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ABSTRACT

On a shutter press, modern handheld cameras capture multiple images in rapid
succession and merge them to generate a single image. However, individual
frames in a burst are misaligned due to inevitable motions and contain multiple
degradations. The challenge is to properly align the successive image shots and
merge their complimentary information to achieve high-quality outputs. Towards
this direction, we propose Burstormer: a novel transformer-based architecture for
burst image restoration and enhancement. In comparison to existing works, our
approach exploits multi-scale local and non-local features to achieve improved
alignment and feature fusion. Our key idea is to enable inter-frame communica-
tion in the burst neighborhoods for information aggregation and progressive fu-
sion while modeling the burst-wide context. However, the input burst frames need
to be properly aligned before fusing their information. Therefore, we propose
an enhanced deformable alignment module for aligning burst features with re-
gards to the reference frame. Unlike existing techniques, the proposed alignment
module not only aligns burst features but also exchanges feature information and
maintains focused communication with the reference frame through the proposed
reference-based feature enrichment mechanism. This additional exchange of in-
formation helps in aligning multi-frame features under complex motions. After
multi-level alignment and enrichment, we re-emphasize on inter-frame communi-
cation within burst frames using a new cyclic burst sampling approach. Finally,
the inter-frame information is aggregated using our proposed burst feature fusion
module followed by progressive increase in the spatial resolution by shuffling the
feature information available in burst frames. Our Burstormer outperforms the ex-
isting state-of-the-art approaches on three popular tasks of burst super-resolution,
burst denoising and burst low-light enhancement. Our codes will be made public.

1 INTRODUCTION

In recent years, smartphone industry has witnessed a rampant growth on account of the fueling de-
mand of smartphones in day-to-day life. While the image quality of smartphone cameras is rapidly
improving, there are several barriers that hinder in attaining DSLR-like images. For instance, the
physical space available in handheld devices restricts manufacturers from employing high-quality
bulky camera modules. Most smartphone cameras use small-sized lens, aperture, and sensor, thereby
generating images with limited spatial resolution, low dynamic range, and often with noise and color
distortions especially in low-light conditions. These problems have shifted the focus nowadays in
developing computational photography (software) solutions for mitigating the hardware limitations
and to approach the image quality of DSLRs. One emerging approach to achieve high-quality results
from a smartphone camera is to take advantage of burst shots consisting of multiple captures of the
same scene. The burst image processing approaches aim to recover the high-quality image by merg-
ing the complementary information in multiple frames. Recent works (Dudhane et al., 2022; Bhat
et al., 2021b;c) have validated the potential of burst processing techniques in reconstructing rich
details that cannot be recovered from a single image. However, these computationally expensive
approaches are often unable to effectively deal with the inherent sub-pixel shifts among multiple
frames arising due to camera and/or object movements. This sub-pixel misalignment often causes
blurring and ghosting artifacts in the final image. To tackle alignment issues, existing methods em-
ploy complex explicit feature alignment (Bhat et al., 2021b) and deformable convolutions (Dudhane
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et al., 2022). However, these approaches target only the local features at a single level, while the
use of global information together with multi-scale features has not been extensively explored. Ad-
ditionally, while aggregating multi-frame features, existing approaches either employ late fusion
strategy (Bhat et al., 2021b;c) or rigid fusion mechanism (in terms of number of frames) (Dudhane
et al., 2022). The former one limits the flexible inter-frame communication, while the later one
limits the adaptive multi-frame processing.

Figure 1: Burst super-resolution re-
sults (Tab. 1). Our Burstormer ad-
vances state-of-the-art, while being
light-weight and compute efficient.

In this work, we propose Burstormer for burst image process-
ing, which incorporates multi-level local-global burst feature
alignment and adaptive burst feature aggregation. In contrast
to previous works (Bhat et al., 2021b;c) that employ bulky pre-
trained networks for explicit feature alignment, we present a
novel enhanced deformable alignment (EDA) module that han-
dles misalignment issues implicitly. Overall, the EDA mod-
ule reduces noise and extracts both local and non-local fea-
tures with a transformer-based attention and performs multi-
scale burst feature alignment and feature enrichment which is
not the case with the recent BIPNet (Dudhane et al., 2022).
Unlike existing approaches (Dudhane et al., 2022; Bhat et al.,
2021b;c) which allow a one go interaction with the reference
frame during alignment process, we add a new reference-based
feature enrichment (RBFE) mechanism in EDA to allow a more
extensive interaction with the reference frame. This helps in effectively aligning and refining burst
features even in complex misalignment cases where the simple alignment approaches would not
suffice. In the image reconstruction stage we progressively perform feature consolidation and up-
sampling, while having access to the multi-frame feature information at all time. This is achieved
with our no-reference feature enrichment (NRFE) module. NRFE initially generates burst neigh-
borhoods with the proposed cyclic burst sampling (CBS) mechanism that are then aggregated with
our burst feature fusion (BFF) unit. Unlike, the existing pseudo bursts (Dudhane et al., 2022), the
proposed burst neighborhood mechanism is flexible and enables inter-frame communication with
significantly less computational cost. The key highlights of our work are outlined below:

