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Abstract

Improving robustness of the Segment Anything Model (SAM) to input degrada-
tions is critical for its deployment in high-stakes applications such as autonomous
driving and robotics. Our approach to this challenge prioritizes three key aspects:
first, parameter efficiency to maintain the inherent generalization capability of
SAM; second, fine-grained and input-aware robustification to precisely address
the input corruption; and third, adherence to standard training protocols for ease
of training. To this end, we propose gated-rank adaptation (GaRA). GaRA in-
troduces lightweight adapters into intermediate layers of the frozen SAM, where
each adapter dynamically adjusts the effective rank of its weight matrix based
on the input by selectively activating (rank-1) components of the matrix using
a learned gating module. This adjustment enables fine-grained and input-aware
robustification without compromising the generalization capability of SAM. Our
model, GaRA-SAM, significantly outperforms prior work on all robust segmenta-
tion benchmarks. In particular, it surpasses the previous best IoU score by up to
21.3%p on ACDC, a challenging real corrupted image dataset.

1 Introduction

The Segment Anything Model (SAM) [28]] has proven to be a powerful tool for zero-shot image seg-
mentation, exhibiting impressive generalization across unseen objects and images without additional
training. Nevertheless, its performance deteriorates considerably when faced with degraded input due
to noise, blur, low illumination, and adverse weather [8]], as shown in Figure b). This limitation
significantly restricts its use in high-stakes applications such as autonomous driving and robotics.

A seemingly straightforward approach to improving the robustness of SAM is to attach an existing
image restoration module to the front of SAM. However, this typically introduces significant compu-
tational overhead, and often yields suboptimal segmentation performance since image restoration
is optimized to enhance the perceptual quality of images, rather than to improve performance of
segmentation models like SAM [[7, [12] 30} 33,152, 157]]. An alternative strategy involves fine-tuning
SAM entirely on degraded inputs, which, however, demands substantial computational resources and
diminishes its inherent zero-shot generalization capability [8]].

Chen et al. [8] addressed these limitations by introducing anti-degradation modules into SAM; these
modules are trained to refine degraded features by promoting feature-level consistency between a
pair of clean and corrupted images of the same content. Despite effectively enhancing robustness,
their method, dubbed RobustSAM, has a couple of limitations. First, its requirement for paired
clean and degraded images, which cannot be captured by typical cameras, necessitates the use of
synthetic degradations in training, hindering its generalization to real-world degradations. Second,
since RobustSAM aims at learning representations invariant to various degradations, it struggles to
produce representations adapted to the specific degradation affecting the input at hand, restricting
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Figure 1: Overview and example results of GaRA-SAM. (a) Conceptual illustration of GaRA-SAM.
(b) Example results on a real low-light image [S]. GaRA-SAM produces an accurate mask while the
original SAM fails. Note that the restored input is provided for illustrative purposes only; GaRA-SAM
does not perform image restoration.

further performance improvement. These limitations reduce the effectiveness of RobustSAM in
real-world scenarios, where inputs can be degraded by real and previously unseen corruptions.

We found that low-rank adaptation (LoRA) [20] offers a promising foundation for overcoming many
of the previously discussed limitations. By introducing and training lightweight adapters within the
frozen SAM, LoRA improves the robustness parameter-efficiently while preserving the generalization
ability of SAM. Our empirical analysis confirms that SAM incorporating LoRA achieves impressive
robustness without using paired clean and degraded images for training, thus establishing a strong
baseline as is. Nevertheless, our analysis also reveals a key limitation: the fixed rank of the adapters
hinders its effective adaptation to a wide range of corruptions. We found a significant variation in the
optimal rank of the adapters between different corruption types and inputs, underscoring the need for
input-adaptive rank modulation.

Based on this observation, we introduce gated-rank adaptation (GaRA), which is illustrated in
Figure [I[(a), a novel method designed to enhance the robustness of SAM while addressing the
aforementioned limitations. GaRA dynamically adjusts the effective rank of the weight matrix of
each adapter, while being parameter-efficient and not demanding clean-degraded image pairs for
training. Specifically, GaRA decomposes the weight matrix of an adapter into (rank-1) components
and chooses a proper subset of them dynamically according to the input. To achieve this, we introduce
a gating module that predicts a binary vector selectively activating the most appropriate components
for the input. This mechanism allows GaRA to flexibly control both the number and combination of
active components based on the input without any test-time optimization. Consequently, our zero-shot
segmentation model integrating GaRA with SAM, named GaRA-SAM, achieves fine-grained and
input-aware robustification while remaining parameter-efficient.

GaRA-SAM achieves the state of the art on multiple robust segmentation benchmarks [5} 9} 15, 40,
47,1511 550 161]], including both synthetic and real-world corruption datasets. Importantly, and in
contrast to prior work, the design of GaRA-SAM enables training using real-world degraded images
lacking clean counterparts, leading to notable performance improvement on real-world corruption
benchmarks. The main contribution of this work is three-fold:

* Qur extensive analysis reveals the surprising effectiveness of LoRA in robustifying SAM, with its
optimal rank varying significantly across different corruption types and individual images. These
findings suggest a new research avenue for improving robustness of vision foundation models.

* We propose GaRA, a novel method to achieve robust SAM. At its core lies a lightweight and
input-dependent adapter that enables fine-grained and parameter-efficient robustification without
compromising the generalization capability of SAM. Also, GaRA does not require paired clean
and degraded images for training and thus, unlike previous work [8], it can be learned using real
degraded images without their clean references.



* QOur final model, GaRA-SAM, achieves the state of the art across multiple robust segmentation
benchmarks. Notably, it significantly surpasses the previous best IoU score by up to 21.3%p on
ACDC, a challenging real-world corrupted image dataset.

2 Related Work

Robust Segment Anything. SAM [28]] accepts free-form prompts along with an image to produce
relevant masks, showing superior zero-shot generalizability. Despite its success, its robustness against
visual corruptions is questionable [8} 48]]. To improve the robustness of SAM, RobustSAM [S]]
adopts anti-degradation modules to approximate features of clean images. However, it requires clean-
degraded image pairs for training, which are often unavailable in real-world scenarios. Improving
the robustness of vision models with image restoration [[1} 132,43 46| 52] and degradation-specific
techniques [3} 15,130} 144] has also been investigated. AirNet [32] and URIE [52] are universal image
restoration models, but they introduce heavy computational overhead and AirNet targets a better
image quality, not improving performance of visual perception models. LoRA-IR [1]], DA-CLIP [43],
and PromptIR [46]] tackle this by encoding degradation-specific information into prompts. However,
they rely on additional information such as degradation types and textual descriptions, and suffer
from their complex modules and training schemes. Meanwhile, FIFO [30]] and FreD [3]] focus on
extracting fog-invariant features, making their models robust to only foggy scenes. In contrast to
these prior arts, GaRA is an efficient yet effective approach to fine-tuning SAM for improving its
robustness without demanding clean references of degraded images for training.

