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Abstract

Deep predictive models of neuronal activity have recently enabled several new
discoveries about the selectivity and invariance of neurons in the visual cortex.
These models learn a shared set of nonlinear basis functions, which are linearly
combined via a learned weight vector to represent a neuron’s function. Such weight
vectors, which can be thought as embeddings of neuronal function, have been
proposed to define functional cell types via unsupervised clustering. However, as
deep models are usually highly overparameterized, the learning problem is unlikely
to have a unique solution, which raises the question if such embeddings can be
used in a meaningful way for downstream analysis. In this paper, we investigate
how stable neuronal embeddings are with respect to changes in model architecture
and initialization. We find that L1 regularization to be an important ingredient
for structured embeddings and develop an adaptive regularization that adjusts the
strength of regularization per neuron. This regularization improves both predictive
performance and how consistently neuronal embeddings cluster across model
fits compared to uniform regularization. To overcome overparametrization, we
propose an iterative feature pruning strategy which reduces the dimensionality of
performance-optimized models by half without loss of performance and improves
the consistency of neuronal embeddings with respect to clustering neurons. Our
results suggest that to achieve an objective taxonomy of cell types or a compact
representation of the functional landscape, we need novel architectures or learning
techniques that improve identifiability. The code is available https://github.
com/pollytur/readout_reproducibility.

1 Introduction

One central idea in neuroscience is that neurons cluster into distinct cell types defined by anatomical,
genetic, electrophysiological or functional properties of single cells [23, 49, 54, 59, 69, 70]. Defining
a unified taxonomy of cell types across these different descriptive properties is an active area of
research. The functional properties of neurons, i. e. which computations they implement on the
sensory input, constitute an important dimension along which cell types should manifest. However,
each neuron’s function is a complex object, mapping from a high-dimensional sensory input to
the output of the neuron. Classical work in neuroscience has described neuronal function by a
few parameters such as tuning to orientation, spatial frequency, or phase invariance [1, 2, 5, 8, 9,
13, 25, 40]. However, when considering neurons from higher visual areas, deeper into the brain’s
processing network, neuronal functions become more complex and not easily described by few
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manually picked parameters. In addition, recent work in the mouse visual cortex demonstrated
that even in early areas, neuronal functional properties are not necessarily well-described by simple
properties such as orientation [47, 71]. One possible avenue to address these challenges is to use
functional representations learned by data-driven deep networks [36, 37, 39, 44] trained to predict
neuronal responses from sensory inputs. The central design element of these networks is a split into
a core – a common feature representation shared across neurons, and a neuron specific readout –
typically a linear layer with a final nonlinearity (see Fig. 1). These networks are state-of-the-art in
predicting neuronal responses on arbitrary visual input, and several studies have used these networks
as “digital twins” to identify novel functional properties and experimentally verify them in vivo [37,
47, 57, 58, 67, 68]. Because readout weights determine a compact representation of a neuron’s input-
output mapping, they can serve as an embedding of a neuron’s function. Such embeddings could be
used to describe the functional landscape of neurons or obtain cell types via unsupervised clustering
[59]. However, because the feature representations provided by the core are likely overcomplete,
there will be many readout vectors that represent approximately the same neuronal function. Thus, it
is not clear how identifiable functional cell types are based on clustering these embeddings. Moreover,
since early data-driven networks [22, 28] there have been several advances in readout [48, 51, 65] and
network architecture [33, 36, 56, 67] to decrease the number of per-neuron parameters, incorporate
additional signals such as behavior and eye movements, or add specific inductive biases, such as
rotation equivariance. Currently, there is no study systematically investigating the impact of these
architectural choices on the robustness and the consistency of embedding-based clustering.

Here we address this question by quantifying how consistent the models are across several fits with
different seeds. We measure consistency by (1) adjusted rand index (ARI) of clustering partitions
across models, (2) correlations of predicted responses across models, and (3) consistency of tuning
indexes describing known nonlinear functional properties of visual neurons. Our contributions are:

• We show that L1 regularization, used in early models [28, 59], is instrumental in obtaining a
structured clustering when using embeddings of newer readout mechanisms [51].

• We introduce a new adaptive regularization scheme, which improves consistency of learned neuron
embeddings while maintaining close to the state-of-the-art predictive performance.

• We address the identifiability problem by proposing an iterative feature pruning strategy which
reduces the dimensionality of performance-optimized models by half without loss of performance
and improves the consistency of neuronal embeddings.

• We show that even though our innovations improve the consistency of clustering neurons, older
readout mechanisms [28] reproduce neuronal tuning properties more consistently across models.

Our results suggest that to achieve an objective taxonomy of cell types or a compact representa-
tion of the functional landscape, we need novel architectures or learning techniques that improve
identifiability while preserving neuronal functional properties.

2 Background and related work

Predictive models for visual cortex. Starting with the work of Antolík et al. [22], a number of deep
predictive models for neuronal population responses to natural images have been proposed. These
models capture the stimulus-response function of a population of neurons by learning a nonlinear
feature space shared by all neurons (Fig. 1A; the “core”), typically implemented by a convolutional
neural network [26, 28, 51], sometimes including recurrence [36, 55]. The core can be pretrained
and shared across datasets [67]; it forms a set of basis functions spanning the space of all neuron’s
input-output function. The second part of these model architectures is the “readout”: it linearly
combines the core’s features using a set of neuron-specific weights.