• Our Burstormer is a novel Transformer based design for burst-image restoration and en-
hancement that leverages multi-scale local and non-local features for improved alignment
and feature fusion. Its flexible design allows processing bursts of variable sizes.

• We propose an enhanced deformable alignment module which is based on multi-scale hi-
erarchical design to effectively denoise and align burst features. Apart from aligning burst
features it also refines and consolidates the complimentary burst features with the proposed
reference-based feature enrichment module.

• We propose no-reference feature enrichment module to progressively aggregate and upsam-
ple the burst features with less computational overhead. To enable inter-frame interactions,
it generates burst neighborhoods through the proposed cyclic burst sampling mechanism
followed by the burst feature fusion.

Our Burstormer sets new state-of-the-art on several real and synthetic benchmark datasets for the
task of burst super-resolution, burst low-light enhancement, and burst denoising. Compared to exist-
ing approaches, Burstormer is more accurate, light-weight and faster; see Fig. 1. Further, we provide
detailed ablation studies to demonstrate the effectiveness of our design choices.

2 RELATED WORK

Multi-Frame Super-Resolution. Unlike single image super-resolution, multi-frame super-
resolution (MFSR) approaches are required to additionally deal with the sub-pixel misalignments
among burst frames caused by camera and object motions. While being computationally efficient,
the pioneering MFSR algorithm (Tsai, 1984) processes burst frames in frequency domain, often
producing images with noticeable artifacts. To obtain better super-resolved results, other methods
operate in the spatial domain (Elad & Hel-Or, 2001; Irani & Peleg, 1991), exploit image priors (Stark
& Oskoui, 1989), use iterative back-projection (Peleg et al., 1987), or maximum a posteriori frame-
work (Bascle et al., 1996). However, all these approaches assume that the image formation model,
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and motion among input frames can be estimated reliably. Successive works addressed this con-
straint with the joint estimation of the unknown parameters (Faramarzi et al., 2013; He et al., 2007).
To deal with noise and complex motion, the MSFR algorithm of Wronski et al. (2019) employs
non-parametric kernel regression and locally adaptive detail enhancement model. Recently, a few
data-driven MFSR approaches have been proposed for different applications such as satellite im-
agery (Deudon et al., 2020; Molini et al., 2019), and super-resolving face images (Ustinova & Lem-
pitsky, 2017). The DBSR algorithm (Bhat et al., 2021b) addresses the MFSR problem by applying
the explicit feature alignment and attention-centric fusion mechanisms. However, their image warp-
ing technique and explicit motion estimation may find difficult in handling scenes with fast moving
objects. The recent BIPNet (Dudhane et al., 2022) proposes to process noisy raw bursts via implicit
feature alignment and psuedo-burst generation. Despite having an effective inter-frame communi-
cation, their approach is rigid to using certain number of burst frames during alignment and fusion.

Multi-Frame Denoising. Besides aforementioned MFSR approaches, several multi-frame meth-
ods have been developed to perform denoising (Dabov et al., 2007; Maggioni et al., 2011; 2012;
Hasinoff et al., 2016). The algorithm of Tico (2008) leverages visually similar image block within
and across frames to obtain denoised results. Other works (Dabov et al., 2007; Maggioni et al., 2012)
extend the state-of-the-art single image denoising technique BM3D (Dabov et al., 2007) to videos.
The method of Liu et al. (2014) yields favorable denoising results by employing a novel homogra-
phy flow alignment technique with consistent pixel compositing operator. In the work of Godard
et al. (2018), the authors extend single-image denoising network to multi-frame task via recurrent
deep convolutional neural network. The kernel prediction network (Mildenhall et al., 2018) gen-
erates per-pixel kernels for fusing multiple-frames. RViDeNet (Yue et al., 2020) uses deformable
convolutions to perform explicit frame alignment in order to provide improved denoising results.
The re-parametrization approach of MFIR (Bhat et al., 2021c) learns image formation model in
deep feature space for the multi-frame denoising. BIPNet (Dudhane et al., 2022) presents a novel
pseudo-burst feature fusion approach to perform denoising on burst frames.

