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Abstract

Prior work has shown that text-conditioned diffusion models can learn to identify1

and manipulate primitive concepts underlying a compositional data-generating2

process, enabling generalization to entirely novel, out-of-distribution composi-3

tions. Beyond performance evaluations, these studies develop a rich empiri-4

cal phenomenology of learning dynamics, showing that models generalize se-5

quentially, respecting the compositional hierarchy of the data-generating pro-6

cess. Moreover, concept-centric structures within the data significantly influence7

a model’s speed of learning the ability to manipulate a concept. In this paper,8

we aim to better characterize these empirical results from a theoretical standpoint.9

Specifically, we propose an abstraction of prior work’s compositional generaliza-10

tion problem by introducing a structured identity mapping (SIM) task, where a11

model is trained to learn the identity mapping on a Gaussian mixture with struc-12

turally organized centroids. We mathematically analyze the learning dynamics13

of neural networks trained on this SIM task and show that, despite its simplicity,14

SIM’s learning dynamics capture and help explain key empirical observations on15

compositional generalization with diffusion models identified in prior work. Our16

theory also offers several new insights—e.g., we find a novel mechanism for non-17

monotonic learning dynamics of test loss in early phases of training. We validate18

our new predictions by training a text-conditioned diffusion model, bridging our19

simplified framework and complex generative models. Overall, this work estab-20

lishes the SIM task as a meaningful theoretical abstraction of concept learning21

dynamics in modern generative models.22

1 Introduction23

Human cognitive abilities have been argued to generalize to unseen scenarios through the identifica-24

tion and systematic composition of primitive concepts that constitute the natural world (e.g., shape,25

size, color) [18, 19, 61, 20, 64, 21, 24]. Motivated by this perspective, the ability to compositionally26

generalize to entirely unseen, out-of-distribution problems has been deemed a desirable property for27

machine learning systems, leading to decades of research on the topic [68, 37, 28, 58, 58, 62, 38, 33,28

14].29

Recent work has shown that modern neural network training pipelines can lead to emergent abilities30

that allow a model to compositionally generalize when it is trained on a data-generating process31

that itself is compositional in nature [38, 59, 52, 41, 5, 78, 34]. For example, [52, 54] show that32

text-conditioned diffusion models can learn to identify concepts that constitute the training data and33

develop abilities to manipulate these concepts flexibly, enabling generations that represent novel34

compositions entirely unseen during training. These papers also provide a spectrum of intriguing35

empirical results regarding a model’s learning dynamics in a compositional task. For example, they36

reveal that abilities to manipulate individual concepts are learned in a sequential order dictated by the37
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Figure 1: Structured Identity Mapping Task and Non-Monotonic Generalization Dynamics. (a)
Given the input “blue square apples on a tree with circular yellow leaves,” a multimodal model learns
to generate concepts in the following order: “apple,” “blue” (color), and “square” (shape) (example
adapted from [43]). (b) A multimodal synthetic task introduced by [52, 54]. The training set of the
task consists of four distinct compositions of concepts, depicted as blue nodes on a cubic graph. A
diffusion model is trained on this dataset to systematically study the dynamics of concept learning.
With the test prompt “small, blue, triangle,” the diffusion model sequentially learns the correct size,
shape, and finally color. (c) In this work, we introduce a structured identity mapping task as the
foundation for a systematical and theoretical studying of the dynamics of concept learning. The
model is trained on a Gaussian mixture data, where the centroids are positioned at certain nodes of
a hypercube (blue dots) and is evaluated on an out-of-distribution test set (red dot). Our theoretical
results not only reproduce and explain previously characterized empirical phenomena but also depict
a comprehensive picture of the non-monotonic learning dynamics in the concept space and predict
a “multiple-descent” curve of the test loss (red curve).

data-generating process; the speed of learning such abilities is modulated by data-centric measures38

(e.g., gradient of loss with respect to concept values, such as color of an object); and the most similar39

composition seen during training often controls performance on unseen compositions.40

In this work, we aim to demystify the phenomenology of compositional generalization identified in41

prior work and better ground the problem (or at least a specific variant of it called systematicity) via42

a precise theoretical analysis. To that end, we instantiate a simplified version of the compositional43

generalization framework introduced by [52, 54]—called the “concept space” (see Fig. 1b)—that is44

amenable to theoretical analysis. In brief, a concept space is a vector space that serves as an ab-45

straction of real concepts. For each concept (e.g., color), a binary number can be used to represent46

its value (e.g., 0 for red and 1 for blue). In this way, a binary string can be mapped to a tuple (e.g.,47

(1, 0, 1) might represent “big blue triangle”) and then fed into the diffusion model as a conditioning48

vector. The model output is then passed through a classifier1which produces a vector indicating49

how accurately the corresponding concepts are generated (e.g. a generated image of big blue trian-50

gle might be classified as (0.8, 0.1, 0.9)). In this way, the process of generation becomes a vector51

mapping, and a good generator essentially performs as an identity mapping in the concept space.52

We argue that in fact the salient characteristic of a concept space is its preemptively defined organi-53

zation of concepts in a systematic manner, not the precise concepts used for instantiating the frame-54

work itself. Grounded in this argument, we define a learning problem called the Structured Identity55

Mapping (SIM) task wherein a regression model is trained to learn the identity mapping from points56

sampled from a mixture of Gaussians with structurally organized centroids (see Fig. 1c). Through57

a detailed analysis of the learning dynamics of MLP models, both empirically and theoretically,58

we find that SIM, despite its simplicity, can both capture the phenomenology identified by prior59

work and provide precise explanations for it. Our theoretical findings also lead to novel insights,60

e.g., predicting the existence of a novel mechanism for non-monotonic learning curves (similar to61

epochwise double-descent [51], but for out-of-distribution data) in the early phase of training, which62

we empirically verify to be true by training a text-conditioned diffusion model. Our contributions63

are summarized below.64

• Structured Identity Mapping (SIM): A faithful abstraction of concept space. We empirically65

validate our SIM task by training Multi-Layer Perceptrons (MLPs), demonstrating the repro-66

duction of key compositional generalization phenomena characterized in recent diffusion model67

1Conceptually, we can think of an idealized perfect classifier here.
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studies [52, 54]. Our findings show: (i) learning dynamics of OOD test loss respect the com-68

positional hierarchical structure of the data generating process; (ii) the speed at which a model69

disentangles a concept and learns the capability to manipulate it is dictated by the sensitivity of70

the data-generating process to changes in values of said concept (called “concept signal” in prior71

work); and (iii) network outputs corresponding to weak concept signals exhibit slowing down in72

concept space. These results also suggest that the structured nature of the data, rather than specific73

concepts, drove observations reported in prior work.74

• Theoretical analysis reveals mechanisms underlying learning dynamics of a compositional75

task. Building on the successful reproduction of phenomenology with MLPs trained on the SIM76

task, we further simplify the architecture to enable theoretical analysis. We demonstrate that:77

(i) analytical solutions with a linear regression model reproduce the observed phenomenology78

above, and (ii) the analysis of a symmetric 2-layer network (f(x;U) = UU⊤x) identifies a novel79

mechanism of non-monotonic learning dynamics in generalization loss, which we term Transient80

Memorization. Strikingly, we show that the learning dynamics of compositional generalization81

loss can exhibit multiple descents in its early phase of learning, corresponding to multiple phase82

transitions in the learning process.83

• Empirical confirmation of the predicted Transient Memorization phenomenon in diffusion84

models. We verify the predicted mechanism of Transient Memorization in text-conditioned diffu-85

sion models, observing the non-monotonic evolution of generalization accuracy for unseen com-86

binations of concepts, as predicted by our theory.87

In summary, our theoretical analysis of networks trained on SIM tasks provides mechanistic ex-88

planations for previously observed phenomenology in empirical works and introduces the novel89

concept of Transient Memorization. This mechanism is subsequently confirmed in text-conditioned90

diffusion models, bridging theory and practice in compositional generalization dynamics.91

2 Preliminaries and Problem Setting92

Throughout the paper, we use bold lowercase letters (e.g., x) to represent vectors, and use bold93

uppercase letters (e.g., A) to represent matrices. We use the unbold and lowercase version of corre-94

sponding letters with subscripts to represent corresponding entries of the vectors or matrices, e.g., xi95

represent the i-th entry of x and ai,j represent the (i, j)-th entry of A. For a vector x and a natural96

number k, we use x:k to represent the k-dimensional vector that contains the first k entries of x.97

For a natural number k, we use [k] to represent the set {1, 2, . . . , k}, and 1k to represent a vector98

whose entries are all 0 except the k-th entry being 1; the dimensionality of this vector is determined99

by the context if not specified. In the theory part, we frequently consider functions of time, denoted100

by variable t. If a function g(t) is a function of time t, we denote the derivative of g with respect to101

t by ġ(t0) =
dg
dt

∣∣∣
t=t0

. Moreover, we sometimes omit the argument t, i.e., g means g(t) for a time t102

determined by the context. For a statement ϕ, we define 1{ϕ} =

{
1 ϕ is true
0 ϕ is false

to be the indicator103

function of that statement.104

2.1 Problem Setting105

Now we formally define SIM, which is an abstraction of the concept space. For each concept class,106

we model them as a Gaussian cluster in the Euclidean space, placed along a unique coordinate di-107

rection. The distance between the cluster mean and the origin represents the strength of the concept108

signal, and the covariance of the Gaussian cluster represents the data diversity within the correspond-109

ing concept class. Additionally, we allow more coordinate directions than the clusters, meaning that110

some coordinate directions will not be occupied by a cluster, which we call non-informative di-111

rections, and they correspond to the free variables in the generalization task. See Fig. 1c for an112

illustration of the dataset of SIM.113

Training Set. Let d ∈ N be the dimensionality of the input space and s ∈ [d] be the number114

of concept classes, i.e., there are s Gaussian clusters, and n ∈ N number of samples from each115

cluster. The training set D =
⋃

p∈[s]