Low-rank Adaptation. Fine-tuning large-scale pre-trained models introduces intensive overheads
in space and time. To overcome this, various parameter-efficient learning schemes such as prompt
tuning [23} 131} 35 50] and adapter-based fine-tuning [6} [11} 16l 18] 191261136, 45| 60] have emerged.
Among these, LoRA [19] leverages trainable low-rank matrices to catch up with full fine-tuning while
introducing marginal extra learnable parameters. However, fixed ranks of LoRA yield limitations
such as poor generalization in certain tasks [56l 59] and inefficient parameter allocation [4, [63]].
Despite the efforts of previous work to update the ranks during training dynamically [39}/56,163], they
still use fixed ranks at test time and require handcrafted rank selection. In contrast, GaRA learns a
small module that selects and combines appropriate (rank-1) components of a LoRA block, adapting
to individual samples with various visual corruptions even during inference.

Mixture of Experts. While model scaling has been known as an effective and promising way of
constructing a powerful model, training such a model on large-scale datasets [2} 17,24} 29,154,162] is
challenging due to high computational requirements [[14} 49]. To this end, mixture of experts (MoE),
which adopts multiple submodules and considers each as an expert, has gained prominence [14} 21}
38,149, 1581 164]. These submodules are active or inactive using a learnable gating module at both
training and test time, resulting in efficient use of resources and improved training stability. Switch
Transformer [14] sparsely simplifies the MoE paradigm and proposes to select experts sparsely.
AdaMix [58]] injects an MoE adapter consisting of various up- and down-sampling layers into each
transformer layer, both improving parameter-efficiency and performance. Motivated by the prior work,
GaRA first decomposes the low-rank matrices of LoRA into (rank-1) components and considers each
as an expert. Then, a learnable gating module sparsely selects a combination of (rank-1) components
in an input-adaptive manner, enabling adaptation on a per-input basis.

3 Proposed Method

We first describe LoRA as a strong baseline for robustifying SAM in Sec.|3.1} and analyze the impact
of the rank of its adapters on the robustness of SAM to verify our motivation of input-adaptive rank
modulation in Sec. Finally, Sec. [3.3]details GaRA that we integrate into SAM as GaRA-SAM.

3.1 Foundation: Low-rank Adaptation for Robustifying SAM

LoRA [20] is a parameter-efficient adaptation method that imbues a frozen pretrained model with
adaptability using a handful of trainable parameters. It freezes a pretrained weight matrix Wy €
RP*K and introduces trainable low-rank update AW = BA, where B € RP*f and A € REXK
with rank R < min(D, K). The adapted forward pass becomes:

h = Wyx + BAx, €))]
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Figure 2: Impact of the rank in LoRA integrated with SAM. The models were evaluated on LVIS [15]
using point prompts. (a) Performance versus rank under various corruption types. The best rank
varies depending on the corruption type. (b) Comparisons of rank selection strategies. Oracle-Corrupt
chooses the best rank per corruption type, while Oracle-Instance selects the best rank per image. The
outstanding performance of Oracle-Instance suggests the need for input-adaptive rank manipulation.

where x € R¥ is the input and h € RP is the output.

Given its original purpose of parameter-efficient adaptation without compromising generalization,
we argue that LoRA offers a reasonable baseline for improving robustness of SAM against input
degradation. To validate this potential empirically, we evaluated SAM integrated with LoRA for robust
segmentation using point prompts following an evaluation protocol of RobustSAM [8]]. Specifically,
we froze the original weights of SAM, attached low-rank adapters AW to the key, query, and value
projection layers of its image encoder, and trained the adapters with the standard segmentation
loss on degraded images. As demonstrated in Figure 2] SAM with LoRA clearly outperformed
RobustSAM [8]] on the LVIS dataset [[15]], although it does not require clean reference images and the
auxiliary loss the RobustSAM demands.

3.2 Analysis on the Impact of Rank on Robustness

Since different degradations distort different aspects of the input, the level of representation capacity
needed for robustifying SAM varies accordingly, motivating the investigation into the role of LoRA’s
rank. To analyze this, we first evaluated its performance across various input corruptions while varying
the rank. The results in Figure[2a) suggest that the optimal rank varies depending on the corruption
type. We conjecture that more pronounced corruptions lead to more substantial contamination of the
semantic content of the input, and lower-rank adapters are more effective in such conditions since
their restricted capacity forces them to prioritize more essential features for segmentation [42].

To further verify this conclusion, we evaluated SAM with LoRA under two oracle rank modulation
scenarios: selecting the best rank per corruption type (Oracle-Corrupt) and per image (Oracle-
Instance) using ground-truth. Specifically, we first computed IoU scores for all candidate ranks and
selected only the top-performing rank for each corruption type or each image. While Oracle-Corrupt
yielded moderate gains over fixed ranks, Oracle-Instance achieved significantly higher performance,
highlighting the substantial potential of fine-grained, input-adaptive rank selection. These findings
motivate our design of GaRA, which dynamically adjusts the rank per input.

3.3 Gated-rank Adaptation

Our solution for robustifying SAM, termed gated-rank adaptation (GaRA), is designed with three key
properties in mind: parameter efficiency to preserve the generalization ability of SAM, fine-grained
and input-aware robustification, and adherence to standard segmentation learning protocols for ease
of training. These properties are realized by a novel, lightweight adapter that dynamically adjusts
itself based on the input corruption; the architecture of the adapter is depicted in Figure 3] Our
final model, GaRA-SAM, is constructed by integrating these adapters into the key, query, and value
projection layers of the image encoder of SAM, keeping the original SAM weights frozen. Also,
GaRA-SAM is trained solely with the standard segmentation loss computed from degraded images,
without auxiliary learning objectives or paired clean references.
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Figure 3: Adapter architecture of GaRA and comparison to LoRA. GaRA leverages hierarchical
gating for both coarse and fine control over the adaptation process. First, gspace selects between the
higher-rank and lower-rank spaces based on the input. Then, the corresponding gating module g or
g" predicts a binary vector z'? or z” to activate a subset of (rank-1) components tailored to the input.
These active components are composed to form the final update matrix for adaptation.

