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Abstract

In this paper, we leverage stochastic projection and lossy compression to establish new
conditional mutual information (CMI) bounds on the generalization error of statistical
learning algorithms. It is shown that these bounds are generally tighter than the existing
ones. In particular, we prove that for certain problem instances for which existing MI
and CMI bounds were recently shown in Attias et al. [2024] and Livni [2023] to become
vacuous or fail to describe the right generalization behavior, our bounds yield suitable
generalization guarantees of the order of O(1/

√
n), where n is the size of the training

dataset. Furthermore, we use our bounds to investigate the problem of data “memoriza-
tion” raised in those works, and which asserts that there are learning problem instances
for which any learning algorithm that has good prediction there exist distributions un-
der which the algorithm must “memorize” a big fraction of the training dataset. We
show that for every learning algorithm, there exists an auxiliary algorithm that does not
memorize and which yields comparable generalization error for any data distribution.
In part, this shows that memorization is not necessary for good generalization.

1 Introduction
One of the major problems in statistical learning theory consists in understanding what really drives
the generalization error of learning algorithms. That is, what makes an algorithm trained on a given
dataset continue to perform well on unseen data samples. Historically, this fundamental question has
been studied independently in various lines of work, using seemingly unconnected tools. This includes
VC-dimension theory [1], Rademacher complexity approaches [2], stability-based analysis [3] and, more
recently, intrinsic-dimension [4–8] and information-theoretic approaches [9–21]. It is only until recently
that the above various approaches were shown to be possibly unified [22, 23] using a variable-length
compressibility technique, which is rate-distortion-theoretic in nature.

In the context of statistical learning theory perhaps one can date back information-theoretic approaches
to the PAC-Bayes bounds of McAllester [24, 25], which were then followed by various extensions and
ramifications [26–39]. The mutual information (MI) bounds of [9] and [10] have the advantages to be
relatively simpler comparatively and of offering somewhat clearer insights into the question of generaliza-
tion. Roughly, such bounds suggest that a learning algorithm generalizes better as its output model reveals
less information about the training data samples, where the amount of revealed information is measured in
terms of the Shannon mutual information.

However, MI-based bounds are also known to sometimes take large (infinite) values and become vacuous,
such as for continuous data and deterministic models. This shortcoming has been identified in a number of
works, including [40, 41]. The issue was believed to be resolved by the introduction in [12] of the impor-
tant framework of conditional mutual information (CMI). The CMI setting introduces a “super-sample”
construction in which an auxiliary “ghost sample” is used in conjunction with the training sample; and
a sequence of Bernoulli random variables determines which data samples among the super-sample were
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used for the training. It is shown that a bound on the generalization error involves the mutual information
between the Bernoulli random variables and the hypothesis (e.g., model parameters), conditionally given
the super-sample [12, Theorem 2]. Because the entropy of Bernoulli random variables is bounded, the
resulting bound is bounded. Many follow-up works have proposed extensions and improvements of the
original CMI bounds, including using randomized subset and individual sample techniques, disintegration,
and fast-rate variations in regimes in which the empirical risk is small – See [42] for more on this.

CMI-type bounds were largely believed to be exempt from the aforementioned limitations of MI bounds
until it was recently reported that examples can be constructed for which the standard1 CMI-based bound
and its individual-sample variant fail [14, 43, 46]. The (counter-) examples of [46] are in the context
of Stochastic Convex Optimization (SCO) problems; and those of [43] involve carefully constructed
Convex-Lipschitz-bounded (CLB) and Convex-set-Strongly convex-Lipschitz (CSL) instance problems.
These limitations were sometimes extrapolated to the extent of even questioning the utility of information-
theoretic bounds for the analysis of the generalization error of statistical learning algorithms more gen-
erally [47]. In this context, we mention [23, Appendix A] in which it was shown that, when applied to
the counter-example of [47], a lossy version of MI bounds yields generalization bounds that are of order
O(1/n), instead of Ω(1) in the case of standard (lossless) MI bounds.2 The idea of lossy compression was
also used in [49].

In this paper, essentially, we show that the aforementioned limitations are in fact not inherent to the CMI
framework; and, actually, the CMI framework can be adjusted slightly by the incorporation of a suitable
stochastic projection and a suitable lossy compression to cope with those issues. Also, leveraging the
utility of CMI and membership inference to study the problem of memorization and its relationship to
generalization in machine learning, we use our results to revisit the necessity of memorization for SCO
problems claimed in [43]. We show that memorization is not necessary for good generalization; and, as
such, the result contributes to a better understanding of what role memorization plays in machine learning,
a problem which is yet to be fully understood. Specifically, our contributions are as follows.

• We introduce stochastic projection in conjunction with lossy compression in the CMI framework, and
we use them to establish a new CMI-based bound that is generally tighter than the CMI bounds of [12].

• We show that, in sharp contrast with classic CMI-based bounds which fail when applied to the afore-
mentioned CLB, CSL and SCO problem instances of [43, 46] and may not even decay with the number
of training samples, our new CMI bound yields meaningful results and decays with the number of train-
ing samples as O(1/

√
n).

• By applying them to generalized linear stochastic (non-convex) optimization problems, in the appen-
dices we demonstrate that our bounds remain non-vacuous even beyond the convex case previously
studied in [50]. The generalization is shown to come at the expense of a slower decay with n in our
case; namely, O(1/ 4

√
n) instead of O(1/

√
n) if the functions are convex as in [50].

• We leverage the key ingredients of stochastic projection and lossy compression in the framework of
CMI to study the “memorization” issue identified and studied in [43]. Specifically, [43] has demon-
strated that, for a given problem instance and every ε-learner algorithm, there exists a data distribution
under which the algorithm “memorizes” the training samples. We show that for any learning algorithm
A that memorizes the training data, one can find (via stochastic projection and lossy compression) an
alternate learning algorithm Ã with comparable generalization error and that does not memorize the
training data for any data distribution. In part, this means that memorization is not necessary for good
generalization in SCO.

• In the appendices, we use our general bound to study the generalization error of subspace training
algorithms. Specifically, we investigate the setting in which the training is performed using SGD or
SGLD; and we derive new bounds based on the differential entropy of Gaussian mixture distributions.
This entropy depends on the gradient difference for the training and test datasets, the noise power, the
learning rate, and the uncertainty of the index of the training dataset within the super-dataset.

1The authors of [43] do not evaluate the performance of variants of CMI such as chained CMI [44], evaluated
CMI and f -CMI [20, 21, 45] on their counter-example.

2The counterexample of [47] has also been addressed by Wang and Mao [48] using a different technique
called “Sample-Conditioned Hypothesis Stability”.
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2 Notation and Background
Let Z be some random variable with unknown distribution µ and taking values in some alphabet Z . Let
Sn ≜ (Z1, . . . , Zn) ∈ Zn be a set of n data samples drawn uniformly from the distribution µ, i.e.,
Sn ∼ PSn

= µ⊗n. In the framework of statistical learning, a (possibly) stochastic learning algorithm
A : Zn → W takes the training dataset Sn as input and returns a hypothesis W ∈ W ⊆ RD . We assume
that A is randomized, in the sense that its output W ≜ A(Sn) is a random variable distributed according
to PW |Sn

. We denote the distribution induced on (Sn,W ) as PSn,W = PW |Sn
⊗PSn

= PW |Sn
⊗µ⊗n.

For a given function ℓ : Z × W → R, the loss incurred by using a hypothesis w ∈ W for a sample z
is evaluated as ℓ(z, w). A statistical learning algorithm seeks to find a hypothesis w whose population
risk R(w) ≜ EZ∼µ[ℓ(Z,w)] is minimal. However, since the data distribution µ is unknown, direct
computation of the population risk R(w) is not possible. Instead, one resorts to minimizing the empirical
risk R̂(sn, w) ≜ 1

n

∑n
i=1 ℓ(zi, w) or a regularized version of it. Throughout, if sn is known from the

context, we will use the shorthand notation R̂n(w) ≡ R̂(sn, w).

The generalization error induced by a specific choice of hypothesis w ∈ W and dataset sn is evaluated as

gen(sn, w) ≜ R(w)− R̂n(w);

and the expected generalization error of the learning algorithm A is obtained by taking the expectation
over all possible choices of (sn, w), as

gen(µ,A) ≜ EPSn,W
[gen(Sn,W )] = EPSn,W

[R(W )− R̂n(W )].

2.1 Conditional Mutual Information Framework

Let S̃ ∈ Zn×2 be a super-sample composed of 2n data points Zi,j that are drawn uniformly from
the distribution µ, where j ∈ {0, 1} and i ∈ [n]. Also, let J = (J1, . . . , Jn) ∈ {0, 1}n be
a vector of n independent Bernoulli(1/2) random variables, all drawn independently from S̃. Let
S̃J = {Z1,J1

, Z2,J2
, . . . , Zn,Jn

}. In what follows, S̃J plays the role of the training dataset Sn, S̃ \ S̃J

plays the role of a test or “ghost” dataset S′
n and S̃ is a shuffled version of the union of the two. For an

algorithm A : Zn → W , its CMI with respect to the data distribution µ is defined as

CMI(µ,A) ≜ I(A(S̃J);J|S̃) .

The CMI captures the information that the output hypothesis of the algorithm A trained on S̃J provides
about the membership vector J given the super-sample S̃. Equivalently, the CMI measures the extent to
which the training and test datasets are distinguishable given the shuffled version of the union of the two,
as well as the trained model. In its simplest form, it is shown in [12] that the generalization error of an
algorithm for a bounded loss in the range [0, 1] can be upper-bounded as

gen(µ,A) ≤
√

2

n
CMI(µ,A).

Furthermore, for a Convex-Lipschitz-Bounded (CLB) whose formal definition will follow, the generaliza-
tion error of A was shown in [47] to be upper-bounded as

gen(µ,A) ≤ LR

√
8

n
CMI(µ,A). (1)

Definition 1 (SCO Problem). A stochastic convex optimization (SCO) problem is a triple (W,Z, ℓ), where
W ∈ RD is a convex set and ℓ(z, ·) : W → R is a convex function for every z ∈ Z .

Definition 2 (Convex-Lipschitz-Bounded (CLB)). An SCO problem is called CLB if i) for every w ∈
W , ∥w∥ ≤ R, and ii) the loss function is convex and L-Lipschitz, i.e., ∀z ∈ Z , ∀w1, w2 ∈
W : |ℓ(z, w1)− ℓ(z, w2)| ≤ L∥w2 − w1∥. We denote this subclass of SCO problems by CL,R.

3 New CMI-based bounds via stochastic projection and lossy compression

While the CMI-based bounds are known to be generally tighter than the corresponding MI ones and
even tight in some settings [12, 14], they can become vacuous in some cases. This includes the Stochastic
Convex Optimization (SCO) examples constructed in the recent works [43, 46], which we will discuss in
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more detail in Section 4. For these (counter-)examples, it was shown in [43, 46] that CMI-type bounds do
not vanish, so they fail to accurately describe the generalization error. In this section, we show that such
limitations are not inherent to the CMI framework. In fact, by combining stochastic projection with lossy
compression (analogously to [49], which addressed the MI case), we derive new CMI-based bounds that
do not suffer from such limitations. For instance, when applied to the SCO examples of [43], we show
in Section 4 that our new bounds resolve the limitations of other known CMI-based bounds as identified
therein. These bounds are also shown in the appendices to apply to the analysis of the generalization error
for subspace training algorithms trained with SGD or SGLD.

Our new bounds involve two main ingredients, stochastic projection and lossy compression.

Stochastic projection. Let Θ ∈ RD×d be a random matrix with entries distributed according to some joint
distribution PΘ, chosen independently of S̃, In our approach, similar to [49], instead of considering the
hypothesis W ∈ W ⊆ RD which lies in a D-dimensional space, we consider its projection Θ⊤W ∈ Rd

onto a smaller d-dimensional space, with d≪ D.

Lossy Compression. Let ϵ ∈ R be given. An ϵ-lossy algorithm is a (possibly) stochastic map Â : Zn ×
RD×d → Ŵ that maps a pair (Sn,Θ) to a compressed hypothesis or model Ŵ ∈ Ŵ ⊆ Rd generated
according to some conditional kernel PŴ |Sn,Θ

that satisfies

EPSn,WPΘPŴ |Sn,Θ

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ ϵ.

This constraint guarantees that, when projected back onto the original hypothesis space of dimension D,
the compressed model Ŵ has an average generalization error which is within at most ϵ from that of the
original model W . In a sense, one works with a compressed model Ŵ which lies in a much smaller
dimension space, but with the guarantee that this causes almost no increase in the generalization error. In
effect, the auxiliary projected-back model ΘŴ substitutes the original model W .

The concept of a lossy algorithm, also referred to as a “surrogate” or “compressed” algorithm, was in-
troduced in [37, 51, 52] and shown therein to be key to obtaining tighter, non-vacuous, generalization
bounds. In this paper, we consider a particular lossy algorithm that involves a suitable stochastic projection
followed by quantization. Specifically, we constrain the general conditional PŴ |Sn,Θ

to take the specific

form PŴ |Θ⊤W , whereW = A(Sn). Formally, one imposes the Markov chain (Sn,Θ,W )−Θ⊤W −Ŵ
or equivalently PŴ |Sn,Θ,W = PŴ |Θ⊤W . In other words, we let Â(Sn,Θ) = Ã(Θ⊤A(Sn)), where

Ã : Rd → Ŵ is defined via the Markov kernel PŴ |Θ⊤A(Sn)
.

Our generalization bounds that will follow are expressed in terms of disintegrated CMI, defined as follows.
Let a super-sample S̃ and a stochastic projection matrix Θ be given. The disintegrated CMI of an algorithm
Â : Zn → Ŵ is defined as

CMIΘ(S̃, Â) ≜ IS̃,Θ(Â(S̃J,Θ);J) ,

where Â(S̃J,Θ) = Ã(Θ⊤A(S̃J)) = Ŵ and IS̃,Θ(Â(S̃J,Θ);J) is the CMI given an instance of S̃ and
Θ, computed using the joint distribution PJ ⊗ PW |S̃J

⊗ PŴ |Θ⊤W , with PJ = Bern(1/2)⊗n.

The next theorem states our main generalization bound and is proved in Appendix E.

Theorem 1. Let a learning algorithm A : Zn → W where W ⊆ RD be given. Then, for every ϵ ∈ R,
every d ∈ N, and every projected model quantization set Ŵ ⊆ Rd, we have

gen(µ,A) ≤ inf
P

Ŵ |Θ⊤W

inf
PΘ

EPS̃PΘ

√2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â)

+ ϵ, (2)

where Ŵ ∈ Ŵ , Θ ∈ RD×d, the infima are over all arbitrary choices of Markov kernel PŴ |Θ⊤W and
distribution PΘ that satisfy the following distortion criterion:

EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ ϵ, (3)

and the term ∆ℓŵ(S̃,Θ) is given by

∆ℓŵ(S̃,Θ) :=EPW |S̃PŴ |Θ⊤W

[
1

n

∑
i∈[n]

(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2
]
. (4)
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Observe that PW |S̃ = EPJ [PW |S̃J
]. Also, if ℓ(·, ·) ∈ [0, C] for some non-negative constant C ∈ R+,

then it is easy to see that the term ∆ℓŵ(S̃,Θ) is bounded from the above as ∆ℓŵ(S̃,Θ) ≤ C2.

The result of Theorem 1 essentially means that the generalization error of the original model is upper
bounded by a term that depends on the CMI of the auxiliary model Ŵ plus an additional distortion term
that quantifies the generalization gap between the auxiliary and original models. The rationale is that,
although the (worst-case) CMI term still depends on the dimension d after stochastic projection, this di-
mension corresponds to a subspace of the original hypothesis space and can be chosen arbitrarily small in
order to guarantee that the bound vanishes with n. Also, the term in left-hand-side (LHS) of equation 3
represents the average distortion (measured by the difference of induced generalization errors) between the
original model and the one obtained after projecting back the auxiliary compressed model onto the original
hypothesis space. The analysis of this term may seem non-easy; but as visible from the proof, it is not.
This is because, defined as a difference term, its analysis does not necessitate accounting for statistical de-
pendencies between S andW . Instead, one only needs to account for the effect of the following sources of
randomness: i) the stochastic projection matrix, ii) the quantization noise, and iii) discrepancies between
the empirical measure of S and the true unknown distribution µ. As shown in the proofs, the analysis of
the distortion term involves the use of classic concentration inequalities. Furthermore, the construction of
Ŵ allows us to consider the worst-case bound for the CMI-terms of the RHS of equation 2 without losing
the order-wise optimality in certain cases.

We close this section by noting that it is well known that CMI-type bounds can be improved by application
of suitable techniques such as random-subset or individual sample techniques or in order to get fast rates
O(1/n) for small empirical risk regimes, see, e.g., [20, 53, 54]. These same techniques can be applied
straightforwardly to our bound of Theorem 1 to get improved ones. For the sake of brevity, we do not elab-
orate on this here; and we refer the reader to the supplements where a single-datum version of Theorem 1
is provided.

4 Application to resolving recently raised limitations of classic CMI bounds
Prior works [43, 46] have recently reported carefully constructed counter-example learning problems and
have shown that classic MI-based and CMI-based bounds fail to provide meaningful results when applied
to them. In this section, we show that the careful addition of our stochastic projection along with our lossy
compression resolves those issues, in the sense that the resulting new bound (our Theorem 1), which is still
of CMI-type, now yields meaningful results when applied to those counter-examples. In essence, the im-
provement is brought up by: (i) noticing that the aforementioned negative results for standard CMI-based
generalization error bounds rely heavily on that the dimension of the hypothesis space grows fast with
n (over-parameterized regime), e.g., as Ω(n4 logn) in the considered counter-examples of [43], which
calls for suitable projection onto a smaller dimension space in which this does not hold, and (ii) properly
accounting for the distortion induced in the generalization error after projection back to the original high
dimensional space.

First, we recall briefly the counterexamples mentioned in [43] and [46]; and, for each of them, we show
how our bound of Theorem 1 applies successfully to it. Recall the definitions of a stochastic convex
optimization (SCO) problem and a Convex-Lipschitz-Bounded (CLB) SCO problem as given, respectively,
in Definition 1 and Definition 2.
Definition 3 (ε-learner for SCO). Fix ϵ > 0. For a given SCO problem (W,Z, ℓ), A = {An}n≥1 is
called an ε-learner algorithm with sample complexity N : R × R → N if the following holds: for every
δ ∈ (0, 1] and n ≥ N(ε, δ) we have that for every µ ∈ M1(Z), where M1(Z) denotes the set of
probability measures on Z , with probability at least 1− δ over Sn ∼ µ⊗n and internal randomness of A,

R(An(Sn))− min
w∈W

R(w) ≤ ε. (5)

4.1 Counter-example of Attias et al. [2024] for CLB class

Denote by BD(ν) the D-dimensional ball of radius ν ∈ R+.

Definition 4 (Problem instance P(D)
cvx ). Let L,R ∈ R+, Z ⊆ BD(1), and W = BD(R). Define the loss

function ℓ : Z ×W → R as
ℓc(z, w) = −L⟨w, z⟩.

We denote this SCO problem instance as P(D)
cvx . It is easy to see that this optimization problem belongs to

the subclass CL,R of SCO problems as defined in Definition 2.
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For this (counter-) example learning problem, [43] have shown that for every ε-learner there exists a
data distribution for which the CMI bound of equation 1 for the optimal sample complexity, which is
Θ
((

LR
ε

)2) as shown in [50], scales just as Θ(LR). For instance, that CMI-bound on the generalization
error does not decay with the size n of the training dataset!

Theorem 2 (CMI-accuracy tradeoff, [43, Theorems 4.1 and 5.2]). Let ε0 ∈ (0, 1) be a universal constant.
Consider the above defined P(D)

cvx problem instance with parameters (L,R). Consider any ϵ ≤ ϵ0 and for
any algorithm A = {An}n∈N that ε-learns P(D)

cvx with sample complexity N(·, ·). Then, the following
holds: i. For every δ ≤ ε, n ≥ N(ε, δ), and D = Ω

(
n4 log(n)

)
,3 there exists a set Z ⊆ BD(1)

and a data distribution µ ∈ M1(Z), denoted as µp∗ , such that CMI(µ,An) = Ω
((

LR
ε

)2)
. ii. In

particular, considering the optimal sample complexity N(ε, δ) = Θ
(

L2R2

ε2

)
, the CMI generalization

bound of equation 1 equals LR
√

8CMI(µ,An)/N(ε, δ) = Θ(LR).

For this example, it was further shown [43, Corollary 5.6] that application of the individual sample tech-
nique of [55, 56] (which is traditionally used to avoid the unbounded-ness issue as instance of so called
randomized-subset techniques wherein the linearity of the expectation operator is used to obtain an average
bound for the loss on randomly chosen subsets of the training set rather than the loss averaged over the full
training set) actually yields the very same bound order-wise; and, thus, it does not resolve the issue for this
counter-example.

Furthermore, as shown in [43, Equation 1], the expectation of the LHS of equation 5 can be bounded as

E [R(An(Sn))]− min
w∈W

R(w) ≤ LR

√
8CMI(µ,An)

n
+ E

[
R̂n(An(Sn))− min

w∈W
R̂n(w)

]
. (6)

Thus, while the LHS of this inequality is bounded from above by ε by assumption, its right-hand side
(RHS) is Θ(LR) by Theorem 2. This means that the CMI bound of equation 1 fails to describe well the
excess error of the LHS. In [43], this was even somewhat extrapolated to negatively answer the question
about “whether the excess error decomposition using CMI can accurately capture the worst-case excess
error of optimal algorithms for SCOs”.

The above applies for any ε-learner of the problem instance P(D)
cvx when Z = {±1/

√
D}D and µp∗(z) =∏D

k=1

(
1+

√
Dzkp

∗
k

2

)
,4 for all z = (z1, . . . , zD), where p∗ = (p∗1, . . . , p

∗
D) ∈ [−1, 1]D .

The next theorem shows that when applied to the aforementioned counter-example, our new CMI-bound
of Theorem 1 does not suffer from those shortcomings. Also, this holds true for: (i) arbitrary values of the
dimension D ∈ N including n-dependent ones, (ii) arbitrary learning algorithms (including the ε-learners
of P(D)

cvx ), (iii) arbitrary choices of Z ⊆ BD(1) and (iv) arbitrary data distributions µ.

Theorem 3. For every learning algorithm A : Zn → W of the instance P(D)
cvx defined as in Definition 4,

the generalization bound of Theorem 1 yields

gen(µ,A) ≤ 8LR√
n
.

In particular, setting N(ε, δ) = Θ
(

L2R2

ε2

)
for ε-learner algorithms we get

gen(µ,A) = O (ε) .

The proof of Theorem 3 is deferred to Appendix F.2.

Some remarks are in order. First, while when applied to the studied counter-example the CMI bound
of equation 1 yields a bound of the order Θ(LR), i.e., one that does not decay with n, our new CMI-
based bound of Theorem 1 yields one that decays with n as O(LR/

√
n). Second, when specialized to the

3The arXiv version of [43] requires a smaller increase of D with n; namely, D = Ω
(
n2 log(n)

)
.