{
x
(p)
k

}n

k=1
is generated by the following process: for each116

p ∈ [s], each training point of the p-th cluster is sampled i.i.d. from a Gaussian distribution x
(p)
k ∼117

N
[
µp1p,diag (σ)

2
]
, where µp ≥ 0 is the distance of the p-th cluster center from the origin, and118
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σ is a vector with only the first s entries being non-zero, and σ2
i describing the data variance on the119

i-th direction. There is also optionally a cluster centered at 0.120

Loss function. The training problem is to learn identity mapping on Rd. For a model f : Rm×Rd →121

Rd and a parameter vector θ ∈ Rm, we train the model parameters θ via the mean square error loss.122

L(θ) = 1

2sn

s∑
p=1

n∑
k=1

∥∥∥f (θ;x(s)
k

)
− x

(s)
k

∥∥∥2 . (2.1)

Evaluation. We evaluate the model at a Gaussian cluster centered at the point that combines the123

cluster means of all training clusters. When the variance of the test set is small, the expected loss124

within the test cluster is approximately equivalent to the loss at its cluster mean. Therefore, for125

simplicity, in this paper, we focus on the loss at the mean of the test cluster, which is a single test126

point x̂ =
∑s

p=1 µp1p. We emphasize this point is outside of the training distribution—not just the127

training data, necessitating out-of-distribution generalization. In App. B, we report further results128

for the case of various combinations of training clusters, which leads to multiple OOD test points.129

3 Observations on the SIM Task130

We first begin by summarizing our key empirical findings on the SIM task. In all experiments we131

use MLP models of various configurations, including different number of layers and both linear and132

non-linear (specifically, ReLU) activations. Throughout this section and the subsequent sections, we133

frequently consider the model output at the test point x̂ over training time, which we call output134

trajectory of the model.135

Due to space constraints, we only present the results for a subset of configurations in the main paper136

and defer other results to App. F. We note that the findings reported in this section are in one-to-one137

correspondence with results identified using diffusion models in Sec. 5 and prior work [54].138

3.1 Generalization Order Controlled by Signal Strength and Diversity139

One interesting finding from previous work is that if we alter the strength of one concept signal from140

small to large, the contour of the learning dynamics would dramatically change [54]. Moreover, it141

is also commonly hypothesised that with more diverse data, the model generalizes better [23, 10].142

Recall that in the SIM task, the distance µk of each cluster represents the corresponding signal143

strength, and the variance σk represents the data diversity. In Fig. 2, we present the output trajectory144

under the setting of s = 2, in which case the trajectory can be visualized in a plane. There are two145

components to be learned in this task and, from the contour of the curve, we can tell the order of146

different components being learned.147

Fig. 2 (a) presents the output trajectory for a setting with a fixed and balanced σ, and a varied µ. The148

results show that when µ1 < µ2, the dynamics exhibit an upward bulging, indicating a preference149

for the direction of stronger signal. As µ1 is gradually increased, this contour shifts from an upward150

bulging to a downward concaving, and consistently maintains the stronger signal preference.151

In Fig. 2 (b), the µ is fixed to an unbalanced position, with one signal stronger than the other. As we152

mentioned above, when σ is balanced, the model will first move towards the cluster with a stronger153

signal strength. However, when the level of diversity of the cluster with weaker signal is gradually154

increased, the preference of the model shifts from one cluster to another.155

A very concrete conclusion can be thus drawn from the results in Fig. 2 (a) and (b): the generalization156

order is jointly controlled by the signal strength and data diversity, and, generally speaking, the157

model prefers direction that has a stronger signal and more diverse data. We note that the conclusion158

here is more qualitative and in Sec. 4, we provide a more precise quantitative characterization of159

how these two values control the generalization order.160

3.2 Convergence Rate Slow Down In Terminal Phase161

In Fig. 2, the arrow-like markers on the line indicate equal training time intervals. In the later phase162

of training, we observe that the arrows get denser, indicating a slowing down of the learning dynam-163

ics. A close examination of the markers in Fig. 2 suggests that the deceleration is not determined164

by the distance of the current output to the target point (i.e. the loss value), but more depends on165

the data and training time. That is, there is a timescale determined by the training data such that if166

the model does not achieve OOD generalization within that period, significantly more computation167
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Figure 2: Learning dynamics of MLP on SIM task. The figures show the output trajectory of
the MLP on a two-dimensional setting (i.e., s = 2), and each marker represents an optimization
timepoint. Notice that we only plot the center of the training set as a circle, but the actual training
set can have varied shapes based on the configuration of σ. (a) one-layer linear model with σ:2 =
(.05, .05) and varied µ. Concepts i with larger signal (µi) learnt first. (b) one-layer linear model
with µ:2 = (1, 2) and varied σ. Concepts i with larger diversity (σi) learnt first. (c) 4 layer linear
models under different dimensionality. high dim: d = 64, low dim: d = 2. Notice that (a) and (b)
are both in high dim setting. The lower the dimensionality, the stronger Transient Memorization it
has.

will be required for the model to achieve it. This effect can be observed in Fig. 2 (b) by comparing168

the output trajectories of σ = (0.05, 0.05) case and the σ = (2, 0.05) case. The trajectory with169

the lower concept signal (i.e. σ = (0.05, 0.05)) yields insufficient OOD generalization until the170

dynamics slows down and thus requires many more time to approach the target point.171

3.3 Transient Memorization172

The results in Fig. 2 (a) and (b) are both performed with one-layer models and under a high dimen-173

sional setting (d = 64). Despite the overall trend being similar in other settings, it is worth explor-174

ing the change of trajectory as we increase the number of layers, and / or reduce the dimension.175
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Figure 3: The test loss of multi-layer
models.

176

In Fig. 2 (c), we perform experiments with deeper mod-177

els, and optionally with a lower dimension. Under these178

changes, we find that the model shows an interesting179

irregular behavior, where it initially heads towards the180

OOD test point, but soon turns toward the training set181

cluster with the strongest signal. This indicates the model,182

while seems to be generalizing OOD at the beginning, is183

memorizing the train distribution and unable to general-184

ize OOD at this point. However, with enough training, we185

find the model start to again move towards the test point186

and thus generalizes OOD. We call this overall dynamic of the output trajectory Transient Memo-187

rization, which we could be suggestive of a non-monotonic test loss curve (similar to epoch-wise188

double-descent [51, 53], but with an OOD test loss). To assess this further, we track the value of the189

loss function during training in Fig. 3, demonstrating a double-descent-like curve. We emphasize190

though that Transient Memorization is a distributional phenomenon and is different from what was191

called (epochwise) double-descent, i.e., the model memorizes the training distribution and is hence192

unable to generalize well OOD, while double-descent involves classical overfitting to the training193

data itself, affecting model’s in-distribution generalization. We also note that the Transient Memo-194

rization phenomena seems to be strongest when dimensionality d of the dataset is low, and is rather195

modest with high dimensional settings. In the high dimensional setting, the OOD loss descent slows196

down at some point but does not actually exhibit non-monotonic behavior. This low dimensional197

preference can also be explained perfectly by our theory, further described in Sec. 4.198
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4 Theoretical Explanation199

We next study the training dynamics of a specific class of linear models that are tractable on the SIM200

task and explain the empirical phenomenology of OOD learning dynamics seen in previous section.201

In Sec. 4.1, we first analyze a one-layer model whose dynamics can be solved analytically. We202

show that it can explain most phenomena observed in the experiment; however, it fails to reproduce203

Transient Memorization, suggesting that Transient Memorization is intrinsic to deep models, which204

highlights the fundamental difference between shallow and deep models. In Sec. 4.2, we further205

analyze the dynamics of a symmetric 2-layer linear model, which successfully captures Transient206

Memorization. Our theoretical results reveal a multi-stage behavior of the model Jacobian during207

training, which leads to the non-monotonic behavior in model output. We show that each stage in208

the Transient Memorization precisely corresponds to each stage in the Jacobian evolution.209

Throughout this section, we assume f(θ;x) is a linear function of x. In this case the Jacobian of f210

with respect to x is a matrix that is completely determined by θ, which we denote by Wθ = ∂f(θ;x)
∂x .211

