this
insight, we prune redundant weight parameters to isolate the critical nodes for each dataset. This
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Model: gpt-3.5-turbo
Message:
System: You are a linguistic and cognitive scientist skilled in analyzing

texts for their cognitive properties
Role: Given different cognitive skills: {all cognitive skills}

Select applicable cognitive skills as an unordered list separated
by commas, which is necessary to answer this question without
explanation. {question}

Figure 6: Prompt Template for Cognitive Skill Mapping. The prompt provides the structure for
querying gpt-3.5-turbo to identify cognitive skills necessary for answering a specific question.
The instruction specifies the context, role, and task, prompting the model to select five relevant
cognitive skills from a predefined set of abstract skills.

approach identifies the most activated parameters specific to each dataset. We replicate the pruning
strategy across all 174 available datasets, resulting in 174 uniquely pruned models, each tailored to the
specific skills required for its respective dataset. Given the large size of LLMs (approximately 7 billion
parameters), handling individual parameters directly is computationally prohibitive. Therefore, we
focus on individual modules within LLMs. Each module represents a distinct functional component
of the model. Our objective is to analyze how the connections between these modules influence the
dependencies required for each skill.

LLM-Pruner

LLMs possess intricate, modularized architectures, where computation is distributed across various
weight matrices, including attention projections (e.g., attn.q_proj, attn.k_proj, attn.v_proj,
attn.o_proj) and feedforward components (e.g., mlp.gate_proj, mlp.down_proj,
mlp.up_proj).

To systematically study the relative importance of these modules in dataset-specific settings, we lever-
age a networked architecture representation of LLMs by constructing a task-dependent dependency
graph, following the LLM-Pruner framework [44]. Ma et al. abstracts LLMs as a directed acyclic
graph (DAG), where each node corresponds to an intermediate neuron activation, and each directed
edge represents the application of a learnable weight matrix within a specific functional module of the
model (e.g., attention projections or feedforward projections). The dependency graph is constructed
by statically tracing the model’s forward computation, encoding how each activation depends on
earlier transformations [44].

We utilize a Taylor expansion-based importance score to rank the significance of each edge for a given
dataset. Specifically, the Taylor approximation of the loss change with respect to each edge’s removal
is computed, providing an efficient estimate of the module’s contribution to model performance. We
apply both the construction of the dependency graph and the computation of pruning importance,
following the original algorithm outlined in [44]. Each individual weight parameter is indexed
by p, where p identifies a scalar element within the model’s collection of weight matrices W The
importance of each individual weight parameter wk is computed based on the estimated change in
loss ∆L(Dj) for a dataset Dj ∈ D, approximated using a Taylor series expansion:

Iwp
= |∆L(Dj)| =

∣∣∣∣∂L(Dj)

∂wp
wp −

1

2
(wp)

⊺Hppwp +O(∥wp∥3)
∣∣∣∣ , (10)

where H denotes the Hessian matrix with respect to wp.

From equation 10, the importance of weight can be computed efficiently by approximating the
Hessian matrix using the Fisher Information method:

Iwp ≈

∣∣∣∣∣∂L(Dj)

∂wp
wp −

1

2

rj∑
k=1

(
∂L(Qx)

∂wp
wp

)2

+O(∥wp∥3)

∣∣∣∣∣ , (11)

where, Qx is an individual question within dataset Dj = {Qx}
rj
x=1,∀Dj ∈ D.
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Using the computed importance scores Iwp for all parameters, pruning is performed on the depen-
dency graph following two distinct strategies as defined by Ma et al. [44]:

• Block-Based pruning strategy targets groups of neurons (blocks) associated with specific
functional components, such as an entire attention head or an MLP module. Neurons
within these blocks are pruned together, preserving functional coherence while reducing
complexity.

• Channel-Based pruning strategy systematically removes channels across multiple layers,
affecting neurons connected through vertical paths of the network. This method targets entire
feature channels, cutting across layer boundaries, and simplifying inter-layer dependencies.

Following pruning, we analyze the induced sparsity across specific architectural modules, including
the attention projections and feedforward projections for each transformer layer. Sparsity for each
module is computed as the fraction of weights wp within that module that have been pruned.

By quantifying the sparsity patterns per dataset Dj ∈ D, we capture how different cognitive skill
demands S associated with each dataset map onto the LLM’s internal modular structure. This allows
a principled exploration of skills-specific modular specialization without modifying the original
pruning algorithm of LLM-Pruner.