As the dimensionality of the core’s features is quite high (height × width × feature channels), several
different ways have been proposed to constrain and regularize the readout, accounting to the fact
that neurons do not see the whole stimuli but rather focus on a small receptive field (RF). Initially,
Klindt et al. [28] proposed a factorization across space (RF location) and features (function) (Fig. 1A;
“Factorized readout”). This approach required relatively strong L1 regularization to constrain the RF.
More recently, Lurz et al. [51] further simplified the problem by learning only an (x, y) coordinate,
representing the mean of a Gaussian for the receptive field location, as well as a vector of feature
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Figure 1: A. Model architecture: The models used in our study are separated into a core learning a
non-linear feature representation shared across neurons, and a neuron specific linear readout. In our
case, the core is a rotation-equivariant core, i.e. each learnt feature f is analytically rotated n times by
360/n degrees, resulting in f ·n output channels. We apply batch norm on the learnt feature channels
f only and do not learn scale and bias parameters in the core’s last layer, as this would interfere with
the readout regularization. Two commonly used linear readouts are factorized and Gaussian readout.
The factorized readout learns spatial weights accounting for neuron’s receptive field position and
feature weightings – the neural embeddings. The Gaussian readout replaced the spatial weights by
sampling receptive field positions from a Gaussian and at inference time samples the Gaussian’s
mean. B. Readout alignment: To yield rotation invariant neural embedding clusters, we align the
orientations of the embedding vectors by cyclically rotating the elements in the embedding vectors
to minimize the sum of pairwise distances between the rotated embeddings [46].C. Our pipeline:
For each model architecture and training configuration we train 3 models with different parameter
initialization seeds. We orientation-align their embeddings, cluster them, and eventually compute all
model pair-wise ARIs.

weights (Fig. 1A; “Gaussian readout”). This removed the necessity for strong L1 regularization.
Current state-of-the-art models use Gaussian readout with weak or no regularization [60, 64, 67].

Functional properties. Previous work verified these model in vivo [37, 47, 58, 67, 68]. There is
a long history of work investigating neuronal functional properties experimentally, beginning with
Hubel and Wiesel (1962) [1] who showed bar stimuli to cats and found that many neurons in V1 are
orientation selective. Since then, a number of studies showed that many V1 neurons are – in a linear
model approximation – optimally driven by a Gabor stimulus of specific orientation, size, spatial
frequency, and phase [6, 20, 32, 40]. Later, non-linear phenomena were investigated, such as surround
suppression and cross-orientation inhibition. Neurons that are surround suppressed can be driven
by stimulating their receptive field, while an additional stimulation of their surround reduces neural
activity. Interestingly, only stimulating the surround would not elicit a response. Cross-orientation
inhibition reduces neural activity of some neurons if a neuron’s optimal Gabor stimulus is linearly
combined with a 90 degrees rotated version of that Gabor stimulus, forming a plaid [3, 5, 7, 8, 10, 14,
17]. Recently, such experiments were performed in silico with neural predictive models, allowing for
large-scale analysis of neuron’s tuning properties without experimental limitations [53, 59].

Network pruning. While modern deep neural networks are typically highly overparameterized, as
this simplifies optimization [38, 50, 52], overparametrization poses a problem for reproducibility of
neural embeddings: model training might end in various local optima that leads to different neuronal
representations even if model outputs and predictive performance are similar. Prior work has shown
that learned deep neural networks can be pruned substantially: Frankle and Carbin [34] showed
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that up to 80% of weights can be removed without sacrificing model performance. Further work
investigated various pruning strategies. For instance Li et al. [29] pruned CNN channels based on
their L1 norm, Luo and Wu [30] used entropy as the pruning criteria, and various other criteria were
studied [24, 27, 31]. Interestingly, a later study showed that model performance is relatively robust
against the specific pruning strategy used [35].

3 Data and model architecture

Data. We used the data from the NeurIPS 2022 Sensorium Competition for our study [60]. This
dataset contains responses of primary visual cortex (V1) neurons to gray-scale natural images of
seven mice, recorded using two-photon calcium imaging. In addition the mice’s running speed, pupil
center positions, pupil dilation and its time-derivative were recorded.

Model architecture. Our model (Fig. 1) builds upon the baseline model from the NeurIPS 2022
Sensorium competition [60]. Similar as the baseline model, our model includes the shifter sub-
network [36] to account for eye movements and correct the resulting receptive field displacement. We
also concatenate the remaining behavioral variables to the stimuli as the input to the model [56, 60].
For the model core, we use a rotation-equivariant convolutional neural network, roughly following
earlier work [33, 46, 59]. Compared to this prior line of work, our model includes an additional
convolutional layer (as the dataset is larger). It consists of four layers with filter sizes 13, 5, 5, and 5
pixels. In all layers, we use sixteen channels and eight rotations for each of the channels, which results
in 128-dimensional neuronal embeddings. The details of model and training config are provided in
Appendix A.1. For the readout, we use both the factorized readout and the Gaussian readout (Fig. 1A).
The factorized readout has been used in prior work on functional cell types [46, 59]. As it does not
support the shifter network, this version of the model cannot account for eye movements.