In this way, the output of the model can be written as f(θ;x) = Wθx. Using the trace trick (with212

detailed calculations provided in App. C.1), it is easy to show that the overall loss function is equal213

to214

L(θ) = 1

2

∥∥∥(Wθ − I)A1/2
∥∥∥2
F
, (4.1)

where A = 1
sn

∑s
p=1

∑n
k=1 x

(p)
k x

(p)⊤
k is the empirical covariance. In this section, we assume n is215

large, in which case A converges to the true covariance of the dataset A = Ex∼D[xx
⊤], which is a216

diagonal matrix A = diag(a), defined by ap =

{
σ2
p +

µ2
p

s p ≤ s

0 p > s
, for any p ∈ [d].217

Remark. Notice that in the linear setting we might not directly train Wθ; instead, we train its218

components. For example, we might have θ = (W1,W2) and have Wθ = W1W2. Then, what we219

actually train is W1 and W2, instead of Wθ. As many previous works have emphasized [3, 30, 4, 1],220

although the deep linear model has the same capacity as a one-layer linear model, their dynamics221

can be vastly different and the loss landscape of deep linear models can be non-convex.222

4.1 A One-Layer Model Theory and Its Limitations223

As a warm-up, we first study the dynamics of one-layer linear models, i.e., f(W ;x) = Wx, in224

which case the Jacobian Wθ is simply W . As we will show, this setting can already explain most225

of the observed phenomenology from the previous section including the order of generalization and226

the terminal phase slowing down, but fails to capture the Transient Memorization, which we will227

explore in next subsection. Here we present Theorem 4.1, which gives the analytical solution of the228

one-layer model on the SIM task.229

Theorem 4.1. Let W (t) ∈ Rd×d be initialized as W (0) = W (0), and updated by Ẇ = −∇L(W ),230

with L be defined by eq. (4.1) with f(W , z) = Wz, then we have for any z ∈ Rd,231

f(W (t), z)k = 1{k≤s} [1− exp (−akt)] zk︸ ︷︷ ︸
G̃k(t)

+

s∑
i=1

exp (−ait)wk,i(0)zi︸ ︷︷ ︸
Ñk(t)

. (4.2)

See App. C.2 for proof of Theorem 4.1. The Theorem shows that the k-th dimension of the output of232

a one-layer model evaluated on the test point x̂ can be decomposed into two terms: the growth term233

G̃k(t) = 1{k≤s} [1− exp (−akt)]µk, and the noise term Ñk(t) =
∑s

i=1 exp (−ait)wk,i(0)µi.234

The following properties can be observed for these two terms: (i) the growth term converges to µk235

when k ≤ s and 0 when k > s, while the noise term converges to 0; (ii) both terms converge at236

an exponential rate; and (iii) the noise term is upper bounded by
∑s

i=1 wk,i(0)µi. If the model237

initialization is small in scale, specifically wk,i(0) ≪ 1
smaxi∈[s] µi

, then Ñk(t) will always be small,238

and thus can be omitted. With this assumption in effect, the model output is dominated by the growth239

term. A closer look at the growth term then explains part of the observed phenomenology.240
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Generalization Order and Terminal Phase Slowing Down. It can be observed that G̃k(t) con-241

verges at an exponential rate, which leads an exponential decay of evolution speed and explains the242

terminal phase slowing down. Moreover, the exponential convergence rate of G̃k(t) is controlled243

by the coefficient ak = 1
s

(
sσ2

k + µ2
k

)
. Therefore, the direction with larger ak, i.e., larger µk and244

/ or σk, converges faster, hence explaining the order of generalization to different concepts. The245

theorem also reveals the proportional relationship between µk (concept signal strength) and σk (data246

diversity).247

The Limitation of the One Layer Model Theory. While we have demonstrated that Theorem 4.1248

effectively explains both the generalization order and the terminal phase slowing down, in the solu-249

tion eq. (4.2), the learning of each direction is independent. This independence omits the possible250

interaction between the dynamics of different directions in deeper models, and leads to monotonic251

and rather regular output trajectory (this is verified by the experiment results in Sec. 3.1). However,252

as the experiments in Sec. 3.3 show, when the number of layers becomes larger, the model actually253

exhibits a non-monotonic trace that can have detours. The theory based on the one-layer model fails254

in capturing this behavior. In the subsequent subsection, we introduce a more comprehensive theory255

based on a deeper model, and demonstrate that this model explains all the phenomena observed in256

Sec. 3, especially the Transient Memorization.257

4.2 A Symmetric Two-Layer Linear Model Theory258

In this subsection, we analyze a symmetric 2-layer linear model, namely f(U ;x) = UU⊤x, where259

U ∈ Rd×d′
and d′ ≥ d. We demonstrate that it accurately captures all the observations presented260

in Sec. 3, and, more importantly, the theory derived from this model provides a comprehensive261

understanding of the evolution of the model Jacobian and output, offering a clear and intuitive ex-262

planation for the underlying mechanism of the model’s seemingly irregular behaviors. Due to space263

constraints, we focus on providing an intuitive explanation of the multi-stage behavior of the model264

Jacobian and output, and defer the formal proofs to the appendix. It is also worth noting that this265

symmetric 2-layer linear model is a frequently studied model in theoretical analysis [44, 70, 31],266

and most existing theoretical results for this model focus on the implicit bias of the solution found,267

instead of on the non-monotonic behavior during training, which is the focus of our analysis.268

For convenience, we denote the Jacobian of f at time point t by W (t) = WU(t). The gradient flow269

update of the i, j-th entry of W is given by270

ẇi,j =wi,j(ai + aj)︸ ︷︷ ︸
Gi,j(t)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

− 1

2

∑
k ̸=i
k ̸=j

wk,iwk,j(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

.

(4.3)

As noted in eq. (4.3), we decompose the update of wi,j into three terms. We call Gi,j(t) =271

wi,j(t)(ai + aj) the growth term, Si,j(t) = 1
2wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
the272

suppression term, and Ni,j(t) =
1
2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai + aj + 2ak) the noise term. The name273

of these terms suggests their role in the evolution of the Jacobian: the growth term Gi,j always has274

the same sign as wi,j , and has a positive contribution to the update, so it always leads to the direction275

that increases the absolute value of wi,j ; the suppression term Si,j also has the same sign2 as wi,j ,276

but has a negative contribution in the update of wi,j , so it always leads to the direction that decreases277

the absolute value of wi,j ; and the effect direction of the noise term is rather arbitrary since it de-278

pends on the sign of wi,j and other terms. It is proved in Lemma D.8 that under mild assumptions,279

the noise term will never be too large; for brevity, we omit it in the following discussion and defer280

the formal treatment of it to the rigorous proofs in App. D.281

4.2.1 The Evolution of Entries of Jacobian282

In order to better present the evolution of the Jacobian, we divide the entries of the Jacobian into283

three types: the major entries are the first s diagonal entries, and the minor entries are the off-284

diagonal entries who are in the first s rows or first s columns, and other entries are irrelevant285

2Notice that since W = UU⊤ is a PSD matrix, the diagonal entries are always non-negative.
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Figure 5: The learning dynamics of a symmetric 2-layer linear model. Left: The change of the
test loss and the Jacobian entries with time predicted by the theory; Right: the corresponding model
output trajectory. The figures are plotted under s = 2 and all entries of W are initialized positive.

entries. Notice that the irrelevant entries do not contribute to the output of the test point so we will286

not discuss them. Moreover, we also divide minor entries into several groups. The minor entries in287

the p-th row or column belongs to the p-th group (thus each entry belongs to two groups). See Fig. 4288

for an illustration of the division of the entries.289

s

d − s

major entries minor entries

group 1

group 2

group 3

group 1 group 2 group 3
irrelevant entries

Figure 4: An illustration of the entries
of the Jacobian.

Initial Growth. In this section, we assume wi,j∀i, j are290

initialized around a very small value ω such that ω ≪291
1

dmaxi∈[s] ai
(See App. D.1 for specific assumptions). It292

is evident that when all wi,j are close to ω (we call this293

period the initial phase), the growth term is Θ(ω), while294

the suppression term and the noise term are Θ(ω2). This295

suggests that the evolution of wi,j is dominated by the296

growth term. Therefore, in the initial phase, every value297

in the Jacobian grows towards the direction of increasing298

its absolute value, with the speed determined by ai + aj .299

Since we assumed that a is ordered in a descending order,300

it is evident that each entry grows faster than those below301

it or to its right. The Initial Growth stage is formally char-302

acterized by Lemmas D.1 to D.3.303

First Suppression. In the Initial Growth stage, the first major entry will be the one that grows304

exponentially faster than all other entries, making it the first one that leaves the initial phase. Once305

the first major entry becomes significant and non-negligible, it will effect on the suppression term306

of all minor entries in the first group. When the difference between a1 and a2 is large enough, the307

first major entry is able to flip the growth direction of the first group of minor entries and push their308

values to 0. The suppression stages are characterized by Lemma D.7.309

Second Growth and Cycle. Once the suppression of the first group of minor entries takes effect,310

the second major entry becomes the one that grows fastest. Thus, the second major entry will be the311

second one that leaves the initial stage. Again, when the second major entry becomes large enough,312

it will suppress the second group of minor entries and push their value to 0. This process continues313

like this: the growth of a major entry is followed by the suppression of the corresponding group314

of minor entries, which, in turn, leaves space for the growth of the next major entry. The general315

growth stages are characterized by Lemma D.4 and the fate of off-diagonal entries is characterized316

by Lemma D.8.317

Growth Slow Down and Stop. Notice that the suppression term of a major entry is also influ-318

enced by its own magnitude. Therefore, when a major entries becomes significantly large, it also319

suppresses itself, leading to the slowing down of its growth. Note that this effect only slows down320

the growth but will not reverse the direction, since for major entries the suppression term is always321
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smaller than the growth term, until wi,i becomes 1 where the growth and suppression terms are322

equal and the evolution stops. The terminal stage of the growth of major entries are characterized323

by Lemma D.5.324

4.2.2 Explaining Model Behavior325

Recall that we have f (U(t); x̂)k =
∑s

p=1 wk,p(t)µp. We now explain how the stage-wise evolution326

of Jacobian described in Sec. 4.2.1 determines the evolution of the model output.327