Importance of Module

The importance of the module quantifies the impact of each dataset on individual modules based
on the accuracy and sparsity of the modules before and after pruning. Let the individual weight
of the LLM be defined as wp ∈ W . Then, modules are subset of weights, Mk ⊆ W, where Mk

represents all the structural unit (i.e., attn.q_proj, attn.k_proj, attn.v_proj, attn.o_proj,
mlp.gate_proj, mlp.down_proj, and mlp.up_proj) within all layers of a pretrained model.

From equation 10, weights are filtered based on the sparsity ratio threshold:

Wpruned = {wp ∈ W|Iwp
< τ} (12)

where τ is a threshold based on the sparsity ratio, and L(Dj) is the loss function on dataset Dj ∈ D.
Thereby, all the essential weights for a particular dataset, Dj , with a τ sparsity ratio are given by,

Wessential = W \Wpruned. (13)

The importance of a module is determined by the fraction of its essential weights, those unaffected
by pruning, scaled by the complement of the absolute change in accuracy resulting from pruning.
This is mathematically expressed as:

BDM
jk =

(
1− |∆acc(Dj)|

) |Mk ∩Wessential|
|Mk|

(14)

Here, |Mk ∩Wessential| represents the count of essential weights in the module, while |Mk| is the
total number of weights in the module. The term |∆acc(Dj)| measures the absolute change in the
model’s accuracy caused by pruning. The complement, 1− |∆acc(Dj)|, reflects how much accuracy
is preserved, emphasizing the module’s robustness. A larger change in accuracy indicates a more
adverse effect on performance, reducing the importance of the module. Conversely, a higher sparsity
ratio suggests less pruning of the module, thereby increasing its importance. By leveraging the
importance of modules, we construct a bipartite network connecting each dataset to all the modules,
capturing the relationship between tasks and model components.

Figure 7a, demonstrates the negative correlation between the average BDM
j,k and the magnitude of

|∆acc(Dj)|—the performance drop for the model after pruning. This empirically highlights that
datasets with higher |∆acc(Dj)| (i.e., larger drops in accuracy) are associated with lower BDM

j,k ,
indicating that modules influence for such datasets are less essential. Such discussion pertains to how
much contribution the module makes to the overall performance of solving the task within dataset Dj .
If the performance decrease is sharp, then regardless of how significant the pruning, the module’s
contribution is significantly less to quantify the importance of the modules.

In figure 7(b and c), the distributions of the sparsity ratio for individual modules and BDM
j,k in the

Llama2 model with 25% pruning illustrate the differences between two pruning strategies. These
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Figure 7: Average Performance of the pruned model after pruning with different sparsity ratios.
(a) Importance of Modules quantifies the relationship between each dataset and the weight modules
of LLMs (Llama2 with a 25% pruning ratio). The scatter plot with the line of best fit shows the
relationship between the average BDM

:k of all LLM modules(Mk) and the change in overall model
performance before and after pruning. (b) The module sparsity ratio distribution of Llama2 with a
25% pruning ratio is shown for two pruning strategies.(c) The variation of BDM (edge weight between
datasets and individual LLM modules) is shown for two pruning strategies.

differences arise from the inherent structural characteristics of each strategy. The dependency graph
for weight parameters using the block-based pruning strategy is independent of the modules, meaning
each dependency graph distinguishes different modules, like attention-based modules, from MLP-
based modules more distinctly, resulting in a bimodal distribution for the sparsity ratio and BDM

j,k .
In contrast, the channel-based pruning strategy leads to a Gaussian distribution, as its dependency
graph is more interconnected across all modules. This finding emphasizes how the structural pruning
process reveals the sensitivity of model performance to specific datasets and their associated modules,
offering a framework to assess dataset dependencies and module importance.

Compare Activation Pattern with Dataset association

Foremost, we focus on empirically verifying that the gradient-based structural pruning method applied
to LLMs is a valid method for studying the influence of each dataset on the modules. Gradient-based
pruning can selectively deactivate neural network weights by identifying and pruning those that
contribute the least to the model’s performance on specific datasets using weights that activate the
least for the dataset [37, 31, 61, 24, 66, 44]. This method generates distinct activation pathways for
different datasets, effectively separating module activation based on input characteristics, i.e., skills
required to solve the multiple-choice problem. We utilize LLM-Pruner, a state-of-the-art pruning
method that utilizes structural and gradient-based methods for large language models (detailed in SI
2).