GaRA introduces a gating strategy to modulate the adapter’s rank based on the input. To this end,
we reinterprete the update matrix of LoRA, i.e., AW = BA, as a composition of R (rank-1)

components: AW = Zf’zl bia;-r, where b; € RP and a; € R¥ are the i-th column and row of B
and A, respectively. We assume that R is large enough so that the model has access to a rich set of
(rank-1) components, enabling GaRA to flexibly choose a relevant subset depending on the input.

GaRA employs a hierarchical gating strategy that provides both coarse and fine control over the
adaptation process. The adapter first coarsely selects between lower- and higher-rank spaces based
on the input, and then, within the selected rank space, the gating module finely determines the rank
of the adapter by activating a subset of the (rank-1) components appropriate for the input. The coarse
rank space selection separates the adapter’s components into two exclusive sets, tailored to different
degraded inputs demanding different representation capacities, to mitigate potential conflicts between
the sets and further improve performance. Meanwhile, the fine-grained gating enables flexible and
input-specific composition of the update matrix, supporting efficient and expressive adaptation to
diverse corruptions. Below we elaborate on this gating process.

Gating 1: Rank Space Selection. We explicitly divide the adapter into two distinct rank spaces,
a lower-rank set {a]’, b}};, and a higher-rank set {af', b}7%, with r; < ry < K, where K
denotes the input feature dimension, and r, and r g indicate the maximal ranks of the lower-rank
and higher-rank spaces, respectivelyp_-] To choose between these rank spaces, we employ a binary
gating module gspace, Which takes as input the intermediate feature f(x) computed from x and outputs
a binary gating variable zgpac. € {0, 1}, where 0 and 1 indicate the lower- and higher-rank space,
respectively. This module consists of a two-layer MLP followed by the Gumbel-Sigmoid, allowing
differentiable binary decisions during training. The gating process is formally expressed as:

Qspace = MLPspace(f(X))a (2

where pace 18 the gating logit computed from the input feature. To enable backpropagation despite
the binary nature of the binary gating variable zgace, we apply the Gumbel-Sigmoid relaxation [22]:

1
éspace =0 <T(C‘fspace + G)> ) (3)

where G ~ Gumbel(0, 1) is a noise sampled during training, ¢ is the sigmoid function, and 7 is
a temperature parameter controlling the sharpness of the sigmoid. During training, we apply hard
thresholding in the forward pass as zspace = ]I[éspace > 0.5] while using the continuous value Zspace O
compute gradients in the backward pass. At test time, we discard the noise and compute the gate:
Zspace = 1[0 (tspace) > 0.5].

'We use the terms ‘lower-rank’ and ‘higher-rank’ in a relative sense. Both 71, and r are substantially
smaller than the full feature dimension K, and thus still lie in the low-rank regime.



Gating 2: (rank-1) Component Selection. Within the selected rank space, the associated gating
module predicts a binary vector identifying (rank-1) components suitable for the input:

2l = g (f(x) € {0,1}7, 2 =" (f(x)) € {0,1}". )

where g~ (-) and g% (-) denote the gating modules for the lower-rank and higher-rank spaces, respec-
tively. Each gating module consists of a three-layer MLP whose final output is a real-valued logit
vector, followed by Gumbel-Sigmoid operations to obtain binary masks:

ol =MLP(f(x)), off =MLPy(f(x)). 5)

To enable gradient-based learning, we apply the Gumbel-Sigmoid relaxation to each element of the
logit vectors [22]:

2¢—a<71_(ai+Gi)), i=1,...,rporrgy, 6)
where «; is the i-th logit from a” or af, G; ~ Gumbel(0, 1) is the corresponding noise sample, 7 is
a temperature parameter, and o is the sigmoid function. During training, hard thresholding is applied
in the forward pass to produce binary decisions (z; = I[Z; > 0.5]), while the continuous Z; is used
for backpropagation. At inference time, the gating becomes deterministic: z; = I[o(a;) > 0.5]. We
apply this relaxation to the gating functions g” and g* to enable learnable and input-adaptive binary
decisions for the selection of (rank-1) components. This gating mechanism results in a dynamic,
input-dependent adapter update:

TL TH
AW = (1= zguce) - Y 2IbF (@) T + 2guce - Y 2 DI (af) 7. (7

i=1 j=1

This design of GaRA enables flexible and conflict-free adaptation to a wide range of corruptions by
coarse-to-fine rank modulation.

4 Experiments

4.1 Experimental Setting

Dataset. For training and validation, we utilize the Robust-Seg dataset [8]], which is constructed by
applying 15 types of synthetic corruptions to three semantic segmentation benchmarks: LVIS [[15]],
MSRA-10K [9], and ThinObjects-5K [37], comprising a total of 26,000 masks. For evaluation,
we use five clear-condition image segmentation benchmarks: LVIS, MSRA-10K, STREETS [51]],
NDD20 [55]], COCO [40]. Also, we test on a real-world corrupted benchmark including BDD-
100K [61] and LIS [3)]. For training GaRA-SAM on real-world data, we use BDD-100K and LIS for
training, and evaluate on BDD-100K and LIS, and ACDC [47]. Note that all these datasets are free
from licensing issues. For brevity, we refer to the union of BDD-100K and LIS as BDD+LIS, and the
union of STREETS and NDD20 as STREETS+NDD. More details are given in the appendix.

Experimental Details. We adopt the ViT-B and ViT-L variants of SAM [13]], and freeze their
parameters during training the GaRA modules. The models are optimized by Adam [27] with a
learning rate of 1 x 10~ for ViT-B and 1 x 10~° for ViT-L, a weight decay of 1 x 105, and input
batches of size 8, using both point and box prompts. The gating modules are trained with the same
learning rate. We set the lower- and higher-rank dimensions as r;, = 16 and rg = 256, respectively,
and use a Gumbel-Sigmoid temperature of 0.5. Since no official evaluation code is provided by
previous work, we reproduce and evaluate its models using the same protocol. All training and
evaluation experiments were conducted at POSTECH.

4.2 Comparison on Seen Dataset

To assess the robustness of GaRA-SAM, we first evaluate its performance on synthetic corruptions
applied to seen datasets such as LVIS and MSRA-10K. The results in Table |1| show that GaRA-
SAM outperforms prior methods, including RobustSAM [8]], HQ-SAM [25]], and restoration-based
methods (e.g., AirNet [32] and URIE [52]), when using both point and box prompts in both datasets.
Notably, our model demonstrates significant improvements in the degraded setting, e.g., surpassing
the previous best by up to 4.3%p on LVIS without compromising performance on clean images.