Generalization Order and Terminal Phase Slowing Down. From the discussions in Sec. 4.2.1,328

by the end of the training, all the major entries converge to 1 and all minor entries converge to 0. The329

major entries grows in the order of corresponding ap, which is determined by µp and σp, and slows330

down when approaching the terminal. This explains our observation that directions with larger µp331

and / or σp is learned first, as well as the terminal phase slowing down.332

Transient Memorization and Non-monotonic Loss Curve. We argue the Transient Memoriza-333

tion and the non-monotonic loss curve is caused by the multi-stage major growth vs. minor growth334

/ suppression process. Importantly, in certain configurations, minor entries growing towards larger335

absolute values (which is the incorrect solution) can lead to the decay of the OOD test loss, and336

cause an “illusion of generalizing” that the output trajectory is moving towards improving OOD337

generalization. However, this effect is later eliminated by the suppression of the corresponding mi-338

nor entries, leading to a double (or multiple) descent-like loss curve and a reversal in the output339

trajectory.340

More concretely, consider the first (initial) growth stage as an example. In this stage, for each341

k ∈ [s], f (U(t); x̂)k is dominated by wk,1(t)µk, since wk,1 grows fastest among all the entries in342

the k-th row. If wk,1 happens to be initialized positive, then f (U(t); x̂)k grows towards 1, which343

is the correct direction3, and loss thus decays. Since in a symmetric initialization, each entry has344

equal chance of being initialized positive or negative, when s is small, it is easy to have many minor345

entries initialized positive, whose growth contributes to the decaying of loss. This causes an illusion346

that the model is going towards the right direction of OOD generalization. After the minor entries347

of the first group are suppressed, their contribution to the decaying of the loss is canceled, which348

leads to the output trajectory turning back to the direction of memorizing a training cluster and a349

transient loss increase.350

Fig. 5 presents the loss curve and the Jacobian entry evolution predicted by the theory with a specific351

initialization. Notice how, as claimed above, the first and second descending of loss accurately352

corresponds to the initial and second growth of the major entries, and the ascending of the loss353

corresponds to the suppression of the minor entries. When s > 2, there are multiple turns of354

growth and suppression stages and can possibly leads to a multiple-descent-like loss curve, which355

we confirm and illustrate in App. E.1.356

Remark on Failure Modes. We note that our theory also provides an explanation on instances357

when the model fails to achieve OOD generalization when one or more of our assumptions outlined358

in App. D.1 breakdown. A specific case is when a major entry wk,k is overly suppressed by a359

corresponding minor entry before it can begin to grow, causing the growth term Gk,k becomes360

nearly zero. Consequently, the model output at x̂ in that direction converges to 0, instead of µk as361

expected. See App. E.3 for more discussions and illustrations.362

Remark on Existing Work. There has been extensive research on the non-monotonic behavior363

of linear neural networks (in various settings). We note that existing studies either focus on one-364

layer networks [57, 26] or diagonally initialized networks [53, 39, 16, 55], which essentially make365

the evolution of each direction decoupled. This decoupling simplifies the learning dynamics and366

can overlook critical aspects thereof (as we discussed in the preceding subsection). In contrast,367

our analysis, through a careful treatment of each entry of the Jacobian, does not need to make the368

diagonal initialization assumption, hence allowing us to capture and characterize the rich behaviors369

that arise from the interaction between different directions.370

3Notice that this is true even when k ̸= 1, i.e. wk,1 is a minor entry.
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5 Diffusion Model Results371

Tying back to our original motivation of devising an abstraction of concept space first explored in372

text-to-image generative diffusion models, we now aim to verify if our novel theoretical findings can373

be reproduced in a more involved empirical setup with diffusion models. To this end, we borrow374

the setup from [54, 52] and train conditional image diffusion models on two concepts—size and375

color.376

(a) (b) (c)

Number of gradient stepsColor

Si
ze

C
on

ce
pt

 S
pa

ce
 M

SE

dC
/dt

 tNumber of gradient steps  t

Figure 6: Main observations reproduced on prompt-to-image diffusion models. (a) Signal
strength controls generalization speed and order. (b) Transient Memorization: Diffusion models
also undergo a Transient Memorization phase. This induces a double-descent like curve for the con-
cept space MSE. (c) Concept learning gradually slows down. Our theory predicts speed of concept
learning slows down at an exponential rate, which broadly matches the experimental results. For
details of the experiment, please see App. G.

Fig. 6 illustrates the three main observations from our theory reproduced with a prompt-to-image377

diffusion model. We trained diffusion models to compose two concepts, color and size, as in378

[54]. See App. G for experimental details. Fig. 6 (a) shows that the level of concept signal, here379

corresponding to the difference of class mean pixel values, largely alters the generalization dynam-380

ics. Specifically, we see that the speed and order of compositional generalization is determined by381

concept signal, and the signal intensity can reverse the order. The latter is especially important since382

we show the findings from our theory and the SIM task, where we abstracted concepts into coordi-383

nates and Gaussian clusters, generalize to two naturalistic concepts: color and size. We also384

see Transient Memorization occurs in diffusion training, where the generalization dynamics show a385

bend towards the concept with stronger signal. This bend is transient and the generated class even-386

tually converges to the intended concept space coordinate. Fig. 6 (b) quantifies this further via a387

concept space MSE metric. We observe that the concept space MSE has a phase where it increases388

before entering a generalization phase. This is well aligned with our findings in Sec. 4.2. Fig. 6 (c)389

confirms that the speed of compositional generalization, quantified by the absolute of concept space390

traversal distance per step, decelerates at an exponential rate, as expected from our theoretical find-391

ings (Theorem 4.1).392

6 Conclusion393

In this paper, we propose SIM task as a further abstraction of the “concept space” previously ex-394

plored by [52, 54]. We conduct comprehensive investigation into the behaviors of a regression395

model trained on SIM, both empirically and theoretically, demonstrating that the learning dynamics396

on SIM effectively captures the phenomena observed on image generation task, establishing SIM397

as a basis for studying compositional generalization. We make a comprehensive. Critically, our398

theoretical analysis uncovers the underlying causes of several phenomena that previously observed399

on compositional generalizations, as well as predicting new ones that characterizes the multi-stage400

and non-monotonic learning dynamics, which have been largely overlooked in earlier research. Our401

diffusion model experiments further verify the validity of our analysis. Additional discussions and402

potential future work directions can be found in App. E.403
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A Related Work599

In this section, we provide some context for this paper by reviewing some existing work on compo-600

sitional generalization and the study of deep linear networks.601

Compositional Generalization. Prior work on compositionality has often focused on benchmark-602

ing of pretrained models [71, 2, 42, 37, 77, 41, 32, 8, 76, 66, 22, 73] or proposition of protocols that603

allow generation of compositional samples [15, 13, 45, 75, 76, 7, 69, 36, 14]. While perfect compo-604

sitionality in natural settings is still lacking [49, 40, 8, 9, 22, 13, 45, 67, 60, 17, 29], several works605

have demonstrated via use of toy settings that this is unlikely to be an expressibility issue, as was606

hypothesized, e.g., by [19], since the model can in fact learn to perfectly compose in said toy set-607

tings. The ability to compose is in fact rather distinctly emergent [52, 47] and the model learning608

it often correlates with distinctive patterns in the learning dynamics, as identified by [54]. We note609

that there has in fact been some work on understanding compositional generalization abilities in610

neural networks [74, 72, 59], but, unlike us, the focus of these papers is not on the model’s learning611

dynamics.612

Learning Dynamics of Deep Linear Networks. Deep linear networks has been a commonly613

studied model for learning dynamics, and existing works mostly focus on the final solution found614

by the model, which primarily concerns the stationary point of the dynamics [3, 30, 12, 4, 1]. There615

have also been works that try to characterize the full learning dynamics; however, they generally616

require the learning of each direction (neuron) to be decoupled [65, 53, 39, 16, 55, 56], which can be617

realized through a specific initialization choice. The decoupling assumption ignores the interaction618

between different neurons and highly simplify the dynamics, and as we mentioned in Sec. 4.1, make619

it unable to capture some important phenomena in practice. The symmetric 2-layer linear model is620

also a specific model that is frequently studied, especially in matrix sensing [44, 70, 31], and as we621

noted in Sec. 4.2, current theoretical results of this model focus on the implicit biases in the solutions622

learned, while our analysis, on the other hand, aims at characterizing the full learning dynamics and623

focus on its OOD behavior.624

B Model Compositionally Generalize in Topologically Constrained Order625

In this section, we introduce another phenomenon observed on SIM task learning that we do not put626

in the main paper: the order of compositional generalization happens in a topologically constrained627

order.628

In this section, instead of the single test point x̂, we introduce a hierarchy of test points. Specifically,629

let I = {0, 1}s be the index set of test points. For each v ∈ I, we define a test point630

x̂(v) =
s∑

p=1

vpµp1p, (B.1)

and call x̂(v) the test point with the index v. Intuitively, the index v describes which training sets631

are combined into the current test point. If ∥v∥ = 1 then x̂(v) is the center of one of the training632

clusters.633

We assign the component-wise ordering ⪯ to the index set I, i.e., for u,v ∈ I, we say u ⪯ v if634

and only if ∀i ∈ [n], ui ≤ vi. It’s easy to see that ⪯ is a partial-ordering.635

Interestingly, in the SIM experiment, the order of the generalization in different test points strictly636

follow the component-wise order. This finding can be described formally in the following way: the637

loss function is an order homomorphism between ⪯ on the index set, and ≤ on the real number. Let638