The influence of each dataset on individual modules is quantitatively assessed using sparsity values,
which serve as a metric to gauge the extent of impact. The pruning method inversely exhibits the
effect of datasets on the modules, meaning that higher sparsity values indicate a more significant
effect of the dataset on the respective modules. Given the high dimensions of sparsity values across
all modules and datasets, we utilize Principal Component Analysis (PCA) to comprehensively reduce
the dimensions to represent the sparsity patterns. Following PCA, K-Means clustering is applied to
the reduced data to identify and group similar patterns. Figure 8 (a), represents the optimal number
of K-Means clusters that separate different datasets based on their sparsity value of the modules.
Figure 8 (b), visualizes the scatter plot of different datasets differentiated by the optimal clusters. In
addition, we include random structural pruning to highlight the difference between gradient-based
pruning using all the datasets. This clustering process highlights how different groups or clusters are
characterized and distinguished based on the underlying sparsity patterns, providing insights into the
variation in dataset impact across modules.

We further analyze the effectiveness of the pruning approach using Hotelling’s T-squared statistic,
comparing PCA values of each cluster, including the randomly pruned models. Figure 8(c,d) presents
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Figure 8: Evaluating clustering of pruned Llama models using Davies-Bouldin Score and
Hotelling’s T-squared test.(a) The Davies-Bouldin Score determines the optimal number of K-
Means clusters for grouping 174 PCA values derived from module sparsity values, obtained by
pruning the Llama2 model using 174 different datasets. (b) A scatter plot showing the pruned
Llama2 model, grouped by the optimal number of clusters identified in a, alongside randomly pruned
models with the 174 datasets. (c) P-values from Hotelling’s T-squared test between different clusters,
including random pruning, are all significantly small (< 0.05), indicating dissimilarity in information
processing between different clusters. (d) Hotelling’s T-squared statistics highlight the differences
between clusters.

the p-values and statistical results obtained using Hotelling’s T-squared test, offering robust evidence
that different modules of sparsity value of different modules. The results with a p-value below 0.001
indicate a statistically significant distinction between the clusters produced by the pruning method,
including those formed through random pruning. This notable difference implies that the pruning
method successfully captures and retains the LLM’s information processing characteristics, which
are specific to different datasets.

Supplementary Note 3: Skill Weight Function

Utilizing equation 8 and 14, we define a projected bipartite network, BSM
ik , which quantifies the

relationship between module Mk and the skill si. This network projects the skill dataset bipartite
network BSD

ij of a dataset Dj ∈ D with the importance of modules BDM
jk , providing a unified measure

of module relevance for skills. Mathematically, it is expressed as:

BSM
ik =

∑
Dj∈D

BSD
ij ·BDM

jk (15)

where BSD
ij represents the skills, si ∈ S, required to solve questions within the dataset Dj ∈ D, and

BDM
jk measures the importance of module Mk based on the fraction of its essential weights scaled

by the complement of the accuracy drop caused by pruning the dataset Dj ∈ D. This formulation
enables targeted analysis of module relevance for specific skills and datasets, offering insights into
skill-specific module contributions, dataset selection, and pruning strategies. The projected bipartite
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network bridges the gap between skill requirements and model architecture, facilitating informed
decisions in model optimization.

In addition, the bipartite network(BDM and BSM ) connects skills to datasets and modules, with
projections providing a detailed view of the interdependencies. However, summing two different
bipartite networks results in a significantly dense network. Projecting this dense network would
further amplify its density. To address this, we employ spectral sparsification [59] to reduce the
network’s density while preserving the largest eigenvalue, thereby maintaining the spectral topology
of the original network. Given the stochastic nature of spectral sparsification, the resultant networks
vary across different iterations. Skills and modules frequently interacting through common datasets
form a projection network, indicating shared functionality or reliance on overlapping cognitive
processes.

Supplementary Note 4: Skills Connectivity Network

From equation 15, we define a projected relationship between two skills, si1 and si2 , using the metric
PS
i1i2 :

PS
i1i2 =

|M|∑
k

BSM
i1k ·BSM

i2k. where, PS ∈ Rn×n (16)

The dependency, PS
i1i2 , aggregates the product of the associations of each skill with individual

modules, reflecting how frequently two distinct cognitive skills activate the same underlying modules
within the model’s architecture. A high value of PS

i1i2 indicates that the underlying computations
required for both skills are not independent but instead share representational resources. Conversely,
a lower value implies that the skills are interdependent and likely utilize standard cognitive processes
within the LLM.

To assess how closely the empirically detected communities of skills align with cognitive functions
as defined in Section , we use the Adjusted Rand Score (ARS) as a robust clustering comparison
metric. Specifically, we compute ARS values between the skill communities obtained via Louvain
community detection and the predefined cognitive-function labels across different sparsity levels
used in pruning the model [65, 33, 15]. The ARS extends the Rand Index(RI)[33] by correcting for
chance agreement, providing a normalized measure that accounts for the expected similarity of two
random partitions. This makes it particularly useful when comparing communities of cognitive skills
of different sizes, since the number of clusters is not fixed.