Here, we consider values of D that are mentioned in the published PMLR version of the document, i.e.,
D = Ω

(
n4 log(n)

)
; but the approach and results that will follow also hold for D = Ω

(
n2 log(n)

)
.

4In the construction of [43], by changing n, the data distribution changes, but, for better readability, we drop
such dependence in the notation.
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case of ε-learner algorithms and considering the sample complexity Θ
((

LR
ε

)2), we get a bound on the

generalization error of the order O (ε). Using this bound, we can write

EPSn,W
[R(An(Sn))]− min

w∈W
R(w) ≤ O (ε) + EPSn,W

[
R̂n(An(Sn))− min

w∈W
R̂n(w)

]
. (7)

Contrasting with equation 6 and noticing that if the second term of the summation of the RHS of equa-
tion 7 (optimization error) is small then both sides of equation 7 are O(ϵ), it is clear that now the excess
error decomposition using our new CMI-based bound can accurately capture the worst-case excess error.
Third, as it can be seen from the proof, stochastic projection onto a one-dimensional space, i.e., d = 1,
is sufficient to get the result of Theorem 3. In essence, this is the main reason why, in sharp contrast
with projection- and lossy-compression-free CMI-bounds, ours of Theorem 1 does not become vacuous.
That is, one can reduce the effective dimension of the model for the studied example even if the original
dimension D is allowed to grow with n as Ω(n4 log(n)) as judiciously chosen in[43] for the purpose of
making classic CMI-based bounds fail. Furthermore, it is worth noting that, for this problem, the pro-
jection is performed using the famous Johnson-Lindenstrauss [57] dimension reduction algorithm. Since
this dimension reduction technique is “lossy”, controlling the induced distortion is critical. To do so,
we introduce an additional lossy compression step by adding independent noise in the lower-dimensional
space. This approach is reminiscent of lossy source coding and allows to obtain possibly tighter bounds
on the quantized, projected model. Finally, we mention that for bigger class problem instances or for the
memorization problem of Section 5, projection onto one-dimensional spaces may not be enough to get the
desired order O(LR/

√
n). In Appendix B, it will be shown that for generalized linear stochastic opti-

mization problems, one may need d = Θ(
√
n). Similarly, in Section 5 and Appendix C, projections with

d = n2r−1, r < 1 and d = Θ(logn) are used.

4.2 Counter-example of Attias et al. [2024] for CSL class

The question of whether classic CMI-bounds and individual-sample versions thereof may still fail if one
considers more structured subclasses of SCO problems was raised (and answered positively!) in Attias et
al. [43]. For convenience, we recall the following two definitions.

Definition 5 (Convex set-Strongly Convex-Lipschitz (CSL)). An SCO problem is called CSL if i) the
loss function is L-Lipschitz, and ii) the loss function is λ-strongly convex, i.e., ∀z ∈ Z , ∀w1, w2 ∈
W : ℓ(z, w2) ≥ ℓ(z, w1) + ⟨∂ℓ(z, w1), w2 − w1⟩+ λ

2 ∥w2 − w1∥2, where ∂ℓ(z, w1) is the subgradient
of ℓ(z, ·) at w1. We denote this subclass by CL,λ.

Definition 6 (Problem instance P(D)
scvx). Let λ,R ∈ R+, Z ⊆ BD(1), and W = BD(R). Define the loss

function ℓ : Z ×W → R as ℓsc(z, w) = −Lc⟨w, z⟩ + λ
2 ∥w∥

2. We denote this SCO problem as P(D)
scvx,

which belongs to CL,λ, with L = Lc + λR.

Setting λ = Lc = R = 1, D = Ω(n4 log(n)), δ = O(1/n2), Z = {±1/
√
D}D and for a particular

data distribution that is carefully chosen therein (not reproduced here for brevity), [43, Theorem 4.2] states
that for any learning algorithm that ε-learns the problem instance P(D)

scvx,

CMI(µ,An) = Ω

(
1

ε

)
.

Moreover, the application of the individual-sample technique does not result in better decay of the bound
order-wise [43, Corollary 5.7].

Noticing that (i) the loss ℓsc(z, w) = −Lc⟨w, z⟩ + λ
2 ∥w∥

2 considered in Definition 6 differs from that
ℓsc(z, w) = −L⟨w, z⟩ of Definition 4 essentially through the added squared magnitude of the model and
(ii) that addition does not alter the generalization error of a given learning algorithm, then it is easy to see
that Theorem 3 also applies for the problem P(D)

scvx at hand; and, in this case, it gives a bound of the order
O(1/

√
n). This is stated in the next proposition, which is proved in Appendix F.3.

Proposition 1. For every learning algorithm A : Zn → W of the instance P(D)
scvx defined as in Definition 6

the generalization bound of Theorem 1 yields

gen(µ,A) ≤ 8LcR√
n
.

In particular, choosingLc = R = λ = 1 and settingN(ε, δ) = c
ε for some non-negative constant c ∈ R+

for the ERM algorithm (which is an ε-learner – see, e.g., [50, Theorem 6]), one gets gen(µ,A) = O (
√
ε).
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4.3 Counter-example of Livni [2023]

The counter-example of [46] is the same as the problem instance of Definition 4, with the one difference
that the loss function is taken to be the squared distance instead of the inner product, i.e., ℓ(z, w) =
−L ∥w − x∥2, for some non-negative constant L ∈ R+. Livni [46] has shown that the MI bound of [11]
(which is a single-datum bound) fails and becomes vacuous when evaluated for this particular learning
problem. However, since ℓ(z, w) = −L ∥x∥2 − L ∥w∥2 + 2L⟨w, x⟩ and noticing that the squared norm
terms do not alter the generalization error relative to when computed for a loss function given by only
the inner-product term, it follows that Theorem 3 still applies and gives a bound of the order O(1/

√
n)

for this problem instance. In addition, for the optimal sample complexity, the bound is O(ε). In essence,
this means that unlike the MI bound of [11], our new CMI-based bound of Theorem 1 does not become
vacuous when applied to the problem at hand.

In Appendix B, we apply the bound of Theorem 1 to a wider family of generalized linear stochastic
optimization problems. In particular, we show that no counter-example could be found for which the
bound of Theorem 1 does not vanish, even if one considers the bigger class of generalized linear stochastic
optimization problems in place of the SCO class problems of [43].

5 Memorization
Loosely speaking, a learning algorithm is said to “memorize” if by only observing its output model, an
adversary can correctly guess elements of the training data among a given super-sample. For the CLB and
CSL subclasses of problems studied in Section 4, Attias et al. [43] showed that there are problem instances
for which, for any ε-learner algorithm, there exists a data distribution under which the learning algorithm
“memorizes” most of the training data. This is obtained by designing an adversary capable of identifying
a significant fraction of the training samples.

In this section, we show that given a learning algorithm A that memorizes the training samples, one can
find (via stochastic projection and lossy compression) an alternate learning algorithm Ã with comparable
generalization error and that does not memorize the training data.5

Definition 7 (Recall Game [43, Definition 4.3]). Given A = {An}n≥1, let Q : RD × Z × M1(Z) →
{0, 1} be an adversary for the following game. For i ∈ [n], given a fresh data point Z′

i ∼ µ independent
of (Zi,W ), let Zi,1 = Zi and Zi,0 = Z′

i. Then, the adversary is given Zi,Ki
, where Ki ∼ Bern(1/2) is

independent of other random variables. The adversary declares K̂i ≜ Q(W,Zi,Ki
, µ) as its guess of Ki.

The game consists of n rounds. At each round i ∈ [n], a pair (Zi,0, Zi,1) is considered and the adversary
makes two independent guesses: one for the sample Zi,0, the other for Zi,1.
Definition 8 (Soundness and recall [43, Definition 4.4]). Consider the setup of Definition 7. Assume that
the adversary plays the game in n rounds. For every round i ∈ [n], the adversary plays two times, in-
dependently of each other, using respectively (W,Zi,0, µ) and (W,Zi,1, µ) as input. Then, for a given
ξ ∈ [0, 1], the adversary is said to be ξ-sound if P (∃ i ∈ [n] : Q(W,Zi,0, µ) = 1) ≤ ξ. Also, the adver-

sary certifies the recall of m samples with probability q ∈ [0, 1] if P
(∑

i∈[n] Q(W,Zi,1, µ) ≥ m
)
≥ q.

If both conditions are met, we say that the adversary (m, q, ξ)-traces the data.

Clearly, the concept of (m, q, ξ)-tracing the data by an adversary is most interesting for values of (m, q, ξ)
that are such that: ξ is small (i.e., the adversary makes accurate predictions), m is large and q is non-
negligible (i.e., the adversary can recall a significant part of the training data). As Lemma 1, which is
stated in Appendix C.1, asserts, certain values of (m, q, ξ) can be attained even by a “dummy” adversary
that makes guesses without even looking at the given data sample.

For the problem instance P(D)
cvx , Attias et al. [43] have shown that, for every ϵ-learner algorithm, there exist

a distribution and an adversary that is capable of identifying a significant portion of the training data.

Theorem 4 ([43, Theorem 4.5]). Consider the P(D)
cvx problem instance of Definition 4 with L = R = 1.

Fix arbitrary ξ ∈ (0, 1] and let Z = {±1/
√
D}D . Let ε0 ∈ (0, 1) be a universal constant. Let ε > 0

such that ε < ε0, δ < ε. Then, given any ε-learner algorithm A with sample complexity N(ε, δ) =
Θ(log(1/δ)/ε2), there exist a data distribution µp∗ and an adversary such that for n = N(ε, δ) and
D = Ω(n4 log(n/ξ)), the adversary

(
Ω(1/ε2), 1/3, ξ

)
-traces the data.

5The memorization problem has also been studied in [58] via some examples in which the data distribution
µ is not fixed and comes from a meta-distribution, i.e. µ ∼ Pµ. Instead of using the recall game, [58] measured
the amount of memorization by I(S;W |µ).
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A key implication of Theorem 4 is that, for some fixed q > 0, the result holds even when ξ ∈ (0, 1] is
arbitrarily small and m = Ω(n) (by choosing ε = O(1/

√
n)). In other words, for the considered class

of problems Pcvx with data drawn from µp∗ , the constructed adversary can provably trace an arbitrarily
large part of the training dataset.

We show that the stochastic projection and lossy compression techniques used in the CMI framework can
partially mitigate this memorization issue, in a sense that will be made precise in Theorem 8. To this end,
we first establish a general result on memorization.

Theorem 5. Consider any learning algorithm A = {An}n≥1 such that CMI(µ,An) = o(n). Then, for
any adversary for this learning algorithm that (m, q, ξ)-traces the data, the following holds: i) m = o(n)
or ξ ≥ q, ii) if, for some α ∈ (0, 1) and n0 ∈ N∗, m ≥ αn for every n ≥ n0, then for any ϵ ∈ (0, α) it

holds that: P
(∑

i∈[n] Q(W,Zi,0, µ) ≥ m′
)
≥ (α− ϵ)q, where m′ =

(
ϵ

1/q+ϵ−α

)
n− o(n) = Ω(n).

Theorem 5, whose proof is provided in Appendix G.1, applies to any learning problems. In particular, it
is not limited to P(D)

cvx or the CLB subclass. The argument relies on Fano’s inequality for approximate
recovery [59, Theorem 2]. We construct a suitable estimator of the index set J based on the adversary’s
guesses, and we show that if this estimator can correctly recover a fraction c > 1

2 of the membership
indices J, then CMI(µ,An) = Θ(n).

Theorem 5 i) means that if the CMI of a learning algorithm is of order o(n), then any adversary that recalls a
non-negligible fraction of the training dataset with some probability q (i.e., ,m = Θ(n)) is q-sound at best.
This means that, in this regime, no adversary can do better than a dummy one that makes random guesses
independently of the data (See Lemma 1 in Appendix C.1 for what is attainable by a dummy adversary).
Theorem 5 ii) means that if an adversary recalls Ω(n) training samples with some probability, then it must
also incorrectly guess the membership of Ω(n) test samples with some non-negligible probability.

Next, we use the result of Theorem 5 for P(D)
cvx to show that while the output model W of any ε-learner

algorithm must memorize a significant fraction of the data (for some distribution) as asserted in Theorem 4
the auxiliary model ΘŴ (which is obtained through suitable stochastic projection and lossy compression),
achieves comparable generalization error without memorizing the data!

Theorem 6. Consider the P (D)
cvx problem instance of Definition 4 with L = R = 1. For every r > 0,

every Z ⊆ BD(1) and every learning algorithm A : Zn → RD , there exists another (compressed)
algorithm A∗ : Zn → RD , defined as A∗(Sn) ≜ ΘÃ(Θ⊤A(Sn)) = ΘŴ , where the projection matrix
Θ ∈ RD×d, d = 500r log(n), is distributed according to some distribution PΘ independent of (Sn,W ),
such that for any data distribution µ, the following conditions are met simultaneously:

i) the generalization error of the auxiliary model ΘŴ satisfies∣∣∣EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]∣∣∣ = O
(
n−r

)
, (8)

ii) if there exists an adversary that by having access to both Θ and Ŵ (and hence ΘŴ ) (m, q, ξ)-
traces the data, then it must be that: a) m = o(n) or ξ ≥ q, and b) if, for some α ∈ (0, 1)
and n0 ∈ N∗, m ≥ αn for every n ≥ n0, then for any ϵ ∈ (0, α) it holds that:

P
(∑

i∈[n] Q(ΘŴ , Zi,0, µ) ≥ m′
)
≥ (α− ϵ)q, where m′ =

(
ϵ

1/q+ϵ−α

)
n− o(n) = Ω(n).

Theorem 6, proved in Appendix G.2, holds for Θ being stochastic and shared with the adversary. In
essence, it asserts that for any algorithm A(S) = W , one can construct a suitable projected-quantized
model Â(S,Θ) = Ŵ from which no adversary would be able to trace the data, for any data distribution
µ. It is appealing to contrast this result with that of [43, Theorem 4.5] on the necessity of memorization.
Consider the SCO instance problem with O(1) convex-Lipschitz loss defined over the ball of radius one
in RD considered in [43, Theorem 4.5] and let an ε-learner algorithm A with output model W and sample
complexity N(ε, δ) = Θ(log(1/δ)/ε2) with D = Ω(n4 log(n/ξ)) be given. The result of [43, Theorem
4.5] states that there exists a data distribution for which the algorithm A must memorize a big fraction
of the training data. Applied to this particular instance problem, Theorem 6 asserts that if a random
Θ is chosen and shared with the adversary then the auxiliary model ΘŴ has the following guarantees:
(i) for any data distribution, no adversary can trace the data, and (ii) on average over Θ the associated
generalization error is arbitrarily close to that of the original model W . At first glance, this may seem
to contradict the necessity of memorization stated in [43, Theorem 4.5]. It is important to note, however,
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that the auxiliary algorithm does not satisfy the conditions required in [43, Theorem 4.5]; and, so, the
latter does not apply to ΘŴ . In particular, while [43, Theorem 4.5] requires the model to be bounded,
in our construction for every w we have EŴ ,Θ

[
ΘŴ

]
≈ w but EŴ ,Θ

[∥∥ΘŴ∥∥2] increases roughly as D
d

(see Lemma 2 in Appendix C.4.1). As discussed after Lemma 2, this causes EŴ ,Θ

[∥∥ΘŴ∥∥2] to grow as

Ω(n3) whenD = Ω(n4 log(n/ξ)), i.e., it becomes arbitrarily large as n increases. Intuitively, this is what
prevents an adversary from guessing correctly whether a sample has (or not) been used for training, and
which makes some key proof steps of Attias et al. fail when applied to the auxiliary model ΘŴ . These
steps are discussed in detail in Appendix C.4.2.

A somewhat weaker version of Theorem 6, which is stated in Theorem 8 in Appendix C.2, holds for the
projection matrix Θ being deterministic. In a sense, it provides a stronger guarantee on the generalization
error of the auxiliary model, in that the closeness to the performance of the original model holds now for
the given Θ and not only in average over Θ as in Theorem 6. However, this comes at the expense of the
auxiliary algorithm being dependent on the data distribution. A consequence of this is that the result does
not preclude the existence of other distributions for which there would exist adversaries capable of tracing
the data. Moreover, in Theorem 9 in Appendix C.3, we show that a similar result holds if one considers
the closeness in terms of the population risk, instead of the generalization error.

Summarizing, neither of the results of Theorem 6 and Theorem 8 contradict those of [43]. In essence,
they assert that for any learning algorithm A one can find an alternate auxiliary algorithm via stochastic
projection combined with lossy compression for which no adversary would be able to trace the data; and,
yet, the found auxiliary algorithm has generalization error that is arbitrarily close to that of the original
model. Appendix C.3 extends this closeness to the population risk.

6 Implications and Concluding Remarks
Sample-compression schemes

Formally, a learning algorithm is a sample compression scheme of size k ∈ N if there exists a pair of
mappings (ϕ, ψ) such that for all samples S = (Z1, . . . , Zn) of size n ≥ k, the map ϕ compresses
the sample into a length-k sequence which the map ψ uses to reconstruct the output of the algorithm,
i.e., A(S) = ψ(ϕ(S)). Steinke and Zakynthinou [12] establish that if an algorithm An is a sample-
compression scheme (ϕ, ψ) of size k, then it must be that the associated CMI is bounded from above as
CMI(An) ≤ k log(2n). The finding of [43] that, for certain SCO problem instances, every ε-learner algo-
rithm must have CMI that blows up with n (faster than n) was used therein to refute the existence of such
sample-compression schemes for the studied SCO problems. The results of this paper may constitute a path
to obtaining such schemes when the definition is extended to involve approximate reconstruction (in terms
of induced generalization error) instead of the strict An(·) = ψ(ϕ(·)) of Littlesone and Warmuth [60].

Fingerprinting codes and privacy attacks

In [61], the authors study the problem of designing privacy attacks on mean estimators that expose a
fraction of the training data. They show that a well-designed adversary can guess membership of the
training samples from the output of every algorithm that estimates mean with high precision. Our results
suggest that stochastic projection and lossy compression might be useful to construct differentially private
codes that prevent such fingerprinting type attacks. For instance, while noise would naturally be one
constituent of the recipe in this context, its injection in a suitable smaller subspace of the summary statistics
might be the key enabler of privacy guarantees in such contexts.

Concluding remarks

In this work, we revisit recent limitations identified in conditional mutual information-based generalization
bounds. By incorporating stochastic projections and lossy compression mechanisms into the CMI frame-
work, we derive bounds that remain informative in stochastic convex optimization, thereby offering a new
perspective on the results in [43, 46]. Our approach also provides a constructive resolution to the memo-
rization phenomenon described in [43], by showing that for any algorithm and data distribution, one can
construct an alternative model that does not trace training data while achieving comparable generalization.

Like prior work on information-theoretic bounds, our analysis applies to stochastic convex optimization. A
natural, open question is whether and how these results can be extended to more general learning settings.
Another key direction is to translate our theoretical findings into actionable design principles for learning
algorithms with controlled generalization and compressibility.
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[49] Kimia Nadjahi, Kristjan Greenewald, Rickard Brüel Gabrielsson, and Justin Solomon. Slicing mutual
information generalization bounds for neural networks. In International Conference on Machine
Learning, pages 37213–37236. PMLR, 2024.

[50] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex opti-
mization. In COLT, volume 2, number 4, page 5, 2009.

[51] Yuheng Bu, Weihao Gao, Shaofeng Zou, and Venugopal Veeravalli. Information-theoretic under-
standing of population risk improvement with model compression. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 3300–3307, 2020.

[52] Milad Sefidgaran, Amin Gohari, Gael Richard, and Umut Simsekli. Rate-distortion theoretic gen-
eralization bounds for stochastic learning algorithms. In Conference on Learning Theory, pages
4416–4463. PMLR, 2022.

[53] Peter Grunwald, Thomas Steinke, and Lydia Zakynthinou. PAC-Bayes, mac-bayes and conditional
mutual information: Fast rate bounds that handle general vc classes. In Conference on Learning
Theory, pages 2217–2247. PMLR, 2021.

[54] Milad Sefidgaran, Abdellatif Zaidi, and Piotr Krasnowski. Minimum description length and general-
ization guarantees for representation learning. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS), 2023.

[55] Borja Rodrı́guez-Gálvez, Germán Bassi, Ragnar Thobaben, and Mikael Skoglund. On random subset
generalization error bounds and the stochastic gradient langevin dynamics algorithm. In 2020 IEEE
Information Theory Workshop (ITW), pages 1–5. IEEE, 2021.

[56] Ruida Zhou, Chao Tian, and Tie Liu. Individually conditional individual mutual information bound
on generalization error. IEEE Transactions on Information Theory, 68(5):3304–3316, 2022.

[57] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space
26. Contemporary mathematics, 26:28, 1984.

13



[58] Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd annual
ACM SIGACT symposium on theory of computing, pages 123–132, 2021.

[59] Jonathan Scarlett and Volkan Cevher. An introductory guide to fano’s inequality with applications in
statistical estimation. arXiv preprint arXiv:1901.00555, 2019.

[60] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Citeseer, 1986.

[61] Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust trace-
ability from trace amounts. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 650–669, 2015. doi: 10.1109/FOCS.2015.46.

[62] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 2013.

[63] Ankit Pensia, Varun Jog, and Po-Ling Loh. Generalization error bounds for noisy, iterative algo-
rithms. 2018 IEEE International Symposium on Information Theory (ISIT), pages 546–550, 2018.

[64] Mahdi Haghifam, Jeffrey Negrea, Ashish Khisti, Daniel M Roy, and Gintare Karolina Dziugaite.
Sharpened generalization bounds based on conditional mutual information and an application to
noisy, iterative algorithms. Advances in Neural Information Processing Systems, 33:9925–9935,
2020.

[65] Borja Rodrı́guez Gálvez, Germán Bassi, Ragnar Thobaben, and Mikael Skoglund. On random sub-
set generalization error bounds and the stochastic gradient langevin dynamics algorithm. CoRR,
abs/2010.10994, 2020.

[66] Hao Wang, Yizhe Huang, Rui Gao, and Flavio Calmon. Analyzing the generalization capability of
SGLD using properties of gaussian channels. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 24222–24234. Curran Associates, Inc., 2021.

[67] Hao Wang, Rui Gao, and Flavio P Calmon. Generalization bounds for noisy iterative algorithms
using properties of additive noise channels. Journal of machine learning research, 24(26):1–43,
2023.

[68] Sejun Park, Umut Simsekli, and Murat A Erdogdu. Generalization bounds for stochastic gradient
descent via localized ε-covers. Advances in Neural Information Processing Systems, 35:2790–2802,
2022.

[69] Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size
stochastic gradient descent and Markov chains, 2018.

[70] Leo Kozachkov, Patrick M Wensing, and Jean-Jacques Slotine. Generalization in supervised learning
through riemannian contraction. arXiv preprint arXiv:2201.06656, 2022.

[71] Allan Grønlund, Lior Kamma, and Kasper Green Larsen. Near-tight margin-based generalization
bounds for support vector machines. In Hal Daumé III and Aarti Singh, editors, Proceedings of
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Justification: Our work does not involve any experiment.