ℓ(z) be the loss function of the test point z, then we have the following empirical observation:639

∀u,v ∈ I,u ⪯ v =⇒ ℓ
(
x̃(u)

)
≤ ℓ

(
x̃(v)

)
. (B.2)

In Fig. 7 we show the loss of each test point in several timepoints, with µ = (1, 2, 3, 4), σ =
{

1
2

}4
.640

There is a clear trend that the test points that are on the right of the graph (larger in the component-641

wise order) will only be learned after all of its predecessors are all learned. We call this phenomenon642

the topological constraint since the constraint is based on the topology of the graph in Fig. 7.643

16



Figure 7: The loss at each test point in different timepoints during training for a 2-layer MLP with
ReLU activation. Each graph represents a timepoint. Each node in the graph represents a test point,
with index printed on it, and edges connecting nodes with Hamming distance 1. The color of the
graph represents the loss of corresponding test point. Notice that we truncate the loss at 1 in order
to unify the scale. From lest to right: epoch = 1, 3, 5.

C Proofs and Calculations644

In the main text we have omitted some critical proofs and calculations due to space limitation. In this645

section we provide the complete derivations. Note that we postpone the proof of related theorems646

of Sec. 4.2 to App. D because of their length.647

C.1 The Loss Function with Linear Model and Infinite Data Limit648

In this subsection we derive the transformed loss function eq. (4.1), as well as the expression of the649

data matrix A. For convenience we denote Wθ by W . We have650

L(θ) = 1

2ns

s∑
p=1

n∑
k=1

∥∥∥(W − I)x
(p)
k

∥∥∥2 (C.1)

=
1

2ns
Tr
[
x
(p)⊤
k (W − I)⊤(W − I)x

(p)
k

]
(C.2)

=
1

2ns
Tr
[
(W − I)⊤(W − I)x

(p)
k x

(p)⊤
k

]
(C.3)

=
1

2
Tr

[
(W − I)⊤(W − I)

1

ns
x
(p)
k x

(p)⊤
k

]
(C.4)

=
1

2
Tr
[
A1/2(W − I)⊤(W − I)A1/2

]
(C.5)

=
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
. (C.6)

Let G be the data generating process. It can be viewed as two components: first assign one of the s651

clusters, and then draw a Gaussian vector from a Gaussian distribution in that cluster. Specifically,652

let x be an arbitrary sample from the traning set, then the distribuition of x is equal to653

x ≃ µ(η) + diag(σ)ξ, (C.7)

where η is a uniform random variable taking values in [s] and ξ ∼ N (0, I) is a random Gaussian654

vector that is independent from η. Here ≃ represents having the same distribution.655
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When n → ∞, the data matrix A converges to the true covariance, which is is656

A → E
(
xx⊤) (C.8)

= E
[(

µ(η) + diag(σ)ξ
)(

µ(η) + diag(σ)ξ
)⊤]

(C.9)

= E
(
µ(η)µ(η)⊤

)
+ Ediag(σ)ξξ⊤ diag(σ) (C.10)

=
1

s

s∑
p=1

µ(p)µ(p)⊤ + diag(σ)2 (C.11)

=
1

s

s∑
p=1

µ2
p1p1

⊤
p + diag(σ)2 (C.12)

=
1

s
diag (µ)

2
+ diag(σ)2. (C.13)

C.2 Proof of Theorem 4.1657

In this subsection for the notation-wise convenience we denote W = θ. Since the model is one-658

layer, the loss function eq. (4.1) becomes659

L(W ) =
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
, (C.14)

and the gradient is660

∇L(W ) = (W − I)A = WA−A. (C.15)

We denote the k-th row of W and A by wk and Ak respectively. Then we have661

ẇk = −Awk + ak. (C.16)

The solution of this differential equation is662

wk(t) = exp (−At)
[
wk(0)−A−1ak

]
+A−1ak, (C.17)

where we use the convention 0×
(
0−1
)
= 0 to avoid the non-invertible case of A.663

Thus for any z ∈ Rd we have664

f(W (t); z)k = ⟨wk(t), z⟩ (C.18)

=
〈(
I − e−At

)
A−1ak, z

〉
+
〈
e−Atwk(0), z

〉
(C.19)

=

n∑
p=1

1− e−apt

ap
1{k=p}apzp +

n∑
i=1

e−aitwk,i(0)zi (C.20)

= 1{k≤s}
(
1− e−akt

)
zk +

n∑
i=1

e−aitwk,i(0)zi, (C.21)

and this proves the claim.665

D Theoretical Analysis of the Two Layer Model666

In this section we provide a detailed analysis of the symmetric two-layer linear model described in667

Sec. 4.2.668

In this section we assume a finite step size, i.e., W : N → Rd×d is initialized by W (0) and updated669

by670

W (t+ 1)−W (t)

η
= −U(t)∇L(U(t))⊤ −∇L(U(t))U(t)⊤ (D.1)

= W (t)A+AW (t)− 1

2

[
AW (t)2 +W (t)2A+ 2W (t)AW (t)

]
. (D.2)
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The update of each entry wi,j(t) can be decomposed into three terms, as we described in the main671

text:672

wi,j(t+ 1)− wi,j(t)

η
=wi,j(t)(ai + aj)−

1

2

d∑
k=1

wk,iwk,j(ai + aj + 2ak) (D.3)

=wi,j(t)(ai + aj)︸ ︷︷ ︸
Gi,j(t)

(D.4)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

(D.5)

− 1

2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

. (D.6)

D.1 Assumptions673

We need make several assumptions to prove the results. Below we make several assumptions that674

all commonly hold in the practice. The first assumption to make is that both the value of ak and the675

initialization of W is bounded.676

Assumption D.1 (Bounded Initialization and Signal Strength). There exists α > 0, γ > 1, β > 1677

such that678

∀k, α ≤ ak ≤ γα, (D.7)
∀i, j, ω ≤ |wi,j(0)| ≤ βω. (D.8)

The second assumption is that the step size is small enough.679

Assumption D.2 (Small Step Size). There exists a constant K ≥ 20, such that η ≤ 1
9Kγα .680

Next, we define a concept called initial phase. The definition of initial phase is related to a constant681

P > 0.682

Definition D.1. Assume there is a constant P > 0. For an entry (i, j) and time t, if |wi,j(t)| ≤ Pβω,683

we say this entry is in initial phase.684

The next assumption to make the that the boundary of the initial phase should not be too large.685

Assumption D.3 (Small Initial Phase). Pωβ ≤ 0.4.686

The next assumption to make are that the intialization value (ω) should not be too large.687

Assumption D.4 (Small Initialization).

ω ≤ min

{
min{κ− 1, 1− κ−1/2}

PKγdβ2
,

1√
2β

}
(D.9)

and κ > 1.1, and κ ≤ 1 + 1
2KC−1, P ≥ 2.688

Finally, we also assume that the signal strength difference is significant enough.689

Assumption D.5 (Significant Signal Strength Difference). For any i > j, we have690

ai + ai
2ai

≤ logP

10κ2 log 1
Pβω + logPβ

. (D.10)

and there exists a constant C > 1 such that ai − 3aj ≥ C−1α.691
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D.2 The Characterization of the Evolution of the Jacobian692

In this subsection, we provide a series of lemmas that characterize each stage the evolution of the693

Jacobian matrix W .694

The whole proof is based on induction, and in order to avoid a too complicated induction, we make695

the following assertion, which obviously holds at initialization.696

Assertion D.1. For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase for all time.697

We will use Assertion D.1 as an assumption throughout the proves and prove it at the end. This is698

essentially another way of writing inductions.699

We have the following corollary that directly followed by Assertion D.1.700

Corollary D.1. For all t ∈ N and all i, j, |Ni,j(t)| ≤ 2Pγαdβ2ω2.701

Now, we are ready to present and prove the major lemmas. The first lemma is to post a (rather loose)702

upper bound of the value of the entries.703

Lemma D.1 (Upper Bounded Growth). Consider entry (i, j). We have for all t ∈ N, at timepoint t704

the absolute value of the (i, j)-th entry satisfies705

|wi,j(t)| ≤ |wi,j(0)| exp [ηt(ai + aj)κ] . (D.11)

Proof. Since of the Ni,j term we only use its absolute value, the positive case and negative case706

are symmetric. WLOG we only consider the case where wi,j(0) > 0 here.707

The claim is obviously satisfied at initialization. We use it as the inductive hypothesis. Suppose at708

timepoint t ≤ T − 1 the claim is satisfied, we consider the time step t+ 1.709

Since Assertion D.1 guaranteed that every non-diagonal entry is in the initial phase, and the Si,j710

term has different symbol with wi,j(0), we have711

Si,j(t) +Ni,j(t) ≤ 2Pγαdβ2ω2. (D.12)