The Rand Index, RI, measures the proportion of agreement between two clusters by evaluating all
pairs of elements and counting how many are assigned together or separately in both partitions. It is
defined as:

RI =
a+ b(

n
2

) , (17)

where a is the number of pairs of elements that are in the same cluster in both partitions, b is the
number of pairs that are in different clusters in both partitions, and

(
n
2

)
is the total number of possible

pairs. The Adjusted Rand Score corrects this index for chance. Formally,

ARS =
RI − E[RI]

max(RI)− E[RI]
, (18)

where E[RI] is RI’s expected value under random labeling, and max(RI) is the maximum possible
value of the index. The ARS ranges from -1 to 1, with 1 indicating perfect alignment, 0 suggesting
random alignment, and negative values indicating less alignment than expected by chance.

Similarly, we also evaluate the agreement between the skill communities and the cognitive function
with the Adjusted Normalized Mutual Information (Adjusted NMI), an information–theoretic metric
that quantifies the reduction in uncertainty about one partition given knowledge of the other while
correcting for chance overlap [65].

The (unnormalized) mutual information between the two partitions(U and V) is

MI(U, V ) =
∑
c∈U

∑
ℓ∈V

Ncℓ

N
log

(
Ncℓ N
Nc Nℓ

)
, (19)
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where N is the number of skills, Nc and Nℓ denote the sizes of cluster c and label class ℓ, and Ncℓ

counts skills common to both. Mutual information is normalized to [0, 1] by

NMI(U, V ) =
2MI(U, V )

H(U) +H(V )
, H(U) = −

∑
c∈U

Nc

N
log

(
Nc

N

)
, (20)

yet this value remains biased upward when partitions coincide merely by chance. The adjusted form
removes such bias:

Adjusted NMI =
MI(U, V )− E[MI]

max
{
H(U), H(V )

}
− E[MI]

, (21)

where E[MI] is the expected mutual information under random labelings. Adjusted NMI equals 1 for
identical partitions, approaches 0 when alignment is no better than chance, and can be negative for
non-correlated assignments.

We further utilize the Jaccard Similarity Index, which focuses exclusively on the reproducibility of
positive co-assignments. The Jaccard Similarity between the two partitions (U and V) is defined as

Jaccard Similarity(U, V ) =
|U ∩ V |
|U ∪ V |

. (22)

By applying this metric, we quantitatively evaluate how well the modular structure inferred from the
projection matrix PS aligns with functional cognitive function.

Figure 9 reveals that alignment between the community of skills and cognitive function defined in
remains weak across multiple different pruning strategies. For both block-based (a–c) and channel-
based (d–f) strategies, the adjusted NMI, ARS, and Jaccard Similarity cluster around the level (≈0)
for every sparsity ratio and all three models. Adjusted NMI values oscillate between roughly −0.05
and 0.10, ARS between −0.05 and 0.08, and the Jaccard Similarity score never exceeds 0.15. We
find that for any pruning strategy or ratio, it either leaves the scores unchanged or causes minor
fluctuations. Because adjusted NMI and ARS are adjusted for chance, these near-zero trajectories
indicate that the skill communities are, at best, only as informative as a random partition. The
consistently low Jaccard Index reinforces this conclusion, showing that very few skill pairs classified
together by the model correspond to the same cognitive functions.
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Figure 9: Comparison of community alignment measures between communities in the Skills
network and ground-truth cognitive-function labels, across different sparsity levels. Subplots
(a–c) show results for the block-based pruning strategy, while (d–f) display the same for channel-
based pruning. Each row visualizes the trends for three base models (Llama, Llama-Chat, and Vicuna),
using (a, d) Adjusted Normalized Mutual Information (NMI), (b, e) Adjusted Rand Index (ARI),
and (c, f) Jaccard Index as similarity metrics. The x-axis denotes the sparsity ratio applied during
pruning, enabling evaluation of how sparsity for pruning the LLMs impacts community alignment
within cognitive function labels.
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Supplementary Note 4: Modules Connectivity Network

Similarly, to extend the bipartite network BSM
ik and establish a relationship between two modules,

Mk1 and Mk2 , we project the skill-based importance to measure their connectivity. This projection
is formulated by summing over all skills in S, capturing the shared importance of both modules
across the skill space. The connection strength between modules is given by:

PM
k1k2

=

|S|∑
i

BSM
ik1

·BSM
ik2

. where, PM ∈ Rk×k, (23)

where BSM
ik1

and BSM
ik2

represent the bipartite skills modules network Mk1
and Mk2

influenced,
respectively, for skill si ∈ S. This projection emphasizes modules relevant to overlapping skills,
effectively creating a skill-informed connectivity measure. The resulting metric can be interpreted
as the degree of alignment or complementarity between modules in addressing the same skill
requirements.