4 Methods

Training. Following prior work [28, 33, 36, 47, 53, 58, 60, 64, 66], we trained the model minimizing
the Poisson loss Lp = N−1

∑N
i=1(r̂

(i) − r(i) log r̂(i)) between predicted r̂(i) and observed r(i) spike
counts for all i = 1, ..., N neurons, as it is oftentimes assumed that neuron’s firing rates follow
a Poisson process [15]. For factorized readouts we add a L1 regularization of the readout mask
and embeddings to the loss, i.e. L1 =

∑N
i=0 γ (

∑mask
i,j |mij | +

∑embedding
k |wk|) for spatial mask

m, embedding w, and regularization coefficient γ, in line with previous work [28, 33, 39, 46,
53, 59]. As the Gaussian readout selects one spatial position, the L1 penalty term reduces to
L1 =

∑N
i=0 γ

∑embedding
k |wk|. Thus, for both models the total loss becomes Loss = Lp + L1. For

the factorized readout γ is typically chosen to maximize performance (Fig. 6), while the choice of γ
for Gaussian readouts is the subject of this paper.

Evaluation of model performance. Following earlier work [21, 33, 36, 47, 53, 60, 64, 66],
we report model’s predictive performance using Pearson correlation between each measured and
predicted neural activity pair across images on the test set.

Evaluation of embedding consistency. Assessing how “consistent” neuronal embeddings are
across model architectures and initializations is a non-trivial question. They will naturally differ
across runs in absolute terms, because core and readout are learned jointly. In the context of
identifying cell types, we are interested in the relative organization of the embedding space: Will
the same sets of neurons consistently cluster in embedding space? To address this question, we use
clustering and evaluate how frequently pairs of neurons end up in the same group by computing the
adjusted rand index (ARI, [4]). The ARI quantifies the similarity of two cluster assignments X and
Y :
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Here, ai is the number of data points in cluster i of partition X , bj is the number of data points in
cluster j of partition Y , nij is the number of data points in clusters i and j of partition X and Y ,
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respectively, and n is the total number of data points. The ARI is invariant under permutations of the
cluster labels. It is one if and only if the two partitions match exactly. It is zero when the agreement
between the two partitions is as good as expected by chance and, hence, can be negative [61].

For clustering, we follow the rotation-invariant clustering procedure (Fig. 1B) introduced by
Ustyuzhaninov et al. [46] and then cluster the aligned embeddings with k means. As we do not know
the true underlying number of clusters, we explore a range of k = 5 up to k = 100 clusters, which
covers the typical amount of cell types suggested in various works and modalities [41, 42, 45, 59].

To visualize the neuronal embeddings, we use t-SNE [16] using the recommendations of Kobak and
Berens [43]. We use a perplexity given by 1% of the size of the dataset and set early exaggeration to
15. To avoid visual clutter, we plot a randomly sampled subset of 2,000 neurons from each of the seven
animals in the dataset. We use the same neurons across all ARI experiments and t-SNE visualizations.
The results do not depend on the specific cluster consistency metric used (see Appendix A.9). We
assessed the credibility of t-SNE visualizations in Appendix A.10.

Neuronal tuning properties. Unlike the embeddings, which were not yet biologically validated,
the predicted activity from our models has been consistently verified in vivo across several studies
[47, 58, 59, 68]. By focusing on predicted activity, we leverage the stability and biological relevance
of these outputs and relate our findings to real-world scenarios. Specifically, we investigated the
predicted neural activity to parametric, artificial stimuli that are known to yield interesting phenomena
and were used extensively in biological experiments (see Section 2).

To quantify neuron’s tuning properties, for phase or orientation tuning, we use the parameters of the
optimal Gabor and change only the phase or orientation to create a set of new Gabors. We feed this
set of stimuli through the model and fit sinusoidal functions to the stimulated response curve, namely
f(α) = A sin(α+ ϕ) +B for the phase sweep. For the orientation sweep, rotating the Gabor-based
stimuli by 180-degrees will lead the same stimulus, accounted for by the additional factor of two
when fitting f(α) = A sin(2α+ ϕ) +B to the stimulated responses. We define the corresponding
tuning indices as the ratio of the fitted amplitude A to the mean B of the curve.

For cross-orientation inhibition we added an optimal Gabor and its orthogonal copy and stimulated the
tuning curve by varying the contrast of the orthogonal Gabor. Analogically, for surround suppression
we varied the size and the contrast of a grating based on the optimal Gabor’s parameters. To
quantify both indices, we followed [11, 53] and saved the highest model prediction r̂max. Next, we
computed the according tuning indices as 1− r̂supp/r̂max, where r̂supp corresponds to the highest
suppression/inhibition observed. See Appendix Section A.2 for parameter details.

We compute tuning index consistency across three trained models only differing in their parameter
initialisation before fitting. Specifically, we compare their similarity by the normalized mean absolute
error NMAE(x, y) =

∑neurons
i ((|xi − yi|)/(|xi − x̄|)) where x and y are tuning indices for

different model fits and x̄ denotes the mean across neurons.