Table 1: Segmentation results on LVIS and MSRA using point and box prompts.
\ LVIS \ MSRA
Backbone Method ‘ Point Prompts Box Prompts ‘ Point Prompts Box Prompts

Degrade Clear Degrade Clear Degrade Clear Degrade Clear
IoU Dice IoU Dice IoU Dice IoU Dice|IoU Dice IoU Dice IoU Dice IoU Dice

SAM 65.0 76.3 70.1 80.1 75.5 84.5 78.4 86.1 759 84.5 79.1 86.6 86.6 92.2 88.7 93.4
HQ-SAM 69.5 80.1 76.0 84.8 79.0 87.1 83.1 89.7|82.8 89.6 86.6 92.0 89.7 94.3 924 95.9
AirNet+SAM | 64.8 76.1 70.1 80.1 75.4 84.4 78.3 86.0|75.7 84.3 79.1 86.6 86.4 92.1 88.8 93.4
URIE+SAM |64.8 76.2 70.0 80.0 74.5 83.7 78.0 85.8|74.6 83.5 77.6 85.6 859 91.8 88.8 93.5
RobustSAM |72.7 82.6 77.2 85.8 81.5 89.0 84.3 90.7 |86.6 92.3 89.6 94.2 89.5 942 92.1 95.7

GaRA-SAM |77.0 85.7 81.3 88.7 83.7 90.5 86.1 91.9(89.4 94.0 914 952 92.3 958 93.9 96.8

SAM 66.2 76.0 75.0 83.0 79.9 87.7 82.8 89.4|77.3 84.6 82.0 88.1 87.6 92.9 889 93.5
HQ-SAM 72.6 82.1 79.0 86.7 81.1 88.6 84.7 90.8 85.0 91.0 87.6 92.6 89.4 94.1 914 95.2
AirNet+SAM | 66.0 75.7 74.8 82.8 79.7 87.6 82.7 89.4|76.9 84.3 81.7 87.8 87.5 92.8 89.0 93.6
URIE+SAM |66.4 76.3 74.8 83.0 79.4 87.4 82.7 89.4|78.1 854 83.0 88.9 87.6 92.8 89.6 94.0
RobustSAM | 75.6 84.5 80.0 87.5 83.6 90.3 85.8 91.6|87.6 92.9 90.1 944 91.6 954 93.6 96.5

GaRA-SAM |78.5 86.6 82.6 89.4 84.4 90.8 86.7 92.2(89.6 94.1 91.6 953 92.6 96.0 94.0 96.8

ViT-B

VIT-L

Table 2: Zero-shot segmentation results on COCO and STREETS+NDD using point and box prompts.
| COCO | STREETS+NDD
Backbone Method ‘ Point Prompts Box Prompts ‘ Point Prompts Box Prompts
‘ Degrade Clear Degrade Clear ‘ Degrade Clear Degrade Clear
IoU Dice IoU Dice IoU Dice IoU Dice|IoU Dice IoU Dice IoU Dice IoU Dice

SAM 652 763 69.6 79.6 76.0 84.8 78.9 86.4|74.4 83.5 81.8 89.1 80.2 88.3 854 91.8
HQ-SAM 70.2 80.6 76.0 84.8 79.6 87.5 83.5 90.1|75.4 84.5 82.2 89.5 80.8 88.7 86.2 92.3
AirNet+SAM | 65.0 76.1 69.5 79.5 759 84.7 78.8 86.3|74.3 83.4 81.8 89.1 80.1 88.2 85.4 91.8
URIE+SAM |65.0 76.2 69.6 79.6 75.0 84.0 78.2 85.8|74.1 83.4 81.0 88.6 79.8 88.0 84.9 91.5
RobustSAM | 72.7 82.6 77.1 85.7 81.6 89.1 84.5 90.9|74.5 84.1 81.0 88.8 81.8 89.4 86.2 92.4

GaRA-SAM |77.2 85.8 81.0 88.4 84.2 90.8 86.4 92.1|77.6 86.4 82.9 90.1 84.1 91.0 87.7 93.3

SAM 669 76.5 74.6 82.5 80.4 88.0 82.9 89.4 (729 81.3 82.1 89.0 81.5 89.2 864 92.5
HQ-SAM 73.2 825 79.0 86.7 81.7 89.0 85.1 91.1|76.8 854 83.9 90.6 81.7 89.3 86.7 92.6
AirNet+SAM | 66.6 76.3 74.4 82.4 80.3 87.9 82.8 89.3|72.5 81.0 81.9 88.7 81.4 89.1 86.4 92.5
URIE+SAM |66.6 76.4 743 824 79.9 87.7 82.8 89.4|72.6 81.4 81.2 88.4 81.1 889 86.1 92.2
RobustSAM |75.3 84.3 79.9 87.6 83.8 90.5 86.2 91.9|75.7 84.8 82.7 89.9 83.0 90.2 87.5 93.1

GaRA-SAM |78.9 86.9 82.3 89.1 84.9 91.2 86.9 92.4|80.0 88.0 85.3 91.7 85.3 91.7 88.7 93.9

ViT-B

4.3 Zero-shot Segmentation Comparison

To further assess the generalization capability of GaRA-SAM, we evaluate it under both synthetic
and real corruptions on datasets not seen during training. Specifically, we include COCO and
STREETS+NDD with synthetic degradations, and BDD+LIS, which exhibits real corruptions such as
fog, rain, motion blur, and low-light. As reported in Table[2] GaRA-SAM consistently achieves the
best across all prompt types and metrics in both COCO and STREETS+NDD. Table [3|shows that it
also outperforms previous work on real corrupted images, improving over RobustSAM by more than
3.4%p IoU with point prompts in ViT-L, despite being trained only on unpaired corrupted images.
It demonstrates that GaRA-SAM generalizes well to both synthetic and real-world corruptions,
highlighting the effectiveness of its input-adaptive design.

4.4 Training on Real Corruption Datasets

GaRA-SAM enables training on real corruption datasets without requiring access to clean references.
To demonstrate this, we train GaRA-SAM solely on the real-world dataset, BDD+LIS, and evaluate
its performance on both the seen dataset (BDD+LIS) and an unseen real-world dataset, ACDC. As
shown in Table |4 training directly on real corrupted images significantly improves the performance
on all benchmarks, outperforming the previous best by up to 21.3%p IoU on ACDC. In addition, we
compare GaRA-SAM trained on BDD+LIS (GaRA-SAM-Real) and that trained on the synthetic
Robust-Seg dataset (GaRA-SAM-Syn), using box prompts and ViT-L in Table 3] the results suggest
the clear benefit of training directly on real corrupted images.



Table 3: Evaluation results on a real degraded Table 4: Evaluation results on BDD+LIS
image dataset, BDD+LIS, using point and box and ACDC, using a box prompt with ViT-
prompts. L. GaRA-SAM-Syn and -Real are trained on
Robust-Seg and BDD+LIS, respectively.