This approach enables the construction of a network of modules, where edges between modules
are weighted based on their shared skill-based connectivity. Such a projection allows for a detailed
analysis of inter-module interactions. It facilitates the identification of communities within the net-
work, revealing clusters of modules that collectively contribute to specific skill sets. This community
detection can further inform optimization strategies by highlighting interdependency and structural
relationships within the model architecture, enabling targeted enhancements or pruning.

Spectral Analysis of Module Connectivity

To analyze the structural properties of the module connectivity network, we utilize the projection
network matrix, PM.

The matrix PM is positive semi-definite, we verify that for any non-zero vector x ∈ Rk, the following
condition holds:

x⊤PMx ≥ 0.
We know,

by substituting PM with BSMBSM, since the module connectivity network is a projection
network of skills modules bipartite network, 23, we have:

x⊤PMx = x⊤(BSMBSM⊤
)x = (BSM⊤

x)⊤(BSM⊤
x).

The term (BSM⊤
x)⊤(BSM⊤

x) represents the Euclidean norm squared of the vector BSM⊤
x:

(BSM⊤
x)⊤(BSM⊤

x) = ∥BSM⊤
x∥2.

Since the squared Euclidean norm of any vector is always non-negative, it follows that:

∥BSM⊤
x∥2 ≥ 0.

Hence, x⊤PMx ≥ 0 for all x ∈ Rm.

Thus, the matrix PM is positive semi-definite. Since PM is symmetric and positive semi-definite, it
can be decomposed using its spectral decomposition:

PM = UΛU⊤,

where:

• U is an orthogonal matrix (U⊤U = I), whose columns are the eigenvectors of PM.

• Λ is a diagonal matrix containing the eigenvalues of PM, denoted as λ1, λ2, . . . , λm.

Since PM is positive semi-definite, all eigenvalues λi ≥ 0. The rank of PM equals the rank of BSM,
implying that the number of non-zero eigenvalues corresponds to the linearly independent columns of
BSM. Eigenvectors associated with larger eigenvalues capture directions in the module connectivity
space that reflect dominant patterns of variance, with the largest eigenvalue λmax indicating the
most significant connectivity pattern. Conversely, eigenvalues close to zero represent negligible or
orthogonal contributions to the connectivity structure. Spectral properties of PM can be analyzed to
infer community structures: clusters in the connectivity network correspond to large eigenvalues,
with coherent eigenvector components highlighting interconnected groups of modules[58].

19



REFERENCES

Relationship Between BSD, Iwp , and Community Formation

The skill mapping BSD acts as a weighting factor for PM. PM emphasizes connections between
modules that contribute to the subsets of skills that activate together when solving the task in datasets
Dj that require overlapping skills, Conversely, when BSD is highly diverse across datasets, PM

exhibits weaker block structures.

Similarly, the gradient-based importance measure, Iwp
, affects PM via its influence on BDM:

BDM ∝ Essential Weights in Mk

Total Weights in Mk
. (24)

Large Iwp
values indicate critical weights that enhance BDM, creating strong module-skill connections

and increasing community cohesiveness.

Combining Iwp
and BSD, the matrix PM encodes community structures that balance:

• Skill Association (via BSD): Modules with similar skill profiles are more likely to cluster
together.

• Weight Importance (via Iwp): Essential weights amplify module importance, creating
stronger module-skill connections.

For a given skill subset Sg ⊆ S, the contribution of a dataset Dj to module community formation is
proportional to:

PM
ij ∝

∑
Dj∈D

[
Iiwp

· Ijwp

∥wp∥

]
BSD2

, (25)

The dense blocks in PM emerge when modules share overlapping skills and retain essential weights
(Iwp

), highlighting the importance of both skill association and weight importance. The diversity
or concentration of BSD dictates the sharpness of community boundaries, while pruning affects the
structure by potentially weakening connections for aggressive thresholds (high τ ). Balanced pruning,
however, preserves meaningful differentiation, enabling PM to effectively bridge module importance
and skill association, driving community formation in weight and skill spaces.