Optimal Gabor search. All tuning properties investigated in our paper are based on optimal Gabor
parameters. Previous work [33, 53, 59] brute-force searched the optimal stimulus. Since their models
relied on the factorized readout which could integrate over multiple spatial input positions, they
had to show Gabor stimuli of various properties at all spatial input positions. Thus, they needed to
iterate through millions of artificially generated Gabor stimuli for each neuron. Here, we introduce
a technical improvement upon their work significantly speeding up the optimal Gabor search for
Gaussian readouts: as this readout type selects only one spatial position per neuron it is sufficient
to limit the presented stimulus canvas size to the model’s receptive field size. This significantly
decreased the canvas size from 36 × 64 = 2, 304 to 25 × 25 = 625 input pixels, leading to an
approximately 3.7-fold speedup. Additionally, our improved approach reduces the number of floating
point operations in the model’s forward pass, further benefiting the computation time. Another
important detail is that for the optimal Gabor search and tuning curves experiments we completely
ignored the learnt neuronal position as there was only one position to choose. For all in silico
experiments, we removed models’ shifter pupil position prediction network [36], as pupil position
only impacted the spacial position selection, which is now limited to a single pixel. All other behavior
variables we set to their training set median values, following [56, 67].
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Figure 2: A: Model performance: correlation between predicted and observed neuronal response.
B–F: T-SNE projections of the embeddings from differently regularized models. All models used
seed = 42. G: The histogram of weights before alignment from different models. Unregularized
weights (γ = 0) are crucially different, while γ = 50 and γ = 100 are close to the factorized
readout’s distribution. γlognorm = 10 is not as sparse as the factorized one. H: Example of ‘adaptive‘
regularization for the factorized mask. The “mask” is a 2D matrix, selecting a “receptive field” from
the latent space and the “embedding” is a linear vector representing a learned neuron function. Both
are weights learned in the readout. In the top, the mask learnt is much smaller, hence, regularizing a
neuronal embedding is more important to reduce the L1 penalty, while in the bottom we can keep the
neuronal embedding less sparse; its impact is smaller as the mask is bigger. I: Adjusted rand index
(ARI) for clustering embeddings using k-means. We take embeddings from models trained with
different seeds, cluster them and compute ARI between the clusterings. Note that even clustering
the same embeddings twice with different clustering initializations will result in ARI < 1 (see
Appendix A.4).

5 Results

From factorized to Gaussian readouts. We start with our observation that the structure of the
neuronal embeddings depends quite strongly on the type of readout mechanism employed by the
model (Fig. 2). Earlier studies employing the factorized readout reported clusters in the neuronal
embeddings space [46, 59] and suggested that those could represent functional cell types (Fig. 2B).
However, for more recent models with a Gaussian readout [51, 60] this structure is much less clear
(Fig. 2C), although these models exhibit substantially better predictive performance (Fig. 2A). This
vizualization difference was also evident in quantitative terms: Clustering the neuronal embeddings
led to significantly more consistent clusters for the factorized readout than for the Gaussian readout
(Fig. 2I; red vs. blue), independent of the number of clusters used.

We hypothesized that this difference might be caused by the L1 regularization in earlier models,
which could reveal the structure in neuronal function better and lead to more consistent embeddings.
Indeed, the weight distribution for the factorized model was much sparser compared to the Gaussian
readout (Fig. 2G). Increasing the L1 regularization indeed resulted in more structured embeddings –
at least qualitatively (Fig. 2D,E) and in terms of the distribution of embeddings (Fig. 2G; pink and
green). It also came with a drop in predictive performance comparable to that of the factorized readout
(Fig. 2A). However, somewhat surprisingly, it did not lead to more consistent cluster assignments
(Fig. 2I; pink and green). This result suggests that the structure that emerges for the Gaussian readout,
arises somewhat trivially by very aggressively forcing weights to be zero due to the strong L1 penalty,
but this does not happen in a consistent way across models, therefore not improving the consistency

6



0 20 40 60 80 100
adaptive

0.32

0.34

0.36

0.38

V
al

id
at

io
n 

sc
or

e

= 0.5
= 0.1

0.0 0.5 1.0 1.5 2.0
Learnt values

100

101

102

103

104

W
ei

gh
ts

 d
is

tr
ib

ut
io

n

20 40 60 80
Number of clusters

0.1

0.2

0.3

0.4

A
R
I

= 0.1 = 50

= 0.1 = 30

= 0.1 = 10

= 0.1 = 1

= 0.5 = 50

= 0.5 = 30

= 0.5 = 10

A B C

Figure 3: Selection of adaptive regularization hyperparameters. A: Validation correlation
of model with σ = 0.1, σ = 0.5 and different overall regularization strength. For smaller σ the
performance decreases more fast. B: Distribution of β values learnt. As expected, for smaller σ the
distribution is closer to LogNorm and as we regularize both embeddings and β-s, the learnt β-s are
smaller for bigger σ. This also explains, why the performance in panel A decreases slower, as the
model is less regularized. C: ARI for different hyperparameters. We see that for σ = 0.5 ARI for
γ = 10 and γ = 30 are mostly equivalent and γ = 50 is slightly worse. The ARIs trend is more
visible on σ = 0.1. It seems like the better the predictive performance, the better is the ARI curve.
As the performances for γ = 10, γ = 15, and γ = 20 are identical within std, we choose the least
regularized model to introduce less bias.

of embeddings across runs. Note that the factorized readout is always L1-regularized – it does not
work without it [28] and is very sensitive to the choice of regularization strength (Appendix A.3).
This is also why we show only a single gamma value in the table.