Multi-Frame Low-light Image Enhancement. In low-light conditions, smartphone cameras of-
ten yield noisy and color-distorted images due to their small aperture and sensor pixel cavities.
Chen et al. (2018) collect a multi-frame dataset for low-light image enhancement, and present a
data-driven approach to learn camera imaging pipeline in order to map under-exposed RAW images
directly to well-lit sRGB images. The quality of output image is further improved with the percep-
tual loss presented by Zamir et al. (2021). The works of Maharjan et al. (2019) and Zhao et al.
(2019), respectively, use residual learning framework and recurrent convolution network to obtain
enhanced images from multiple degraded low-lit input frames. The two-stage approach of Karadeniz
et al. (2020) employs one subnet for explicitly denoising multiple frames followed by the second
subnet to provide us with the enhanced image. Along with super-resolution and denoising, BIP-
Net (Dudhane et al., 2022) is also capable of performing multi-frame low-light image enhancement.
Unlike the existing multi-frame approaches, our Burstormer aligns burst features at multiple-scales
and enables flexible inter-frame communication without much computational overhead. It also in-
corporates progressive feature merging to obtain high-quality images.

3 PROPOSED BURST IMAGE PROCESSING PIPELINE

Burst sequences are usually acquired with handheld devices. The spatial and color misalignments
among burst frames are unavoidable due to hand-tremor and camera/object motions. These issues
negatively affect the overall performance of burst image processing approaches. In this work, our
goal is to effectively align and progressively merge the desired information from multiple degraded
frames to reconstruct a high-quality composite image. To this end, we propose Burstormer, a novel
unified model for multi-frame processing where different modules jointly operate to perform feature
denoising, alignment, fusion, and upsampling tasks. In this section we describe our method for the
task of burst super-resolution, nevertheless, it is applicable to different burst restoration tasks such
as burst denoising and burst enhancement (see experiments Sec. 4).

Overall Pipeline. Fig. 2 shows the overall pipeline of the proposed Burstormer. First, the RAW
input burst is passed through the proposed enhanced deformable alignment (EDA) module which
extract noise-free deep features that are aligned and refined with respect to the reference frame
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Figure 2: Overall pipeline of the proposed Burstormer for burst image processing. Burstormer takes as input a
RAW burst of degraded images and outputs a clean high-quality sRGB image. It has two main parts: enhanced
deformable alignment (EDA), and the image reconstruction. EDA, labeled as (a), is a multi-scale hierarchical
module that, at each level, first extracts noise-free local and non-local features with the burst feature attention
(BFA), performs feature alignment (b), and finally refines and consolidates features with an additional inter-
action with the base frame via (c) the proposed reference-based feature enrichment (RBFE) module. RBFE
further employs (d) the burst feature fusion (BFF) unit for merging features by using the back-projection and
squeeze-excitation mechanisms. The aligned burst of features are then passed to the image reconstruction stage
(e). Here (f) the adaptive burst pooling module transforms the input burst size (B frames) to constant 8 frames
through an average pooling operator. Finally, (g) the no-reference feature enrichment (NRFE) module progres-
sively aggregates, and upsamples the burst features to generate the final HR image.

features. Second, an image reconstruction module is employed that takes as input the burst of aligned
features and progressively merges them using the proposed no reference feature enrichment (NRFE)
module. To obtain the super-resolved image, the upsampling operation is immediately applied after
each NRFE module in the reconstruction stage. Next, we describe each stage of our approach.

3.1 ENHANCED DEFORMABLE ALIGNMENT

In burst processing, effective alignment of mismatched frames is essential as in any error arising in
this stage will propagate to later stages, subsequently making the reconstruction task difficult. Exist-
ing methods perform image alignment either explicitly (Bhat et al., 2021b;c), or implicitly (Dudhane
et al., 2022). While, these techniques are suitable to correcting mild pixel displacements among
frames, they might not adequately handle fast moving objects. In Burstormer, we propose enhanced
deformable alignment (EDA) which employs a multi-scale design as shown in Fig. 2(a). Since
sub-pixel shifts among frames are naturally reduced at low-spatial resolution, using the multi-level
hierarchical architecture provides us with more robust alignment. Therefore, EDA starts feature
alignment from the lowest level (3rd in this paper) and progressively passes offsets to upper high-
resolution levels to help with the alignment process. Furthermore, at each level, the aligned features
are passed through the proposed reference-based feature enrichment (RBFE) module to fix remain-
ing misalignment issues in burst frames by interacting them again with the reference frame. EDA
has two key components: (1) Feature alignment, and (2) Reference-based feature enrichment.
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3.1.1 FEATURE ALIGNMENT