We have712

wi,j(t+ 1)− wi,j(t) ≤ ηwi,j(t)(ai + aj) + 4ηγαdβ0ω
2 (D.13)

≤ η(ai + aj)wi,j(0) exp [ηt(ai + aj)κ] + 2Pηγαdβ2ω2 (D.14)

= wi,j(0) exp [ηt(ai + aj)κ]

[
η(ai + aj) +

2Pγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]

]
(D.15)

From Assumption D.4, we have713

η(ai + aj) +
2Pγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]
≤ η(ai + aj) + 2Pγαdβ2ω (D.16)

≤ η(ai + aj) + 2(κ− 1)ηα (D.17)
≤ κη(ai + aj) (D.18)
≤ exp(κη[ai + aj ])− 1, (D.19)

thus we have714

wi,j(t+ 1) ≤wi,j(t) + [exp(κη[ai + aj ])− 1]wi,j(t) (D.20)
≤ wi,j(0) exp [η(t+ 1)(ai + aj)κ] . (D.21)

Finally, notice that since T1 = κ logP
2ηγα ≤ κ log 2

η(ai+aj)
, we have715

exp
[
ηT (ai + aj)κ

−1
]
≤ P. (D.22)

716

Next, we prove that Lemma D.1 is tight in the initial stage of the training, up to a constant κ in the717

exponential term.718

20



Lemma D.2 (Lower Bounded Initial Growth). Let T1 = logP
2ηγακ . We have for all t ∈ [T1], at719

timepoint t every entry (i, j) is in the initial phase, and the absolute value of the (i, j)-th entry720

satisfies721

|wi,j(t)| ≥ |wi,j(0)| exp
[
ηt(ai + aj)κ

−1
]

(D.23)

and wi,j(t)wi,j(0) > 0.722

Proof. Similar to the proof of Lemma D.1, we may just assume wi,j(0) > 0.723

Moreover, we also use the claim as an inductive hypothesis and prove it by induction. Since here724

the inductive hypothesis states that every entry is in the initial phase, we have725

|Si,j(t) +Ni,j(t)| ≤ 4γαdβ2ω2. (D.24)

We have726

wi,j(t+ 1)− wi,j(t) ≥ η(ai + aj)wi,j(0) exp
[
ηt(ai + aj)κ

−1
]
− 2Pηγαdβ2ω2 (D.25)

= wi,j(0) exp
[
ηt(ai + aj)κ

−1
] [

η(ai + aj)−
2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]

]
(D.26)

From Assumption D.4, we have727

2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]
≤ 2Pηγαdβ2ω (D.27)

≤
(
1− κ−1/2

)
η(ai + aj). (D.28)

Moreover, notice that when κ > 1.1, for any x < 0.1, we have κ−1/2x + 1 ≥ eκ
−1x. Since728

Assumption D.2 ensured that η ≤ 1
10(ai+aj)

, we have729

wi,j(t+ 1) ≥ wi,j(t) + wi,j(t)
[
κ−1/2η(ai + aj)

]
(D.29)

≥ wi,j(t) exp
(
η(ai + aj)κ

−1
)

(D.30)

≥ wi,j(0) exp
[
η(t+ 1)(ai + aj)κ

−1
]
. (D.31)

Finally, from Lemma D.1, we have when730

wi,j(t) ≤ |wi,j(0)| exp (ηt(ai + aj)κ) (D.32)
≤ βω exp (2ηT1γακ) (D.33)
≤ Pβω, (D.34)

which confirms that every entry (i, j) stays in the initial phase before time T1.731

732

Notice that the time bound in Lemma D.2 is a uniform one which applies to all entries. For the major733

entries, we might want to consider a finer bound of the time that it leaves the initial phase. This can734

be proved by essentially repeating the same proof idea of Lemma D.2.735

Lemma D.3 (Lower Bounded Initial Growth for Diagonal Entries). Consider an diagonal entry736

(i, i). Let T (i)
1 =

log Pβω
wi,i(0)

2ηaiκ
. We have for all t ∈

[
T

(i)
1

]
, at timepoint t the entry (i, i) is in the initial737

phase, and the absolute value of the (i, i)-th entry satisfies738

wi,i(t) ≥ wi,i(0) exp
[
2ηtaiκ

−1
]
. (D.35)

We omit the proof of Lemma D.3 since it is almost identical to the proof of Lemma D.2, only with739

replacing γα by ai and βω by wi,i(0).740

Next, we characterize the behavior of one diagonal entry after it leaves the initial phase.741
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Lemma D.4 (Lower Bounded After-Initial Growth for Diagonal Entries). Consider a diagonal entry742

(i, i). If at time t0 we have |wi,i(t0)| ≥ Pβω, and for a λ ∈ (Pβω, 1−K−1), before time T (λ) we743

have wi,i(t+ t0) < λ for all t ∈ [T (λ)], then we have744

wi,i(t+ t0) ≥ wi,i(t0) exp
[
2ηtai(1− λ)κ−1

]
. (D.36)

Moreover, wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.745

Proof. Notice that since W = UU⊤ is a PSD matrix, its diagonal entries are always non-negative,746

this ensures that wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.747

For the time after t0 and before t0 + T (λ), we use an induction to prove the claim, with the claim748

itself as the inductive hypothesis. It clearly holds when t = 1.749

Notice that when wi,j(t
′) < λ, we have750

Gi,j(t
′)− Si,j(t

′) = 2aiwi,i(t
′) [1− wi,i(t

′)] ≥ 2aiwi,i(t
′)(1− λ). (D.37)

Thus we have751

wi,i(t0 + t+ 1)− wi,i(t0 + t) (D.38)

≥ 2ηai(1− λ)wi(t0) exp
[
ηt(ai + aj)(1− λ)κ−1

]
− 2Pηγαdβ2ω2 (D.39)

= wi,i(t0) exp
[
2ηtai(1− λ)κ−1

] [
2ηai(1− λ)− 2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]

]
(D.40)

Since λ < 1−K−1, and wi,i(t0) ≥ 2βω ≥ ω, from Assumption D.4, we have752

2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]
≤ 2Pηγαdβ2ω (D.41)

≤ 2K−1
(
1− κ−1/2

)
ηα (D.42)

≤ 2
(
1− κ−1/2

)
ηai(1− λ). (D.43)

Moreover, since Assumption D.2 ensured that η ≤ 1
2Kai(1−λ) ≤ 1

20ai(1−λ) , using the fact that if753

κ > 1.1 then κ−1/2x+ 1 ≥ eκ
−1x for any x < 0.1, we can get754

wi,i(t+ 1) ≥ wi,i(t) + wi,i(t)
[
κ−1/22ηai(1− λ)

]
(D.44)

≥ wi,i(t) exp
(
2ηaiκ

−1(1− λ)
)

(D.45)

≥ wi,i(t0) exp
[
2η(t+ 1)κ−1(1− λ)

]
. (D.46)

755

Next, we provide an uniform upper bound (over time) of the diagonal entries. Remember that we756

mentioned in the gradient flow case, the diagonal term stops evolving when it reaches 1. In the757

discrete case, since the step size is not infinitesimal, Lemma D.5 shows that it can actually exceed 1758

a little bit but not too much since the step size is small.759

Lemma D.5 (Upper Bounded Diagonal Entry). For any diagonal entry (i, i) and any time t, 0 ≤760

wi,i(t) ≤ 1 + 2K−1.761

Proof. First notice that since W (t) is PSD, its diagonal entry wi,i(t) should always be non-negative,762

thus wi,i(t) ≥ 0 is always satisfied. In the following we prove wi,i(t) ≤ 1 + 2K−1.763

We use induction to prove this claim. The inductive hypothesis is the claim it self. It is obviously764

satisfied at initialization. In the following we assume the claim is satisfied at timepoint t and prove765

it for timepoint t+ 1. Notice that since K ≤ 10, we have 1 +K−1 ≤ 2.766

Notice that by Assertion D.1 and Assumption D.4,767

|Ni,i(t)| ≤ 2Pγαdβ2ω2 ≤ (κ− 1)2

K2γdβ2
α ≤ K−1ai. (D.47)
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If wi,i(t) ≥ 1 +K−1, we have768

Gi,i(t)− Si,i(t) = 2aiwi,i(1− wi,i) ≤ −4aiK
−1. (D.48)

Therefore,769

wi,i(t+ 1) = wi,i(t) + η [Gi,i(t)− Si,i(t)−Ni,i(t)] (D.49)

≤ wi,i(t)− 3aiK
−1η (D.50)

≤ wi,i(t) (D.51)

≤ 1 + 2K−1. (D.52)

Moreover, since wi,i(t) ≤ 1 + 2K−1 ≤ 2, we have770

|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)| ≤ 4ai + 4ai +K−1ai ≤ 9γα ≤ 1

Kη
. (D.53)

When wi,i(t) ≤ 1 +K−1, we have771

wi,i(t+ 1) ≤ wi,i(t) + η (|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)|) ≤ 1 + 2K−1. (D.54)

