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ABSTRACT

This paper presents an approach to replicate computational fluid dynamics simu-
lations of air pollution using deep learning. The study area is in London, where a
tracer aims to replicate a busy traffic junction. Our method, which integrates Prin-
cipal Components Analysis (PCA) and autoencoders (AE), is a computationally
cheaper way to generate a latent space representation of the original unstructured
mesh model. Once the PCA is applied on the original model solution, a Fully-
Connected AE is trained on the full-rank Principal Components. This yields a
compression of the original data by 106. The number of trainable parameters is
also reduced using this method. A Long Short Term Memory (LSTM) based ap-
proach is used on the latent space to produce faster forecasts of the air pollution
tracer.

1 INTRODUCTION

Given the amount of data in Computational Fluid Dynamics (CFD) simulations, data-driven ap-
proaches can be seen as attractive solutions to produce low-dimension model surrogates. Tradition-
ally, these methods represent CFD using linear functions. Nonetheless, this is a highly non-linear
problem. Previous studies (Wiewel et al., 2019; Kim et al., 2019) have proposed to reduce the dimen-
sionality of CFD simulation using Convolutional Neural Networks (CNNs) and therefore represent
the problem in a reduced non-linear space. This can easily be done in structured meshes. However,
CNNs applied on unstructured meshes do not guarantee to represent the spatial information between
nodes, once the data has been linearised.

We introduce an autoencoder based on full-rank Principal Components of a CFD simulation. This
approach is a two-step dimension reduction of the original number of nodes: first with PCA, and
then with an autoencoder trained on the full-rank Principal components. The motivation to use this
approach is that; PCA is a linearised approach to a non-linear problem and that the truncation of the
PCA results in order to reduce dimensionality comes with loss of information. The autoencoder is a
non-linear approach which delivers a non-linear representation of the full-rank PCs. Previous works
(Reddy et al., 2019) have shown that a similar approach works in 2D, but this work introduces a
working 3D case.

The paper is structured as follows: in section 2 we present the methodology , in section 3 we present
the study area and data, section 4 shows the results of the application of the methodology on the
study area, and finally section 5 presents the summary and future work.

2 METHODS

The methodology combines two dimension reductions of the original data and a temporal neural
network. Given that the CFD simulation used in this study contains ≥ 105 dimensions and it is in
an unstructured mesh, there are two issues that arise if fast forecasts are needed.

Firstly, a dimension reduction. As a simulation of this size requires the use of a supercomputer
in order to produce the next time-step. One way to reduce the dimensionality is using Principal
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Figure 1: Proposed workflow to produce faster surrogate CFD forecasts. The first step is to reduce
the dimensionality in two steps: a PCA, and an autoencoder. This produces a latent space that can
be trained further with a Long short-term memory network which yields reduction in runtimes.

Components Analysis (PCA), which decomposes the data into linear basis functions that describe
the original problem data. The caveat of using PCA is that the dimension reduction comes from
truncating the Principal Components (PC), and by doing so the retained variance decreases. Our
methodology proposes the application of PCA on the original data, however, the full-rank PC are
kept, i.e. no truncation. This yields a square matrix with dimension m×m, where m is the number
of time-steps. An autoencoder is then applied on the full-rank PC and the dimensionality is further
reduced. The latent space produced by the encoder is a non-linear representation of the PC and
therefore there is no truncation.

Secondly, this is a CFD simulation in an unstructured mesh. State-of-the-art techniques use CNN
and autoencoders to reduce the dimensionality of systems (Kim et al., 2019). The problem with
unstructured meshes is that the data is not structured and therefore a convolution of the nodes might
not necessarily represent the spatial relationship between them within the simulation. Thus, a fully-
connected autoencoder (FCAE) is more appropriate in this scenario.

The workflow is presented in Fig 1. The two-step dimension reduction is described in the next two
sections.

2.1 PRINCIPAL COMPONENTS ANALYSIS

As described by Lever et al. (2017) PCA is an unsupervised learning method that simplifies high-
dimensional data by transforming it into fewer dimensions. Let

uM =
{
uMk

}
k=0,...,m

(1)

denotes the matrix of the model vectors at each time step. The PCA consists in decomposing this
dataset as:

uM = PMΠM + ūM (2)

where uM is the dataset of the model; PM ∈ <m×m is the principal components of uM; ΠM ∈
<m×n are the Empirical Orthogonal Functions; and ūM is the mean vector of the model. The
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dimension reduction of the system is then obtained by using PM as input and output, respectively
of a FCAE.

2.2 FULLY CONNECTED AUTO ENCODER

The second dimension reduction comes from using a FCAE (Baldi, 2012). The FCAE is trained to
take PM as input, and use it as target and output. This way there is no need to traditionally truncate
the Principal Components but rather reducing its dimensions even further and preserving them all in
a non-linear latent space.