Guidelines:
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• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for ex-
ample, train/test split, initialization, random drawing of some parameter, or overall run with
given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula, call to
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the
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Answer: [NA]
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experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make
it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is a theoretical paper on learning theory and does not violate any code of
ethics.
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due to laws or regulations in their jurisdiction).

10. Broader impacts
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impacts of the work performed?

Answer: [NA]

Justification: Our work is a theoretical paper on learning theory and does not have any direct
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), pri-
vacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve any experiment.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with nec-

essary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: Our work does not involve any experiment.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not involve any experiment or any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: Our work is a theoretical paper on learning theory.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: Our work does not involve crowd sourcing nor any research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only
for writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We have not used LLMs for this work.

Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendices
The appendices are organized as follows:

• In Appendix A, we present some extensions of Theorem 1, that are used in the subsequent sections.

• The results of Section 4 have been extended to a wider family of generalized linear stochastic opti-
mization problems in Appendix B.

• Further results on memorization are presented in Appendix C. In particular

– In Appendix C.1, we discuss what values of (m, q, ξ) can be achieved by a “dummy adversary”.
– In Appendix C.2, we consider the case where the projection matrix Θ is fixed and shared with the

adversary.
– In Appendix C.3, we discuss how to provide guarantees on the closeness in terms of the popula-

tion risk between the projected-quantized model to the original model.
– In Appendix C.4, we provide technical lemmas used in the main text on reconciliation of our

results with those of [43].

• The generalization error of subspace training algorithms is investigated in Appendix D. In particular, in
Appendix D.1, we develop generalization bounds for the case where iterative optimization algorithms
such as SGD and SGLD are used for the optimization of the subspace training algorithms.

• The proof of Theorem 1 is presented in Appendix E.

• In Appendix F, we present the proofs of the results presented in Section 4 and Appendix B regarding the
applications of Theorem 1 to resolving recently raised limitations of classic CMI bounds. In particular,

– a general Johnson-Lindenstrauss projection scheme JL(d, cw, ν) is introduced in Appendix F.1,
which is used in the following subsections, with different choices of (d, cw, ν),

– Theorem 3 is proved in Appendix F.2,
– Proposition 1 is proved in Appendix F.3,
– Theorem 7 is proved in Appendix F.4,
– and Lemma 4 is proved in Appendix F.5.

• Appendix G contains the proofs of the results in Section 5 and Appendix C, about the memorization.
More precisely,

– Theorem 5 is proved in Appendix G.1,
– Theorem 6 is proved in Appendix G.2,
– Lemma 1 is proved in Appendix G.3,
– Theorem 8 is proved in Appendix G.4,
– Theorem 9 is proved in Appendix G.5,
– Lemma 2 is proved in Appendix G.6,
– and Lemma 5 is proved in Appendix G.7.

• Lastly, Appendix H contains the proofs of the results of Appendix D on the generalization error of
subspace training algorithms when trained using SGD or SGLD. More precisely,

– Lemma 3 is proved in Appendix H.1,
– Theorem 10 is proved in Appendix H.2,
– Theorem 13 is proved in Appendix H.3,
– and Lemma 6 is proved Appendix H.4.

A Extensions of Theorem 1

As mentioned in Section 3, Theorem 1 can be improved in several ways, similar to those proposed in
[20, 53, 54]. Here, we state only the single-datum version of Theorem 1, which is used in Appendix D,
followed by a remark about extending Theorem 1 and its corollary to more general lossy compression
algorithms. Denote

J−i =J[n]\{i}, S̃−i ≜ S̃[n]\{i},[2] = S̃ \ {Zi,0, Zi,1} .
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Corollary 1. Consider the setup of Theorem 1. Then,

gen(µ,A) ≤ inf
P

Ŵ |Θ⊤W

inf
PΘ

1

n

∑
i∈[n]

EPS̃PΘ

[√
2∆ℓŵ,i(S̃,Θ)CMIΘi (S̃, Â)

]
+ ϵ, (9)

and

gen(µ,A) ≤ inf
P

Ŵ |Θ⊤W

inf
PΘ

1

n

∑
i∈[n]

EPS̃PΘPJ−i

[√
2∆ℓŵ,i(S̃,Θ)CMIΘi,J−i

(S̃, Â)

]
+ ϵ, (10)

where the infima are over PŴ |Θ⊤W and PΘ that satisfy the distortion criterion

EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ ϵ, (11)

and where

CMIΘi (S̃, Â) ≜IS̃,Θ(Â(S̃J,Θ); Ji) ,

CMIΘi,J−i
(S̃, Â) ≜IS̃,J−i,Θ(Â(S̃J,Θ); Ji) ,

∆ℓŵ,i(S̃,Θ) ≜EPW |S̃PŴ |Θ⊤W

[
(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2

]
.

To derive inequality 9, first note that by equation 11, it is sufficient to show that

gen(µ, Â) ≤ inf
P

Ŵ |Θ⊤W

inf
PΘ

1

n

∑
i∈[n]

EPS̃PΘ

[√
2∆ℓŵ,i(S̃,Θ)CMIΘi (S̃, Â)

]
.

Next, using the linearity of the expectation, we can write

E[gen(Sn, Ŵ )] =
1

n

∑
i∈[n]

E[gen({Zi}, Ŵ )]

=
1

n

∑
i∈[n]

ES̃−i

[
EZi,Ŵ

[gen({Zi}, Ŵ )]
]
. (12)

Then applying Theorem 1 for each of the terms EZi,Ŵ
[gen({Zi}, Ŵ )] yields equation 9.

The inequality 10 can be achieved similarly, by considering

E[gen(Sn, Ŵ )] =
1

n

∑
i∈[n]

ES̃−i,J−i

[
EZi,Ŵ

[gen({Zi}, Ŵ )]
]
,

instead of equation 12.

The results of Theorem 1 and, consequently, Corollary 1, are valid for a broader class of learning algo-
rithms, A, and lossy compression algorithms, Â, as discussed in the remark below and shown in the proof
of Theorem 1 in Appendix E.

Remark 1. As shown in Appendix E, the bounds of Theorem 1 and consequently Corollary 1 hold if the
learning algorithm A is aware of the projection matrix Θ, i.e., if A : Zn × RD×d → W takes both the
dataset S and the projection matrix Θ as input in order to learn the model W . Moreover, the results of
Theorem 1 and Corollary 1 are valid if the quantization step can also depend on S, Θ and A(S,Θ). In
this general case, Ŵ = Â(S,Θ) = Ã(Θ, S,A(S,Θ)) = Ŵ . This setting trivially includes the case in
which A : Zn → W and the quantization depends only on Θ⊤A(S,Θ). For the ease of the exposition,
we found it better not to state the result in its most general form.

B Generalized linear stochastic optimization problems

In this section, we show that our bound of Theorem 1 can be applied successfully to get useful bounds
on the generalization error of a family of generalized linear stochastic optimization problems that is wider
than the ones considered previously in related prior art.
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Definition 9 (Generalized linear stochastic optimization). Let L,B,R ∈ R+ and W = BD(R). Define
the loss function ℓgl : Z ×W → R as

ℓgl(z, w) = g (⟨w, ϕ(z)⟩ , z) + r(w),

where g : R×Z → R is L-Lipschitz with respect to the first argument, ϕ : Z → BD(B) and r : W → R
is some arbitrary function. Denote this problem as P(D)

glso.

This class of problems is larger than the one considered in [50]. For instance, while the results of [50]
require the L-Lipschitz function g(·, ·) and the function r(·) to be both convex to hold, our next theorem
applies to arbitrary L-Lipschitz functions g(·, ·) and arbitrary functions r(·).

Theorem 7. For every learning algorithm A : Zn → W of the instance problem P(D)
glso defined in

Definition 9, the generalization bound of Theorem 1 yields

gen(µ,A) = O
(
LRB

4
√
n

)
.

The proof, stated in Appendix F.4, is based on Theorem 1. In order to find a proper stochastic projec-
tion and quantization, we use the Johnson-Lindenstrauss (JL) dimensional reduction transformation in a
space of dimension d. Then, we apply lossy compression to the projected model. Thanks to the com-
bined projection-quantization, the disintegrated CMI can be bounded easily in the d-dimensional space.
However, there are two main caveats to using the JL Lemma directly. First, one needs to bound the
term ∆ℓŵ(S̃,Θ) (see equation 4). This is particularly difficult since the JL Lemma does not guarantee
distance preservation in the original space of dimension D after projecting back the quantized model.
Second, bounding the distortion term is less easy than in Theorem 3, since using the Lipschitz prop-
erty requires bounding the absolute value of the difference between inner products of the original and
projected-quantized models. In essence, this is the reason why, by opposition to JL transformation for
which it suffices to take d = log(n), here one needs a higher-dimensional projection space comparatively,
with d =

√
n.

Theorem 7 shows that no counter-example could be found for which the bound of Theorem 1 does not
vanish, even if one considers the bigger class of generalized linear stochastic optimization problems of
Definition 9 in place of the SCO class problems of [43]. The convergence rate O(1/ 4

√
n) of Theorem 7

is, however, not optimal. A better rate, O(1/
√
n), seems to be achievable using Rademacher analysis and

Talagrand’s contraction lemma [62]. Using a more refined analysis, the same rate might be possible to
achieve using our Theorem 1. More precisely, in the part of the current proof of Theorem 7 that analyses
the distortion term, we do not account for the discrepancy between the empirical measure of S and the true
distribution µ; and, instead, we consider a worst-case scenario. A finer analysis that takes such discrepancy
into account should lead to a sharper expected concentration bound for the distortion term, and, so, a better
rate.

C Further results on memorization

In this section, we provide further results on memorization. In Appendix C.1, we show that even a
“dummy” adversary can trace the data for some values of (m, q, ξ). In Appendix C.2, we study the case
where the projection matrix Θ is deterministic. In Appendix C.3, we provide another variant of Theorem 8,
in which we can guarantee the closeness of the projected-quantized model to the original model in terms
of population risk (instead of the generalization error considered in Theorem 8). Finally, in Appendix C.4,
we present some technical lemmas used in the discussions of Section 5 on the relation of our results with
those established in [43].

C.1 Dummy adversary

In this section, we show that certain values of (m, q, ξ) are attainable by a “dummy” adversary who makes
guesses without even looking at the given data sample.

Lemma 1. Given a learning algorithm An : Zn → W , there exists an adversary that (m, q, ξ)-traces the
data for some m ∈ [0, n] and q, ξ ∈ [0, 1] if one of the following conditions holds: i) ξ ≥ q, or ii) there

exists an α ∈ [0, 1− ξ] ∩ [0, 1) such that n

√
1− ξ

1−α +

√
1
2n log

(
1

1−q/(1−α)

)
+ m

n ≤ 1.
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This lemma, proved in Appendix G.3, implies in particular that even a dummy adversary can (m, q, ξ)-
trace the data in several cases: when ξ is small, when q is large, or when ξ is small and q is large, provided
that m = o(n).

C.2 Deterministic projection

In this section, we show that in Theorem 6, one can allow Θ to be deterministic. However, this comes at
the cost of being specific to a given data distribution.

Theorem 8. Consider the P (D)
cvx problem instance of Definition 4 with L = R = 1. For every r < 1, every

Z ⊆ BD(1), every data distribution µ, and every learning algorithm A, there exist a projection matrix
Θ ∈ RD×d with d = ⌈n2r−1⌉, a Markov KernelPŴ |Θ⊤W and a compression algorithm A∗

Θ : Zn → Rd,

defined as A∗
Θ(Sn) ≜ Ã(Θ⊤A(Sn)) = Ŵ , such that the following conditions are met simultaneously:

i) the generalization error of the auxiliary model ΘŴ satisfies∣∣∣EPSn,WP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]∣∣∣ = O
(
n−r

)
, (13)

where the expectation is taken over (Sn,W, Ŵ ) ∼ PSn,WPŴ |Θ⊤W .

ii) if there exists an adversary that by having access to both Θ and Ŵ (and hence ΘŴ ) (m, q, ξ)-
traces the data, then it must be that: a) m = o(n) or ξ ≥ q, and b) if, for some α ∈ (0, 1)
and n0 ∈ N∗, m ≥ αn for every n ≥ n0, then for any ϵ ∈ (0, α) it holds that:

P
(∑

i∈[n] Q(ΘŴ , Zi,0, µ) ≥ m′
)
≥ (α− ϵ)q, where m′ =

(
ϵ

1/q+ϵ−α

)
n− o(n) = Ω(n).

As shown in the proof in Appendix G.4, the constraint on the difference generalization error can be re-
placed with one with a faster decay with n, namely

EPSn,WP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
= O

(
n−r

)
for some r ∈ [R] and d = 500r log(n). Also, if n = N(ε, δ), then m,m′ = Ω

(
1/ε2

)
, which means that

any adversary who (m, q, ξ)-traces the training data is deemed to misclassify any arbitrary big part of the
test samples.

For the proof of Theorem 8, we first apply the projection-quantization approach of Theorem 3. Then,
for a proper Θ that satisfies the distortion criterion of equation 13 and for which the CMI is o(n) we
apply Theorem 8. Note two important differences with Theorem 3. First, because one now deals with
absolute value of the average difference of generalization errors one also needs to lower bound the average
distortion. Also, for r > 1/2 a faster convergence rate of O(n−r) is required. This renders the analysis
trickier and requires projection on a space of dimension n2r−1.

C.3 Guarantees on the population risk

In this section, we demonstrate that the closeness guarantee of the projected-quantized model and the
original model can also be provided in terms of population risk.

Theorem 9. Consider the P (D)
cvx problem instance of Definition 4 with L = R = 1. For every r < 1/2, ev-

ery Z ⊆ BD(1), every data distribution µ, and every learning algorithm A, there exist a projection matrix
Θ ∈ RD×d with d = ⌈n2r⌉, a Markov Kernel PŴ |Θ⊤W and a compression algorithm A∗

Θ : Zn → Rd,

defined as A∗
Θ(Sn) ≜ Ã(Θ⊤A(Sn)) = Ŵ , such that the following conditions are met simultaneously:

i) the generalization error of the auxiliary model ΘŴ satisfies∣∣EPSn,WP
Ŵ |Θ⊤W

[L(W )− L(ΘŴ )]
∣∣ = O

(
n−r

)
,

where the expectation is taken over (Sn,W, Ŵ ) ∼ PSn,WPŴ |Θ⊤W .

ii) if there exists an adversary that by having access to both Θ and Ŵ (and hence ΘŴ ) (m, q, ξ)-
traces the data, then it must be that: a) Either m = o(n) or ξ ≥ q, and b) if m = Ω(n)
then there exists m′ = Ω(n) and q′ ∈ (0, 1] such that for sufficiently large n, it holds that

P
(∑

i∈[n] Q(ΘŴ , Zi,0, µ) ≥ m′
)
≥ q′.
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This result is proved in Appendix G.5. Furthermore, similarly to Theorem 8, the constraint on the differ-
ence of population risks can be replaced with one with a faster decay with n, namely

EPSn,WP
Ŵ |Θ⊤W

[
L(W )− L(ΘŴ )

]
= O

(
n−r

)
, (14)

for some r ∈ [R] and d = 500r log(n).

C.4 Reconciliation with results of Attias et al. 2024

In this section, we provide the technical lemma showing that the norm two of the projected-quantized
model, used in our results, is unbounded. Furthermore, we discuss in detail the steps of the proofs in [43]
where this bounded assumption is needed.

C.4.1 Uboundedness of the norm two of the projected-quantized model

In this section, for the projected-quantized algorithm ΘŴ , used in Theorem 8 and Theorem 6, we show

that EŴ ,Θ

[∥∥∥ΘŴ∥∥∥2] blows-up with n when D/d grows with n. This lemma is proved in Appendix G.6.

Lemma 2. Consider the JL(d, cw, ν) transformation described in Appendix F.1, with some d ∈ N+,

cw ∈
[
1,
√

5/4
)

, and ν ∈ (0, 1]. Then, for every w ∈ W ,

EΘ,Vν

[∥∥∥ΘŴ∥∥∥2] ≥(D + d+ 1

d

)
∥w∥2 −

√
(D + d+ 3)(D + d+ 5)(d+ 2)

d3
∥w∥2e−0.1d(c2w−1)2

− Dν2

d
.

Consider ∥w∥ = 1 and letD = n4 log(n/ξ) as considered in [43, Theorem 4.5]. We note that the notation
d used in [43] corresponds to the notation D in this paper.

Then, considering the constructions used for Theorem 8 and Theorem 6, we have cw = 1.1 and ν = 0.4.
Moreover, d is chosen either as

d = 500r log(n),

or

d = n2r−1, r < 1.

Using Lemma 2 with these choices give

EΘ,Vν

[∥∥∥ΘŴ∥∥∥2] = Ω
(
n4
)
.

and

EΘ,Vν

[∥∥∥ΘŴ∥∥∥2] = Ω
(
n4−2r log(n)

)
= Ω

(
n3 log(n)

)
,

respectively. Hence, in both cases EΘ,Vν

[∥∥∥ΘŴ∥∥∥2] grows at least as fast as Ω(n3).

C.4.2 Details of needed boundedness assumption in Attias et al.

As discussed before, [43, Theorem 4.1] and [43, Theorem 4.5] require the model to be bounded. However,
as shown in the previous section, this assumption does not hold for the projected-quantized algorithm ΘŴ
when D/d and d grow with n. In this section, we discuss precisely where the bounded model assumption
is necessary in the proofs of the impossibility results of [43].

• Proof of [43, Theorem 4.1] and recall analysis in the proof of [43, Theorem 4.5], in part, relies
on an established upper bound Ω(1/ε2) on the term E[|I|], where the set I is the subset of
columns of supersample such that one of the samples has a large correlation with the output of
the algorithm and the other one has small correlation with the output of the algorithm.
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– To establish this upper bound, in the last inequality of Page 19 of [43], it is assumed that the
norm of the model is bounded. Now, when working with the model ΘŴ , the right-hand side
of this inequality needs to be replaced by the D/d-dependent quantity 8ε4n2 D

d + 2ε2 =

Ω(n5) when D = Ω(n4) and d = o(n). This has to be contrasted with the actual bound
8ε4n2+2ε2 when the bounded model’s norm assumption holds. Thus, one important issue
is that, this quantity now being non-negligible, the LHS of (9) can no longer be lower-
bounded by the RHS of the inequality (9).

– Another step, used for establishing the upper bound on E[|I|], is the step that upper bounds
P (Ec) = O(1/n2), for the event E defined on top of Page 19 of [43]. In this case again,
in the set of equations before equation (12), it is assumed that the norm of the model is
bounded to derive ∥Aθ̂2∥ ≤ 1442ε4. However, since norm two of ΘŴ is Ω(n3), then
these steps are ot valid and hence the analysis does not give P (Ec) = O(1/n2) anymore.

• Another proof step of [43, Theorem 4.1], used also in the soundness analysis in the proof of [43,
Theorem 4.5], relies on upper bounds for the error event Gc, defined on [43, Page 18] as the
probability that the correlation between the model output and the held-out samples is significant.
These upper bounds, [43, Equations 11] in the proof of [43, Theorem 4.1] and also on [43, 29]
in the soundness analysis in the proof of [43, Theorem 4.5], are based on an application of [43,
Lemma B.8] and by assuming that the norm two of the model is bounded by 1. These steps again
fail if the norm two of the model grows as Ω(D/d) = Ω(n3).

D Random subspace training algorithms

The generalization bounds of Theorem 1 and Corollary 1 apply to any arbitrary learning algorithm. In
this section, we show how this bound can be applied to random subspace training algorithms. Then, we
consider the case where they are trained using an iterative optimization algorithm.

Let St(d,D) = {Θ ∈ RD×d : Θ⊤Θ = Id} be the Stiefel manifold, equipped with the uniform distri-
bution PΘ. Moreover, for a given Θ ∈ RD×d, let WΘ,d ≜ {w ∈ RD : ∃w′ ∈ Rd s.t. w = Θw′}.
Random subspace training algorithms first randomly generate an instance of Θ according to PΘ, which
is kept frozen during training. A random subspace training algorithm A(d) : Zn × RD×d → WΘ,d is
a learning algorithm that takes the dataset S and the projection matrix Θ as input, and chooses a model
W ∈ WΘ,d, by choosing a W ′ ∈ Rd.

In other words, A(d)(S,Θ) = ΘW ′, or alternatively, since Θ⊤Θ = Id, W ′ = Θ⊤A(d)(S,Θ). Hence,
using Corollary 1 and by noting Remark 1, we can obtain the following result.
Corollary 2. Consider a random subspace training algorithm and a loss function ℓ : Z × RD → [0, C].
Then, for any ϵ ∈ R and the quantization set Ŵ ⊆ Rd, we have

gen(µ,A(d)) ≤ inf
PŴ |W ′,Θ,S

EPΘPS̃

C
n

∑
i∈[n]

√
2CMIΘi (S̃, Ŵ )

+ ϵ,

and

gen(µ,A(d)) ≤ inf
PŴ |W ′,Θ,S

EPΘPS̃PJ−i

C
n

∑
i∈[n]

√
2CMIΘi,J−i

(S̃, Ŵ )

+ ϵ, (15)

where Ŵ ∈ Ŵ and the infimum are over all Markov kernels PŴ |W ′,S,Θ that satisfies the following
distortion criterion:

EPSPΘPW ′|S,ΘPŴ |W ′,S,Θ

[
gen(S,ΘW ′)− gen(S,ΘŴ )

]
≤ ϵ. (16)

This bound is used in the following subsection, when SGD or SGLD are used for random subspace
training. Note that the above bound includes the case of Ŵ = W ′ and ϵ = 0, which results in

the lossless bounds of gen(µ,A(d)) ≤ EPS̃PΘ

[
C
n

∑
i∈[n]

√
2CMIΘi (S̃,W

′)

]
and gen(µ,A(d)) ≤

EPS̃PΘPJ−i

[
C
n

∑
i∈[n]

√
2CMIΘi,J−i

(S̃,W ′)
]
.

The results presented in the next section are extensions and improvements in some aspects, upon previous
work on bounding the generalization error of SGLD without projection [38, 63–67].
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D.1 Generalization bounds for SGD and SGLD Algorithms

In this section, we consider subspace training algorithms that are trained using an iterative optimization al-
gorithm such as mini-batch Stochastic Gradient Descent (SGD) or Stochastic Gradient Langevin dynamics
(SGLD).

Let b ∈ N bet the mini-batch size, and let

Vt ≜ {it,1, . . . , it,b},

be the sample indices chosen at time t ∈ [T ], i.e., given S̃ ∈ Zn×2 and J = (J1, . . . , Jn), the chosen

indices at time t are S̃Vt,J ≜ S̃Vt,JVt
≜
{
Zit,1,Jit,1

, . . . , Zit,b,Jit,b

}
. Furthermore, denote

R̂(Vt,W ) ≜
1

b

∑
i∈Vt

ℓ (Zi,Ji
,W ) .

We use also the notation V ≜ (V1, . . . , VT ) and recall that J−i ≜ J[n]\{i}.

The considered noisy iterative optimization algorithm consists of the following steps:

• (Initialization) Sample Θ ∈ RD×d and set the initial model’s parameters to W0 = ΘW ′
0, where

W ′
0 ∈ Rd.