The above results together shows that wi,i(t+ 1) ≤ 1 + 2K−1.772

773

Corollary D.2 (Upper Bounded Diagonal Update). For any diagonal entry (i, i) and any time t,774

|wi,i(t+ 1)− wi,i(t)| ≤ K−1.775

Corollary D.2 is a direct consequence of Lemma D.5 (and we actually proved Corollary D.2 in the776

proof of Lemma D.5).777

The next lemma lower bounds the final value of diagonal entries. Together with Lemma D.5 we778

show that in the terminal stage of training the diagonal entries oscillate around 1 by the amplitude779

not exceeding 2K−1.780

Lemma D.6. Consider a diagonal entry (i, i). If at time t0 we have wi,i(t0) ≥ 1− 2K−1, then for781

all t′ ≥ t0 we have wi,i(t
′) ≥ 1− 2K−1.782

Proof. we use an induction. The inductive hypothesis the claim itself. This obviously holds when783

t′ = t0. We assume wi,i(t
′) ≥ 1− 2K−1 at timepoint t′ and prove the claim for t′ + 1.784

If wi,i(t
′) < 1−K−1, then from Lemma D.4 we know785

wi,i(t
′ + 1) ≥ wi,i(t

′) ≥ 1− 2K−1. (D.55)

If wi,i(t
′) > 1−K−1, then from Corollary D.2 we have786

wi,i(t
′ + 1) ≥ wi,i(t

′)−K−1 ≥ 1− 2K−1. (D.56)

787

Now, we are ready to prove Assertion D.1 by considering the suppression. We first prove a lemma788

that upper bounds the absolute value of the minor entries after its corresponding major entry becomes789

significant.790

Lemma D.7 (Suppression). Consider an off-diagonal entry (i, j) where i > j. If there exists a time791

t0 such that wi,i(t0) > 0.8, then for any t′ ≥ t0 we have792

|wi,j(t
′)| ≤ max {|wi,j(t0)| , ω} . (D.57)

Proof. Since K > 10, from Lemma D.6 and Lemma D.4 we know wi,i(t
′) > 0.8 for all t′ ≥ t0.793

In this proof, we use an induction with the inductive hypothesis being the claim itself, i.e., we assume794

the claim is true at timepoint t′ and prove it for t′ + 1. The claim obviously holds for t′ = t0.795

Since in this proof we only use the absolute value of Ni,j , WLOG we may assume that wi,j(t
′) > 0.796
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If wi,j(t
′) < ω then we have proved the claim. In the following we may assume wi,j(t

′) ≥ ω.797

We have798

Gi,j(t
′)− Si,j(t

′) ≤ wi,j(t
′)(ai + aj)−

1

2
wi,j(t

′)wi,i(3ai + aj) (D.58)

≤ wi,j(t
′)(ai + aj)− wi,j(t

′) [0.4(3ai + aj)] (D.59)

= −1

5
wi,j(t

′)ai +
3

5
wi,j(t

′)aj (D.60)

(i)
≤ −C−1ωα, (D.61)

where in (i) we use Assumption D.5.799

Thus we have800

Gi,j(t
′)− Si,j(t

′)−Ni,j(t
′) ≤ Gi,j(t

′)− Si,j(t
′) + |Ni,j(t

′)| (D.62)

≤ −C−1ωα+ 2Pγαdβ2ω2 (D.63)
(i)
< 0, (D.64)

where (i) is from Assumption D.4 and Assumption D.5. This confirms that wi,j(t
′+1) < wi,j(t

′) ≤801

max {|wi,j(t0), ω}.802

Next, we prove wi,j(t
′+1) ≥ −max {|wi,j(t0)|, ω}. Notice that Lemma D.5 stated that |wi,i| ≤ 2.803

Notice that we also have wi,j(t
′) ≤ K−1, thus804

|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)| ≤ 10γα|wi,j(t

′)|+ 2Pγαdβ2ω2 (D.65)

≤ 10|wi,j(t
′)|+ 2Pdβ2ω2

9Kη
(D.66)

≤ 10|wi,j(t
′)|+ 2ω

9Kη
(D.67)

≤ |wi,j(t
′)|+ ω

2η
. (D.68)

We have805

wi,j(t
′ + 1) ≥ wi,j(t

′)− η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t)
′|) (D.69)

≥ −η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)|) (D.70)

≥ −1

2
(|wi,j(t

′)|+ ω) (D.71)

≥ −max{|wi,j(t
′)|, ω}. (D.72)

806

With all the lemmas proved above, we are now ready to prove Assertion D.1.807

Lemma D.8 (Assertion D.1). For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase808

for all time.809

Proof. Notice that since W is symmetric, we only need to prove the claim for i > j. Moreover,810

From Lemma D.7, we only need to prove that there exists a timepoint t∗, such that wi,i(t
∗) ≥ 0.8,811

and |wi,j(t
∗)| ≤ Pβω.812

Let t0 =
log Pβω

wi,i(0)

2ηaiκ
, by Lemma D.3, we have wi,i(t0) ≥ Pβω. By Lemma D.3 and Lemma D.4, we813

have for any t ≥ t0 such that wi,i(t) ≤ λ, where λ = 0.85,814

wi,i(t) ≥ wi,i(t0) exp
[
0.3η(t− t0)aiκ

−1
]

(D.73)

≥ Pβω exp
[
0.3η(t− t0)aiκ

−1
]

(D.74)
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Let t′ be the first time that wi,i(t
′) arrives above 0.8. Let t∗ = min

{
κ log 0.8

Pβω

0.3ηai
+ t0, t

′
}

≥ t0. If815

t∗ = t′, we have wi,i(t
∗) ≥ 0.8. If t∗ =

log Pβω
wi,i(0)

2ηaiκ
+ t0, we have816

wi,i(t
∗) ≥ wi,i(0) exp

(
0.3ηt∗aiκ

−1
)

(D.75)

≥ Pβω exp

(
log

0.8

Pβω

)
(D.76)

≥ 0.8. (D.77)

Moreover, from Lemma D.1 and Assumption D.5, we have817

|wi,j |(t∗) ≤ |wi,j(0)| exp [ηt∗κ(ai + aj)] (D.78)

≤ βω exp

[(
κ2 log 0.8

Pβω

0.15
+ log

Pβω

wi,i(0)

)
× ai + aj

2ai

]
(D.79)

≤ βω exp

[(
10κ2 log

1

Pβω
+ logPβ

)
× ai + aj

2ai

]
(D.80)

≤ βω exp [log(P )] (D.81)
≤ Pωβ. (D.82)

The claim is thus proved by combining the above bounds on |wi,j(t
∗)| and wi,i(t

∗) with Lemma D.7.818

819

E Additional Discussions820

In this section, we further discuss the findings and theoretical predictions presented in this paper.821

E.1 Multiple Descents822

In Fig. 5, we verified our theoretical predictions of the Transient Memorization through an exper-823

iment of an s = 2 example. However, in our theory, there can be multiple growth / suppression824

stages when s > 2, which should give us a multiple descent-like curve. We note here that based on825

the conditions given in App. D.1, it is indeed possible to see multiple descent but only with a subtle826

choice of the signal strengths (µ) and under specific initialization conditions.827

In Fig. 8 and 9, we illustrate two settings where the loss curves exhibit epochwise triple and quadru-828

ple descent. In both settings we use symmetric 2-layer linear model, same as the model used in829

Sec. 4.2. Note that we tuned initialization random seed to generate these results. Moreover, since830

the time scale of each descent vary, we use a log scale for the number of epochs to make the results831

more apparent.832

It is worth noting that in Fig. 8 and 9, each major entry starts to grow only after the corresponding833

minor entry is suppressed (for example in Fig. 8, w2,2 starts to grow after w2,3 is suppressed, w1,2834

starts to decay after w2,2 is close to 1, and w1,1 starts to grow after w1,2 is suppressed), and each835

ascending / descending stage of loss curve aligns well with a stage of growth / suppression of the836

minor and major entries. These correspondence match exactly with our theoretical prediction and837

shows the correctness and preciseness of our theory.838

E.2 The Breakdown of the Initialization Assumption839

In Sec. 3.3, we mentioned that Transient Memorization seems to be more significant when the di-840

mensionality of the dataset is low, and in Sec. 4.2.2, we attributed the reason of it to the fact that841

when the dimensionality of the dataset is small, it’s easier to have more minor entries initialized pos-842

itive, which lead to an illusion of learning in the minor entry growth stage, whose later suppression843

leads to the non-monotonic output trajectory behavior of Transient Memorization.844

In this section, we note that, another reason for the Transient Memorization to be less significant is845

that Assumption D.4 breaks down when the dimension is high, if we use standard Gaussian initial-846

ization to initialize the model weights. Specifically, in Assumption D.4, we require that all entries of847
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Figure 8: An illustration of epochwise triple
descent of the symmetric 2-layer linear model.
The dataset has dimensionality and number of in-
formative directions d = s = 3, signal strength
values µ = (1.0, 1.5, 2.2), and noise values σ =
(0.05, 0.05, 0.05).
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Figure 9: An illustration of epochwise quadru-
ple descent with the symmetric 2-layer linear
model. The dataset has dimensionality and num-
ber of informative directions d = s = 4, sig-
nal strength values µ = (1.0, 1.5, 2.2, 2.7), and
noise values σ = (0.05, 0.05, 0.05, 0.5).