Adaptive regularization improves consistency of embeddings while maintaining predictive
performance. We next asked what could explain the difference in embedding consistency between
factorized and Gaussian readout. One important difference is that the factorized readout jointly
regularizes the mask and the neuronal weight. As a consequence, the factorized readout could reduce
the L1 penalty on the neuron weights by increasing the size of its receptive field mask (Fig. 2H). As a
consequence, the neuronal weights may not be regularized equally.

Motivated by this observation, we devised a new adaptive regularization strategy for the Gaussian
readout, where the strength of the L1 regularizer is adjustable for each neuron:

Lreadout
1 = γ

N∑
n=0

βn||wn||1 (2)

Here, γ controls the overall strength of regularization as before. The variables βn are learned
coefficients for neuron n, onto which we imposed a log-normal hyperprior p(βn) ∼ LogNormal(1, σ),
achieved by adding the according loss term Lβ = 1/σ2

∑N
n=0 log(βn).

This adaptive regularization procedure introduces an additional hyperparameter, σ, that controls how
far each neuron’s regularization strength is allowed to deviate from the overall average controlled
by γ. We found that for relatively large σ = 0.5, the model essentially learns to down-regulate all
neurons’ weights (Fig. 3B) and falls back to a very mildly regularized mode countering the effect of
increasing γ (Fig. 3A; blue). When constraining the relative weights more closely around 1 (σ = 0.1),
the model indeed learns to redistribute the regularization across neurons. The average weights remain
closer to 1 (Fig. 3B) and changing the overall regularization strength γ does have an effect (Fig. 3A).

The optimal model chosen by this adaptive regularization strategy (γ = 10, σ = 0.1) indeed performs
well on all dimensions we explored: First, its predictive performance matches the state-of-the-art
model with the Gaussian readout (Fig. 2A). Second, its learned neuronal embeddings are more
consistent that those of both factorized and uniformly regularized Gaussian readout (Fig. 2I; purple).

Pruning models post-hoc improves consistency of neuronal clusters. We saw that the consistency
of neuronal clusters could be improved by adaptive regularization of the readout. However, in absolute
terms the consistency is still not very high. One potential reason for this could be that deep models
are typically highly overparameterized [34]. As a result, several of the feature maps of the core

7



2.5 5.0 7.5 10.0 12.5 15.0
Channels left

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

V
al

id
at

io
n 

Sc
or

e

20 40 60 80 100
Number of clusters

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
R
I

= 0
= 50
= 100
= 0, 7ch

= 50, 11ch
= 100, 12ch

factorised
adaptive= 10

0.30 0.32 0.34 0.36 0.38
Validation Score

0.10

0.15

0.20

0.25

0.30

A
R
I

non-pruned
pruned
adaptive= 10

factorised

A B C

Figure 4: Pruning. A: Validation score of the pruned models with different regularization. Lines:
average across three models. Shaded areas: standard deviation across three models. Colors: model
type and regularization (see legend in B). Stars: selected model. Crosses: non-pruned model with 8
channels. B: ARI for non-pruned and models selected after pruning (stars from panel B). Pruning
consistently improves consistency of clustering measured by ARI. Adaptive regularization readout
pruning is shown in A.11. C: ARI-performance trade-off (20 clusters). Ideally we want high ARI and
high performance.

could be redundant, resulting in multiple ways to represent the same neuronal function. In this case,
two neurons with the same function could have highly different embeddings. We therefore now
investigate whether pruning trained networks could lead to more consistent neuronal embeddings
across model fits. We took the following approach to pruning models:

1. Train a model as usual.
2. In the trained model, mask one core output convolutional channel and compute performance.
3. Remove the channel for which masking decreases model performance the least.
4. Finetune the model on the reduced core.
5. Repeat steps 2–4 until only one channel is left.

In agreement with prior work on pruning neural nets [34], we observe a slight performance improve-
ment during first pruning iterations and find that 1/3 to 1/2 of the convolutional channels can be
removed without affecting performance (Fig. 4A). We selected the smallest number of channels
before the performance starts to decrease. We also observed that for the more regularized models
more channels should be kept after pruning (Fig. 4A), which makes sense as severe L1 regularization
is also a feature selection mechanism. Pruning noticeably improved the consistency of clustering
neurons for models with the Gaussian readout (Fig. 4B), but interestingly only for the regularized
models. However, this improvement in consistency still comes at the cost of predictive performance.
Overall, the (non-pruned) model with the adaptive readout achieves the best consistency–performance
trade-off (Fig. 4C, purple).

Neuronal tuning properties. To explore to how improving reproducibility of neural embeddings
impact neurons’ actual behavior, we examined the predicted neurons’ tuning with respect to four
known properties of V1 neurons: orientation tuning, phase invariance, surround suppression and
cross-orientation inhibition (see Section 4 for details). We chose these properties because they are
well-established and widely studied nonlinear phenomena of V1 neurons [12, 17]. We performed
in-silico experiments showing classical grating-based stimuli and computed neuronal tuning curves
from the predicted model responses. Note that the neurons have not seen any of these stimuli during
the in-vivo experiment. Hence, our models have not been explicitly trained on these stimuli. Thus,
we cannot compare these predictions against ground truth. However, we can evaluate qualitatively
whether the predicted tuning curves reproduce what is known from biology and we can quantify
how consistently these phenomena are expressed across predictive models that just differ in their
initialization (in an ideal world tuning curves would be identical across seeds).