BDD+LIS ACDC

Point Prompts Box Prompts

Backbone Method

ToU Dice IoU  Dice Method
IoU Dice IoU Dice
SAM 65.2 75.4 742 827 SAM 13 80 659 726
HQ-SAM 676 719 694 780 RobustSAM 781 861 675 77.0
ViT-B AirNet+SAM  64.1 74.5 734 82.1 GaRA-SAM-Syn 80.0 874 71.6 804
b= URIE+SAM 65.7 76.1 74.1 82.8 GaRA-SAM-Real 89.7 93.9 88.8 92.9

RobustSAM = 69.5 = 795 757 84l yple 5: Comparison of our GaRA and LoRA
GaRA-SAM 713 809 768 853  4; LVIS with ViT-B, using point prompts.

SAM 689 778 743 820
Degraded Clear
HQ-SAM 72,7 817 763 843 Method U D o0 D
VL AifNet+SAM  67.2 764 731 813 0 e o 1ee
- Rank 16 750 843 794 873
URIE+SAM — 69.7° 78.8 744 821 LoRA Rank 128 756 846 80.6 88.1
RobustSAM 714 809  78.1  86.1 Rank256 734 83.1 785 86.6
GaRA-SAM 748 834 80.0 874 GaRA-SAM 770 857 813 887

RobustSAM GaRA-SAM (ours)

Synthetic

Real

Figure 4: Results on synthetic (COCO, STREETS+NDD) and real corruption (BDD+LIS) datasets.

4.5 Qualitative results

Figure ] presents qualitative results under synthetic and real-world corruptions. GaRA-SAM delivers
more accurate and complete masks than SAM, HQ-SAM, and RobustSAM, especially under severe
degradations: it better preserves object boundaries in synthetic cases and is more reliable in low-light
and adverse weather conditions.

4.6 In-depth analysis

We conduct a comprehensive ablation study to assess the contribution of each design choice in GaRA-
SAM. All experiments are performed on the LVIS dataset, using point prompts for consistency.

LoRA vs. GaRA. We first compare GaRA with the standard LoRA with fixed ranks. As shown in
Table[5] GaRA-SAM consistently outperforms all fixed-rank LoRA. While LoRA establishes a strong
baseline, its fixed-rank design limits flexibility. In contrast, GaRA-SAM dynamically composes
(rank-1) components based on the input, resulting in improved robustness. These results validate the
benefit of input-adaptive rank modulation over static alternatives.



Table 6: Comparison of GaRA and MoE LoRA. Table 7: Effect of the rank space separation.
Degraded  Clear Degraded  Clear

Method . Method - .
IoU Dice IoU Dice IoU Dice IoU Dice
MOoE LoRA (2, 16, 128,256) 76.4 85.3 79.7 87.5 . . ~ Rank16 76.2 852 79.9 87.7
MOoE LoRA (2, 16, 128, 1024) 754 84.5 78.6 86.7 g Rank 256 73.3 82.8 77.3 85.5
GaRA-SAM 77.0 85.7 81.3 88.7 w/ Gating 1 77.0 85.7 81.3 88.7
?g — o Table 8: Comparison of computational efficiency.
B ég Training Inference
60 Method Learnable Params # GPU GPU Memory FPS
03 05 07 09
Temperature SAM 1250M 256 3.36GB 29
Fi —’5_%Uf’fs c éAM RobustSAM 403M 8 5.41GB 2.8
1gure > Eltect of Gum- GaRA-SAM 343M 8 5.39GB 2.6

bel temperature.
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Figure 6: Visualization of the binary gating vectors and ranks under various images under corruptions.

MOoE LoRA vs. GaRA. We also investigate an alternative approach to rank selection using a mixture-
of-experts (MoE) [64]] variant of LoRA, where multiple fixed rank LoRA blocks are instantiated, and
a shared gating module selects one for each input. As reported in Table[6] both MoE variants perform
reasonably well, but fall short of GaRA-SAM in both clean and degraded conditions. This gap is not
trivial regarding the fewer number of parameters of GaRA-SAM.

Impact of Rank Space Selection. To evaluate the effectiveness of rank space selection (Gating 1), we
compare GaRA-SAM with a variant that removes the separation between the lower- and higher-rank
spaces, using a single unified set of (rank-1) components with a fixed maximum rank (e.g., 16 or 256).
As shown in Table[7] eliminating rank space selection results in performance degradation, suggesting
that separating the low- and high-rank components allows more effective specialization.

Impact of Temperature in Gumbel-Sigmoid. We investigate the effect of the temperature of
the Gumbel-Sigmoid by varying its value. Figure [5] summarizes the performance of variants of
GaRA-SAM trained using different values of temperature; the optimal value for 7 is 0.5. The results
suggest that GaRA-SAM remains stable across a wide range of temperature values, suggesting that
GaRA-SAM is insensitive to temperature settings.

Computational Cost Analysis. We compare the computational efficiency of GaRA-SAM in terms
of learnable parameters, GPU resources, memory consumption, and inference speed (FPS). As
summarized in Table@ GaRA-SAM achieves the lowest number of learnable parameters and GPUs,
owing to its parameter-efficient design. At inference time, it requires less GPU memory than
RobustSAM, while maintaining comparable FPS to both SAM and RobustSAM.

Impact of Maximum Rank Configuration. We demonstrate the effect of our chosen maximum
lower-rank and higher-rank configuration. Table [9]summarizes the performance of variants of GaRA-
SAM using different maximum rank configurations. The optimal rank combination is {16, 256},
achieving the best performance.



Table 9: Effect of rank Table 10: Effect of gat- Table 11: Effect of rank Table 12: Effect of hierar-

configuration. ing strategy. space selection. chy depth.
Rank Config. IoU Gating Strategy  ToU Gating 1  Gating2 IoU Hierarchy Depth  IoU
{8,256} 76.3 -
{16. 128} 769 Random 719 73.4 2-level (Ours) 77.0
{16, 256} 77.0 : v 76.0 3-level 76.4
16,512 76.6 Ours 71.0 v v 71.0 4-level 74.0
{16,512}

Analysis on Gating Vectors. Figure [6|demonstrates how the gating module responds to different
combinations of corruption type and image. For each corrupted input, we present the corresponding
binary activation vector z or z” according to their selected rank space, along with the resulting
number of active (rank-1) components. We observe that GaRA activates different (rank-1) components
depending on the image contents as well as the corruption types. Even when the selected rank is
similar, the constituent components often vary, highlighting the input-adaptive and fine-grained gating

mechanism of GaRA.