• (Iterate) For t ∈ [T ], apply the update rule

W ′
t = Proj

{
W ′

t−1 − ηt∇w′R̂(Vt,ΘW
′
t−1) + σtεt

}
, (17)

with ηt > 0 (the learning rate), σt ≥ 0 (the variance of the Gaussian noise), and εt ∼ N (0d, Id)
(the isotropic Gaussian noise). Here, the projection is an optional operator often used to keep the
norm of the model parameters bounded.

• (Output) Return the final hypothesis WT = ΘW ′
T .

Note that here, we train on a subspace of dimension d < D defined by Θ (randomly picked at initialization
and fixed during training). Note also that when σt = 0 for all t ∈ [T ], this algorithm reduces to the mini-
batch SGD (with projection).

D.1.1 Mutual information of a mixture of two Gaussians and the component

To state our results, we start by defining two useful functions. Suppose that

X = (1− J)Y1 + JY2,

where (J, Y1, Y2) are independent real-valued random variables defined as follows: J ∼ Bern(p), Y1 ∼
N (0, 1), and Y2 ∼ N (a, 1), for some a ∈ R. Then, it is easy to show that I(X; J) = f(a, p), where the
function f : R× [0, 1] → [0, log 2] is defined as6

f(a, p) ≜ h(ga,p(x))− log(
√
2πe) = −Ega,p(x) [log(ga,p(x)]− log(

√
2πe). (18)

Here, ga,p : R×[0, 1] → R+ is defined as a mixture of two scalar Gaussian distributions with probabilities
p and 1− p:

ga,p(x) ≜
1√
2π

(
pe−

x2

2 + (1− p)e−
(x−a)2

2

)
. (19)

The following lemma, proved in the supplements, establishes some properties of the function f(a, p).

Lemma 3. i) For every p ∈ [0, 1], f(0, p) = 0. ii) For every p ∈ [0, 1], f(a, p) = f(−a, p) and f(a, p)
is an strictly increasing function of a in the range [0,∞). iii) lima→∞ f(a, p) = log(2)hb(p). iv) For
every a ∈ R, f(a, p) = f(a, 1 − p) and for a ̸= 0, f(a, p) is strictly increasing with respect to p in the
range [0, 1/2].

6All logarithms are considered to have the base of e.
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D.1.2 Lossless generalization bound

We start by stating our bound in its simplest form.
Theorem 10. Suppose that ℓ ∈ [0, C]. Then, the generalization error of a random subspace training
algorithm, optimized using iterations defined in 17, is upper-bounded as

gen(µ,A(d)) ≤C
√
2

n

∑
i∈[n]

ES̃,Θ,V,J−i

√√√√ ∑
t : i∈Vt

Ept,i,∆t,i

[
f

(
ηt
bσt

∆t,i, pt,i

)] ,
where

∆t,i ≜
∥∥∇w′ℓ

(
ΘW ′

t−1, Zi,0

)
−∇w′ℓ

(
ΘW ′

t−1, Zi,1

)∥∥ ,
pt,i ≜P

(
Ji = 0

∣∣S̃,Θ,V,J−i,W
′
t−1,

{
W ′

r,W
′
r−1 : r < t, i ∈ Vr

})
. (20)

This result is proved in Appendix H.2.

In the bound of equation 20, the term f
(

ηt

σt
∆t,i, pt,i

)
is an increasing function with respect to ηt

σt
, ∆t,i,

and a decreasing function with respect to |pt,i − 1/2|. As t increases, the learning algorithm “memorizes”
more of the dataset; therefore, |pt,i − 1/2| increases and thus these terms decrease. Furthermore, the
learning rate decreases, causing this term to decrease more.

Note that by Lemma 3, f(·, p) is maximized for p = 1
2 . Hence, a simpler upper bound from Theorem 10

can be achieved by replacing pt,i by 1
2 .

D.1.3 Lossy generalization bound

The bound of Theorem 10 has a clear shortcoming; whenever ηt

σt
is very small, the bound becomes loose.

In particular, for SGD where σt = 0, the bound becomes vacuous. In this section, to overcome this issue,
we consider a lossy version of the above bound. While the lossy bound can be stated without any further
assumptions, for a more concrete bound, we make the following assumptions.
Assumption 11 (Lipschitzness). The loss function is L-Lipschitz, i.e., for any w′

1, w
′
2 ∈ Rd, any z ∈ Z ,

and any Θ ∈ St(d,D), we have |ℓ
(
z,Θw′

1

)
− ℓ
(
z,Θw′

2

)
| ≤ L∥w′

1 − w′
2∥.

Note that since Θ⊤Θ = Id, then ∥w′
1 − w′

2∥ = ∥Θw′
1 −Θw′

2∥.
Assumption 12 (Contractivity). There exists some α ∈ R+, such that for any w′

1, w
′
2 ∈ W ′, z ∈ Z , and

Θ ∈ St(d,D), we have∥∥(w′
1 − η∇w′ℓ(z,Θw′

1)
)
−
(
w′

2 − η∇w′ℓ(z,Θw′
2)
)∥∥ ≤ α

∥∥w′
1 − w′

2

∥∥ .
Whenever α < 1, we say the projected SGLD is α-contractive.

Similar assumptions have been used in previous works, such as [68]. In fact, the contractivity property of
SGD has been theoretically proved under certain conditions, such as when the loss function is smooth and
strongly convex [68–70].

In addition to being sensitive to cases where ηt

σt
is very small, the bound of Theorem 10 does not account

for the “forgetting” effect of the iterative optimization algorithms: the information obtained by W ′
T about

Ji in the initial iterations will eventually fade out, as T increases. To account for this effect, similar to
[66, 67], we assume that W ′ = BD(R),7 for some R ∈ R+.
Theorem 13. Suppose that ℓ ∈ [0, C], W ′ = BD(R), for some R ∈ R+, and Assumptions 11 and 12
hold with constants L ∈ R+ and α ≤ 1, respectively. Then, for any set of {νt}t∈[T ], such that νt ∈ R+,
the generalization error of a random subspace training algorithm, optimized using iterations defined in
17, is upper bounded as

gen(µ,A(d)) ≤C
√
2

n

∑
i∈[n]

ES̃,Θ,V,J−i

√√√√ ∑
t : i∈Vt

At,iEp̂t,i,∆̂t,i

[
f

(
ηt
bσ̂t

∆̂t,i, p̂t,i

)]
+

2
√
2LΓ

(
d+1
2

)
Γ
(
d
2

) ∑
t∈[T ]

νtα
T−t, (21)

7In this setup, for w′ ∈ W ′, Proj {w′} = w′ and otherwise Proj {w′} = R
∥w′∥w

′.
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where
∆̂t,i ≜

∥∥∥∇w′ℓ
(
ΘŴt−1, Zi,0

)
−∇w′ℓ

(
ΘŴt−1, Zi,1

)∥∥∥ ,
p̂t,i ≜P

(
Ji = 0

∣∣S̃,Θ,V,J−i, Ŵt−1

)
,

σ̂t ≜
√
σ2
t + ν2t ,

qt ≜1− 2Φ

(
R+ ηtL

σ̂t

)
,

At,i ≜
∏

r∈[t+1:T ] : i/∈Vr

qr,

where Ŵt are random variables that satisfy∥∥∥Ŵt −W ′
t

∥∥∥ ≤
∑
r∈[t]

αt−rνr
∥∥ε′r∥∥ ,

for ε′t ∼ N (0d, Id), which is an auxiliary additional noise, independent of all other random variables, and
where Φ(x) ≜

∫∞
x

1√
2π

exp(−y2/2)dy is the Gaussian complementary cumulative distribution function
(CCDF).

This theorem is proved in Appendix H.3. Here, we discuss some remarks.

First, the “gained” information from the initial iterations fades as T → ∞, when qt < 1 (note that always
qt ≤ 1).

Second, we note that, unlike in Theorem 10, where pt,i depends on all past iterations in which sample i
is used, in this theorem, p̂t,i depends only on the immediate past iteration. It can be shown that a similar
result can be achieved for Theorem 13 i.e., allowing p̂t,i to depend on all past iterations, at the expense of
replacing all {qt}t by 1.

Third, it can be observed that if ∀t ∈ [T ] : νt = 0, we recover Theorem 10, except for the definition of
pt,i, that can be adjusted at the expense of replacing all {qt}t by 1, as explained above. Furthermore, by
increasing νt, the second term in equation 21, i.e. the “distortion” term, increases; but the first “rate” term

decreases since f
(

ηt√
σ2

t+ν2
t

∆̂t,i, p̂t,i

)
decreases. Therefore, in general, the lossy bound can outperform

the lossless bound. In particular, for SGD, i.e., when σt = 0, the lossless bound and previous works (for
the case of no projection) [38, 63–67] become vacuous, while the lossy bound does not.

Lastly, to achieve this bound, we considered a sequence of parallel “perturbed” iterations. In each of these
auxiliary iterations, we introduced an additional independent noise νtε′t, where ε′t ∼ N (0d, Id). It can be
seen that for the contractive SGD/SGLD, the effect of added perturbation in the initial iterations vanishes
as T → ∞. Therefore, once again, it can be seen that the effect of the increase in mutual information from
the initial iterations eventually fades.

E Proof of Theorem 1

We prove the theorem in its most general form stated in Remark 1. This means that we assume that the
learning algorithm A is also aware of the projection matrix Θ, i.e., A : Zn × RD×d → W takes both
the dataset Sn and the projection matrix Θ as input to learn W . Moreover, we allow the quantization
step to depend on S, Θ, and A(Sn,Θ). In this general case, Ŵ = Â(S,Θ) = Ã(Θ, Sn,A(S,Θ)). We
denote this general compressed algorithm by PŴ |Sn,W,Θ. Note that PŴ |Θ⊤W is a special case of this
more general setup.

Fix some ϵ ∈ R and the quantization set Ŵ . Consider any Markov kernel PŴ |Sn,W,Θ and PΘ that satisfy
the following distortion criterion:

EPSnPΘPW,Ŵ |Sn,Θ

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ ϵ.

Using this condition, it is sufficient to show that

gen(µ, Â) = EPSnPΘPW,Ŵ |Sn,Θ

[
gen(Sn,ΘŴ )

]
≤EPS̃PΘ

√2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â)

 ,
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where

∆ℓŵ(S̃,Θ) :=EPŴ |S̃,Θ

[
1

n

∑
i∈[n]

(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2
]
.

Denote the marginal distribution of (Sn,Θ, Ŵ ) under PSn
PΘPW,Ŵ |Sn,Θ

by PSn,Θ,Ŵ and conditional

distribution of Ŵ given (Sn,Θ) by PŴ |Sn,Θ
. Hence, PSn,Θ,Ŵ = PSn

PΘPŴ |Sn,Θ
and

gen(µ, Â) =EPSnPΘPŴ |Sn,Θ

[
gen(Sn,ΘŴ )

]
=EPS̃PΘPJPŴ |S̃J,Θ

[
R̂(S̃Jc ,ΘŴ )− R̂(S̃J,ΘŴ )

]
.

It is hence sufficient to show that for any S̃ and Θ,

EPJPŴ |S̃J,Θ

[
R̂(S̃Jc ,ΘŴ )− R̂(S̃J,ΘŴ )

]
≤

√
2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â).

Denote PŴ |S̃,Θ ≜ EPJ

[
PŴ |S̃J,Θ

]
and PJ,Ŵ |S̃,Θ ≜ PJPŴ |S̃J,Θ

≜ PJ|S̃,Θ,ŴPŴ |S̃,Θ be the condi-

tional distributions of (J, Ŵ ) given (S̃,Θ). Note that the marginal distribution of J under PJ,Ŵ |S̃,Θ is
PJ, i.e.,

EPŴ |S̃,Θ

[
PJ|S̃,Θ,Ŵ

]
= PJ.

Now, fix some λ ̸= 0 that will be determined later. We have

EPJ|S̃,Ŵ ,Θ

[
R̂(S̃Jc ,ΘŴ )− R̂(S̃J,ΘŴ )

]
(a)

≤ 1

λ
DKL

(
PJ|S̃,Ŵ ,Θ

∥∥PJ

)
+

1

λ
log
(
EPJ

[
eλ(R̂(S̃Jc ,ΘŴ )−R̂(S̃J,ΘŴ ))

])
=
1

λ
DKL

(
PJ|S̃,Ŵ ,Θ

∥∥PJ

)
+

1

λ
log
(
EPJ

[
e

λ
n

∑
i∈[n](−1)Ji (ℓ(Zi,0,ΘŴ )−ℓ(Zi,1,ΘŴ )

])
(b)

≤ 1

λ
DKL

(
PJ|S̃,Ŵ ,Θ

∥∥PJ

)
+

1

λ

∑
i∈[n]

λ2(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2

2n2
.

where (a) follows from Donsker-Varadhan’s inequality and (b) by the inequality 1
2 (e

−x + ex) ≤ ex
2/2.

Hence,

EPJPŴ |S̃J,Θ

[
R̂(S̃Jc ,ΘŴ )− R̂(S̃J,ΘŴ )

]
=EPŴ |S̃,ΘPJ|S̃,Ŵ ,Θ

[
R̂(S̃Jc ,ΘŴ )− R̂(S̃J,ΘŴ )

]
≤ 1

λ
DKL

(
PŴ |S̃,ΘPJ|S̃,Ŵ ,Θ

∥∥PJPŴ |S̃,Θ

)
+

λ

2n
EPŴ |S̃,Θ

 1

n

∑
i∈[n]

(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2


=
1

λ
DKL

(
PŴ |S̃,ΘPJ|S̃,Ŵ ,Θ

∥∥PJPŴ |S̃,Θ

)
+
λ∆ℓŵ(S̃,Θ)

2n

=
1

λ
DKL

(
PJPŴ |S̃J,Θ

∥∥PJPŴ |S̃,Θ

)
+
λ∆ℓŵ(S̃,Θ)

2n

=
1

λ
CMIΘ(S̃, Â) +

λ∆ℓŵ(S̃,Θ)

2n

≤

√
2∆ℓŵ(S̃,Θ)CMIΘ(S̃, Â)

n
,

where the last step is followed by letting

λ ≜

√
2nCMIΘ(S̃, Â)

∆ℓŵ(S̃,Θ)
.

This completes the proof.
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F Proofs of Section 4 and Appendix B: Application to raised limitations of
CMI bounds

For the proofs of Section 4 and Appendix B, we always consider the normalized setup, i.e., R = 1, L = 1
(for Theorem 3), Lc = 1 (for Proposition 1), and B = 1 (for Theorem 7). The proof applies for arbitrary
values of (R,L,Lc, B), by simply scaling the constants.

All proofs are based on Theorem 1, with a particular class of choices of PΘ and PŴ |Θ⊤W , called the

choices from the scheme JL(d, cw, ν) for some d ∈ N, cw ∈
[
1,
√

5/4
)

, and ν ∈ (0, 1], described in

Appendix F.1. For a given JL(d, cw, ν), we then use Theorem 1 for some suitable ϵ ∈ R:

gen(µ,A) ≤EPS̃PΘ

√2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â)

+ ϵ. (22)

Recall that the term ∆ℓŵ(S̃,Θ) is defined as

∆ℓŵ(S̃,Θ) :=EPW |S̃PŴ |Θ⊤W

[
1

n

∑
i∈[n]

(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2
]
,

and the choices of PΘ and PŴ |Θ⊤W should satisfy the distortion criterion

EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ ϵ. (23)

For brevity, we often use the notation
∆(W,ΘŴ ;Sn) := gen(Sn,W )− gen(Sn,ΘŴ ).

Furthermore, denote the D-dimensional ball of radius ν ∈ R+ and center w ∈ RD by BD(w, ν). If
w = 0D , for simplicity we write BD(0D, ν) ≡ BD(ν), where 0D designates the all-zero vector in RD .

F.1 Johnson-Lindenstrauss projection scheme

Fix some constant cw ∈
[
1,
√

5
4

)
and ν ∈ (0, 1]. Let d ∈ N∗ and Θ be a matrix of size D × d whose

elements are i.i.d. samples from N (0, 1/d). For a given Θ and W = A(Sn), in the scheme JL(d, cw, ν),
let

U :=

{
Θ⊤W, if ∥Θ⊤W∥ ≤ cw,

0d, otherwise.
(24)

Let Vν be a random variable that takes value uniformly over Bd (ν). Let Ŵ ∈ Ŵ = Bd(cw + ν) be
defined as

Ŵ = U + Vν . (25)

This means that Ŵ is a random variable that takes value uniformly over Bd (U, ν):

Ŵ ∼ Unif (Bd (U, ν)) .

In other words, we define Ŵ as a quantization of W ′ = Θ⊤W obtained as follows: if ∥Θ⊤W∥ ≤ cw,
then Ŵ is uniformly sampled from Bd

(
Θ⊤W, ν

)
; otherwise, Ŵ is uniformly sampled from Bd (ν). Such

quantization has been previously used in [22] to establish a generalization bound for the distributed SVM
learning algorithm.

Disintegrated CMI bound: The disintegrated CMI bound CMIΘ(S̃, Â) in the scheme JL(d, cw, ν)
can be upper bounded as

CMIΘ(S̃, Â) =hS̃,Θ(Ŵ )− hS̃,Θ(Ŵ |J)
(a)

≤hS̃,Θ(Ŵ )− hS̃,Θ(Ŵ |J,W )

(b)
=hS̃,Θ(Ŵ )− h(Ŵ |Θ⊤W )

(c)

≤ log (Volume (Bd(cw + ν)))− log (Volume (Bd(ν)))

=d log
(cw + ν

ν

)
, (26)
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where

• hS̃,Θ(Ŵ ) is the differential entropy of Ŵ ∼ PŴ |S̃,Θ, hS̃,Θ(Ŵ |J) = EJ

[
hS̃,Θ,J(Ŵ )

]
, and

hS̃,Θ,J(Ŵ ) is the differential entropy of Ŵ ∼ PŴ |S̃,Θ,J,

• (a) follows from the fact that conditioning does not increase the entropy,

• (b) yields due to Markov chain Ŵ −Θ⊤W − (S̃,Θ,J,W ),

• and (c) holds since i) ∥Ŵ∥ ≤ cw + ν by construction and hence hS̃,Θ(Ŵ ) is upper bounded
by the differential entropy of a random variable taking value uniformly over Bd(cw + ν), and ii)
since given Θ⊤W , Ŵ is chosen uniformly over a d-dimensional ball either around 0d or Θ⊤W ,
depending on ∥Θ⊤W∥.

F.2 Proof of Theorem 3

As explained in Appendix F, we consider the case L = R = 1, and use Theorem 1 using the JL(d, cw, ν)

transformation described in Appendix F.1, with some d ∈ N+, cw ∈
[
1,
√

5/4
)

, and ν ∈ (0, 1]. To do

so, we start by bounding CMIΘ(S̃, Â), the distortion equation 23, and ES̃,Θ[∆ℓŵ(S̃,Θ)].

Bound on the disintegrated CMI: It is shown in equation 26 that

CMIΘ(S̃, Â) =≤d log
(cw + ν

ν

)
. (27)

Bound on the distortion: Next, we bound the distortion term. By definition, and using the linearity of
expectation, we obtain

∆(W,ΘŴ ;Sn) = gen(Sn,W )− gen(Sn,ΘŴ )

= EZ∼µ[−⟨W,Z⟩] + 1

n

n∑
i=1

⟨W,Zi⟩+ EZ∼µ[⟨ΘŴ , Z⟩]− 1

n

n∑
i=1

⟨ΘŴ , Zi⟩

= −⟨W,EZ∼µ[Z]−
1

n

n∑
i=1

Zi⟩+ ⟨ΘŴ ,EZ∼µ[Z]−
1

n

n∑
i=1

Zi⟩

= −⟨W, Z̄⟩+ ⟨Ŵ ,Θ⊤Z̄⟩, (28)

where Z̄ ≜ EZ∼µ[Z]− 1
n

∑n
i=1 Zi.

Additionally, since for any (x, y) ∈ RD × RD , EΘ[⟨Θ⊤x,Θ⊤y⟩] = ⟨x, y⟩, then

EŴ ,Θ,W,Sn
[∆(W,ΘŴ ;Sn)] = EŴ ,Θ,W,Sn

[−⟨W, Z̄⟩+ ⟨Ŵ ,Θ⊤Z̄⟩]

= EŴ ,Θ,W,Sn
[−⟨Θ⊤W,Θ⊤Z̄⟩+ ⟨Ŵ ,Θ⊤Z̄⟩]

= EŴ ,Θ,W,Sn
[⟨Ŵ −Θ⊤W,Θ⊤Z̄⟩].

Let E be the event that ∥Θ⊤W∥ > cw and denote by Ec the complementary event of E . By the law of
total expectation,

EŴ ,Θ,W,Sn
[∆(W,ΘŴ ;Sn)] = E[⟨Ŵ −Θ⊤W,Θ⊤Z̄⟩ | E ]P(E) + E[⟨Ŵ −Θ⊤W,Θ⊤Z̄⟩ | Ec]P(Ec).

(29)

By definition of Ŵ , E[Ŵ ] = 0 under E , E[Ŵ ] = Θ⊤W otherwise. Therefore, equation 29 can be
simplified as

EŴ ,Θ,W,Sn
[∆(W,ΘŴ ;Sn)] = E[−⟨Θ⊤W,Θ⊤Z̄⟩ | E ]P(E)

= E[−⟨Θ⊤W,Θ⊤Z̄⟩1{E}]

≤ E[∥Θ⊤W∥∥Θ⊤Z̄∥1{E}] (30)

≤ E[∥Θ⊤Z̄∥2]1/2 E[∥Θ⊤W∥4]1/4 E[1{E}]1/4, (31)
where equation 30 follows from Cauchy-Schwarz inequality, and equation 31 results from Hölder’s in-
equality.

Now, we bound each of the terms E[∥Θ⊤Z̄∥2], E[∥Θ⊤W∥4], and E[1{E}].
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• Since the elements of Θ ∈ RD×d are i.i.d. from N (0, 1/d), then for any fixed vector x ∈
RD , each entry of

√
dΘ⊤x
∥x∥ is an independent random variable distributed according to N (0, 1).

Hence, Vx =
∥∥∥√

dΘ⊤x
∥x∥

∥∥∥2 is a chi-squared random variable with d-degrees of freedom, and we
have

E[Vx] = d.

This concludes that for any z̄,

E
[
∥Θ⊤z̄∥2

]
= ∥z̄∥2.

• Moreover, since Vx is a chi-squared distribution with d-degrees of freedom, we have that

E[V 2
x ] = E[Vx]2 + E[(Vx − E[Vx])2] = d2 + 2d.

Hence for every w ∈ W ,

EΘ

[
∥Θ⊤w∥4

]
=
∥w∥4

d2
EΘ

[∥∥∥∥∥
√
dΘ⊤w

∥w∥

∥∥∥∥∥
4]

=
∥w∥4

d2
EΘ

[
V 2
w

]
=

(
1 +

2

d

)
∥w∥4.