We found that different readouts gave rise to substantially different tuning properties for the same
neurons (Fig. 5, top row; one example neuron’s tuning curves). Strong uniform regularization of
Gaussian readouts (γ = 50 and γ = 100) made neuron’s responses highly biased towards their
mean response, while the non-regularized Gaussian model exhibited the biggest responses amplitude,
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Figure 5: Impact of regularization on neurons’ tuning properties. In silico analysis of neural
tuning properties Top: Example of tuning curves for a neuron well-predicted by the model. Bottom:
Population distribution of tuning indices across neurons.

followed by the adaptively regularized Gaussian and the factorized model, which both exhibit
moderate shrinkage effects.

For each of the four response properties, we computed a tuning index that measures the degree of
modulation. As tuning indices measure the effect size, tuning curves with small amplitude and high
baseline lead to high phase invariance, and low orientation tuning, surround suppression, and cross-
orientation inhibition tuning indices (distributions in Fig. 5 bottom). Non-regularized Gaussian and
factorized models exhibited similar distributions. This result suggests that even though regularization
leads to sparser and less overfitted embeddings, it also removes important functional properties
due to reduced expressive power. The adaptively regularized models stayed in between of the non-
regularized and highly regularized models, as it puts different regularization weights across various
neurons, effectively combining both modes. Thus, it keeps the overall regularization coefficient γ
low, offering a good combination of both viable tuning properties and preserved consistent clustering.

6 Discussion

We performed several important reproducibility checks for the commonly used readout mechanisms
of predictive models of the visual cortex. We found that the older factorized readout led to a more
structured embedding space, more consistent neuronal clusters and more reproducible in-silico tuning

Readout γ Response Cross-Ori. Phase Orientation Surround
Correlation ↑ Inhibition ↓ Invar. ↓ Tuning ↓ Suppr. ↓

Factorized 0.003 0.81 0.52 0.54 0.50 0.78
0 0.76 0.72 0.69 0.69 0.85

Gaussian 50 0.86 1.10 0.92 1.03 1.26
100 0.82 0.91 0.83 0.96 1.04

Gaussian adaptive 10 0.85 0.81 1.02 0.81 0.94
Gaussian pruned 0 0.85 0.72 0.71 0.79 0.92

50 0.86 0.91 0.91 0.99 0.95
100 0.83 0.96 0.82 1.02 0.99

Table 1: Consistency of model predictions and tuning properties across model fits. We compared
pairwise correlations of response predictions across three model fits (↑: higher is better) and the
normalized mean absolute error (NMAE; Sec. 4) across tuning indeces (↓: lower is better).
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curves than the more recent, performance-optimized Gaussian readout. The structure of the embed-
ding space was primarily related to the L1 regularization of the weights. By equipping the more
recent Gaussian readout with a novel, adaptive L1 regularization, we could recover a similarly struc-
tured embedding space and achieve more consistent neuronal clusters without sacrificing predictive
performance. However, all of the models with a regularized Gaussian readout exhibited strongly
biased neuronal tuning curves, calling into question how faithfully they can represent neuronal
tuning beyond experimentally verified properties such as maximally exciting stimuli [37, 47, 62,
63, 68]. Rigorous, biologically meaningful evaluation remains an open question, but the presence
of non-linear phenomena (tuning curves) is crucial. While current methods focus on explained
variance/correlation, models with similar scores can differ in explainability [53]. To our knowledge,
we conducted state-of-the-art evaluations for biological meaning by testing the tuning curves.

An important goal of models is that they should be resistant to small hyperparameters changes and
different initial conditions in order to lead to meaningful biological conclusions. The comparably
low consistency of state-of-the-art models across seeds suggests that future research is required to
improve the consistency of models, potentially by improving identifiability or improved training
paradigms that find robust solutions.

One limitation of our work is that we focused on one core architecture (rotation-equivariant CNN). We
do not have a reason to believe that other core architectures would behave fundamentally differently.
One sanity check with a regular CNN core (Appendix A.6) yielded similar results. Whether the same
holds for Vision Transformer cores [64] remains to be checked.

In conclusion, our work (1) raises the important question how reproducible current neuronal predictive
models are; (2) suggests a framework to assess model consistency along orthogonal dimensions
(clustering of neuronal embeddings, predicted responses and tuning curves); (3) provides a technique
to improve the consistency of the clusters with keeping the predictive performance high.
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A Appendix

A.1 Model config and Training pipeline

We stayed close to the Willeke et al. [60] benchmark with list of the following changes. For the
model, we used rotation equivariant model with 16 hidden_channels and 8 rotations per chan-
nel, which resulted in the total readout dimensionality of 128.grid_mean_predictor was turned-off,
input_kern was 13 and hidden_kern was 5, to make models closer to Ecker et al. [33] and Ustyuzhani-
nov et al. [59]. gamma_input, corresponding to the input Laplace smoothing was set to 500 and
gamma_hidden, applying Laplace smoothing over the first layer of convolutuonal kernels was set to
500,000, depth_separable=False For the training, we also used early stopping and learning rate
scheduling with 4 steps. The only differences were that we used batch_size=256 instead of 128 and
initial learning rate of 0.005 instead of 0.009.