Burst images are often contaminated with random noise that impedes in finding the dense corre-
spondences among frames. Therefore, before performing alignment operation, we extract noise-
free burst features by using the transformer block (Zamir et al., 2022). Unlike in other ap-
proaches (Bhat et al., 2021b;c; Dudhane et al., 2022), the Burst Feature Attention (BFA) module
computes long-range pixel relationships for encoding local and non-local context (More details on
BFA are in Appendix). The denoised features from BFA are passed further for alignment. Fig-
ure 2(b) shows the Feature Alignment (FA) module that utilizes a modulated deformable convo-
lution (Zhu et al., 2019) to align features of each burst frame to those of the reference frame. Let,{
gb : b ∈ [1, . . . , B]

}
∈ RB×f×H×W denotes the burst features obtained after BFA module, where

B denotes number of burst frames, f is the number of feature channels, and H×W is the spatial
size. We align the features of the current frame gb with the reference frame1 gbr . Feature align-
ment module processes gb and gbr via an offset convolution layer and outputs the offset ∆n and
modulation scalar ∆a values for gb. The aligned features ḡb are computed as:

ḡb = Wdef
(
gb, {∆n, ∆a}

)
, {∆n,∆a} = Woff

(
gb, gbr

)
, (1)

where, Wdef(·) and Woff(·) represent the deformable and offset convolutions, respectively. Specifi-
cally, every position n on the aligned feature map ḡb is calculated as:

ḡb
n =

K∑
i=1

W d
ni

yb
(n+ni+∆ni)

·∆ani
, (2)

where, K=9, ∆a in range [0, 1] for each ni ∈ {(−1, 1), (−1, 0), ..., (1, 1)} is a regular 3×3 kernel
grid. The convolution is performed on non-uniform positions (ni + ∆ni), where ni may be frac-
tional. To tackle the fractional values, this operation is implemented with the bilinear interpolation.

3.1.2 REFERENCE-BASED FEATURE ENRICHMENT

In the presence of complex pixel displacements among frames, simple alignment techniques (Bhat
et al., 2021b;c; Dudhane et al., 2022) may not able to align burst features completely. Therefore,
to fix the remaining minor misalignment issues, we propose the Reference-Based Feature Enrich-
ment (RBFE) module, shown in Fig. 2(c). RBFE enables additional interaction of aligned frames
features ḡb with the reference frame features gbr to generate consolidated and refined representa-
tions. This interactive feature merging is performed via our Burst Feature Fusion (BFF) unit as
illustrated in Fig. 2(d). The BFF mechanism is built upon the principles of feature back projec-
tion (Haris et al., 2018) and squeeze-excitation techniques (Hu et al., 2018). Given the concatenated
feature maps of the current frame and the reference frame [ḡb, gbr ] ∈ R1×2*f×H×W , BFF applies
BFA to generate representations gb

a encoding the local and non-local context. Overall, BFF yields
fused features gb

f ∈ R1×f×H×W as:

gb
f = gb

s +W
(
gb
a − gb

e

)
, (3)

where gb
s=Wsg

b
a represents squeezed features and gb

e=WeWsg
b
a are the expanded features. Ws

and We denote simple convolutions to squeeze and expand feature channels. The squeezed features
gb
s poses complementary properties of multiple input features. While, gb

e is used to compute the
high-frequency residue with the attentive features gb

a. The aggregation of this high-frequency resid-
ual with the squeezed features gb

s helps to learn the feature fusion process implicitly and provides
the capability to extract high-frequency complementary information from multiple inputs. While
illustrated for fusing features of two frames in Fig. 2(d), the proposed BFF can be flexibly adapted
to any number of inputs.

3.2 IMAGE RECONSTRUCTION

Figure 2(e) illustrates the overall image reconstruction stage. To operate on bursts of arbitrary sizes,
we propose an Adaptive Burst Feature Pooling (ABFP) mechanism that returns the constant burst-
size features. As shown in Fig. 2(f), the burst features (B ∗ f ) are concatenated along channel

1We consider the first burst image to be the reference frame.
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dimension followed by 1D average pooling operation which adaptively pools out the burst features
(8 ∗ f ) as per the requirement. Next, the pooled burst feature maps pass through the No-Reference
Feature Enrichment (NRFE) module, shown in Fig. 2(g). The key idea of the proposed NRFE
module is to pair immediate neighborhood frames along feature dimension and fuse them using the
BFF module. However, doing this would limit the inter-frame communication to successive frames
only. Therefore, we propose a Cyclic Burst Sampling (CBS) that gathers the neighborhood frames
in zigzag manner (called here as burst neighborhoods) such that reference frame could interact with
the last frame as well via intermediate frames; see Fig. 2(h). This cyclic scheme of sampling the burst
frames helps in long-range communication without increasing the computational overhead unlike the
existing pseudo burst technique (Dudhane et al., 2022). Next, the sampled neighborhood features
are combined along burst dimension and processed with BFF to integrate the useful information
available in multiple frames of the burst sequence.