• By [71, Lemma 9], for any w ∈ BD(1), if cw ∈ [1,
√

5
2 ),

P(E) ≤ e−0.21d(c2w−1)2 . (32)

More precisely by [71, Lemma 9] we have for any t ∈ [0, 1/4) and any w ∈ Bd(1),

P
(
∥Θ⊤w∥2 − ∥w∥2 > t∥w∥2

)
≤ e−0.21dt2 .

We note that this inequality is a “single-sided” tail bound version of [71, Lemma 9] (while therein
stated as a “double-sided” tail bound). This explains why RHS of the inequality in [71, Lemma
9] is 2e−0.21dt2 , while here we have e−0.21dt2 .

Next, note that (t+ 1)∥w∥2 ≤ (t+ 1), hence

P
(
∥Θ⊤w∥2 − ∥w∥2 > t∥w∥2

)
= P

(
∥Θ⊤w∥2 > (t+ 1)∥w∥2

)
≥ P

(
∥Θ⊤w∥2 > t+ 1

)
.

Thus, by letting t = c2w − 1 for cw ∈ [1,
√

5/4), we have

P
(
∥Θ⊤w∥ ≥ cw

)
≤ e−0.21dt2 = e−0.21d(c2w−1)2 .

Combining the above upper bounds on E[∥Θ⊤Z̄∥2], E[∥Θ⊤W∥4], and E[1{E}], we obtain,

EŴ ,Θ,W,Sn
[∆(W,ΘŴ ;Sn)] ≤ E[∥Z̄∥2]1/2 E[∥Θ⊤W∥4]1/4 e−

0.21
4

d(c2w−1)2

≤ E[∥Z̄∥2]1/2 EW [∥W∥2 + 2

d
∥W∥4]1/4 e−

0.21
4

d(c2w−1)2

≤ E[∥Z̄∥2]1/2
(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 , (33)

where equation 33 follows from assuming that W ⊆ BD(1).
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It remains then to upper bound E[∥Z̄∥2]. By definition of Z̄ and the linearity of expectation, we have

E[∥Z̄∥2] = E
[
∥E[Z]− 1

n

n∑
i=1

Zi∥2
]

= E[∥ 1
n

n∑
i=1

(E[Z]− Zi)∥2]

=
1

n2
E

( n∑
i=1

(E[Z]− Zi)

)⊤
 n∑

j=1

(E[Z]− Zj)


=

1

n2
E

 n∑
i=1

n∑
j=1

(E[Z]− Zi)
⊤(E[Z]− Zj)


=

1

n2
E

 n∑
i=1

(E[Z]− Zi)
⊤(E[Z]− Zi) +

∑
i̸=j

(E[Z]− Zi)
⊤(E[Z]− Zj)


=

1

n2
E

 n∑
i=1

∥E[Z]− Zi∥2 +
∑
i̸=j

Cov(Zi, Zj)


=

1

n2
E

[
n∑

i=1

∥E[Z]− Zi∥2
]

(34)

≤ 4

n
, (35)

where equation 34 results from Cov(Zi, Zj) = 0 for i ̸= j since Zi, Zj are independent, and equation 35
follows from Z ⊆ BD(1) (thus, for any i, ∥E[Z]− Zi∥ ≤ 2).

Combining equation 33 and equation 34, we conclude that the distortion is bounded by

EŴ ,Θ,W,Sn
[∆(W,ΘŴ ;Sn)] ≤

2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 . (36)

Bound on ES̃,Θ[∆ℓŵ(S̃,Θ)]: We have

EPSPΘ
[∆ℓŵ(S̃,Θ)] :=EPS̃PΘPW |S̃PŴ |Θ⊤W

 1

n

∑
i∈[n]

(ℓ(Zi,0,ΘŴ )− ℓ(Zi,1,ΘŴ ))2


=EPS̃PΘPW |S̃PŴ |Θ⊤W

 1

n

∑
i∈[n]

〈
Ŵ ,Θ⊤ (Zi,0 − Zi,1)

〉2
(a)

≤EPS̃PΘPW |S̃PŴ |Θ⊤W

 1

n

∑
i∈[n]

∥∥Θ⊤(Zi,0 − Zi,1)
∥∥2∥Ŵ∥2


(b)

≤ (cw + ν)2EPS̃PΘ

 1

n

∑
i∈[n]

∥∥Θ⊤(Zi,0 − Zi,1)
∥∥2

(c)

≤4(cw + ν)2, (37)

where (a) follows by Cauchy–Schwarz inequality, (b) is derived since ∥ŵ∥ ≤ (cw + ν), and (c) since for
any fixed z, each entry of Θ⊤z

∥z∥ is an independent random variable distributed according to N (0, 1d ) and
hence

EΘ

[∥∥∥Θ⊤z
∥∥∥2] = ∥z∥2 ≤ 4,

since
∥∥Zi,0 − Zi,1

∥∥ ≤ 2.

35



Generalization Bound: Now, let

ϵ :=
2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 .

Inequality 36 shows that the above choices of PΘ and PŴ |Θ⊤W (according to the scheme JL(d, cw, ν))
satisfy the distortion criterion equation 23. Hence, equation 22 gives

gen(µ,A) ≤EPS̃PΘ

√2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â)

+
2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2

(a)

≤EPS̃PΘ

√2∆ℓŵ(S̃,Θ)

n
d log

(cw + ν

ν

)+
2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2

(b)

≤

√√√√2dEPS̃PΘ

[
∆ℓŵ(S̃,Θ)

]
n

log
(cw + ν

ν

)
+

2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2

(c)

≤
√

8d(cw + ν)2

n
log
(cw + ν

ν

)
+

2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 ,

where (a) is achieved using equation 27, (b) by Jensen inequality and due to the concavity of the function√
x, and (c) is derived using equation 37.

The proof is completed by letting

d =1, cw = 1, ν = 0.4.

F.3 Proof of Proposition 1

As explained in Appendix F, it is sufficient to consider the case Lc = R = 1. We have

gen(µ,A) =EPSn,W
[R(W )− R̂n(W )]

=
1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[ℓsc(Z,W )]− ℓsc(Zi,W )]

(a)
=

1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[−⟨W,Z⟩] + ⟨W,Zi⟩]

(b)
=

1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[ℓc(Z,W )⟩]− ℓc(Zi,W )]

(c)

≤ 8√
n
,

where (a) by definition of ℓsc(z, w) = −⟨w, z⟩+ λ
2 ∥w∥

2 by Definition 6, (b) holds since by Definition 4,
we have ℓc(z, w) = −L⟨w, z⟩, and (c) follows by Theorem 3.

F.4 Proof of Theorem 7

As explained in Appendix F, we consider the case L = R − B = 1. First, note that similar to the proof
of Proposition 1, the generalization error does not change, if we consider the loss function ℓglm(z, w) ≜
g (⟨w, ϕ(z)⟩ , z)− g (0, z) instead of ℓgl(z, w) = g (⟨w, ϕ(z)⟩ , z) + r(w). More precisely,

gen(µ,A) =EPSn,W
[R(W )− R̂n(W )]

=
1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[ℓgl(Z,W )]− ℓgl(Zi,W )]

=
1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[g (⟨W,ϕ(Z)⟩ , Z) + r(W )]− g (⟨W,ϕ(Zi)⟩ , Zi)− r(W )]

=
1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[g (⟨W,ϕ(Z)⟩ , Z)]− g (⟨W,ϕ(Zi)⟩ , Zi)]
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(a)
=

1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[g (⟨W,ϕ(Z)⟩ , Z)− g (0, Z)]− g (⟨W,ϕ(Zi)⟩ , Zi) + g (0, Zi)]

=
1

n

∑
i∈[n]

EPSn,W
[EZ∼µ[ℓglm(Z,W )]− ℓglm(Zi,W )] ,

where (a) follows since EZ∼µ[g(0, Z)] = EZi∼µ[g(0, Zi)].

Hence, for the rest of the proof, we consider the generalization with respect to the following loss function:

ℓglm(z, w) ≜ g (⟨w, ϕ(z)⟩ , z)− g (0, z) .

Note that due the Lipschitzness of the function g(·, ·) with respect to its first argument, for every z ∈ Z
and w ∈ W , we have

|ℓglm(z, w)| = |g (⟨w, ϕ(z)⟩ , z)− g (0, z)| ≤ |⟨w, ϕ(z)⟩| . (38)

Furthermore since ∥w∥, ∥ϕ(z)∥ ≤ 1, using Cauchy-Schwarz inequality yields

|ℓglm(z, w)| ≤ 1.

Now, we proceed to establish a generalization bound with respect to the loss function ℓglm(z, w). We
use Theorem 1 with the JL(d, cw, ν) transformation described in Appendix F.1, for some d ∈ N+, cw ∈[
1,
√

5/4
)

, and ν ∈ (0, 1]. To do so, We start by bounding CMIΘ(S̃, Â), the distortion equation 23, and

ES̃,Θ[∆ℓŵ(S̃,Θ)].

Bound on the disintegrated CMI: It is shown in equation 26 that

CMIΘ(S̃, Â) =≤d log
(cw + ν

ν

)
.

Bound on the distortion: Next, we bound the distortion term.

∆(W,ΘŴ ;Sn) =gen(Sn,W )− gen(Sn,ΘŴ )

=EZ∼µ[ℓglm(Z,W )]− 1

n

n∑
i=1

ℓglm(Zi,W )− EZ∼µ[ℓglm(Z,ΘŴ )] +
1

n

n∑
i=1

ℓglm(Zi,ΘŴ )

=EZ∼µ [g (⟨W,ϕ(Z)⟩ , Z)]− 1

n

n∑
i=1

g (⟨W,ϕ(Zi)⟩ , Zi)

− EZ∼µ

[
g
(〈

ΘŴ , ϕ(Z)
〉
, Z
)]

+
1

n

n∑
i=1

g
(〈

ΘŴ , ϕ(Zi)
〉
, Zi

)
≤EZ∼µ

[∣∣∣g (⟨W,ϕ(Z)⟩ , Z)− g
(〈

ΘŴ , ϕ(Z)
〉
, Z
)∣∣∣]

+
1

n

n∑
i=1

∣∣∣g (⟨W,ϕ(Zi)⟩ , Zi)− g
(〈

ΘŴ , ϕ(Zi)
〉
, Zi

)∣∣∣
(a)

≤EZ∼µ

[∣∣∣〈W −ΘŴ , ϕ(Z)
〉∣∣∣]+ 1

n

∑
i∈[n]

∣∣∣〈W −ΘŴ , ϕ(Zi)
〉∣∣∣ , (39)

where (a) holds due to Lipschitzness of the function g with respect to its first argument.

Hence,

EŴ ,Θ,W,Sn

[
∆(W,ΘŴ ;Sn)

]
≤2 sup

z,w
EŴ ,Θ∼PΘP

Ŵ |Θ⊤w

[∣∣∣〈w −ΘŴ , ϕ(z)
〉∣∣∣]

=2 sup
z,w

EŴ ,Θ∼PΘP
Ŵ |Θ⊤w

[∣∣∣⟨w, ϕ(z)⟩ − 〈Ŵ ,Θ⊤ϕ(z)
〉∣∣∣]

≤2 sup
z,w

(
EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈U,Θ⊤ϕ(z)
〉∣∣∣]+ EVν ,Θ

[∣∣∣〈Vν ,Θ⊤ϕ(z)
〉∣∣∣]) ,

(40)
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where the last step follows since by equation 25, Ŵ = U + Vν .

In the rest, we fix z and w and upper bound each of the terms in the right-hand side of equation 40:

C1 ≜EΘ∼PΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈U,Θ⊤ϕ(z)
〉∣∣∣] ,

C2 ≜EVν ,Θ∼Uniform(Bd(ν))PΘ

[∣∣∣〈Vν ,Θ⊤ϕ(z)
〉∣∣∣] .

Let E be the event that ∥Θ⊤W∥ > cw and denote by Ec the complementary event of E .

• We start by bounding C1.

C1 =EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈U,Θ⊤ϕ(z)
〉∣∣∣1{E}]+ EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈U,Θ⊤ϕ(z)
〉∣∣∣1{Ec}

]
(a)
=EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈0d,Θ
⊤ϕ(z)

〉∣∣∣1{E}]+ EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣∣1{Ec}

]
≤EΘ [|⟨w, ϕ(z)⟩|1{E}] + EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣∣]

(b)

≤EΘ [1{E}] + EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣∣]

(c)

≤e−0.21d(1−c2w)2 + EΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣∣] , (41)

where (a) holds since by equation 24, under E , U = 0d, and under Ec, U = Θ⊤W , (b) is derived since
∥w∥, ∥ϕ(z)∥ ≤ 1 and hence, Cauchy-Schwarz inequality yields |⟨w, ϕ(z)⟩| ≤ 1, and (c) derived by
equation 32.
Thus, to bound C1, it remained to bound EΘ

[∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣]. We use a trick

borrowed from [71, Proof of Theorem 9]. Note that ∥w∥, ∥ϕ(z)∥ ≤ 1. Hence, to upper bound
EΘ

[∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤w,Θ⊤ϕ(z)
〉∣∣], it is sufficient to consider the case where ∥w∥ = ∥ϕ(z)∥ = 1.

Let
v ≜w − ⟨w, ϕ(z)⟩ϕ(z),

v̂ ≜
v

∥v∥ .

It is easy to verify that ⟨v, ϕ(z)⟩ = 0. Hence, since ϕ(z) ⊥ v, we have

∥v∥ =
√

∥w∥2 − ⟨w, ϕ(z)⟩2∥ϕ(z)∥2 =
√

1− ⟨w, ϕ(z)⟩2 ≤ 1.

Now, for every r ∈ [d], denote the r’th row of Θ⊤ ∈ Rd×D by Tr and let
Xr ≜ ⟨Tr, ϕ(z)⟩,
Yr ≜ ⟨Tr, v̂⟩.

Since ϕ(z) ⊥ v and since the Gaussian distributions are rotationally invariant, we have that
X1, . . . , Xd, Y1, . . . , Yd are i.i.d. Gaussian random variables distributed according to N (0, 1/d).
Hence, using the identity w = v + ⟨w, ϕ(z)⟩ϕ(z), we can write∣∣∣⟨w, ϕ(z)⟩ − ⟨Θ⊤w,Θ⊤ϕ(z)⟩

∣∣∣ = ∣∣∣⟨w, ϕ(z)⟩ − 〈Θ⊤ (v + ⟨w, ϕ(z)⟩ϕ(z)) ,Θ⊤ϕ(z)
〉∣∣∣

=

∣∣∣∣⟨w, ϕ(z)⟩(1− ∥∥∥Θ⊤ϕ(z)
∥∥∥2)− ∥v∥⟨Θ⊤v̂,Θ⊤ϕ(z)⟩

∣∣∣∣
(a)

≤
∣∣∣∣∥∥∥Θ⊤ϕ(z)

∥∥∥2 − 1

∣∣∣∣+ ∣∣∣⟨Θ⊤v̂,Θ⊤ϕ(z)
∣∣∣

=

∣∣∣∣∥∥∥Θ⊤ϕ(z)
∥∥∥2 − 1

∣∣∣∣+
∣∣∣∣∣∣
∑
r∈[d]

XrYr

∣∣∣∣∣∣ , (42)

where (a) is derived using the inequalities ∥⟨w, ϕ(z)⟩ ≤ 1 and ∥v∥ ≤ 1.
We bound the expectation over Θ of each of these terms, denoted respectively as

C1,1 ≜EΘ

[∣∣∣∣∥∥∥Θ⊤ϕ(z)
∥∥∥2 − 1

∣∣∣∣] ,
C1,2 ≜EΘ

∣∣∣∣∣∣
∑
r∈[d]

XrYr

∣∣∣∣∣∣
 .
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– Note that the distribution of
d
∥∥∥Θ⊤ϕ(z)

∥∥∥2 ,
is a chi-squared distribution χ2(d) with d-degrees of freedom. Moreover, asymptotically as d →
∞, χ2(d) converges to N (d, 2d). Equivalently, asymptotically, χ2(d)− d→ N (0, 2d). Combin-
ing this asymptotic behavior with the fact that for a Gaussian random variable Z ∼ N (0, σ2), with

σ ∈ R+, we have that E[|Z|] = σ
√

2
π , yield

C1,1 ≤O
(

1√
d

)
. (43)

– To bound the term C1,2, notice that
∑

r∈[d]XrYr converges to a random variable with Gaussian
distribution N (0, 1/d), as d → ∞. Hence, once again using the fact that for a Gaussian random

variable Z ∼ N (0, σ2), E[|Z|] = σ
√

2
π , yield

C1,2 ≜ EΘ

∣∣∣∣∣∣
∑
r∈[d]

XrYr

∣∣∣∣∣∣
 = O

(
ν√
d

)
.

Combining equation 41, equation 42, and equation 43 gives

C1 ≜ EΘ∼PΘ

[∣∣∣⟨w, ϕ(z)⟩ − 〈U,Θ⊤ϕ(z)
〉∣∣∣] ≤e−0.21d(1−c2w)2 +O

(
∥ϕ(z)∥∥w∥√

d

)
(44)

≤e−0.21d(1−c2w)2 +O
(

1√
d

)
. (45)

• Now to bound C2, let Vν = (Vν,1, . . . , Vν,d).

C2 =EΘ∼PΘ
EVν∼Uniform(Bd(ν))

[∣∣∣〈Vν ,Θ⊤ϕ(z)
〉∣∣∣]

(a)
=EΘ∼PΘ

EVν∼Uniform(Bd(ν))

[
|Vν,1| ∥Θ⊤ϕ(z)∥

]
=EΘ∼PΘ

[
∥Θ⊤ϕ(z)∥

]
EVν∼Uniform(Bd(ν)) [|Vν,1|]

(b)

≤EVν∼Uniform(Bd(ν)) [|Vν,1|]

(c)
=

νΓ
(
d+1
2 + 1

2

)
√
πΓ
(
d+1
2 + 1

)
(d)

≤ ν
√
2√

π(d+ 1))
, (46)

where (a) holds by the symmetry of the distribution of Vν , (b) holds since EΘ∼PΘ

[
∥Θ⊤ϕ(z)∥

]
≤

EΘ∼PΘ

[
∥Θ⊤ϕ(z)∥2

]1/2
= ∥ϕ(z)∥ ≤ 1, (c) holds by Lemma 4, proved in Appendix F.5, and (d)

holds since by using Gautschi’s inequality we have Γ(x+1/2)
Γ(x+1) ≤ 1√

x
.

Lemma 4. Let Vν = (Vν,1, . . . , Vν,d) ∼ Uniform(Bd(ν)). Then, EVν∼Uniform(Bd(ν)) [|Vν,1|] =
νΓ( d+2

2 )
√

πΓ( d+3
2 )

.

Combining equation 39. equation 45, and equation 46 gives

EŴ ,Θ,W,Sn

[
∆(W,ΘŴ ;Sn)

]
≤ e−0.21d(1−c2w)2 +O

(
1√
d

)
. (47)

Bound on ES̃,Θ[∆ℓŵ(S̃,Θ)]: We have

|ℓglm(z,Θŵ)|
(a)

≤ |⟨Θŵ, ϕ(z)⟩|

=
∣∣∣〈ŵ,Θ⊤ϕ(z)

〉∣∣∣
≤∥ŵ∥∥Θ⊤ϕ(z)∥
(b)

≤ (cw + ν)∥Θ⊤ϕ(z)∥, (48)
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where (a) holds by equation 38 and (b) since by construction ∥ŵ∥ ≤ cw + ν.

Hence,

ES̃,Θ[∆ℓŵ(S̃,Θ)] :=EPS̃PΘPW |S̃PŴ |Θ⊤W

 1

n

∑
i∈[n]

(ℓglm(Zi,0,ΘŴ )− ℓglm(Zi,1,ΘŴ ))2


(a)

≤ (cw + ν)2EPS̃PΘPW |S̃PŴ |Θ⊤W

 1

n

∑
i∈[n]

(∥Θ⊤ϕ(Zi,0)∥+ ∥Θ⊤ϕ(Zi,1)∥)2


=(cw + ν)2EPS̃PΘ

 1

n

∑
i∈[n]

(∥Θ⊤ϕ(Zi,0)∥+ ∥Θ⊤ϕ(Zi,1)∥)2


=4(cw + ν)2 sup
z

EPΘ

[
∥Θ⊤ϕ(z)∥2

]
(b)
=4(cw + ν)2 sup

z
∥ϕ(z)∥2

≤4(cw + ν)2,

where

• (a) follows from equation 48,

• (b) since for any fixed z, each entry of Θ⊤z
∥z∥ is an independent random variable distributed ac-

cording to N (0, 1d ) and hence

EΘ

[
∥Θ⊤z∥2

]
= ∥z∥2.

Generalization Bound: Now, using Theorem 1 for the above choices of PΘ and PŴ |Θ⊤W (according
to the scheme JL(d, cw, ν)) gives

gen(µ,A) ≤ES̃,Θ

√2∆ℓŵ(S̃,Θ)

n
CMIΘ(S̃, Â)

+ EŴ ,Θ,W,Sn

[
∆(W,ΘŴ ;Sn)

]
(a)

≤ES̃,Θ

√2∆ℓŵ(S̃,Θ)

n
d log

(cw + ν

ν

)+ e−0.21d(1−c2w)2 +O
(

1√
d

)

(b)

≤

√√√√2dES̃,Θ

[
∆ℓŵ(S̃,Θ)

]
n

log
(cw + ν

ν

)
+ e−0.21d(1−c2w)2 +O

(
1√
d

)
(c)

≤
√

8d(cw + ν)2

n
log
(cw + ν

ν

)
+ e−0.21d(1−c2w)2 +O

(
1√
d

)
,

where (a) is achieved using equation 27 and equation 47, (b) by Jensen inequality and due to the concavity
of the function

√
x, and (c) is derived using equation 37.

The proof is completed by letting

d =
√
n, cw = 1.1, ν = 0.5.

F.5 Proof of Lemma 4

Note that

EVν∼Uniform(Bd(ν)) [|Vν,1|] = νEX∼Uniform(Bd(1)) [|X1|] ,

where X = (X1, . . . , Xd) ∼ Uniform(Bd(1)). Hence, it is sufficient to show that

EX∼Uniform(Bd(1)) [|X1|] =
Γ( d+2

2 )
√

πΓ( d+3
2 )

.
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First, we compute the marginal distribution of X1. Note that

fX1
(x1) =

1

Volume(Bd(1))

∫ √
1−x2

1

x2=−
√

1−x2
1

· · ·
∫ √

1−x2
1−···−x2

d−1

xd=−
√

1−x2
1−···−x2

d−1

dx2 · · ·dxd

=
Volume

(
Bd−1

(√
1− x21

))
Volume(Bd(1))

=
Γ
(
d+2
2

)
√
πΓ
(
d+1
2

)(1− x21
) d−1

2 .