Community Detection within Modules Network

In this study, we employ a robust community detection approach leveraging the Louvain algorithm[9],
followed by hierarchical clustering[67], to enhance the stability and reliability of the detected
communities. The methodology consists of running the Louvain community detection algorithm 100
times on the same network to capture different possible community structures due to the stochastic
nature of the algorithm. Using the results from these multiple runs, a co-assignment matrix is
constructed to quantify the frequency with which pairs of nodes are assigned to the same community
across different iterations. This co-assignment matrix is then processed using hierarchical clustering
with Ward’s linkage method to identify clusters of nodes based on their co-assignment frequencies.
The final number of communities is determined by selecting the maximum cluster count from the
hierarchical clustering results, representing the final community structure of the network. This multi-
step procedure improves the consistency of community detection by reducing the impact of stochastic
variations and ensures a more reliable partitioning of the network into meaningful communities.

Figures 10, 11, 12, 13, 14, and 15, depicts the community cluster using hierarchical clustering for
modules network,PM .
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Figure 10: Heat map clustering of modules network (PM ) for the llama model with block-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Figure 11: Heat map clustering of modules network (PM ) for the llama-chat model with block-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Figure 12: Heat map clustering of modules network (PM ) for the vicuna model with block-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Figure 13: Heat map clustering of modules network (PM ) for the llama model with channel-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Figure 14: Heat map clustering of modules network (PM ) for the llama-chat model with channel-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Figure 15: Heat map clustering of modules network (PM ) for the vicuna model with channel-
based pruning, where leaf colors in the dendrograms represent distinct communities formed
through hierarchical clustering of the co-assignment matrix, revealing structural patterns
among attention modules across layers.
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Supplementary Note 5: Emerging community structures in skill and module
networks

The architecture of emerging LLMs reflects the self-organization of neural assemblies [56], where
local activity and interactions drive the emergence of specific, stereotyped connectivity patterns, such
as modularity. Constructing the overall network topology becomes essential. It involves integrating
the dataset that captures domain knowledge, the architectural modules of LLMs, and the emerging
cognitive functions. The methodology for building these networks is detailed in the Supplementary
Information (SI 1 and SI 2). Network visualization reveals the structural and functional relationships
among skills, datasets, and modules, and illustrates the process used to generate the Skills and Modules
projection networks. These networks exhibit distinct connectivity patterns that can be leveraged
to study the localization of skills within LLM modules, an essential step toward understanding the
emergence of intelligence.
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Figure 16: Community structure comparison between skills and modules networks. (a) The skills
projection network with nodes (skills) grouped based on the Louvain community detection algorithm,
and colored with the cognitive-function label taken from Table SI1, allowing direct visual comparison
between detected communities and domain ground truth. (b) The Modules projection network, where
each node (module) is assigned a community label based on Louvain partitioning applied at multiple
resolutions, subsequently consolidated using average-linkage hierarchical clustering.(c) Color legend
of cognitive function for node color in skills network in (a). (d) Schematic figure to represent the
frequency of cognitive skills within each community for the Modules network(b). (e) Adjusted Rand
Score (ARS) between the Louvain communities in the Skills network and the cognitive-function
labels, plotted against different sparsity ratio for pruning and three base models (Llama, Llama-Chat,
and Vicuna). (f) The chi-squared T-test statistically assessed the distinctiveness of skill distributions
within each community of Modules networks, with their p-value for those three different models for
different sparsity ratios.

Growing observations demonstrate that neural networks often exhibit meaningful community or-
ganization. Therefore, we leverage Louvain community detection techniques[9] to uncover latent
interdependencies and organizational patterns among cognitive skills (Figure 16a) and LLM modules
(Figure 16b). The resulting community structures reveal a hierarchical and modular architecture
within LLMs, shedding light on how localized and distributed processing underpins their cognitive
capabilities. This insight carries significant implications for model design, interpretability, and
optimization. Surprisingly, while groups of LLM modules are tightly interconnected through shared
skill distributions, there is no precise alignment between the predefined cognitive functions and
the communities identified in the skills network (Figure 16c). A Chi-square test comparing the
distribution of skills across communities is illustrated in Figure 16d, indicating that skill allocation is
statistically independent of the predefined cognitive categories.

27



REFERENCES

Next, we quantify the contribution of specific model components to performance across datasets under
different pruning strategies and task distributions [44]. We use Adjusted Rand Index (ARI) scores to
evaluate the normalized agreement between clusters by assessing all pairs of elements (see SI Section
4). Figure 16(e) shows the ARI scores for communities of skills and cognitive functions across various
sparsity levels used in pruning the model [15]. Despite performance degradation with increased
pruning or across different Llama2 model variants, ARI scores do not improve under any pruning
strategy. This contrasts with the human brain, where specific skill types tend to localize within distinct
cognitive regions [50, 11, 55, 12], suggesting that LLMs exhibit a different structural-functional
organization. Across all pruning strategies, sparsity levels, and Llama2 model variants, p-values
remained consistently and significantly low (<0.05), indicating that each community possesses a
distinct skill distribution (Figure 16f). This implies that although specific skill types are not localized
according to cognitive function the module localization still reflects unique combinations of skills.