Analysis on Gating in GaRA-SAM. To empirically demonstrate that the gating modules are learned
to provide desirable gating paths even with such indirect supervision, we compared GaRA-SAM and
its variant with random gating. Table [I0]indicates that GaRA-SAM significantly outperforms the
random gating variant, supporting the effectiveness of our training strategy.

Isolating Effect of Rank Space Selection. To isolate the effect of rank space selection, we ex-
perimented with rank space selection alone with fixed rank settings, disabling (rank-1) component
selection. Table [TT|demonstrate that rank space separation alone significantly improves performance.
We believe this is because it enables each rank space to specialize in handling different degraded
inputs, allowing the gating to select the most suitable representational capacity for each. Further-
more, enabling (rank-1) component selection on top further boosts the performance, highlighting its
complementary benefit.

Impact of Depth of Hierachical Gating. We conducted additional experiments to assess deeper
hierarchical gating structures (i.e., 3-level and 4-level). As shown in Table. increasing the depth
introduces optimization challenges due to more complex gating decisions, ultimately degrading
performance. Notably, our current 2-level hierarchy yields the best performance and offers the most
favorable capacity and trainability.

5 Conclusion

In this paper, we introduce GaRA-SAM, a novel approach for robustifying Segment Anything Model
(SAM) under diverse image degradations. Through extensive empirical analysis, we observed that the
optimal LoRA rank varies significantly across corruption types and individual inputs, motivating our
design of Gated-Rank Adaptation (GaRA), a lightweight and input-adaptive module that dynamically
modulates the effective rank of LoRA adapters. GaRA operates without requiring paired clean and
degraded images, enabling fine-grained and parameter-efficient adaptation while preserving SAM’s
inherent zero-shot generalization capabilities. GaRA-SAM achieves state-of-the-art performance
across all robustness benchmarks and, notably, supports training directly on real-world corruption
datasets without clean references. This leads to substantial gains in real-world scenarios, highlighting
the practical utility and broad applicability of our method.

Limitations. While GaRA adaptively determines the appropriate rank for each rank space, several
design choices, such as the split between lower- and higher-rank spaces, the predefined maximum
ranks, and the fixed 2-level gating hierarchy, are set manually and thus limit flexibility. More
generalized automated designs are conceptually desirable but practically challenging due to unstable
optimization. Developing automated methods remains an important future direction.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]
Justification: We discuss the limitations of the work in Section[3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The work introduces no theoretical assumptions and results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes|

Justification: We disclose all the training and evaluation recipes in Section {.1]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not disclose the code and data at the moment. But we explain the model
architecture and experimental settings in detail in Section[4.1]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [ Yes]

Justification: We explain the detailed experimental settings in Section[4.1] For the composi-
tion of the benchmarks used in the paper, please refer to the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No|
Justification: Due to the computational tractability, we conduct each experiment once.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes]

Justification: The number of trainable parameters and GPU memory footprint for inference
are reported in Table[8] We also explain the computational environments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: | Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The work poses no societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper releases no findings with such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: | Yes]

Justification: All the datasets in this paper are free from license issues and are cited properly.
We also cite the models used in the paper. Please refer to Section @1}

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper contains no experiments involving human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work contains no user study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs for editing purposes only.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix presents additional experimental details and results that are omitted from the main
paper due to space limit.

A Experimental details

Implementation details. Each GaRA module consists of a branch selector, implemented as a two-
layer MLP with hidden dimension 64 and ReLU activation, which outputs a binary gating decision
(low vs. high rank) using a Gumbel-Sigmoid; and two rank-wise gating networks (one for low-rank,
one for high-rank), each composed of a three-layer MLP with hidden dimension 16 and ReLLU
activation, and produces binary masks over rank-1 components via Gumbel-Sigmoid sampling. The
selected components modulate separate LoRA paths applied to the QKV projections. Following
RobustSAM [8], we use a combined segmentation 10ss, Lgeg = Laice [33] + Leocar [41].

Resource. We use 8 A6000 GPUs for training each method and 1 A6000 GPU for evaluation.

Dataset configuration. Following the dataset configuration introduced in RobustSAM [8]], we utilize
a diverse collection of segmentation datasets for training and evaluation. For training, we adopt
three synthetic datasets: MSRA10K [9] (10,000 images) and LVIS [15] (20,252 images) provide
large-scale pixel-wise annotations for salient and instance segmentation, while ThinObject-5K [37]]
(4,748 images) contains fine-grained masks for thin structures to enhance structural sensitivity. For
evaluation, we consider both synthetic and real-world scenarios. The synthetic benchmark includes
STREETS [51] (1,000 annotated traffic scenes) and NDD20 [55] (1,000 dolphin segmentation images
captured in underwater and above-water environments). We exclude FSS-1000 [34] due to licensing
restrictions. For real-world evaluation, we adopt BDD-100K [61], a driving video dataset with
100,000 videos (frame-level annotations at the 10th second) covering diverse conditions, and LIS [3]],
a low-light instance segmentation dataset with 2,230 paired short/long exposure images (8,920 total
images) containing over 10,000 labeled instances.

B Empirical analysis

B.1 Rank distribution analysis

We analyzed the gated rank distribution across all blocks and corruption types on the MSRA10K
dataset. As shown in Figure[al] the activated rank values vary significantly not only across corruption
types but also across blocks, indicating that GaRA dynamically adapts its rank selection.

B.2 Corruption type vs. gated rank

To further investigate whether our gating mechanism responds differently depending on the corruption
type, we conduct an F-statistics analysis on the number of activated ranks across transformer blocks.
In this setting, each corruption type is treated as a group, and each sample’s gated rank serves as an
observation. We compute the F-statistic, which measures the ratio of between-group to within-group
variance, and the p-value, which indicates whether the observed variation could arise by chance.

As shown in Figure[a2] most blocks exhibit a statistically significant dependency between corruption
types and the number of activated ranks (i.e., high F-statistic and low p-value). Interestingly, blocks 2,
5, 8, and 11 do not show such significance. These blocks use standard attention, whereas the others
adopt window attention, according to the original structure of SAM [28]]. In the window-based setting,
different windows within the same image may capture varied content under the same corruption type,
leading the shared gating network to attend more to the global corruption style rather than content.
This behavior highlights the corruption-aware design of our gating module.

B.3 Justification for rank space separation

The rank space separation is motivated by our empirical observations that, in a unified rank space,
the model exhibits limited diversity in (rank-1) component activation across different degraded
inputs. Specifically, as shown in Table[al] the model tends to activate components within a narrow
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Figure al: Block-wise and corruption-wise average activated ranks on MSRA 10K. Each cell repre-
sents the mean number of activated rank components for a given corruption type and transformer
block. The clear variance across both axes demonstrates that GaRA performs input- and corruption-
aware rank selection, rather than using a fixed configuration.