A.2 Parameters of optimal gabor and tuning curves sweep

For the optimal Gabor search, we followed Burg et al. [53] and generated the Gabors with 6 contrasts
steps and 8 sizes steps. The maximum input value for the stimuli in the dataset was 1.75, which we
used for the maximum contrast and the minimal contrast we set to 1% of the maximum. The stimuli
diameter sizes were between 4 and 25. Minimum spacial frequency was 1.3−1 · 1.3i, i = 0, 1, ..., 10.

For orientation tuning 24 orientations equidistantly partitioning the interval between 0 and π were
used with 8 phases and maximum response acrross 8 phases was taken for each orientation.

For phase invariance we created stimuli for twelve equidistant phases between 0 and 2π.

For surround suppression we used the following stimulus creation parameters

p = {
’total_size’ : 40,
’min_size_center’ : 0.05,
’num_sizes_center’ : 15,
’size_center_increment’ : 1.23859,
’min_size_surround’ : 0.05,
’num_sizes_surround’ : 15,
’size_surround_increment’: 1.23859,
’min_contrast_center’ : 2,
’num_contrasts_center’ : 1,
’contrast_center_increment’ : 1,
’min_contrast_surround’ : 2,
’num_contrasts_surround’ : 1,
’contrast_surround_increment’ : 1

}

For cross-orientation inhibition 9 contrasts and 8 phases were used to create the combinations of
the optimal Gabor and its orthogonal version.

A.3 Choice of regularization for the factorized readout

For factorized readouts severe L1 regularization is design necessity because mask and readout are
regularized jointly. The idea of the mask is to learn the receptive field, ideally 1 ’pixel’ only, so
the strong regularization is needed and tightly connected with the performance. We select the
regularization based on the best performance - γ = 0.003 (see Fig. 6).
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Figure 6: Regularization strength impact on performance for factorized readouts

A.4 ARI stability - 1 model and 3 seeds for k-means
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Figure 7: Here for the original and pruned models we took the model trained in 1 seed (seed = 101)
and performed the clustering using 3 different seeds in k-Means and computed ARI across different
partitions. As k-Means is initialisation dependent we can see that in case of non-clear clusters even
on the same vectors the ARI values could be very low. As we do not know the true amount of clusters,
we tried clusters in range [5, 90] with step = 5.

A.5 Selection of channels during pruning

To select the amount of channels, we train same models with 3 different starting seeds and estimate
the mean barρ and σρ of performance on each pruning stage. accounting for std using the following
logic: ρ̄i − σρi

<= ρ̄i+1 − σρi+1
where i is the amount of channels pruned.

A.6 Motivation for rotation equivariant core and non-equivariant control

The motivation behind the rotation-equivariant core is that V1 neurons are orientation selective and
neurons with all preferred orientations exist. Thus, any feature is likely to be extracted in multiple
rotated versions [33, 46, 59]. To control that our results are not specific to the rotation-equivariant
core, we performed a few control experiments with a non-rotation-equivariant CNN core (Fig. A.6):
The general pattern of results is the same: the adaptive regularization improves consistency of
clustering and so does pruning feature maps.
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Figure 8: Non-rotation equivariant CNN with
128 channels ((rotation equivariant core with
16 channels and 8 rotations would have "128"
channels). Adaptive regularization outper-
forms both regularized Gaussian and factor-
ized models in terms of ARI. In both plots -
red is factorised, purple is adaptive Gaussian,
blue is non-regularized Gaussian, magenta is
regularized Gaussian.
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Figure 9: Pruned non-rotation equivariant
CNN core with 16 channels (we decreased
the amount of channels to make the computa-
tions feasible). We see that pruning improves
ARI and adaptive model is still better then
regularized Gaussian and factorized models.
Though, changing the dimensionality might
require additional research to scale regulariza-
tion strength.

A.7 Table with correlations for shifter turned on

Readout γ Responses Correlation ↑
0 0.65

Gaussian 50 0.80
100 0.75

Gaussian 0 0.80
pruned 50 0.81

100 0.77
Table 2: This table is same logic as Table 1 but here for the Gaussian readouts the shifter was not used.
We can see that with grid mean predictor undefined the shifter actually improves the consistency of
responces 1, while pruning still helps, especially for the non-regularized models. However, turning
off the shifter causes some displacements in the receptive fields, probably in different directions. This
effect is much more present, when grid mean predictor is on as it can compensate for the shifter
displacement even more.
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A.8 Optimal Gabors
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Optimal Gabors of non-pruned models

Figure 10: Optimal Gabors for non-pruned models. Columns are per neuron, rows are per model, for
each of three regularization strengths three seeds were trained. We can see that the optimal Gabors
selected are somewhat consistent, however, not ideally same. More regularized models also tend to
select Gabors with smaller sizes.