Supplementary Note 6: Influence of Modules with each community of Modules
Network

Within-Module Degree Z-Score

Degree Z-Score indicates how a module compares connectivity to others within the same community
[29, 53]. A high Z-score means the module has more connections than typical for its community,
suggesting a central or dominant role within that group.

The Z-Score of a module within its community:

Zi =
ki − µCi

σCi

Where:

• Zi is the Within-Module Degree Z-Score for module i.
• ki is the degree of module i.
• µCi

is the mean degree of the community Ci to which module i belongs.
• σCi

is the standard deviation of the degrees within community Ci.

Participation Coefficient

The Participation Coefficient is a measure used to quantify how a module is connected to multiple
communities within the network[29, 53]. The Participation Coefficient for a module in a network is
given by:

Pi = 1−
n∑

s=1

(
kis
ki

)2

Where:

• Pi is the Participation Coefficient of module i.
• kis is the number of edges (or degree) that module i has with nodes in community s.
• ki is the total degree (number of edges) of module i.
• The sum is taken over all n communities in the network.

Figure 17, highlights the distribution of edge-weight as well as the the within-module degree Z-score
analysis of different communities formed using different pruning strategies for different models.
Th e within-module degree Z-score analysis highlights modules that exhibit significantly greater
connectivity compared to other modules within the same community. A high Z-score identifies
a module as central or dominant within its community, reflecting its critical role in facilitating
internal communication and coherence. In parallel, the participation coefficient provides insights
into the inter-community connectivity of modules, measuring the extent to which a module is
interconnected across different communities. A higher participation coefficient indicates that a module
bridges multiple communities, acting as an integrative or intermediary component within the broader
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Block-based Pruning Strategy

Channel-based Pruning Strategy

Figure 17: Influence of Modules within each community of Modules Network.(a-b) The distribu-
tion of edge weight within different communities of modules network for Block and Channel based
modules.(c-d) The scatter plot for different modules over two metrics, participation coefficient and
degree z-score metric.

network structure. Together, these metrics reveal nuanced roles of individual modules, distinguishing
between community-specific hubs and those crucial for inter-community communication and network
integration.

From the figure we see that, in both pruning strategies, most modules exhibit relatively high partici-
pation coefficients (typically between 0.6 and 1.0), suggesting a network where modules generally
maintain connections across multiple communities rather than being strictly confined to their local
communities. The within-module Z-scores display considerable variability across the modules,
ranging approximately between -3 and +3 for block-based pruning and between -4 and +3 for
channel-based pruning. Higher positive Z-scores (above zero) indicate modules functioning as local
community hubs with stronger intra-community connections. Conversely, negative Z-scores suggest
peripheral roles with fewer local connections.

The distinct clustering and spread patterns indicate that the block-based pruning strategy leads to a
network with more defined module roles (either community-centric or integrative), enabling clearer
interpretability of how skills might be localized within specific modules or communities. Conversely,
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the channel-based pruning strategy yields networks with uniformly high cross-community integration,
suggesting that this strategy may reduce clarity about functional specialization but highlights the
distributed and interconnected nature of module interactions. These observations underscore the
structural complexity in LLMs, where network modules exhibit diverse roles. Such roles likely
influence how abstract cognitive skills are encoded and integrated throughout the model architecture,
reflecting an interplay between local specialization and global integration.

Finetuning Details

Drawing from the hypothesis that modules associated with distinct skill distributions play specialized
roles, we aligned task datasets with corresponding module communities using KL divergence to
capture the closest match between dataset and module specialization. Figure 18 illustrates the
methodology for how communities based on a specific distribution of skills can be used to fine-tune
the model based on their cognitive skill relevance.