Now, we have

EX∼Uniform(Bd(1)) [|X1|] =EX1∼fX1
[|X1|]

=
2Γ
(
d+2
2

)
√
πΓ
(
d+1
2

) ∫ 1

x1=0

x1
(
1− x21

) d−1
2 dx1

(a)
=

Γ
(
d+2
2

)
√
πΓ
(
d+1
2

) ∫ 1

u=0

(
1− u

) d−1
2 du

(b)
=

Γ
(
d+2
2

)
√
πΓ
(
d+1
2

)Beta (1, (d+ 1)/2)

=
Γ
(
d+2
2

)
√
πΓ
(
d+1
2

) × Γ(1)Γ
(
d+1
2

)
Γ
(
d+3
2

)
=

Γ
(
d+2
2

)
√
πΓ
(
d+3
2

) ,
where (a) is achieved by letting u = x21 and in (b), Beta(·, ·) is the Beta function.

G Proofs of Section 5 and Appendix C: Memorization

In this section, we provide the proofs of Section 5 and Appendix C. Recall that for a givenKi, the adversary
outputs its guess of Ki as K̂i ≜ Q(W,Zi,Ki

, µ). Throughout the proofs and for better readability, we
sometimes denote K̂i = 1 by K̂i = ‘in’ and K̂i = 0 by K̂i = ‘not in’, referring to the semantic meaning
that the given Zi,Ki

is part of the training dataset or not.

G.1 Proof of Theorem 5

We prove each part separately. As stated in the beginning of Appendix G, throughout the proofs and for
better readability, we sometimes denote K̂i = 1 by K̂i = ‘in’ and K̂i = 0 by K̂i = ‘not in’, referring to
the semantic meaning that the given Zi,Ki

is part of the training dataset or not.

G.1.1 Part i.

We prove the result by contradiction. Suppose that there exists an adversary for the algorithm A that is
ξ-sound and certifies a recall of m samples with probability q, where ξ < q and m = Ω(n). As before,
we denote the output of the learning algorithm by An(Sn) =W .

Recall that S̃J = {Z1,J1
, Z2,J2

, . . . , Zn,Jn
} is the training dataset Sn and S̃ \ S̃J is the test dataset S′

n.

Define Ĵi ∈ {0, 1} as follows:

Ĵi =


0, if Q(Ŵ , Zi,0, µ) = ‘in’ and Q(Ŵ , Zi,1, µ) = ‘not in’,
1, if Q(Ŵ , Zi,0, µ) = ‘not in’ and Q(Ŵ , Zi,1, µ) = ‘in’,
Ui, otherwise,

where Ui ∼ Bern(1/2) is a binary uniform random variable, independent of other random variables.

Recall that given A, a ξ-sound adversary means that,

P
(
∃i ∈ [n] : Q(W,Zi,Jc

i
, µ) = ‘in’

)
≤ ξ,
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and an adversary certifying a recall of m samples means that,

P

∑
i∈[n]

1{Q(W,Zi,Ji
, µ) = ‘in’} ≥ m

 ≥ q.

Since we assumed m = Ω(n), there exists c1 ∈ (0, 1] and n0 ∈ N such that, for all n ≥ n0, m ≥ c1n.
The second condition then yields,

P

∑
i∈[n]

1{Q(W,Zi,Ji
, µ) = ‘in’} ≥ c1n

 ≥ q.

Define the Hamming distance dH : {0, 1}n × {0, 1}n → [n] between binary vectors J and Ĵ as

dH
(
J, Ĵ

)
=
∑
i∈[n]

1{Ji ̸= Ĵi}.

Next, we use Fano’s inequality with approximate recovery [59, Theorem 2]. Let t = 1
n

⌊
n
2

(
1− c1

2

)⌋
and

denote

Pet ≜ P
(
dH
(
J, Ĵ

)
> nt

)
,

Nĵ ≜
∑

j∈{0,1}n

1

{
dH(j, ĵ) ≤ nt

}
.

Note that Nĵ is the same for all ĵ ∈ {0, 1}n. Indeed, dH(j, ĵ) = dH(j ⊕ a, ĵ ⊕ a), where ⊕ de-

notes the modulo two summation, for any a ∈ {0, 1}n, and
∑

j∈{0,1}n 1

{
dH(j⊕ a, ĵ⊕ a) ≤ nt

}
=∑

j∈{0,1}n 1

{
dH(j, ĵ⊕ a) ≤ nt

}
. Hence, Nĵ = Nĵ⊕a for any a, and the maximum over ĵ of Nĵ is

equal to N1n .

With these notations, we have

o(n)
(a)
= I(J;W |S̃)
(b)
= I(J;W |S̃,K)

(c)
= I(J;W, Ĵ|S̃,K)

(d)

≥ I(J; Ĵ|S̃,K)

(e)

≥ I(J; Ĵ)

(f)

≥ (1− Pet) log

(
2n

N1n

)
− log(2)

(g)

≥n (1− Pet) (1− hb(t))− (1− Pet) log(c3)− log(2),

where (a) follows by the assumption of the theorem, (b) results from K is independent of (W, S̃,J), (c)
results from I(J; Ĵ|W, S̃,K) = 0 since Ĵ is a function of (W, S̃,K), (d) results from I(J;W, Ĵ|S̃,K) =

I(J; Ĵ|S̃,K) + I(J;W |S̃,K, Ĵ) ≥ I(J; Ĵ|S̃,K) (by the positivity of mutual information), (e) is due to
the identities below,

I(J; Ĵ|S̃,K) = H(J)−H(J|Ĵ, S̃,K) ≥ H(J)−H(J|Ĵ) = I(J; Ĵ),

(f) results from applying Fano’s inequality with approximate recovery [59, Theorem 2], and (g) is de-
rived using the claim, proved later below, that N1n ≤ c32

nhb(t) for some constant c3 ∈ R+ and for n
sufficiently large.

Note that t = 1
n

⌊
n
2

(
1− c1

2

)⌋
< 1/2 and as n → ∞, t → 1−c1/2

2 < 1/2. Hence, since hb(x) is a

continuous function of x ∈ [0, 1], 1 − hb(t) converges to the constant 1 − hb
(

1−c1/2
2

)
> 0. Hence, if

we show that for sufficiently large n, 1 − Pet > 0, we obtain a contradiction. Since the left-hand side is
of order o(n), which is greater than the right-hand side, which is Ω(n), and the proof is complete.
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Hence, it remains to show for n sufficiently large, Claim i) N1n ≤ c32
nhb(t) for some constant c3 ∈ R+,

and Claim ii) Pet < 1.

Proof of Claim i)

We have

N1n =
∑

j∈{0,1}n

1{dH(j,1n) ≤ nt}

=
nt∑
i=0

(
n

i

)
(a)

≤
nt∑
i=0

(
n′

i

)
(b)

≤2n
′−1

(
n′

nt+1

)(n′
n′
2

)
(c)

≤2n
′hb((nt+1)/n′)

√
1

4π(nt/n′ + 1/n′)(1− nt/n′ − 1/n′)

(d)

≤ c32nhb(t), (49)

where n′ = 2
⌈
n
2

⌉
and c3 ∈ R+, (a) results from n′ ≥ n, (b) follows from applying [72, Proposition

5.18]8 (n′ is even and nt ≤ n′/2− 1), (c) is derived using the relation

emhb(j/m)
√

m

8j(m− j)
≤

(
m

j

)
≤ emhb(j/m)

√
m

2πj(m− j)
,

which is valid for any m ∈ N and 1 ≤ j ≤ m− 1 (see [73, Exercise 5.8.a]), and (d) holds for sufficiently
large n, using n ≤ n′ ≤ n+ 1.

Proof of Claim ii) Define the following events: E1 ≜
{
∃i ∈ [n] : Q(W,Zi,Jc

i
, µ) = ‘in’

}
, E2 ≜{∑

i∈[n] 1{Q(W,Zi,Ji
, µ) = ‘in’} < c1n

}
. Then, we have

Pet ≜P
(
dH
(
J, Ĵ

)
> nt

)
=P
(
dH
(
J, Ĵ

)
> nt, Ec

1 , Ec
2

)
+ P (E1, E2)

(a)
=P

∑
i∈[n]

1 {Ui ̸= Ji}1 {Q(W,Zi,Ji
, µ) = ‘not in’} > nt, Ec

1 , Ec
2

+ P (E1, E2)

(b)

≤
∑

r∈[⌈n(1−c1)⌉]

P

( ∑
i∈[n]

1 {Ui ̸= Ji}1 {Q(W,Zi,Ji
, µ) = ‘not in’} > nt,

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r, Ec

1 , Ec
2

)
+ P (E1, E2)

≤
∑

r∈[⌈n(1−c1)⌉]

P

( ∑
i∈[n]

1 {Ui ̸= Ji}1 {Q(W,Zi,Ji
, µ) = ‘not in’} > nt,

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r

)
+ P (E1, E2)

=
∑

r∈[⌈n(1−c1)⌉]

P

∑
i∈[n]

1 {Ui ̸= Ji}1 {Q(W,Zi,Ji
, µ) = ‘not in’} > nt

∣∣ ∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r


8See also https://mathoverflow.net/questions/17202/sum-of-the-first-k-binomial-coefficients-for-fixed-n

for a reformulation.
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× P

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r


+ P (E1, E2)

(c)
=

∑
r∈[nt,⌈n(1−c1)⌉]

P

∑
i∈[n]

1 {Ui ̸= Ji}1 {Q(W,Zi,Ji
, µ) = ‘not in’} > nt

∣∣ ∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r


× P

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r


+ P (E1, E2)

(d)
=

∑
r∈[nt,⌈n(1−c1)⌉]

e−2r(nt
r
− 1

2 )
2

P

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’} = r

+ P (E1, E2)

≤ max
r∈[nt,⌈n(1−c1)⌉]

e−2r(nt
r
− 1

2 )
2

+ P (E1, E2)

(e)
= e

−2⌈n(1−c1)⌉
(

nt
⌈n(1−c1)⌉−

1
2

)2

+ P (E1, E2)
(f)

≤ e
−2⌈n(1−c1)⌉

(
nt

⌈n(1−c1)⌉−
1
2

)2

+ P (E1) + P (E2)

≤e−2⌈n(1−c1)⌉
(

nt
⌈n(1−c1)⌉−

1
2

)2

+ ξ + 1− q,

and we justify the main steps hereafter:

• (a) holds since under the event Ec
1 , we have that ∀i ∈ [n],1{Q(W,Zi,Jc

i
, µ) = ‘in’} = 0 and also

whenever i) both Q(W,Zi,Jc
i
, µ) = ‘not in’ and Q(W,Zi,Ji

, µ) = ‘not in’, Ĵi is chosen as Ui and
hence the Hamming difference of the i’th coordinate is 1 {Ui ̸= Ji}, and ii) when Q(W,Zi,Jc

i
, µ) =

‘not in’ and Q(W,Zi,Ji
, µ) = ’in’, Ĵi is chosen as Ji and hence the Hamming difference of the i’th

coordinate is 0.

• (b) holds since under the event Ec
2 , we have that

∑
i∈[n] 1{Q(W,Zi,Ji

, µ) = ‘not in’} ≤ n(1− c1),

• (c) holds since for r < nt, the probability is zero,

• (d) holds by Hoeffding’s inequality for the independent uniform random variables 1{Ui ̸= Ji} and
since nt > n(1− c1/2)/2 ≥ r/2 for n sufficiently large,

• (e) holds for n large enough since,

log

(
max

r∈[nt,⌈n(1−c1)⌉]
e−2r(nt

r
− 1

2 )
2
)

=− min
r∈[nt,⌈n(1−c1)⌉]

2r

(
nt

r
− 1

2

)2

=− min
r
nt

∈[1,
⌈n(1−c1)⌉

nt
]

2nt
r

nt

(
nt

r
− 1

2

)2

=− 2nt min
x∈[1,

⌈n(1−c1)⌉
nt

]

x

(
1

x
− 1

2

)2

=− 2nt min
x∈[1,

⌈n(1−c1)⌉
nt

]

(
1

x
− 1 +

x

4

)
(∗)
= − 2nt

(
nt

⌈n(1− c1)⌉
− 1 +

⌈n(1− c1)⌉
4nt

)
=− 2⌈n(1− c1)⌉

(
nt

⌈n(1− c1)⌉
− 1

2

)2

,

where (∗) is derived since i) for n sufficiently large, ⌈n(1−c1)⌉
nt = ⌈n(1−c1)⌉

⌊n
2
(1− c1

2
)⌋ which is less than 2 for n

large, and ii) since
(
1
x − 1 + x

4

)
is decreasing in the range (0, 2],

• (f) results from P (E1, E2) ≤ P (E1) + P (E2).
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Since for sufficiently large n, e−⌈n(1−c1)⌉
(

nt
⌈n(1−c1)⌉−

1
2

)2

(which converges to e−
nc21

8(1−c1) ) gets sufficiently
small, hence, if ξ < q, then Pet < 1. This completes the proof of Claim ii), and hence of Part i).

G.1.2 Part ii.

Similarly to Part i) (Appendix G.1.1), we will prove the result by contradiction: assume that there exists
an adversary for A such that

P
(
∃i ∈ [n] : Q(W,Zi,Jc

i
, µ) = ‘in’

)
≤ ξ,

and

P

∑
i∈[n]

1{Q(W,Zi,Ji
, µ) = ‘in’} ≥ αn

 ≥ q.

This also gives,

P

∑
i∈[n]

1{Q(W,Zi,Ji
, µ) = ‘not in’} ≥ n(1− α)

 ≤ 1− q. (50)

In our proof, we allow the adversary to be stochastic. We denote expectations and probabilities with respect
to the adversary’s randomness (which is independent of all other random variables) by EQ[·] and PQ[·],
where needed. The main part of the proof relies on the following lemma, which we state below but prove
later (in Appendix G.7) for better readability.

Lemma 5. The following holds.

EW,S̃,J,Q

∑
i∈[n]

(
1

{
Q(W,Zi,Jc

i
, µ) = ‘not in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘not in’}
) = o(n).

By Lemma 5, we have

EW,S̃,J,Q

[ ∑
i∈[n]

1

{
Q(W,Zi,Jc

i
, µ) = ‘ not in’

}]

=o(n) + EW,S̃,J,Q

∑
i∈[n]

1 {Q(W,Zi,Ji
, µ) = ‘not in’}


(a)

≤ o(n) + n(1− q) + n(1− α)q

=o(n) + n(1− αq),

where (a) holds using (50) and
∑

i∈[n] 1{Q(W,Zi,Ji
, µ) = ‘not in’} ≤ n.

Hence, using Markov’s inequality,

P

( ∑
i∈[n]

1

{
Q(W,Zi,Jc

i
, µ) = ‘not in’

}
≥ n−m′

)
≤ o(n) + n(1− αq)

n−m′ ,

or equivalently,

P

( ∑
i∈[n]

1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
≥ m′

)
≥ 1− o(n) + n(1− αq)

n−m′ .

Hence, for any

q′ ∈ (0, αq), m′ = n− o(n) + n(1− αq)

1− q′
=
n(αq − q′ − o(1))

1− q′
,

we have

P

( ∑
i∈[n]

1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
≥ m′

)
≥ q′.
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Hence, by varying q′ over the interval (0, αq), the ratio m′/n changes asymptotically from 0 to αq. In
other words, if n is sufficiently large, then for any

ϵ ∈ (0, α), m′ =
( ϵ

1/q + ϵ− α

)
n− o(n) = Ω(n),

we have

P

( ∑
i∈[n]

1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
≥ m′

)
≥ (α− ϵ)q.

This completes the proof of Part ii).

G.2 Proof of Theorem 6

To prove Theorem 6, we show that for any learning algorithm A : Z → RD , the projected-quantized
algorithm, defined as

A∗(Sn) ≜ ΘÃ(Θ⊤A(Sn)) = ΘŴ ,

satisfies equation 8 and

CMI(µ,A∗(Sn)) ≤ EΘ

[
CMIΘ(µ,A∗(Sn))

]
= o(n), (51)

for any distribution µ. Having shown this, applying Theorem 5 completes the proof.

Fix any arbitrary distribution µ. Consider the construction of JL(d, cw, ν), described in Appendix F.1. It
is shown in equation 26 that

CMIΘ(S̃, Ã) ≤d log
(cw + ν

ν

)
,

which, together with the data-processing inequality, yield

CMIΘ(µ,A∗(Sn)) ≤d log
(cw + ν

ν

)
. (52)

Furthermore, similar to equation 36, where it is shown that

EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ 2√

n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 ,

it can be shown that∣∣∣EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]∣∣∣ ≤ 2√
n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 . (53)

Plugging the choices

d = 500r log(n), cw = 1.1, ν = 0.4,

in equation 52 and equation 53 result equation 51 and equation 8, which completes the proof.

G.3 Proof of Lemma 1

If m = 0, then consider an adversary that always outputs Q(W,Z, µ) = 0, for any Z ∈ Z .

In the following, we assume thatm = nm′ ̸= 0. Let V ∈ {0, 1} be a binary random variable, independent
of all other random variables, such that P (V = 0) = α. For example, if there exists a set B ⊆ W such
that P(W ∈ B) = α, then the adversary can set V = 1{W /∈ B}.

Consider an adversary that first picks a random V . If V = 0, then for any Z ∈ Z , it declares
Q(W,Z, µ) = 0. Otherwise (i.e., V = 1), it declares Q(W,Z, µ) = 0 with probability rn and
Q(W,Z, µ) = 1 with probability 1− rn, independently of (W,Z, µ).

If V = 0, the adversary never recalls m samples with any positive probability

P

∑
i∈[n]

Q(W,Zi,1, µ) ≥ m

 = P

∑
i∈[n]

Q(W,Zi,1, µ) ≥ m,V = 1


= (1− α)P

∑
i∈[n]

Q(W,Zi,1, µ) ≥ m
∣∣V = 1

 .
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Moreover,

P (∃i ∈ [n] : Q(W,Zi,0, µ) = 1) = P (∃i ∈ [n] : Q(W,Zi,0, µ) = 1, V = 1)

= (1− α)P
(
∃i ∈ [n] : Q(W,Zi,0, µ) = 1

∣∣V = 1
)
.

Using the above two relations, this adversary is ξ-sound and recalls m samples with probability q if,
restricting to V = 1, the adversary is ξ

(1−α) -sound and recalls m samples with probability q
(1−α) . For the

adversary to be ξ
(1−α) -sound given V = 1, we should have P (∀i ∈ [n],Q(W,Zi,0, µ) = 0) ≥ 1− ξ

(1−α) .
Hence, this adversary is ξ-sound if and only if

rnn ≥ 1− ξ

(1− α)
,

therefore,

rn ≥ n

√
1− ξ

(1− α)
.

Next, when V = 1, to find the probability of recalling m = nm′ samples with probability q
(1−α) , note

that the probability of Q(W,Zi,1, µ) = 1 is equal to (1− rn). We consider two cases:

i. If rn = 0, P
(∑

i∈[n] Q(W,Zi,1, µ) ≥ m|V = 1
)
= 1.

ii. If m′ < 1− rn, using Hoeffding’s inequality, we have

P

∑
i∈[n]

Q(W,Zi,1, µ) ≥ m|V = 1

 ≥1− e−2n(m′+rn−1)2 .

Considering these two cases separately,

i. We should find a value of α such that q
(1−α) ≤ 1 and 0 ≥ n

√
1− ξ

(1−α) . Both conditions are
satisfied for α = 1− ξ, if ξ ≥ q.

ii. It is sufficient to find a value for rn such that m′ < (1 − rn), rn ≥ n

√
1− ξ

(1−α) and 1 −

e−2n(m′+rn−1)2 ≥ q
(1−α) . If, 1−m′ −

√
1
2n log

(
1

1− q
(1−α)

)
≥ 0, then let

rn ≜ 1−m′ −

√√√√ 1

2n
log

(
1

1− q
(1−α)

)
.

It satisfies the first condition and the recall condition. Lastly, the soundness condition is satisfied
if for sufficiently large n, we have

n

√
1− ξ

(1− α)
+

√√√√ 1

2n
log

(
1

1− q
(1−α)

)
+
m

n
≤ 1.

G.4 Proof of Theorem 8

We prove the theorem and the comment after it, separately.

In the first case and to prove Theorem 8, we show that for every r < 1 there exists a projection matrix Θ ∈
RD×d with d = ⌈n2r−1⌉, a Markov Kernel PŴ |Θ⊤W and a compression algorithm A∗

Θ,n : Zn → Rd,

defined as A∗
Θ,n(Sn) ≜ Ã(Θ⊤A(Sn)) = Ŵ , such that∣∣∣EPSn,WP

Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]∣∣∣ = O
(
n−r

)
,

and

CMI(µ,A∗
Θ,n) = o(n).
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Having shown this, then applying Theorem 5 completes the proof.

In the second case, we show that for every r ∈ R, there exist a projection matrix Θ ∈ RD×d with
d = ⌈r log(n)⌉, a Markov Kernel PŴ |Θ⊤W and a compression algorithm A∗

Θ,n : Zn → Rd, defined as

A∗
Θ,n(Sn) ≜ Ã(Θ⊤A(Sn)) = Ŵ , such that

EPSn,WP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
= O

(
n−r

)
,

and
CMI(µ,A∗

Θ,n) = o(n).

Having shown this, again applying Theorem 5 completes the proof.

Hence, it remains to show the existence of such projection matrices Θ ∈ RD×d, Markov Kernels
PŴ |Θ⊤W and compression algorithms A∗

Θ,n : Zn → Rd, for each of the above cases.

G.4.1 Case i.

Consider the construction of JL(d, cw, ν), described in Appendix F.1. It is shown in equation 26 that

CMIΘ(S̃, Â) =≤d log
(cw + ν

ν

)
.

Hence, for any fixed Θ,

CMIΘ(µ, Â) =≤d log
(cw + ν

ν

)
.

Now, let
∆(W,ΘŴ ;Sn) := gen(Sn,W )− gen(Sn,ΘŴ ).

We show that for any r < 1, letting
d = n2r−1, , cw = 1.1, , ν = 0.4,

results in

E1 ≜ EΘ

[∣∣∣EŴ ,W,Sn

[
∆(W,ΘŴ ;Sn)

]∣∣∣] = O
(

1

nr

)
. (54)

Having shown this, it’s easy to see that there exists a Θ, for which simultaneously∣∣∣EŴ ,W,Sn

[
∆(W,ΘŴ ;Sn)

]∣∣∣ = O
(

1

nr

)
,

and
CMIΘ(µ, Â) = o(n).

Fix this matrix Θ ∈ RD×d and the Markov Kernel PŴ |Θ⊤W induced by that. Choosing the overall

algorithms as A∗
Θ,n : Zn → Rd completes the proof.

Hence, it remains to show that equation 54 holds. By equation 28, we have

∆(W,ΘŴ ;Sn) = −⟨W, Z̄⟩+ ⟨Ŵ ,Θ⊤Z̄⟩,
where Z̄ ≜ EZ∼µ[Z]− 1

n

∑n
i=1 Zi. Recall that Ŵ = U + Vν , where EVν

[Vν ] = 0. Hence,

EΘ

[∣∣∣EŴ ,W,Sn

[
∆(W,ΘŴ ;Sn)

]∣∣∣] =EΘ

[∣∣∣EW,Sn

[
−⟨W, Z̄⟩+ ⟨U,Θ⊤Z̄⟩

]∣∣∣]
≤EΘ,W,Sn

[∣∣∣−⟨W, Z̄⟩+ ⟨U,Θ⊤Z̄⟩
∣∣∣]

≤ESn,WEΘ

[∣∣∣−⟨w, Z̄⟩+ ⟨U,Θ⊤Z̄⟩
∣∣∣] .