To upscale the burst features, we adapt pixel-shuffle (Shi et al., 2016) such that the information
available in burst frames is shuffled to increase the spatial resolution. This helps us in reducing the
compute cost as well as the overall network parameters.

4 EXPERIMENTS AND ANALYSIS

We evaluate the performance of the proposed Burstormer on three different burst image processing
tasks: (a) super-resolution (on synthetic and real burst images), (b) low-light image enhancement,
and (c) denoising (on grayscale and color data). Additional visual results, ablation experiments, and
more details on the network and training settings are provided in appendix.

Implementation Details. We train separate models for different tasks in an end-to-end manner
without pre-training any module. All burst frames are handled with shared Burstormer modules (FA,
RBFE, BFF, NRFE) for better parameter efficiency. The following training settings are common to
all tasks, whereas task-specific experimental details are provided in their corresponding sections.
The EDA module of Burstormer is a 3-level encoder-decoder, where each level employs 1 FA (con-
taining single deformable conv. layer) and 1 RBFE module. The BFF unit both in RBFE and NRFE
consists of 1 BFA module. In the image reconstruction stage, we use 2 NRFE modules. We train
models with L1 loss and Adam optimizer with the initial learning rate 1e−4 that is gradually reduced
to 1e−6 with the cosine annealing scheduler (Loshchilov & Hutter, 2016). Random horizontal and
vertical image flipping is used for data augmentation.

4.1 BURST SUPER-RESOLUTION

We evaluate the proposed Burstormer on synthetic as well as on real-world datasets (Bhat et al.,
2021b;a) for the SR scale factor ×4. For comparisons, we consider several burst SR approaches
such as DBSR (Bhat et al., 2021b), LKR (Lecouat et al., 2021), HighResNet (Deudon et al., 2020),
MFIR (Bhat et al., 2021c) and BIPNet (Dudhane et al., 2022).

Datasets. (1) SyntheticBurst dataset (Bhat et al., 2021b) contains 46,839 RAW burst sequences
for training and 300 for validation. Each sequence consists of 14 LR RAW images (with spatial
resolution of 48×48 pixels) that are synthetically generated from a single sRGB image as follows.
The given sRGB image is first transformed to RAW space with the inverse camera pipeline (Brooks
et al., 2019). Next, random rotations and translations are applied to this RAW image to generate the
HR burst sequence. The HR burst is finally converted to LR RAW burst sequence by applying the
downsampling, Bayer mosaicking, sampling and random noise addition operations.
(2) BurstSR dataset (Bhat et al., 2021b) has 200 RAW burst sequences, each containing 14 im-
ages. The LR images of these sequences are captured with a smartphone camera, whereas their
corresponding HR (ground-truth) images are taken with a DSLR camera. From 200 full-resolution
sequences, the original authors extract 5,405 patches of size 80×80 for training and 882 patches for
validation.

SR results on synthetic dataset. We train Burstormer with batch size 4 for 300 epochs on Synthet-
icBurst dataset (Bhat et al., 2021b). Table 1 shows that our approach significantly advances the state
of the art. When compared to the previous best BIPNet (Dudhane et al., 2022), our Burstormer yields
performance gain of 0.9 dB, while having 47% fewer parameters, 80% less FLOPs, and runs 2×
faster. Qualitative comparisons in Fig. 3(a) demonstrate that the images restored by Burstormer are
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Figure 3: Burst super-resolution (×4) results on SyntheticBurst and BurstSR (real) dataset (Bhat et al.,
2021b). The SR images by our Burstormer retain more texture and structural content than the other approaches.

visually more pleasant and have better structural and textural details than those produced by the other
competing approaches. Specifically, the reproductions of DBSR (Bhat et al., 2021b), LKR (Lecouat
et al., 2021), and MFIR (Bhat et al., 2021c) contain blotchy textures and color artifacts.

Table 1: Burst super-resolution results on synthetic and
real datasets (Bhat et al., 2021b) for factor 4×.