17



Ga
m

m
a=

0
se

ed
=4

2

Neuron
1770

Neuron
2566

Neuron
5476

Neuron
5968

Neuron
6114

Neuron
6886

Neuron
6890

Neuron
7736

Neuron
7740

Neuron
7801

Ga
m

m
a=

0
se

ed
=1

01
Ga

m
m

a=
0

se
ed

=7
60

7
Ga

m
m

a=
50

se
ed

=4
2

Ga
m

m
a=

50
se

ed
=1

01
Ga

m
m

a=
50

se
ed

=7
60

7
Ga

m
m

a=
10

0
se

ed
=4

2
Ga

m
m

a=
10

0
se

ed
=1

01
Ga

m
m

a=
10

0
se

ed
=7

60
7

Optimal Gabors of pruned models

Figure 11: Optimal Gabors for pruned models. Columns are per neuron, rows are per model, for
each of three regularization strengths three seeds were trained. Compared to Fig. 10 we see that
for γ = 0 the model became much more consistent across seeds, suggesting that the model was
originally overparametrised. Moreover, pruned γ = 0 models now select optimal Gabors, which
are close to the non-pruned majority choice across models. While this is not true for the more
regularized models, they now disagree more between seeds and tend to choose Gabors with higher-
frequencies, which is not a biologically plausible choice. This is probably happening due to too
severe regularization. However, this explains why there is a bigger differences between the tuning
indexes for more regularized models. The indexes are computed on modifications of the optimal
Gabors, and if the Gabors are different the responses and indexes would be different as well.

A.9 Other clustering consistency metrics

ARI is the most popular metric for pairwise cluster comparisons [19], which we think is more
appropriate than set-based methods. To ensure we are not missing anything, we also considered
alternative metrics such as Fowlkes-Mallows, completeness, homogeneity, and v-measure (a particular
case of mutual information) and repeated the analysis. The results show the same ordering of methods
A.9. Do the metrics reflect biological significance? We reasoned that if neuronal embeddings
determine the response function of a neuron in the model, then two neurons that have similar
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embeddings under one instance of a model, should also have similar embeddings under another
instance of this model. Therefore, measuring similarity of clustering is a reasonable proxy.
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Figure 12: Fowlkes-Mallows index for es-
timating the cluster consistency. It shows
same trends as ARI. In both plots - red is fac-
torised, purple is adaptive Gaussian, blue is
non-regularized Gaussian, magenta and green
are regularized Gaussian.
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Figure 13: V-measure index for estimating
the cluster consistency. The models order
is same as ARI, though it is biased towards
bigger amount of clusters due to the set-based
nature.

A.10 t-SNE reliability

Please note that we used t-SNE only for visualization purposes to show the presence of the density
modes in the data. While t-SNE plots are indeed not sufficient to make any conclusions about the data,
many papers showed that they are a good tool for exploratory data analysis [72] and we additionally
checked trustworthiness metric [18] after performing t-SNE. Trustworthiness shows higher scores for
more regularized models with varying numbers of neighbors confirming the presence of the density
modes (Fig. 14).

A.11 Adaptive regularization pruning

It turns out that pruning does not further increase ARI for the adaptively regularized model (Fig.
15). Thus, regularizing neurons in a non-uniform fashion is already effective enough that additional
pruning does not improve it. We speculate that this is because some noisy neurons become sufficiently
regularized without pruning, while before such regularization was only achieved with pruning and
regularization combined.

A.12 Computational resources

All of the experiments were performed on a local infrastructure cluster with 8 NVIDIA RTX A5000
GPUs with 24Gb of memory each. 2 models could be trained on a single GPU simultaneously in ≈ 3
hours. Pruning experiment, without parallelization, would take a week. No extensive cpu resources
are required. Optimal Gabor search, without parallelization takes around 12hours for Gaussian
readout model and 3 days for the factorized readout model. We also pre-saved optimal Gabors in
batches to improve the speed, which required ≈ 100Gb of memory.

A.13 Broader impact

Our work is an important step towards obtaining a functional cell types taxonomy for the primary
visual cortex neurons. Such classification can significantly improve our understanding of the brain
and help on the way to understand the mechanisms and develop the treatment for different neurode-
generative disease.
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sional t-SNE projections. It shows higher
scores for more regularized models, confirm-
ing the presence of the density modes. In
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Introduction provides a clear list of paper contributions
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly admit that nevertheless the improvement was done on ARI, it could
have been improved more. The Discussion section discussed the ponetial acpects we have
not addressed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In appendix there are 2 sections describing the model and training pipeline we
followed and modifications to it. We also report the seeds and neuron ids for the pictures
and the data subsampling procedure when applicable and specific vizualization settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The open source available dataset was used in the experiments. The code will
be public upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have 2 section in the appendix specifying hyperparameters. The data splits
for train-test-validation are fixed in the open version of the dataset we used. We do not
provide the specific ids for 14,000 neurons used for ARI and vizualization because it is
supposed to be generalizable and the specific ids are not important.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The 1-sigma error bars are present in the majority of the plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section ‘Computational resources‘ in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All employers are payed fair. Open accessed data was used. No ethics concerns
are involved in the experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impact section in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the dataset and code used from Sensorium 2022 Benchmark compe-
tition ([60]) and mention the open source ‘neuralpredictors‘ package. Both are publically
available for research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The only new asset is code and it will be available upin publication with
extensive documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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