We employ distributed training and evaluation to analyze the performance of LLMs, including
Llama, Llama-chat, and Vicuna, fine-tuned using datasets aligned with cognitive skill-based module
communities. Models are initialized with pre-trained weights, with specific modules (e.g., attn.q,
map.up) selectively frozen or fine-tuned based on three strategies: community-specific, random, or
all modules. We froze all the parameters not included when creating the communities. Randomized
module subsets are generated by replacing community modules with non-community equivalents to
evaluate robustness. Random modules closely relate to the community of modules, i.e., if an attn.q
module is in the community, then the random subset contains attn.q module that is 1 or 2 layers
different. Distributed training leverages NVIDIA’s NCCL backend for inter-GPU communication,
with AdamW as the optimizer and hyperparameters set to five epochs, a batch size of two, and
a learning rate of 0.00001. Mixed precision (bfloat16) and Fully Sharded Data Parallel (FSDP)
strategies, including CPU offloading, ensure computational efficiency and memory optimization.
Skill-aligned datasets are used for fine-tuning, with a validation size of 100 samples and a top-skill
selection strategy to match datasets to community skill profiles. Model evaluation computes accuracy
by comparing predicted logits with true labels alongside metrics such as Euclidean magnitude
of weight changes and L2 norm for weight sparsity. This integrated approach enables a detailed
understanding of how cognitive skill alignment influences LLM performance.

Performance on Targeted Finetuning

Figure 19 and 20 show the impact of targeted finetuning using the community of modules as
depicted in figure 18. The results demonstrate crucial insights into the comparative effects of targeted
finetuning using communities formed through two pruning strategies—block-wise and channel-
wise—on the performance and structural adaptation of fine-tuned LLMs. In both pruning conditions,
fine-tuning across all modules consistently achieved the highest accuracy for all models tested (Llama,
Llama-Chat, and Vicuna), clearly surpassing both community-based and random-module fine-tuning.
Intriguingly, the accuracy obtained through fine-tuning community-based modules, selected based
on cognitive skill associations, did not significantly differ from that achieved by randomly selected
modules under either pruning strategy. This result underscores that the assumed specialization of
LLM modules tied explicitly to cognitive functions does not translate into enhanced performance
relative to random module selection, irrespective of pruning strategy.

The L2 norm differences in weight updates reveal nuanced distinctions between the two pruning
methods. Since we fixed the hyperparameter to be the same for finetuning, the learning rate remains
the same. Hence, the magnitude difference represents the gradient norm. Under both block-wise
and channel-wise pruning, community-based fine-tuning led to notably more significant magnitude
change compared to all-module or random-module fine-tuning. This suggests that community-based
fine-tuning is more sensitive to fine-tuning than other finetuning. Nevertheless, despite the sensitivity,
community-based fine-tuning did not yield proportional improvements in accuracy over random
selections, an observation consistent across both pruning approaches. Moreover, the magnitude of
weight updates under block-wise pruning generally exceeded that observed in channel-wise pruning,
suggesting that block-wise pruning induces more pronounced structural modifications within targeted
modules. Figures 21, 22, and 23 illustrated individual magnitude differences of each module within
the community to the original pre-trained modules for different models and pruning strategies.
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Collectively, these findings highlight two important insights: first, the limited efficacy of predefined
cognitive-skill module selection for enhancing fine-tuning performance remains consistent across
different pruning strategies; second, block-wise pruning triggers more substantial structural updates
than channel-wise pruning, yet this greater magnitude of change does not translate into superior
accuracy gains. These results reinforce the broader conclusion that LLMs encode knowledge through
distributed rather than strictly modular specializations.
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Figure 18: Community-based fine-tuning aligned with cognitive skill relevance The influence of
skill distributions within identified module communities is examined by selecting datasets matching
the skill profiles of these communities.
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Figure 19: Performance of Targeted Finetuning Accuracy and weight difference magnitude of
fine-tuned models (Llama, Llama-Chat, Vicuna) across two datasets aligned with each community
that were created using block-based pruning strategy.
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Figure 20: Performance of Targeted Finetuning Accuracy and weight difference magnitude of
fine-tuned models (Llama, Llama-Chat, Vicuna) across two datasets aligned with each community
that were created using channel-based pruning strategy.

Block | disambiguation_qa

Channel | identify_odd_metaphor

Figure 21: Visualization of changes in weight modules of the Llama model after fine-tuning,
highlighting task associations such as ‘disambiguation_qa’ (Block) and ‘identify_odd_metaphor’
(Channel).
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Block | high_school_psychology

Channel | electrical_engineering

Figure 22: Visualization of changes in weight modules of the Llama-Chat model after fine-
tuning, highlighting task associations such as ‘high_school_psychology’ (Block) and ‘electri-
cal_engineering’ (Channel).

Block | implicatures

Channel | electrical_engineering

Figure 23: Visualization of changes in weight modules of the Vicuna model after fine-tuning,
highlighting task associations such as ‘implicatures’ (Block) and ‘electrical_engineering’ (Chan-
nel).
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