Methods SyntheticBurst (Real) BurstSR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Single Image 36.17 0.909 46.29 0.982
HighRes-net (Deudon et al., 2020) 37.45 0.92 46.64 0.980
DBSR (Bhat et al., 2021b) 40.76 0.96 48.05 0.984
LKR (Lecouat et al., 2021) 41.45 0.95 - -
MFIR (Bhat et al., 2021c) 41.56 0.96 48.33 0.985
BIPNet (Dudhane et al., 2022) 41.93 0.96 48.49 0.985

Burstormer (Ours) 42.83 0.97 48.82 0.986

SR results on real dataset. In BurstSR
dataset (Bhat et al., 2021b), the LR and
HR bursts are slightly misaligned as they
are captured with different cameras. To
overcome this issue, we train Burstormer
with the aligned L1 loss and perform eval-
uation with the aligned PSNR/SSIM, as in
previous works (Bhat et al., 2021b;c; Dud-
hane et al., 2022). Instead of training from
scratch, we fine-tune the pre-trained model
(of SyntheticBurst dataset) for 100 epochs
on the BurstSR dataset. Table 1 shows that our Burstormer performs favorably well by providing
PSNR gain of 0.33 dB over the previous best method BIPNet (Dudhane et al., 2022). We present
visual comparisons in Fig. 3(b). It can be seen that the images reproduced by Burstormer are more
detailed and sharp, and visually closer to the ground-truth.

Ablation experiments. To study the impact of different modules of the proposed architecture on the
final performance, we train several ablation models on the SyntheticBurst dataset (Bhat et al., 2021b)
for 100 epochs. Results are provided in Table 2. In the baseline model, we use Resblocks (Lim et al.,
2017) for feature extraction, simple concatenation-based fusion, and the pixel-shuffle operation for
upsampling. It can be seen that our contributions (BFA+FA+RBFE) in the alignment stage lead to
substantial PSNR boost of ∼4 dB over the baseline. These performance gains are further increased
by 1.49 dB when we add the proposed burst fusion and upsampling modules. The presence of CBS
mechanism in NRFE increases the inter-frame communication and provides 0.12 dB improvement.
Table 3 shows that replacing the proposed alignment and fusion methods with other existing tech-
niques causes significant performance drop, i.e., 0.43 dB and 0.34 dB, respectively.

4.2 BURST LOW-LIGHT IMAGE ENHANCEMENT

We test the performance of our Burstormer on the Sony subset from the SID dataset, as in other
existing works (Dudhane et al., 2022; Zamir et al., 2020; Karadeniz et al., 2020; Zhao et al., 2019).
In addition to L1 loss, we use the perceptual loss (Zhang et al., 2018) for network optimization.
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Table 2: Ablation experiments for Burstormer contributions.
PSNR is reported on SyntheticBurst dataset (Bhat et al., 2021b)
for 4× SR. All our major components contribute significantly.

Task Modules
Baseline ✔ ✔ ✔ ✔ ✔ ✔ ✔

Alignment
BFA (§3.1.1) ✔ ✔ ✔ ✔ ✔ ✔
FA (§3.1.1) ✔ ✔ ✔ ✔ ✔
RBFE (§3.1.2) ✔ ✔ ✔ ✔

Burst
Fusion

NRFE w/o CBS (§3.2) ✔ ✔ ✔
NRFE with CBS (§3.2) ✔ ✔

Up-sampling Progressive (§3.2) ✔

PSNR 36.38 37.03 39.54 40.56 41.76 41.88 42.05

Table 3: Comparison of alignment and fu-
sion techniques. PSNR is computed on Syn-
theticBurst (Bhat et al., 2021b) for 4× SR.

Task Methods PSNR ↑

Alignment
Explicit (Bhat et al., 2021b) 39.84
TDAN (Tian et al., 2020) 40.58
EDVR (Wang et al., 2019) 41.26
EBFA (Dudhane et al., 2022) 41.62

Burst Fusion
Addition 40.20
Concat 40.65
DBSR (Bhat et al., 2021b) 41.08
PBFF (Dudhane et al., 2022) 41.71

Burstormer (Ours) 42.05

Ground Truth RAW Input Patch LEED BIPNet Ours Ground Truth Patch

Figure 4: Burst low-light image enhancement comparisons on the Sony subset of SID dataset (Chen et al.,
2018). Our Burstormer retains color and structural details faithfully relative to the ground-truth.