Combining above equation with equation 44 for ϕ(Z̄) = Z̄ gives

EΘ

[∣∣∣EŴ ,W,Sn

[
∆(W,ΘŴ ;Sn)

]∣∣∣] ≤e−0.21d(1−c2w)2 + ESn

[
∥Z̄∥

]
O
(

1√
d

)
.

Next, we know by equation 35 that E[∥Z̄∥] ≤ E[∥Z̄2∥]1/2 ≤ 2√
n

. Hence,

EΘ

[∣∣∣EŴ ,W,Sn

[
∆(W,ΘŴ ;Sn)

]∣∣∣] ≤e−0.21d(1−c2w)2 +O
(

1√
dn

)
,

The proof is completed by letting
d = n2r−1, cw = 1.1, ν = 0.4.
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G.4.2 Case ii.

Consider the construction of JL(d, cw, ν), described in Appendix F.1. It is shown in equation 26 that

CMIΘ(S̃, Â) =≤d log
(cw + ν

ν

)
.

Hence, for any fixed Θ,

CMIΘ(µ, Â) =≤d log
(cw + ν

ν

)
. (55)

Furthermore, it is shown in equation 36 that

EPSn,WPΘP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ 2√

n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 .

Hence, there exists at least one Θ for which

EPSn,WP
Ŵ |Θ⊤W

[
gen(Sn,W )− gen(Sn,ΘŴ )

]
≤ 2√

n

(
1 +

2

d

)1/4

e−
0.21
4

d(c2w−1)2 . (56)

Choose this matrix Θ ∈ RD×d and the Markov Kernel PŴ |Θ⊤W induced by that. Call the overall

algorithms as A∗
Θ,n : Zn → Rd, with the choices

d = 500r log(n), cw = 1.1, ν = 0.4.

Plugging these constants in equation 55 and equation 56 completes the proof.

G.5 Proof of Theorem 9

We first provide the proof of Theorem 9. The proof for the comment after the theorem, i.e., to show
equation 14 instead of equation 13, then follows similarly to the below proof, in a similar manner shown
in the Case ii part of the proof of Theorem 8.

To prove Theorem 9, we follow the Case i part of the proof of Theorem 8, with a slight modification: Z̄ is
replaced by Z, which results in convergence rates roughly

√
n larger than the current ones. For the sake

of completeness, we provide the proof.

Let

∆L(W,ΘŴ ) := R(W )−R(ΘŴ ).

Following similarly to the Case i part of the proof of Theorem 8, it is sufficient to show that for any
r < 1/2, letting

d = n2r, , cw = 1.1, , ν = 0.4,

results in

E1 ≜ EΘ

[∣∣∣EŴ ,W

[
∆L(W,ΘŴ )

]∣∣∣] = O
(

1

nr

)
. (57)

Hence, it remains to show that equation 57 holds. We have

∆L(W,ΘŴ ) =− EZ∼µ

[
⟨W,Z⟩+ ⟨ΘŴ , Z⟩

]
=− EZ∼µ

[
⟨W,Z⟩+ ⟨Ŵ ,Θ⊤Z⟩

]
=− ⟨W,EZ∼µ[Z]⟩+ ⟨Ŵ ,Θ⊤EZ∼µ[Z]⟩.

Denote z̃ ≜ EZ∼µ[Z]. Hence, since Ŵ = U + Vν , where EVν
[Vν ] = 0, we have

EΘ

[∣∣∣EŴ ,W

[
∆L(W,ΘŴ )

]∣∣∣] =EΘ

[∣∣∣EW

[
−⟨W, z̃⟩+ ⟨U,Θ⊤z̃⟩

]∣∣∣]
≤EΘ,W

[∣∣∣⟨W, z̃⟩ − ⟨U,Θ⊤z̃⟩
∣∣∣] .

Combining the above equation with equation 44, and by replacing ϕ(Z̄) by z̃, gives

EΘ

[∣∣∣EŴ ,W

[
∆L(W,ΘŴ )

]∣∣∣] ≤e−0.21d(c2w−1)2 +O
(

1√
d

)
.

The proof is completed by letting

d = n2r, cw = 1.1, ν = 0.4.
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G.6 Proof of Lemma 2

Consider the the JL(d, cw, ν) transformation described in Appendix F.1 with some d ∈ N+, cw ∈[
1,
√

5/4
)

, and ν ∈ (0, 1]. Recall that Ŵ = U + Vν , where Vν be a random variable that takes value

uniformly over Bd (ν) and

U :=

{
Θ⊤w, if ∥Θ⊤w∥ ≤ cw,

0d, otherwise.

Let E be the event that ∥Θ⊤w∥ > cw and denote by Ec the complementary event of E . We have

EΘ,Vν

[∥∥∥ΘŴ∥∥∥2] (a)

≥EΘ

[
∥ΘU∥2

]
− EΘ,Vν

[
∥ΘVν∥2

]
(b)
=EΘ

[
∥ΘU∥2

]
− D

d
EVν

[
∥Vν∥2

]
(c)

≥EΘ

[
∥ΘU∥2

]
− Dν2

d

(d)
=EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2 1 {Ec}

]
− Dν2

d

=EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2]− EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2 1 {E}]− Dν2

d

(e)

≥EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2]− EΘ

[∥∥∥ΘΘ⊤w
∥∥∥4]1/2 EΘ [1 {E}]1/2 − Dν2

d

(f)

≥EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2]− EΘ

[∥∥∥ΘΘ⊤w
∥∥∥4]1/2 e−0.1d(c2w−1)2 − Dν2

d

(g)
=

(
D + d+ 1

d

)
∥w∥2 −

√
(D + d+ 3)(D + d+ 5)(d+ 2)

d3
∥w∥2e−0.1d(c2w−1)2 − Dν2

d
,

where

• (a) follows by the triangle inequality,

• (b) follows by noting that each element of Θ is i.i.d. with distribution N (0, 1/d),

• (c) holds since Vν ∈ Bd (ν),

• (d) is derived by the definition of U and E ,

• (e) follows using Cauchy-Schwarz inequality,

• (f) is derived in equation 32,

• and (g) followed by following relations

EΘ

[∥∥∥ΘΘ⊤w
∥∥∥2] =(D + d+ 1

d

)
∥w∥2,

EΘ

[∥∥∥ΘΘ⊤w
∥∥∥4] =(D + d+ 3)(D + d+ 5)(d+ 2)

d3
∥w∥4,

shown below.

Proof of norm two. Note that EΘ

[∥∥ΘΘ⊤w
∥∥2] scales with ∥w∥. Hence, it suffices to assume that ∥w∥ =

1. Next, first we show that EΘ

[∥∥ΘΘ⊤w
∥∥2] is the same for any w with ∥w∥ = 1.

For any w ∈ RD , there exists an orthonormal matrix Q ∈ RD×D such that QQ⊤ = ID and Qw = e1 ≜
[1, 0, 0, · · · , 0]⊤. This matrix can be constructed by letting the first row as w⊤, and choosing the other
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rows orthogonal to w⊤. Next, by letting Θ′ = QΘ, we can write∥∥∥ΘΘ⊤w
∥∥∥2 =w⊤ΘΘ⊤ΘΘ⊤w

=e⊤1 QΘΘ⊤ΘΘ⊤Q⊤e1

=e⊤1 Θ′Θ′⊤Θ′Θ′⊤e1

=
∥∥∥Θ′Θ′⊤e1

∥∥∥2 .
The result follows by noting that E

[∥∥Θ′Θ′⊤e1
∥∥2] = E

[∥∥ΘΘ⊤e1
∥∥2], since the distribution of Θ is

rotationally invariant.

Hence, it is sufficient to compute E
[∥∥ΘΘ⊤e1

∥∥2]. Denote the elements of Θ by θi,j , where i ∈ [D],

j ∈ [d]. Then, simple algebra gives

E
[∥∥∥ΘΘ⊤e1

∥∥∥2] = E

∑
i∈[D]

∑
j,j′∈[d]2

θi,jθi′,j′θ1,jθ1,j′

 .
We know that for θ ∼ N (0, 1/d),

E [θm] = 0 for odd m , E
[
θ2
]
=

1

d
, E

[
θ4
]
=

3

d2
.

Then, it suffices to consider terms in the expansions that are non-zero, i.e. the terms where only even
norms of each random variable appear. We consider all such cases:

1. i ̸= 1: D − 1 choices

1.1. j = j′: d choices and and the expectation of each term equals 1
d2 .

2. i = 1: 1 choice

2.1. j = j′: d choices and and the expectation of each term equals 3
d2 .

2.2. j ̸= j′: d(d− 1) choices and and the expectation of each term equals 1
d2 .

Summing all terms and factorizing properly gives

E
[∥∥∥ΘΘ⊤e1

∥∥∥2] =E

∑
i∈[D]

∑
j,j′∈[d]2

θi,jθi′,j′θ1,jθ1,j′


=
D + d+ 1

d
.

Proof of norm four. Note that EΘ

[∥∥ΘΘ⊤w
∥∥4] scales with ∥w∥. Hence, it suffices to assume that ∥w∥ =

1. Next, similar to the proof of norm two, it can be shown that EΘ

[∥∥ΘΘ⊤w
∥∥4] is the same for any w

with ∥w∥ = 1. Hence, it is sufficient to compute E
[∥∥ΘΘ⊤e1

∥∥4]. Denote the elements of Θ by θi,j ,

where i ∈ [D], j ∈ [d]. Then, simple algebra gives

E
[∥∥∥ΘΘ⊤e1

∥∥∥4] = E

 ∑
i,i′∈[D]2

∑
j1,j2,j

′
1,j

′
2∈[d]4

θi,j1θi,j2θi′,j′1θi′,j′2θ1,j1θ1,j2θ1,j′1θ1,j′2

 .
We know that for θ ∼ N (0, 1/d),

E [θm] = 0 for odd m , E
[
θ2
]
=

1

d
, E

[
θ4
]
=

3

d2
, E

[
θ6
]
=

15

d3
, E

[
θ8
]
=

105

d4
.

Then, it suffices to consider terms in the expansions that are non-zero, i.e. the terms where only even
norms of each random variable appear. We consider all such cases:
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1. i = i′ ̸= 1: D − 1 choices

1.1. j1 = j2 = j′1 = j′2: d choices, and the expectation of each term equals 9
d4 .

1.2. Two of (j1, j2, j′1, j
′
2) are the same, and two others as well, with a different value: 3d(d−1)

choices, and the expectation of each term equals 1
d4 .

Hence, the sum of the expectation of the terms for this case equals:

3d−3(D − 1)(d+ 2).

2. i, i′ ̸= 1 and i ̸= i′: (D − 1)(D − 2) choices

2.1. j1 = j2 = j′1 = j′2: d choices, and the expectation of each term equals 3
d4 .

2.2. j1 = j2 and different from j′1 = j′2: d(d − 1) choices and the expectation of each term
equals 1

d4 .

Hence, the sum of the expectation of the terms for this case equals:

d−3(D − 1)(D − 2)(d+ 2).

3. i = 1 and i′ ̸= 1 or i′ = 1 and i ̸= 1: 2(D − 1) choices

3.1. j1 = j2 = j′1 = j′2: d choices, and the expectation of each term equals 15
d4 .

3.2. j1 = j2 and different from j′1 = j′2: d(d − 1) choices and the expectation of each term
equals 3

d4 .
3.3. j1 different from j′1 = j′2 = j2: d(d − 1) choices and the expectation of each term equals

3
d4 .

3.4. j2 different from j′1 = j′2 = j1: d(d − 1) choices and the expectation of each term equals
3
d4 .

3.5. j1 ̸= j2 and both different from j′1 = j′2: d(d − 1)(d − 2) choices and the expectation of
each term equals 1

d4 .

Hence, the sum of the expectation of the terms for this case equals:

2d−3(D − 1)(15 + 9(d− 1) + (d− 1)(d− 2) = 2d−3(D − 1)(d+ 2)(d+ 4).

4. i = i′ = 1 : 1 choice

4.1. j1 = j2 = j′1 = j′2: d choices, and the expectation of each term equals 105
d4 .

4.2. Exactly three of the indices among (j1, j2, j
′
1, j

′
2) are the same: 4d(d− 1) choices and the

expectation of each term equals 15
d4 .

4.3. Two of (j1, j2, j′1, j
′
2) are the same, and two others as well, with a different value: 3d(d−1)

choices, and the expectation of each term equals 9
d4 .

4.4. There are exactly two same indices among (j1, j2, j
′
1, j

′
2): 6d(d − 1)(d − 2) choices and

the expectation of each term equals 3
d4 .

4.5. All indices among (j1, j2, j
′
1, j

′
2) are different: d(d − 1)(d − 2)(d − 3) choices and the

expectation of each term equals 1
d4 .

Hence, the sum of the expectation of the terms for this case equals:

d−3 (105 + 60(d− 1) + 27(d− 1) + 18(d− 1)(d− 2) + (d− 1)(d− 2)(d− 3))

= d−3(d+ 2)(d+ 4)(d+ 6).

Finally, summing all terms and factorizing properly gives

E
[∥∥∥ΘΘ⊤e1

∥∥∥4] =E

 ∑
i,i′∈[D]2

∑
j1,j2,j

′
1,j

′
2∈[d]4

θi,j1θi,j2θi′,j′1θi′,j′2θ1,j1θ1,j2θ1,j′1θ1,j′2


=

(D + d+ 3)(D + d+ 5)(d+ 2)

d3
.
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G.7 Proof of Lemma 5

To prove this lemma, we show the below stronger result:∑
i∈[n]

∣∣∣EW,S̃i,[2],Ji,Q

[
1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘in’}
]∣∣∣ = o(n),

which results also

EW,S̃,J,Q

∑
i∈[n]

(
1

{
Q(W,Zi,Jc

i
, µ) = ‘not in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘not in’}
) = o(n).

For a given (W,Zi,j), denote

PQ (Q(W,Zi,j , µ) = ‘in’) = EQ [1 {Q(W,Zi,j , µ) = ‘in’}] ≜ p (W,Zi,j) ,

where the probability and expectation with respect to Q refer to the stochasticity of the adversary. Note
that p (W,Zi,j) is a measurable function of (W,Zi,j).

For r ∈ {0, 1, . . . , 2n − 1}, denote its binary representation as r = (br,1, . . . , br,n), where br,i ∈ {0, 1}.
Now, consider 2n auxiliary estimators, indexed by r ∈ {0, 1, . . . , 2n − 1} and defined as follows. The
estimator r, for the i-th sample, by having access to (W,Zi,0, Zi,1) estimates Ji as

Ĵi =

0, with probability
1+(−1)br,ip(W,Zi,0)−(−1)br,ip(W,Zi,1)

2 ,

1, with probability
1−(−1)br,ip(W,Zi,0)+(−1)br,ip(W,Zi,1)

2 .

Note that each of these estimators makes its estimations only by having access to (W,Zi,0, Zi,1).

Define the Hamming distance dH : {0, 1}n × {0, 1}n → [n] between binary vectors J and Ĵ as

dH
(
J, Ĵ

)
=
∑
i∈[n]

1{Ji ̸= Ĵi}.

We now compute the expectation of dH(J, Ĵ) for the r-th estimator, i.e., EW,S̃,J,Ĵ

[
dH(J, Ĵ)

]
. Note that

due to the symmetry of S̃, we can only consider the case where J = (1, 1, . . . , 1) := 1n.

EW,S̃,J,Ĵ

[
dH(J, Ĵ)

]
=EW,S̃,Ĵ|J=1n

[
dH(1n, Ĵ)

]
=
∑
i∈[n]

EW,S̃i,[2],Ĵi|Ji=1

[
dH(1, Ĵi)

]
=
∑
i∈[n]

EW,S̃i,[2]|Ji=1

[
1 + (−1)br,ip (W,Zi,0)− (−1)br,ip (W,Zi,1)

2

]
=
n

2
+

1

2

∑
i∈[n]

(−1)br,iEW,S̃i,[2]|Ji=1 [p (W,Zi,0)− p (W,Zi,1)]

=
n

2
+

1

2

∑
i∈[n]

(−1)br,iEW,S̃i,[2],Ji

[
p
(
W,Zi,Jc

i

)
− p (W,Zi,Ji

)
]

=
n

2
+

1

2

∑
i∈[n]

(−1)br,iEW,S̃i,[2],Ji,Q

[
1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘in’}
]
.

Then, there exists an estimator r∗, for which

EW,S̃,J,Ĵ

[
dH(J, Ĵ)

]
=
n

2
− 1

2

∑
i∈[n]

∣∣∣EW,S̃i,[2],Ji,Q

[
1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘in’}
]∣∣∣ .

Now, suppose by contradiction that∑
i∈[n]

∣∣∣EW,S̃i,[2],Ji,Q

[
1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘in’}
]∣∣∣ ,
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is not o(n). This means that there exists some b1 ∈ R+ and a sequence {ai}i∈N such that limi→∞ ai =
∞ and limiting n to this subsequence, we have∑

i∈[n]

∣∣∣EW,S̃i,[2],Ji,Q

[
1

{
Q(W,Zi,Jc

i
, µ) = ‘in’

}
− 1 {Q(W,Zi,Ji

, µ) = ‘in’}
]∣∣∣ ≥ 2b1n.

Without loss of generality, we can assume that b1 ∈ (0, 1/4). Then, for the estimator r∗,

EW,S̃,J,Ĵ

[
dH(J, Ĵ)

]
≤ n(1− 2b1)

2
.

Next, we use Fano’s inequality with approximate recovery [59, Theorem 2]. Let t = 1
n

⌊
(1−b1)n

2

⌋
and

denote

Pet ≜P
(
dH
(
J, Ĵ

)
> nt

)
,

Nĵ ≜
∑

j∈{0,1}n

1

{
dH(j, ĵ) ≤ nt

}
.

It is easy to not that Nĵ is the same for all ĵ ∈ {0, 1}n. Hence, the maximum over ĵ of Nĵ is equal to N1n .

With these notations, we have

o(n)
(a)

≥ I(J;W |S̃)
(b)
= I(J;W, Ĵ|S̃)
(c)

≥ I(J; Ĵ|S̃)
(d)

≥ I(J; Ĵ)

(e)

≥ (1− Pet) log

(
2n

N1n

)
− log(2)

(f)

≥ n (1− Pet) (1− hb(t))− (1− Pet) log(3)− log(2),

where (a) is by construction of W and as shown in the proof of Theorem 3, (b) is derived since Ĵ is a
function of (W, S̃), (c) is derived due to positivity of the mutual information, (d) is derived due to the
below relations

I(J; Ĵ|S̃) = H(J)−H(J|Ĵ, S̃) ≥ H(J)−H(J|Ĵ) = I(J; Ĵ),

(e) is derived using [59, Theorem 2], and (f) is derived using the claim, proved later below, that N1n ≤
c32

nhb(t) for some constant c ∈ R+ and for n sufficiently large.

Note that t = 1
n

⌊
(1−b1)n

2

⌋
< 1/2 and as n→ ∞, 1−hb(t) converges to the constant 1−hb

(
1−b1

2

)
> 0.

Hence, if we show that for sufficiently large n, 1 − Pet > 1 − b2, for some constant b2 ∈ (0, 1), the
contradiction is achieved. Since the left-hand side is of order o(n), which is greater than the right-hand
side, which is Ω(n), and the proof is complete.

Hence, it remains to show for n sufficiently larg i) N1n ≤ c32
nhb(t) for some constant c ∈ R+ and ii)

Pet < b2, for some constant b2 ∈ (0, 1).

Proof of Claim i) This is shown in equation 49.

Proof of Claim ii) Using Markov’s inequality, we have

Pet ≜P
(
dH
(
J, Ĵ

)
> nt

)
≤
EW,S̃,J,Ĵ

[
dH(J, Ĵ)

]
nt

≤ (1− 2b1)

2t

≤ 1− 2b1
1− b1 + 1/n
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=1−
b1 − 1

n

1− b1 + 1/n

≤b2,

for some constant b2 ∈ (1/2, 1) and n sufficiently large (or ai sufficiently large).

This completes the proof of the lemma.

H Proofs of Appendix D: Random subspace training algorithms

H.1 Proof of Lemma 3

Part i. For a = 0,

ga,p(x) =
1√
2π
e−

x2

2 ,

which is a standard Gaussian distribution. Hence, h(ga,p(x)) = log(
√
2πe) and f(a, p) = 0.

Part ii. The relation f(a, p) = f(−a, p) is trivial since by the symmetry of the distribution ga,p. To
show the increasing behavior with respect to a, consider 0 ≤ a′ < a and some p ∈ [0, 1]. We show
f(a′, p) < f(a, p). For a > 0, let

X1 = Y1 + Ja, X2 =
1

a
X1 =

1

a
Y1 + J,

where Y1 ∼ N (0, 1) is independent of J ∼ Bern(p). Then, it is easy to verify that

I(X2; J) = I(X1; J) = f(a, p). (58)

Now let σ ≜
√(

a
a′

)2 − 1 and define

X3 = X2 +
1

a
Y2 =

1

a
(Y1 + Y2) + J, (59)

where Y2 ∼ N
(
0, σ2

)
is independent of other random variables. Note that Y3 ≜ a′(Y1+Y2)

a is indepen-
dent of J and distributed according to N (0, 1). Hence, we can write

X3 =
1

a′
Y3 + J. (60)

Now, we have

f(a, p)
(a)
= I(X2, J)

(b)
< I(X3; J)

(c)
= f(a′, p),

where (a) follows from equation 58, (b) from equation 59 and the strong data processing inequality, and
(c) from equation 60. This completes the proof of the strictly increasing behavior with respect to a in the
range [0,∞).

Part iii. Denote Q1(x) :=
1√
2π
e−

x2

2 and Q2(x) :=
1√
2π
e−

(x−a)2

2 . Note that ga,p(x) = pQ1(x) + (1−
p)Q2(x). Hence, h(ga,p(x)) = −pEQ1

[log(ga,p(x))] − (1 − p)EQ2
[log(ga,p(x))]. Now, considering

the limit to infinity, we have

lim
a→∞

h(ga,p(x)) =− pEQ1
[log(pQ1(x))]− (1− p) lim

a→∞
EQ2

[log((1− p)Q2(x))]

=− p log(p)− (1− p) log(1− p)− pEQ1
[log(Q1(x))]− (1− p) lim

a→∞
EQ2

[log(Q2(x))]

(a)
= log(2)hb(p) +

1

2
log(2πe),

where (a) is deduced by noting that bothQ1 andQ2 are Gaussian distributions with variance 1 and hence,
their differential entropy is equal to 1

2 log(2πe).
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This concludes that lima→∞ f(a, p) = hb(p).

Part iv. f(a, p) = f(a, 1− p) is trivial since by the symmetry of the distribution ga,p.