The proposed architecture of the FCAE is shown in 1. The FCAE is divided into two sub architec-
tures: Encoder Ge and Decoder Gd. Thus, the FCAE function is defined by:

GAE = Gd ◦ Ge (3)

and therefore, the predicted PCs using principal components and autoencoder (PCAE) uPCAE is
obtained by:

PPCAE = Gd(Ge(PM)) (4)

uPCAE = PPCAEΠM + ũM (5)
(6)

The encoder architecture contains the row-wise input from PM which is connected to sequential
dense layers of 128, 64, 32, 16, and and finally 8 nodes to create the latent space:

ls = Ge(PM) (7)

The FCAE does not necessarily need to have these number of layers, and any other architecture that
reduces the dimension of the original PC is welcomed. The decoder takes the latent space ls as input
and its sequentially brings back the latent space to the size of the row-wise output of PM. In both
encoder and decoder, there is a Leaky Rectified Linear Unit (LeakyReLU) activation function and
Batch Normalisation for faster convergence after each dense layer.

The loss function (LAE) of GAE is then defined by:

LAE = min
θGe ,θGd

|Gd(Ge(x̃(t))− x̃(t)|2 (8)

where θE and θD are the hyperparameters of the encoder and decoder, respectively.

Once the latent space of the full-rank PCs is obtained, it can be used jointly with a Long short-term
memory network (LSTM) (Hochreiter & Schmidhuber, 1997) in order to make a prediction of the
next time-step. In this paper, a vanilla LSTM network takes the previous time-steps of ls

t−N,...,t as
input and predicts ls

t+1

3 STUDY AREA AND MODEL DATA

The computational fluid dynamics (CFD) simulations were carried out using Fluidity (Davies et al.,
2011) (http://fluidityproject.github.io/). The study area is a 3D realistic repre-
sentation of a part of South London, UK within the vicinity of the London South Bank University
(LSBU). The dispersion of the pollution is described by the classic advection-diffusion equation
such that the concentration of the pollution is seen as a passive scalar (eq. (9)).

∂c

∂t
+∇.(uc) = ∇.

(
κ∇c

)
+ F (9)

where κ is the diffusivity tensor (m2/s) and F represents the source terms (kg/m3/s).
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The 3D case is composed of an unstructured mesh including n = 100, 040 nodes and m = 1000
time-steps. The wind profile of the atmospheric boundary layer is represented by a log-profile
velocity. The top and the sides of the model domain have a perfect slip boundary condition, while the
facades of the buildings and the bottom of the model domain have a no-slip boundary. The outflow
boundary condition is defined by zero pressure (no-stress) condition. The pollution background is
modelled as a sinusoidal function as follows:

C(t) =
1

2

(
sin

(
2πt

T

)
+ 1

)
(10)

where C is the pollutant concentration, and t and T are time and period, respectively, in seconds.
This background pollution mimics waves of pollution in an urban environment. The tracer is a point
source located at the centre of the traffic intersection, mimicking pollution in a traffic congested
junction.

4 RESULTS

The choice of training GAE on the principal components of the model background is due to the
number of trainable parameters. An equivalent fully connected autoencoder on the full-space corre-
spond to 256.4 M trainable parameters. Our approach only has 98828 trainable parameters, which
is cheaper to run and more adequate to the memory capacity of our systems.

The decision of a 8-D latent space comes arbitrarily in order to achieve a 1000-fold dimension
reduction. The dimension of the latent space is easily modifiable. The total compression of the
dataset is then 106 times from 800 Megabytes to ∼ 64 kilobytes in the 8-D latent space.

The advantage of having a lower dimension latent space is useful when a LSTM is applied to produce
fast forecasts as less trainable parameters are needed. Once the LSTM is trained, the decoder projects
the solution back to the full-rank PC space, which is then projected to the physical space. The LSTM
is 4× 104 faster than Fluidity as producing forecasts.

Figure 2: Comparison between CFD (Fluidity, top left), Principal Component Autoencoder (top
right), LSTM per time-step (bottom left), and LSTM running free (bottom right).

5 SUMMARY AND FUTURE WORK

The framework proposes a two-step dimension reduction based on PCA and autoencoders. The
framework was validated using a CFD Fluidity simulation. It is proposed that a two-step dimension
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Figure 3: Averaged absolute error between the free running LSTM and the original CFD. From 40
different starting points.

reduction of this type can be used to keep the full-rank Principal Components in a non-linear latent
space. Thus, it is not necessary to truncate the PCs.

This framework is encouraging as speed and accuracy are usually mutually exclusive terms. The
results shown here are promising and demonstrate how the merger of these techniques could be
useful in computationally demanding physical models.

Lastly, this framework is not exclusive to a Fluidity solution and the workflow could be applied to
different physical models where sufficient temporal data is available.

Future work includes the scalability towards bigger domains. In order to make these CFD simula-
tions faster, the numerical solution of Fluidity could be replaced by Deep Learning algorithms like
Generative Adversarial Networks (GANs) including a temporal sequence in order to create physi-
cally realistic flows. The replacement of the CFD solution by these models will speed up the forecast
process towards a real-time solution. This future work combined with the framework presented here
has the potential to be very rapid. The CFD Fluidity simulation can also produce velocity and
pressure vectors and therefore, future work will explore the inclusion of these in the PCAE.
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