Dataset. SID (Chen et al., 2018) contains input RAW burst sequences captured with short-camera
exposure in extreme low ambient light, and their corresponding well-exposed sRGB ground-truth
images. The dataset consists of 161 burst sequences for training, 36 for validation, and 93 for testing.
We crop 6,500 patches of size 256×256 with burst size varying from 4 to 8 and train the network for
200 epochs. Since the input RAW burst is mosaicked, we use single 2× upsampler in our Burstormer
to obtain the final image.

Table 4: Burst low-light image enhancement evalua-
tion on the SID dataset (Chen et al., 2018).

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Chen et al. (2018) 29.38 0.892 0.484
Maharjan et al. (2019) 29.57 0.891 0.484
Zamir et al. (2021) 29.13 0.881 0.462
Zhao et al. (2019) 29.49 0.895 0.455
LEED (Karadeniz et al., 2020) 29.80 0.891 0.306
BIPNet (Dudhane et al., 2022) 32.87 0.936 0.305

Burstormer (Ours) 33.34 0.941 0.285

Enhancement results. The image quality
scores for competing approaches are summa-
rized in Table 4. Our Burstormer achieves
PSNR gains of 0.47 dB over the previous best
method BIPNet (Dudhane et al., 2022) and 3.54
dB over the second best algorithm LEED (Ka-
radeniz et al., 2020). Figure 4 shows enhanced
images produced by different approaches. Our
Burstormer yields images with more faithful
color and structural content than the other com-
pared approaches.

4.3 BURST DENOISING

This section presents the results of burst denoising on grayscale data (Mildenhall et al., 2018) as
well as on color data (Mildenhall et al., 2018). As there is no need to upscale the burst features, we
replace the upsampler in Burstormer with a simple convolution to generate the output image.

Datasets. Following the experimental protocols of Mildenhall et al. (2018) and Xia et al. (2020), we
prepare training datasets for grayscale denoising and color denoising, respectively. We train separate
denoising models for 300 epochs on 20K synthetic burst patches. Each burst contains 8 frames of
128×128 spatial resolution. Testing is performed on 73 grayscale bursts and 100 color bursts. Both
of these test sets contain 4 variants with different noise gains (1,2,4,8), corresponding to noise
parameters (log(σr), log(σs)) → (-2.2,-2.6), (-1.8,-2.2), (-1.4,-1.8), and (-1.1,-1.5), respectively.

Denoising results. Table 5 reports grascale denoising results where our Burstormer consistently
performs well. When averaged across all noise levels, our method provides 0.32 dB PSNR improve-
ment over the state-of-the-art BIPNet (Dudhane et al., 2022). Table 6 shows that the performance

8
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Table 5: Grayscale burst denoising on the dataset
by Mildenhall et al. (2018). PSNR is reported.

Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8 Average

MKPN (Marinč et al., 2019) 36.88 34.22 31.45 28.52 32.77
BPN (Xia et al., 2020) 38.18 35.42 32.54 29.45 33.90
MFIR (Bhat et al., 2021c) 39.37 36.51 33.38 29.69 34.74
BIPNet (Dudhane et al., 2022) 39.28 36.62 33.45 29.92 34.79

Burstormer (Ours) 39.49 36.70 33.71 30.55 35.11

Table 6: Color burst denoising on the dataset by Xia
et al. (2020). PSNR is reported.

Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8 Average

KPN (Mildenhall et al., 2018) 38.86 35.97 32.79 30.01 34.41
BPN (Xia et al., 2020) 40.16 37.08 33.81 31.19 35.56
MFIR (Bhat et al., 2021c) 41.90 38.85 35.48 32.29 37.13
BIPNet (Dudhane et al., 2022) 41.74 38.92 35.62 32.54 37.20

Burstormer (Ours) 41.70 39.15 36.09 33.44 37.59
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Figure 5: Burst denoising results on burst images from the grayscale (Mildenhall et al., 2018) and color
datasets (Xia et al., 2020). Our Burstormer produces more sharp and clean results than other competing ap-
proaches. Further examples are provided in the Appendix.

trend of Burstormer is similar on color denoising as well. For instance, on high noise level bursts
(Gain ∝ 8), Burstormer provides PSNR boost of 0.90 dB over BIPNet (Dudhane et al., 2022). Visual
comparisons in Fig. 5 show that Burstormer’s denoised outputs are relatively cleaner, sharper and
preserve subtle textures. Additional qualitative results are provided in Sec. C of appendix.