Table al: Effect of rank space separation.

Variant Rank Space Separation (rank-1) Selection IoU # of Active (rank-1) Components  Range
Unified Rank Space v 73.3 161.8 £ 7.7 133-190
GaRA-SAM v v 77.0 85.7+75.8 5-181

range (133-190; std: 7.7), limiting its ability to adjust representational capacity according to each
degraded input. This is potentially suboptimal because different degraded inputs require different
representational capacities. By separating the rank space into lower-rank and higher-rank regions,
we allow the model to activate a more diverse range of components (5-181; std: 75.8), yielding
significant performance improvement. We guess this is because the rank space separation into two
exclusive sets, each specialized for different degraded inputs demanding different representation
capacities, helps mitigate potential conflicts during (rank-1) component selection and promotes more
diverse usage of components.

C Additional experimental results

C.1 Generalization ability beyond driving scenarios

To further evaluate the generalization capability of GaRA-SAM beyond driving scenarios, we
additionally tested it on the ISIC-2016 medical segmentation dataset [10]. As shown in Table [a2}
using box prompts, GaRA-SAM showed notable improvements over SAM. These results indicate that
GaRA-SAM maintains strong performance even in domains with very different visual characteristics.

C.2 Isolating the effect of dynamic (rank-1) component selection
In Table [a3] we tested variants using only dynamic (rank-1) component selection within a unified

rank space. Enabling the dynamic selection improves performance when using a unified rank space
with the small maximum rank (i.e., 16), highlighting the benefit of adaptively choosing components
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Figure a2: Statistical analysis of gated rank selection under different corruption types on MSRA10K.
For each block, we compute the F-statistic and p-value (shown as —log;,(p)). A higher F-statistic
and p-value below 0.05 (dashed line) indicate that the variation in activated ranks across corruption
types is statistically significant.

Table a2: Generalization performance on the ISIC-2016 medical segmentation dataset.
Model IoU Dice AP

SAM 70.6  80.7 76.8
GaRA-SAM 78.7 86.2 81.7

per input. However, using a unified rank space with the large maximum rank (i.e., 256) did not lead
to better results. We attribute this to the limited diversity in active components when using a unified
space, which can restrict the ability to adjust representational capacities according to each degraded
input, thus hindering input-adaptive modulation. It motivated our design to split the rank space, which
led to improved performance.

C.3 Further finetuning GaRA-SAM on a real-world dataset

GaRA-SAM supports training on real-world corrupted datasets without requiring clean counterparts.
To validate this capability, we further fine-tune GaRA-SAM on real-world degradation datasets,
namely BDD-100K and LIS. In contrast, RobustSAM is not designed for unpaired training and cannot
be directly applied in this setting. Nevertheless, for a fair comparison, we fine-tune RobustSAM on
the same datasets using only segmentation loss, despite the lack of paired supervision. We evaluate
both models on BDD+LIS (seen during fine-tuning) and ACDC, which serves as a real-world dataset
not seen during fine-tuning. As shown in Table [a4] this additional finetuning leads to significant
performance improvements across all benchmarks. This result highlights that GaRA-SAM not only
generalizes well in a zero-shot setting, but also scales effectively with real-world corrupted inputs,
whereas RobustSAM lacks inherent support for this setting and is only included for comparative
purposes.

C.4 Quantitative results

We report additional experimental results in Tables [aSlla6}fa7lla8lla9] including evaluations using the
pixel accuracy (PA) metric. PA values are consistently reported across all benchmark settings using
both point and box prompts.
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Table a3: Ablation on dynamic (rank-1) component selection and rank-space gating.

Variant (rank-1) Component Selection Rank space gating IoU
w/o (rank-1) component selection (max rank 16) 75.0
w/ (rank-1) component selection (max rank 16) v 76.2
w/o (rank-1) component selection (max rank 256) 73.4
w/ (rank-1) component selection (max rank 256) v 73.3
GaRA-SAM (max rank 256) v v 77.0

Table a4: Fine-tuning results with ViT-L. Models are further fine-tuned on BDD+LIS and evaluated
on BDD+LIS and ACDC using a box prompt.

BDD+LIS ACDC

Method Fine-tuning

IoU Dice IoU Dice
SAM 743 82.0 659 72.6
RobustSAM 78.1 86.1 675 77.0
RobustSAM v 859 915 839 895
GaRA-SAM 80.0 874 716 804
GaRA-SAM v 89.5 938 883 92.6

C.5 Qualitative results

We present additional qualitative comparisons in Fig.[a3] showing the segmentation results of SAM,
HQ-SAM, RobustSAM, and our GaRA-SAM under a variety of degraded inputs. The top section
illustrates results under synthetic corruptions (e.g., motion blur, snow, noise), while the bottom section
includes real-world challenges such as low-light and adverse weather conditions. Compared to other
baselines, GaRA-SAM consistently demonstrates more robust and accurate segmentation masks,
especially in cases where the standard SAM or HQ-SAM fails to localize object boundaries. These
results highlight GaRA-SAM’s strong generalization capabilities across both synthetic and naturally
occurring corruptions.
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Table a5: Additional evaluation results on LVIS including pixel accuracy (PA) using point and box
prompts.

Point Prompts Box Prompts
Backbone Method Degrade Clear Degrade Clear
IoU PA Dice IoU PA Dice IoU PA Dice IoU PA Dice
SAM 65.0 89.8 763 70.1 91.5 80.1 75.6 93.5 84.5 78.4 93.7 86.1

HQ-SAM 69.5 91.8 80.1 76.0 933 84.8 79.0 94.8 87.1 83.1 953 89.7
AirNet+SAM 64.8 89.8 76.1 70.1 91.5 80.1 754 934 84.4 783 93.6 86.0
URIE+SAM 64.8 89.9 76.2 70.0 914 80.0 74.5 93.2 83.7 779 935 85.8
RobustSAM  72.7 93.0 82.6 77.2 939 85.8 81.5 95.0 89.0 84.3 95.5 90.8

GaRA-SAM 77.0 944 85.7 81.3 95.3 88.7 83.7 96.0 90.5 86.1 96.3 91.9

SAM 66.2 87.1 76.0 75.0 91.5 83.0 79.9 94.8 87.7 82.8 95.1 894
HQ-SAM 72.6 925 82.1 79.0 94.1 86.7 81.1 954 88.6 84.7 95.8 90.8
AirNet+SAM 66.0 86.9 757 74.8 91.4 82.8 79.7 94.8 87.6 82.7 95.0 89.4
URIE+SAM 664 87.6 763 74.8 91.5 83.0 794 947 87.4 8277 950 894
RobustSAM  75.6 94.1 84.5 80.0 95.1 87.5 83.6 96.0 90.3 85.8 96.3 91.6

GaRA-SAM 78.5 94.8 86.6 82.6 95.6 89.4 84.4 96.0 90.8 86.7 96.5 92.2

ViT-B

VIT-L

Table a6: Evaluation results on MSRA using point and box prompts.