W are initialized around a relatively small value ω, which indicates that there is no huge difference848

between the magnitude of the initialization of major entries and minor entries.849

However, notice that W = UU⊤ and thus wi,j = ⟨u− i,uj⟩, where ui ∈ Rd′
is the i-th row of850

U . If we use Gaussian distribution to initialize U , i.e. ui ∼ N
(
0, τ2I

)
, where τ is a small real851

number, then we have the expectation of wi,j be852

Ewi,j =

{
0 i ̸= j

d′τ2 i = j,
(E.1)

which highlights the different between major entries and minor entries in initialization when d′ is853

large (and notice that d′ is lower bounded by d, which is the dataset dimensionality). Moreover,854

when d′ is small, the variance of wi,j will be large, so there is a greater chance for them to be away855

from 0.856

E.3 Failure Modes857

A breakdown in the assumptions in App. D.1 can also lead to the model converging to “wrong”858

solutions that do not fully generalize OOD. For example, if a minor entry happens to be initialized859

too large (breaking the Assumption D.4), and / or the corresponding signal strength distinction is860

not large enough (breaking the Assumption D.5), then it is possible that the minor entry is not861

suppressed until it grows to a significant value, which can, in turn, lead to a too strong suppression862

on the corresponding major entry. In this case, a major entry might be suppressed to 0 (or at least,863

leave the initial phase from below) before it starts to grow, and thus never has chance to grow.864

This case corresponds to the model being “trapped” in a state that it only learns to compositionally865

generalize to a combination of certain (but not all) concepts.866

In Fig. 10, we exhibit a case of such failure mode where the model fails to fully achieve OOD867

generalization. Notice how the loss value converges to a non-zero value and the major entry w1,1 is868

suppressed at the very beginning and never grows. Additionally, the output trajectory is trapped at a869

point that combines only two directions, missing the third direction.870

E.4 Future Directions871

We note that, current characterization of the model learning dynamics relies on the critical assump-872

tions in App. D.1. Although those assumptions are reasonable and common in practice, the model873
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Figure 10: An illustration of a failure case where the model doesn’t successfully generalize
OOD. The dataset has d = s = 3, µ = (0.7, 1.7, 3) and σ = (0.05, 0.05, 0.05). Left: The evolution
of values of Jacobian and the OOD loss evaluated at test point x̂; Right: The output trajectory
(orange curve).

behavior still shows some regularity when those assumptions breakdown. We have discussed some874

of the possible consequences when one of those assumptions breakdown above, but more in an intu-875

itive way, instead of a systematic way. Therefore, one important future direction is to systematically876

characterize what will happen beyond the assumptions given in App. D.1. Among which, one spe-877

cific and very important topic is the failure modes, i.e. under what conditions the model fails to878

generalize OOD.879

Another important direction is to generalize current analysis to more complex models, such as deep880

linear networks or two-layer ReLU networks. The key point of current analysis of the 2-layer sym-881

metric model is to correctly slice the learning dynamics of each entry of the Jacobian into multiple882

stages, such that in each stage, the learning dynamics is dominated by a rather simple dynamics.883

Currently, since the model is 2-layer and without bias terms, there are only first-order and second-884

order terms in the learning dynamics. However, if we consider deeper models, there might be885

higher-order terms in the dynamics, and it is important to identify and simplify the effect these886

higher-order interactions in order to make the problem tractable.887

For ReLU networks, it is know that there will be an “early-alignment” stage when trained on linear-888

separable data [48, 50], where each neuron converge to a fixed direction, and make the model be-889

haves like a linear model. We claim that investigating the early-alignment of 2-layer ReLU networks890

on the SIM task can be the starting point of theoretically characterizing the behavior of ReLU net-891

works on the SIM task.892

F Additional SIM Experiment Details and Results893

In this section, we present the results of SIM experiments under different settings, including linear894

and non-linear models. The consistent behavior observed across these settings confirms the univer-895

sality of our findings and explanations.896

F.1 Experiment Details897

In all SIM experiments, including those presented in main paper and in appendix, the number of898

training samples in each Gaussian cluster is 5000. We use MLP models with either linear activations899

or ReLU activations, and all the models are trained using stochastic gradient descent with a batch900

size of 128 and a learning rate of 0.1 for 40 epochs. Unless otherwise specified, the dimensionality901

of all data points is d = 64, and the hidden layer dimensionality of the models is also 64 by default.902
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It is important to note that in our theory, we assumed that all training clusters and the test point903

are aligned with the standard coordinate. However, in our experiments, in order to make the results904

more universal and general, we add a random rotation to all the train / test points.905

F.2 Additional Experiment Results906

Fig. 11 and Fig. 12 repeat the learning order experiments described in Sec. 3.1, using a 2-layer907

model with and without ReLU activation, respectively. It is easy to see that despite showing more908

non-regular curves, in multi-layer models the overall trends described in Sec. 3.1 and Sec. 3.2 are909

preserved.910
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Figure 11: Output trajectory of 2-layer models with linear activations. The number of informa-
tive directions in the dataset is s = 2. Left: µ:2 = (1, 2) with varied σ’s; Right: σ:2 = (0.05, 0.05)
with varied µ’s.
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Figure 12: Output trajectory of 2-layer models with ReLU activations. The number of in-
formative directions in the dataset is s = 2. Left: µ:2 = (1, 2) with varied σ values; Right:
σ:2 = (0.05, 0.05) with varied µ values.

In Fig. 14, we present the output trajectory for two settings that exhibit significant Transient Mem-911

orization and Fig. 14 the corresponding loss curve. Specifically, the dataset has a dimensionality912

of d = 3, and is not randomly rotated. The models used have 3 layers, 3 hidden dimensions and913

linear activations. Comparing these results with the curve presented in Fig. 11, Fig. 12 and in Fig. 2,914

it is evident that models with more layers and fewer input dimensions are easier to have Transient915

Memorization, which confirms our theoretical prediction in Sec. 4.2.2.916
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Figure 13: Output trajectory of 3-layer models with linear activations and 3 hidden dimensions.
The dataset has dimensionality d = 3, number of informative directions s = 2 and variance σ:2 =
(0.05, 0.05). Left: µ:2 = (1, 2); Right: µ:2 = (2, 4).
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Figure 14: The loss curve of corresponding models in Fig. 13. Small µ: µ:2 = (1, 2); Large µ:
µ:2 = (2, 4).

G Diffusion Model Experiments917

We describe experimental details for the diffusion model experiments. We largely follow [54] in918

these experiments.919

G.1 Synthetic Data920
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Color
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1 10 1

0 0 1 0
Figure 15: Data Generation process with different concept signals. Figure from [54]. The data
generating processed used to train the diffusion model, where we can control the strength of the
two concept signals independently. Left: A data distribution with a stronger concept signal in the
color dimension. Right: A data distribution with a stronger concept signal in size.

Fig. 15 illustrates the DGP. We borrow part of the compositional data generating process (DGP)921

introduced by in [54]. The DGP generates a set of images of circles based on the concept vari-922
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ables color={red,blue} and size={big,small}. Each concept variable can be selected as923

composed to yield four classes 00, 01, 10, 11 respectively corresponding to (red, big), (red,924

small), (blue, big), (blue, small). Here, class average pixels values of red and blue colors925

will control the concept signal for color and the difference between small and big. In Fig. 6,926

we fix the big circle’s diameter to 70% of the image and the small circle’s diameter to 30% of the927

image. We then adjust the absolute difference between the blue color and red color from 0.2 (very928

similar colors) to 0.7 (very different colors). The DGP randomizes the location of the circle, the929

background color and adds some noise to avoid having a very narrow data distribution. Please refer930

to [54] for further detail.931

In Fig. 15, we show two different data distributions, one with a big color concept signal and one932

with a big size concept signal.933

G.2 Model & Training934

We train a conditional diffusion model on the synthetic data defined above. In specific, we train a935

variational diffusion model [35] to generate 3 × 32 × 32 images conditioned on a 4-dimensional936

vector where the first element of the vector specifies the size of the circle and the 3 others specifies937

the RGB colors.938

Model Architecture We use a conditional U-Net [63] with hidden dimensions [64, 128, 256] be-939

fore each downsampling layer and two ResNet [25] layers in each level. The conditioning vector is940

first transformed into the same dimensions as the hidden dimensions using a 2-layer MLP and are941

added to the representation after every downsampling layer. The U-Net has a self attention layer942

[11] in its bottleneck. We used LayerNorm [6] for normalization layers and GELU [27] activations.943

Diffusion We use a learned linear noise schedule for the diffusion process as defined in [35],944

initialized with γmax = 10, γmin = −5. We assume a data noise of 1× 10−3. Variational diffusion945

models do not require fixing the number of diffusion steps at training time, but we use 100 steps for946

generation at inference time.947

Training We train our model with the AdamW optimizer [46] with learning rate 1 × 10−3 and948

weight decay 0.01. We use a batch size of 128 and train for 20k steps.949

G.3 Evaluation950

We evaluate the concept space representation of the generated output image using a trained classifier.951

Since we have the ground truth DGP, we used a large amount of data to train a perfect classifier. We952

used a U-Net backbone followed by a max pooling layer and a MLP classifier to classify each953

concept variable color and size. We train this classifier for 10k steps and achieve a 100%954

accuracy on a held out test set. We average over 32 generated images and 5 model run seeds to get955

the ensemble average concept space representation.956

The concept space MSE in Fig. 6 (b) is simply calculated as the MSE distance in the concept space957

defined in [54]. The concept learning speed |dC/dt| is quantified by estimating the movement speed958

in the same concept space by a finite difference method.959
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