5 CONCLUSION

We present a transformer-based framework for burst image processing. The proposed Burstormer is
capable of generating a single high-quality image from a given burst of noisy images having pixel
misalignments among them. Burstormer employs a multi-scale hierarchical module EDA that, at
each scale, first generates denoised features encoding local and non-local context, and then aligns
each burst frame with the reference frame. To fix any remaining minor alignment issues, we incorpo-
rate a reference-based feature enrichment RBFE module in EDA that enables additional interaction
of the features of each frame with the base frame features. Overall, EDA improves model robust-
ness by yielding a burst of features that are well denoised, aligned, consolidated and refined. In
the image reconstruction stage, we repeatedly apply the no-reference feature enrichment NRFE and
upsampling modules in tandem until the final image is obtained. NRFE progressively and adap-
tively fuses each pair of frame features that are obtained with the proposed cyclic burst sampling.
Experiments performed on three representative burst processing tasks (super-resolution, denoising,
low-light image enhancement) demonstrate that our Burstormer provides state-of-the-art results and
generalizes well compared to recent burst processing approaches.
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APPENDIX

Here we provide more details on architectural design, additional ablations, and visual comparisons
for burst SR, low-light image enhancement and denoising.

A NETWORK ARCHITECTURAL DETAILS

In Burstormer, the EDA module is a 3-level encoder-decoder, where each level employs 1 FA (con-
taining single deformable conv. layer) and 1 RBFE module. In the image reconstruction stage, we
use 2 NRFE modules. The BFF unit both in RBFE and NRFE consists of 1 BFA module.

Figure 6 shows the BFA module that consists of multi-dconv head transposed attention (MDTA)
and gated-Dconv feed-forward network (GDFN) (Zamir et al., 2022). MDTA encodes local and
non-local context, and efficient enough to be applied to high-resolution images. Whereas, GDFN
performs controlled feature transformation i.e., suppressing less informative features, and allowing
only the useful information to pass further through the network.

B ABLATIONS ON ALIGNMENT AND FUSION MODULES

Table 7 compares the the properties of the proposed EDA and other existing alignment modules.
Unlike existing explicit feature alignment approaches DBSR (Bhat et al., 2021b) and MFIR (Bhat
et al., 2021c), the proposed EDA operates at multiple spatial scales and aligns burst features im-
plicitly without any additional supervision. Overall, the proposed EDA module possesses required
properties which makes it effective for the burst feature alignment.

Table 8 compares several feature fusion techniques. Our NRFE is flexible to taking as input the
features of more than two frames. It extracts local and non-local burst features, enables long-range
inter-frame interactions and aggregates the burst neighborhoods to obtain high-quality image.

DBSR/MFIR TDAN EDVR EBFA EDA (Ours)

Extra supervision ✔ × × × ×
Implicit alignment × ✔ ✔ ✔ ✔
Multi-scale hierarchy ✔ × ✔ × ✔
Attention for feature denoising × × × ✔ ✔
Reference-frame based refinement × × × × ✔

Table 7: Ablation on existing Feature alignment strategies with our EDA module.

DBSR/MFIR PBFF NRFE (Ours)

Flexible w.r.t multiple inputs ✔ × ✔
Long-range inter-frame interaction × ✔ ✔
Local and non-local feature extraction × ✔ ✔
Computational overhead ↓ ↑ ↓

Table 8: Ablation on existing Feature fusion techniques with our NRFE module.

C ADDITIONAL VISUAL RESULTS

Burst Super-resolution. Figure 7, and Figure 8 show qualitative results of competing approaches
on examples from the SyntheticBurst and (real) BurstSR datasets (Bhat et al., 2021b) for 4× SR.
The reproductions of our Burstormer are more detailed, sharper than those produced by the other
methods.

Burst low-light image enhancement. Figure 9 depicts that Burstormer produces images that are
more visually more closer to the ground-truth than the other approaches.

Burst Denoising. Figure 10 shows that the proposed Burstormer is capable of removing noise,
while preserving the desired texture and structural content.
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Figure 6: Burst Feature Attention (BFA) used in the proposed alignment and reconstruction stages to extract
features encoding both local and non-local pixel interactions.

Base Frame DBSR LKR MFIR BIPNet Ours
Figure 7: Burst super-resolution (4×) results on SyntheticBurst dataset (Bhat et al., 2021b).
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Base Frame DBSR MFIR BIPNet Ours Ground Truth
Figure 8: Burst super-resolution (4×) results on BurstSR (real) dataset (Bhat et al., 2021b).

Ground Truth Image RAW Input Patch LEED BIPNet Ours Ground TruthT Patch

Figure 9: Burst low-light image enhancement comparisons on the Sony subset of SID dataset (Chen et al.,
2018).
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Figure 10: Burst denoising results on burst images from the grayscale (Mildenhall et al., 2018) and color
datasets (Xia et al., 2020).
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