Point Prompts Box Prompts
Backbone Method Degrade Clear Degrade Clear
IoU PA Dice IoU PA Dice IoU PA Dice IoU PA Dice
SAM 75.9 93.5 84.5 79.1 94.8 86.6 86.6 97.0 92.2 88.8 97.5 934

HQ-SAM 828 957 89.6 86.6 96.7 92.0 89.7 97.7 94.3 92.5 98.3 95.9
AirNet+SAM 757 93.5 84.3 79.1 94.8 86.6 86.4 969 92.1 88.8 97.5 93.5
URIE+SAM  74.6 93.2 83.5 77.6 94.5 85.6 86.0 96.8 91.8 88.8 97.5 93.5
RobustSAM  86.6 96.6 92.3 89.6 97.4 94.2 89.5 97.6 94.2 92.1 982 95.7

GaRA-SAM 894 97.5 94.0 914 98.0 95.2 923 98.3 95.8 93.9 98.7 96.8

SAM 773 89.0 84.6 82.0 92.1 88.1 87.6 97.2 929 88.9 97.5 935
HQ-SAM 85.0 959 91.0 87.6 96.6 92.6 89.4 97.7 94.1 914 98.1 952
AirNet+SAM 769 88.7 84.3 81.7 91.8 87.8 87.5 97.2 92.8 89.0 97.5 93.6
URIE+SAM  78.1 90.0 85.4 83.0 93.0 889 87.6 97.2 92.8 89.6 97.7 94.0
RobustSAM  87.6 96.8 92.9 90.1 974 94.4 91.6 98.1 954 93.6 98.6 96.5

GaRA-SAM 89.6 97.5 94.1 91.6 98.0 953 92.6 98.4 96.0 94.0 98.7 96.8

ViT-B

VIT-L
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Table a7: Evaluation results on COCO using point and box prompts.

Enc.

Point Prompts

Box Prompts

Method

Degrade

Clear

Degrade

Clear

IoU

PA

Dice

IoU

PA Dice

ToU

PA Dice IoU PA Dice

ViT-B

SAM 65.2
HQ-SAM  70.2
AirNet+SAM  65.0
URIE+SAM ~ 65.0
RobustSAM 727

90.2
92.2
90.1
90.1

76.3
80.6
76.1
76.2

69.6
76.0
69.5
69.6

91.7
93.6
91.7
91.6

79.6
84.8
79.5
79.6

76.0
79.6
75.9
75.0

93.6
95.1
93.6
934

84.8
87.5
84.7
84.0

78.9
83.6
78.8
78.2

93.9
95.6
93.9
93.7

86.4
90.1
86.3
85.8

GaRA-SAM 77.2

ViT-L

SAM 66.9
HQ-SAM 73.2
AirNet+SAM 66.6
URIE+SAM  66.6
RobustSAM  75.3

GaRA-SAM 78.9

Table a8: Evaluation results on STREETS+NDD using point and box prompts.

Enc.

Point Prompts

Box Prompts

Method

Degrade

Clear

Degrade

Clear

ToU

PA

Dice IoU PA Dice

IoU

PA

Dice

IoU

PA

Dice

ViT-B

SAM 74.4
HQ-SAM 75.4
AirNet+SAM 74.3
URIE+SAM 74.1
RobustSAM  74.5
GaRA-SAM 77.6

98.9
99.4

83.5
84.5

81.8
82.2

99.5
99.6

98.9
99.1
99.4
99.5

83.4
83.4
84.1
86.4

81.8
81.0
81.0
82.9

99.5
99.5
99.5
99.7

89.1
89.5
89.1
88.6
88.8
90.1

80.2
80.8
80.1
79.8
81.8
84.1

99.7
99.7
99.7
99.7
99.7
99.8

88.3
88.7
88.2
88.0
89.4
91.0

85.4
86.2
85.4
84.9
86.2
87.7

99.8
99.8
99.8
99.7
99.8
99.8

91.8
92.3
91.8
91.5
9.4
93.3

ViT-L

SAM 72.9
HQ-SAM 76.8
AirNet+SAM 72.5
URIE+SAM 72.6
RobustSAM  75.7
GaRA-SAM 80.0

96.7
99.3
96.6
97.3
994
99.6

81.3
85.4
81.0
81.4
84.8
88.0

82.1
83.9
81.9
81.2
82.7
85.3

98.8
99.6
98.7
98.9
99.6
99.7

89.0
90.6
88.7
88.4
89.9
91.7

81.5
81.7
81.4
81.1
83.0
85.3

99.7
99.7
99.7
99.7
99.7
99.8

89.2
89.3
89.1
88.9
90.2
91.7

86.4
86.7
86.4
86.1
87.5
88.7

99.8
99.8
99.8
99.8
99.8
99.8

92.5
92.6
92.5
92.2
93.1
93.9
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Table a9: Evaluation results on BDD+LIS using point and box prompts.

Point Prompts

Box Prompts

Enc. Method
ToU PA Dice IoU PA Dice
SAM 652 87.8 754 742 923 827
HQ-SAM 67.6 90.0 779 694 91.7 78.0
VIT-B AirNet+SAM 64.1 87.0 745 734 92.1 82.1
URIE+SAM 657 89.0 76.1 741 92,5 828
RobustSAM 69.5 911 795 757 924 84.1
GaRA-SAM 713 91.0 809 768 91.8 85.3
SAM 689 864 778 743 919 82.0
HQ-SAM 727 91.6 81.7 763 934 843
VIT-L AirNet+SAM 672 848 764 73.1 91.6 81.3
URIE+SAM 69.7 87.8 788 744 92.0 82.1
RobustSAM 714 91.1 809 78.1 925 86.1
GaRA-SAM 748 922 834 80.0 935 874
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Input SAM HQ-SAM RobustSAM GaRA-SAM (Ours) GT

Synthetic

Figure a3: Qualitative results under both synthetic (top) and real-world (bottom) corruptions. From
left to right: input image, SAM, HQ-SAM, RobustSAM, our method GaRA-SAM, and the ground
truth (GT). GaRA-SAM consistently produces more accurate and complete segmentations, particularly
under challenging conditions such as noise, blur, and low-light scenarios.
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