To show the strictly increasing behavior with respect to p, consider 0 ≤ p1 < p2 ≤ 1/2. Let

X1 = Y + J1a,

where Y ∼ N (0, 1) is independent of J1 ∼ Bern(p1). Then, due to Part ii,

I(X1; J1) = f(a, p1) = h(ga,p(x))− log(
√
2πe). (61)

Moreover, note that

h(X1) = h(ga,p1(x)) = h(ga,1−p1(x)). (62)

Let Z ∼ Bern(q) be independent of other random variables for some q ∈ (0, 1) that will be determined
later. Let

X2 ≜ Y + V a,

where V = |J1 − Z|. Note that V ∼ Bern(p1q + (1− p1)(1− q)) is independent of Y .

Now, on the one hand, we have
h(X2|V ) = h(Y ) = h(X1|J1). (63)

On the other hand,

h(X2)
(a)
>h(X2|Z)
=h (X2|Z = 0) q + h (X2|Z = 1) (1− q)

=h (Y + |J1|a) q + h (Y + |J1 − 1|a) (1− q)

(b)
=h (Y + J1a) q + h

(
Y + J ′

1a
)
(1− q)

(c)
=h(ga,p1(x))q + h(ga,1−p1(x))(1− q)

(d)
=h(ga,p1(x)))

(e)
=h(X1),

where (a) is derived by strong data processing inequality and since p1 ∈ [0, 1/2) and q ∈ (0, 1), (b) is
derived for J ′ ∼ Bern(1− p1) independent of Y , and steps (c), (d), (e) are derived using equation 62.

Hence, combining equation 61, equation 63, and equation 63, we have

f(a, p1) =I(X1; J1)

<I(X2;V )

=f (a, p1q + (1− p1)(1− q)) .

The proof completes by find a q ∈ [0, 1] such that p1q+(1− p1)(1− q) = p2. To show that such q exist,
first denote ep1(q) := p1q + (1− p1)(1− q). Now, note that ep1(1) = p1 < p2 and ep1(0) = 1− p1 >
1
2 ≥ p2. Hence, there exists a q∗ ∈ (0, 1) such that ep(q∗) = p2. This completes the proof of this part.

H.2 Proof of Theorem 10

Recall that

Vt ≜ {it,1, . . . , it,b},

is the set of sample indices chosen at time t ∈ [T ], chosen independently of any other random variables.
Hence,

gen(µ,A(d)) = EV

[
gen(µ,A(d)

V )
]
,

where A(d)
V is the algorithm A(d) where the batch indices V = (V1, . . . , VT ) are used.
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The proof consists of bounding each of the conditional mutual information terms

CMIΘV,i,J−i
(S̃,W ′) ≜ IS̃,J−i,Θ(A(d)

V (S̃J,Θ); Ji), i ∈ [n],

and then using the bound 15 of Corollary 2, with Â(d)
V = A(d)

V and ϵ = 0.

It is sufficient then to show that for a fixed V and every fixed i ∈ [n], we have that

CMIΘV,J−i,i(S̃,W
′) ≤

∑
t : i∈Vt

Ept,i,∆t,i

[
f

(
ηt
bσt

∆t,i, pt,i

)]
, (64)

where

∆t,i ≜
∥∥∇w′ℓ

(
ΘW ′

t−1, Zi,0

)
−∇w′ℓ

(
ΘW ′

t−1, Zi,1

)∥∥ ,
pt,i ≜P

(
Ji = 0

∣∣S̃,Θ,V,J−i,W
′
t−1,

{
W ′

r,W
′
r−1 : r < t, i ∈ Vr

})
.

For a fixed i ∈ [n], if {t : i ∈ Vt} is an empty set, then the final model is independent of Ji and hence
CMIΘV,i,J−i

(S̃,W ′) = 0, which completes the proof. Now, assume that this set is not empty. For ease of
notation, suppose that

{t : i ∈ Vt} = {t1, . . . , tM},
where 1 ≤ t1 < t2 < · · · < tM ≤ T .

Then, for a fixed V,

CMIΘV,J−i,i(S̃,W
′) ≜IS̃,J−i,Θ(A(d)

V (S̃J,Θ); Ji)

=IS̃,J−i,Θ,V(W ′
T ; Ji)

(a)

≤ IS̃,J−i,Θ,V(W ′
tM ,W

′
tM−1,W

′
tM−1

,W ′
tM−1−1, · · · ,W ′

t1 ,W
′
t1−1; Ji)

(b)
=

∑
m∈[M ]

IS̃,J−i,Θ,V(W ′
tm ,W

′
tm−1; Ji|W ′

tm−1
,W ′

tm−1−1, · · · ,W ′
t1 ,W

′
t1−1)

(c)
=

∑
m∈[M ]

IS̃,J−i,Θ,V(W ′
tm ; Ji|W ′

tm−1,W
′
tm−1

,W ′
tm−1−1, · · · ,W ′

t1 ,W
′
t1−1),

where (a) holds since by the data processing inequality IS̃,J−i,Θ,V(W ′
T ; Ji) ≤ IS̃,J−i,Θ,V(W ′

tM ; Ji)

and IS̃,J−i,Θ,V(W ′
tM ; Ji) ≤ IS̃,J−i,Θ,V(W ′

tM ,W
′
tM−1,W

′
tM−1

,W ′
tM−1−1, · · · ,W ′

t1 ,W
′
t1−1; Ji) by the

non-negativity of the mutual information, (b) is derived using the chain rule for the mutual information and
by using the convention that whenm = 1, the conditioning part {W ′

tm−1
,W ′

tm−1−1, · · · ,W ′
t1 ,W

′
t1−1} is

an empty set, and (c) is derived since IS̃,J−i,Θ,V(W ′
tm−1; Ji|,W ′

tm−1
,W ′

tm−1−1, · · · ,W ′
t1 ,W

′
t1−1) = 0.

Consider a fixed value of (W ′
tm−1,W

′
tm−1

,W ′
tm−1−1, · · · ,W ′

t1 ,W
′
t1−1) and let

Fm ≜
{
S̃,Θ,V,J−i,W

′
tm−1,W

′
tm−1

,W ′
tm−1−1, · · · ,W ′

t1 ,W
′
t1−1

}
.

Note that

ptm,i ≜P
(
Ji = 0

∣∣S̃,Θ,V,J−i,W
′
tm−1,

{
W ′

r,W
′
r−1 : r < tm, i ∈ Vr

})
=P
(
Ji = 0

∣∣Fm

)
.

Hence, it is sufficient to show that

IFm(W ′
tm ; Ji) ≤ f

(
ηtm
bσtm

∆tm,i, ptm,i

)
. (65)

Recall that
W ′

tm = Proj
{
W ′

tm−1 − ηtm∇w′R̂(Vtm ,ΘW
′
tm−1) + σtmεtm

}
,

where R̂(Vtm ,W ) ≜ 1
b

∑
i′∈Vtm

ℓ
(
Zi′,Ji′ ,W

)
. Denote

R̂−i(Vtm ,W ) ≜
1

b

∑
i′ :

i′∈Vtm ,i′ ̸=i

ℓ
(
Zi′,Ji′ ,W

)
.
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Furthermore, denote

W̃tm ≜W ′
tm−1 − ηtm∇w′R̂(Vtm ,ΘW

′
tm−1) + σtmεtm

=W ′
tm−1 − ηtm∇w′R̂−i(Vtm ,ΘW

′
tm−1)−

ηtm
b

∇w′ℓ
(
Zi,Ji

,ΘW ′
tm−1

)
+ σtmεtm ,

where the last line holds since by assumption i ∈ Vtm .

Using the data processing inequality, we have that

IFm(W ′
tm ; Ji) ≤ IFm(W̃tm ; Ji).

Hence, it is sufficient to show that

IFm(W̃tm ; Ji) ≤ f

(
ηtm
bσtm

∆tm,i, ptm,i

)
. (66)

Note that

IFm(W̃tm ; Ji) = IFm(W̃tm/σtm ; Ji) = hFm(W̃tm/σtm)− hFm(W̃tm/σtm
∣∣Ji). (67)

To compute each of the two terms in right-side of equation 67, first we derive the marginal and conditional
distributions of 1

σtm
W̃tm .

• Given Fm and given Ji = 0,

1

σtm
W̃tm =

1

σtm
W ′

tm−1 −
ηtm
σtm

∇w′R̂−i(Vtm ,ΘW
′
tm−1)−

ηtm
bσtm

∇w′ℓ
(
Zi,0,ΘW

′
tm−1

)
+ εtm .

Hence, given Fm and given Ji = 0, 1
σtm

W̃tm is distributed as

1

σtm
W̃tm ∼ P̃0 ≜ N (µ0, Id) , (68)

where

µ0 ≜
1

σtm
W ′

tm−1 −
ηtm
σtm

∇w′R̂−i(Vtm ,ΘW
′
tm−1)−

ηtm
bσtm

∇w′ℓ
(
Zi,0,ΘW

′
tm−1

)
.

• Similarly, given Fm and given Ji = 1, 1
σtm

W̃tm is distributed as

1

σtm
W̃tm ∼ P̃1 ≜ N (µ1, Id) , (69)

where

µ1 ≜
1

σtm
W ′

tm−1 −
ηtm
σtm

∇w′R̂−i(Vtm ,ΘW
′
tm−1)−

ηtm
bσtm

∇w′ℓ
(
Zi,1,ΘW

′
tm−1

)
.

• Lastly, since P
(
Ji = 0

∣∣Fm

)
= ptm,i, then given Fm, 1

σtm
W̃tm is distributed as

1

σtm
W̃tm ∼ P̃ ≜ptm,iP̃0 + (1− ptm,i) P̃1

=ptm,iN (µ0, Id) + (1− ptm,i)N (µ1, Id) .

Now, we compute each of the two terms of hFm(W̃tm/σtm) and hFm(W̃tm/σtm |Ji):

• The term hFm(W̃tm/σtm) equals the differential entropy h(P̃ ). Since the differential entropy is in-
variant under the shift and since also the Gaussian distributions P̃0 and P̃1 are invariant under the
rotation, h(P̃ ) is equal to the entropy of the distribution Q̃, defined as

Q ≜ ptm,iN (0d, Id) + (1− ptm,i)N (ad, Id) ,

where

ad =

(
ηtm
bσtm

µ, 0, 0, · · · , 0
)

∈ Rd,
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and

µ ≜
bσtm
ηtm

∥µ1 − µ0∥

=
∥∥∇w′ℓ

(
ΘW ′

tm−1, Zi,0

)
−∇w′ℓ

(
ΘW ′

tm−1, Zi,1

)∥∥
=∆tm,i.

Note that ∥ad∥ = ∥µ1 − µ0∥.
Furthermore, we can write

Q = Q1 ⊗Q2 ⊗ · · ·Qd, (70)

where

Q1 = ptm,iN (0, 1) + (1− ptm,i)N
(
ηtm
bσtm

∆tm,i, 1

)
,

and for r ∈ {2, 3, . . . , d},

Qi = N (0, 1) .

Hence,

hFm(W̃tm/σtm) =h(P̃ )

=h(Q)

(a)
=
∑
r∈[d]

h(Qr)

(b)
=h(Q1) + (d− 1) log(

√
2πe)

(c)
=h

(
ga1,ptm,i(x)

)
+ (d− 1) log(

√
2πe)

(d)
= f

(
ηtm
bσtm

∆tm,i, ptm,i

)
+ d log(

√
2πe), (71)

where (a) is derived by equation 70, (b) holds since the distributions Q2, . . . , Qd are scalar standard
Gaussian distributions, (c) is derived for a1 ≜ ηtm

bσtm
∆tm,i and by the definition of ga,p(·) in 19, and

(d) by the definition of f(a, p) in 18.

• To compute hFm(W̃tm/σtm |Ji), note that for each value of Ji, due to equation 68 and equation 69, the
conditional distribution of 1

σtm
W̃tm is a multivariate Gaussian distribution with covariance Id. Hence,

hFm(W̃tm/σtm |Ji) =d log(
√
2πe). (72)

Combining equation 71 and equation 72 gives equation 66 which completes the proof.

H.3 Proof of Theorem 13

Recall that
W ′

t = Proj
{
W ′

t−1 − ηt∇w′R̂(Vt,ΘW
′
t−1) + σtεt

}
,

where R̂(Vt,W ) ≜ 1
b

∑
i∈Vt

ℓ (Zi,Ji
,W ).

In the proof, to define the lossy compression algorithm PŴ |W ′,Θ,S of Corollary 2, we introduce auxiliary

optimization iterations
{
Ŵt

}
t∈[T ]

, as follows. Let Ŵ0 =W ′
0, and for t ∈ [T ], let

Ŵt = Proj
{
Ŵt−1 − ηt∇ŵR̂(Vt,ΘŴt−1) + σtεt + νtε

′
t

}
, (73)

where ε′t ∼ N (0d, Id) is an additional noise, independent of all other random variables.

In the following Lemma, proved in Appendix H.4, we show that, this choice of PŴ |W ′,Θ,S,V satisfies the
distortion term equation 16:

EPSPΘPVPW ′
T

|S,Θ,VPŴT |W ′
T

,S,Θ,V

[
gen(S,ΘW ′

T )− gen(S,ΘŴT )
]
≤ ϵ,

for

ϵ :=
2
√
2LΓ((d+ 1)/2)

Γ(d/2)

∑
t∈[T ]

αT−tνt.
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Lemma 6. The following inequalities holds:∥∥∥Ŵt −W ′
t

∥∥∥ ≤
∑
r∈[t]

αt−rνr
∥∥ε′r∥∥ ,

and

EPSPΘPVPW ′
T

|S,Θ,VPŴT |W ′
T

,S,Θ,V

[
gen(S,ΘW ′

T )− gen(S,ΘŴT )
]
≤ 2

√
2LΓ((d+ 1)/2)

Γ(d/2)

∑
t∈[T ]

αT−tνt.

Hence, it is sufficient to show that

EPSPΘPVPŴT |S,Θ,V

[
gen(S,ΘŴT )

]
≤ C

√
2

n

∑
i∈[n]

ES̃,Θ,V,J−i

√√√√ ∑
t : i∈Vt

At,iEp̂t,i,∆̂t,i

[
f

(
ηt

b
√
σ2
t + ν2t

∆̂t,i, p̂t,i

)] .
Note that the iterations defined in equation 73 are equivalent in distribution to the following iterations:

Ŵt = Proj
{
Ŵt−1 − ηt∇ŵR̂(Vt,ΘŴt−1) + σ̂tε̃t

}
,

where ε̃t ∼ N (0d, Id) is independent of all other random variables and

σ̂t ≜
√
σ2
t + ν2t .

Similar to the proof of Theorem 10, and by using Corollary 2, it is sufficient to show that for a fixed V and
every fixed i ∈ [n], we have that

CMIΘV,J−i,i(S̃, ŴT ) ≤
∑

t : i∈Vt

At,iEp̂t,i,∆̂t,i

[
f

(
ηt
bσ̂t

∆̂t,i, p̂t,i

)]
,

where

CMIΘV,J−i,i(S̃, ŴT ) ≜IS̃,J−i,Θ,V(ŴT ; Ji),

∆̂t,i ≜
∥∥∥∇w′ℓ

(
ΘŴt−1, Zi,0

)
−∇w′ℓ

(
ΘŴt−1, Zi,1

)∥∥∥ ,
p̂t,i ≜P

(
Ji = 0

∣∣S̃,Θ,V,J−i, Ŵt−1

)
,

At,i :=
∏

r∈[t+1:T ] : i/∈Vr

qr.

For a fixed i ∈ [n], if {t : i ∈ Vt} is an empty set, then the final model is independent of Ji and hence
CMIΘV,i,J−i

(S̃, ŴT ) = 0, which completes the proof. Now, assume that this set is not empty. For ease of
notation, suppose that

{t : i ∈ Vt} = {t1, . . . , tM},

where 1 ≤ t1 < t2 < · · · < tM ≤ T .

We show by induction on m ∈ [M ] that, we have

CMIΘV,J−i,i(S̃, Ŵtm) ≤
∑
k≤m

Atm
tk,i

Ep̂tk,i,∆̂tk,i

[
f

(
ηtk
bσ̂tk

∆̂tk,i, p̂tk,i

)]
, (74)

where ∆̂t,i and p̂t,i are defined as above and

At′

t,i :=
∏

r∈[t+1:t′] : i/∈Vr

qr,

with the convention that At′

t,i = 1 for t′ ≤ t.
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Once this claim is shown, then we have

IS̃,J−i,Θ,V(ŴT ; Ji)
(a)

≤

(
T∏

r=tM+1

qr

)
IS̃,J−i,Θ,V(ŴtM ; Ji)

(b)

≤

(
T∏

r=tM+1

qr

) ∑
k≤M

AtM
tk,i

Ep̂tk,i,∆̂tk,i

[
f

(
ηtk
bσ̂tk

∆̂tk,i, p̂tk,i

)]
(b)
=
∑
k≤M

Atk,iEp̂tk,i,∆̂tk,i

[
f

(
ηtk
bσ̂tk

∆̂tk,i, p̂tk,i

)]
,

where

• (a) is achieved by repeated using of [74, Lemma 4],

• (b) is derived using equation 74,

• and (c) holds by definitions of Atk,i = AT
tk,i and AtM

tk,i
.

Hence, it remains to show that equation 74 holds by induction.

Consider the base of the induction m = 1. Note that At1
t1,i

= 1. Hence, the result follows using the
proof of Theorem 10; more precisely using equation 64 with W ′ → Ŵt1 , ∆t,i → ∆̂t,i, pt,i → p̂t,i, and
σt → σ̂t.

Now, suppose that the result holds for m = N ≤M − 1, i.e.,

CMIΘV,J−i,i(S̃, ŴtN ) ≤
∑

r∈[N ]

AtN
tr,i

Ep̂tr,i,∆̂tk,i

[
f

(
ηtr
bσ̂tr

∆̂tr,i, p̂tr,i

)]
, (75)

where

AtN
tr,i

:=
∏

t∈[tr+1:tN ] : i/∈Vt

qt.

We show that it also holds for m = N + 1 ≤M .

We have

IS̃,J−i,Θ,V(ŴtN+1 ; Ji) ≤IS̃,J−i,Θ,V(ŴtN+1 , ŴtN+1−1; Ji)

=IS̃,J−i,Θ,V(ŴtN+1 ; Ji|ŴtN+1−1) + IS̃,J−i,Θ,V(ŴtN+1−1; Ji)

(a)

≤Ep̂tN+1,i

[
f

(
ηtN+1

bσ̂tN+1

∆̂tN+1,i, p̂tN+1,i

)]
+ IS̃,J−i,Θ,V(ŴtN+1−1; Ji)

(b)

≤Ep̂tN+1,i

[
f

(
ηtN+1

bσ̂tN+1

∆̂tN+1,i, p̂tN+1,i

)]

+

 tN+1−1∏
r=tN+1

qr

 IS̃,J−i,Θ,V(ŴtN ; Ji)

(c)

≤Ep̂tN+1,i

[
f

(
ηtN+1

bσ̂tN+1

∆̂tN+1,i, p̂tN+1,i

)]

+

 tN+1−1∏
r=tN+1

qr

 ∑
r∈[N ]

AtN
tr,i

Ep̂tr,i

[
f

(
ηtr
bσ̂tr

∆̂tr,i, p̂tr,i

)]
(d)
=

∑
r∈[N+1]

A
tN+1

tr,i
Ep̂tr,i

[
f

(
ηtr
bσ̂tr

∆̂tr,i, p̂tr,i

)]
,

where

• (a) is derived using the proof of Theorem 10; more precisely using equation 65 with W ′
tm →

ŴtN+1 , ∆tm,i → ∆̂tN+1,i, ptm,i → p̂tN+1,i, σtm → σ̂tN+1 , and by considering

Fm →
{
S̃,Θ,V,J−i,W

′
tN+1−1

}
.
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• (b) is derived by repeated using of [74, Lemma 4],

• (c) holds by the assumption of the induction 75,

• and (d) by definition of AtN
t,i and AtN+1

t,i .

This completes the proof of the theorem.

H.4 Proof of Lemma 6

To prove the result, we show first what∥∥∥Ŵt −W ′
t

∥∥∥ ≤
∑
r∈[t]

αt−rνr
∥∥ε′r∥∥ , (76)

using induction over t ∈ [T ]. Then, using the Lipschitzness property of the loss function, we have that

EPSPΘPVPW ′
T

|S,Θ,VPŴT |W ′
T

,S,Θ,V

[
gen(S,ΘW ′

T )− gen(S,ΘŴT )
]
≤2LE

∑
r∈[T ]

αT−rνr
∥∥ε′r∥∥


(a)
=

2
√
2LΓ((d+ 1)/2)

Γ(d/2)

∑
r∈[T ]

αT−rνr,

where (a) is obtained using the fact that if Z ∼ N (0, Id), then ∥Z∥ has a chi-distribution, whose mean is
equal to

√
2Γ((d+1)/2)

Γ(d/2) .

For t = 1,∥∥∥Ŵ1 −W ′
1

∥∥∥ (a)

≤
∥∥∥(W ′

0 − η1∇w′R̂(V1,ΘW
′
0) + σ1ε1 + ν1ε

′
1

)
−
(
W ′

0 − η1∇w′R̂(V1,ΘW
′
0) + σ1ε1

)∥∥∥
=ν1

∥∥ε′1∥∥ ,
where (a) is derived since for any w′

1, w
′
2 ∈ Rd,

∥∥Proj
{
w′

1

}
− Proj

{
w′

2

}∥∥ ≤
∥∥w′

1 − w′
2

∥∥, by the
contraction property of the projection. This shows the base of the induction.

Suppose that equation 76 holds for t = t′. Now, we show that it also holds for t = t′ + 1.

∥∥∥Ŵt′+1 −W ′
t′+1

∥∥∥ ≤
∥∥∥∥(Ŵt′ − ηt′+1∇w′R̂(Vt′+1,ΘŴt′) + σt′+1εt′+1 + νt′+1ε

′
t′+1

)
−
(
W ′

t′ − ηt′+1∇w′R̂(Vt′+1,ΘW
′
t′) + σt′+1εt′+1

)∥∥∥∥
=

∥∥∥∥(Ŵt′ − ηt′+1∇w′R̂(Vt′+1,ΘŴt′)
)
−
(
W ′

t′ − ηt′+1∇w′R̂(Vt′+1,ΘW
′
t′)
)

+ νt′+1ε
′
t′+1

∥∥∥∥
(a)

≤
∥∥∥(Ŵt′ − ηt′+1∇w′R̂(Vt′+1,ΘŴt′)

)
−
(
W ′

t′ − ηt′+1∇w′R̂(Vt′+1,ΘW
′
t′)
)∥∥∥

+
∥∥νt′+1ε

′
t′+1

∥∥
(b)

≤α
∥∥∥Ŵt′ −W ′

t′

∥∥∥+ νt′+1

∥∥ε′t′+1

∥∥
(c)

≤α
∑
r∈[t′]

αt′−rνr
∥∥ε′r∥∥+ νt′+1

∥∥ε′t′+1

∥∥
=

∑
r∈[t′+1]

α(t′+1)−rνr
∥∥ε′r∥∥ ,

where (a) is derived using the triangle inequality, (b) using the contractility assumption, and (c) using the
assumption of the induction. This completes the proof of the induction and the proof of the lemma.
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