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ABSTRACT

We study the scaling behavior of generative reward models (GenRMs) for re-
inforcement learning from AI feedback (RLAIF) when used as drop-in replace-
ments for Bradley-Terry models to optimize policies. Building on established
scaling laws for reward model overoptimization, we investigate whether GenRMs,
particularly those employing chain-of-thought reasoning, exhibit different robust-
ness properties as policies drift from their training distribution during gradient up-
dates. Using the Qwen3 model family (0.6B–14B), our study includes systematic
evaluation of thinking GenRMs (trained via GRPO) against answer-only variants
(trained via SFT) across policy size, reward model size, reward model type, train-
ing budget, and the β parameter in online DPO. Our results reveal a consistent
evaluator-rewarder gap: thinking GenRMs outperform answer-only variants by
1–2% on validation tasks, yet these gains diminish—and often reverse—during
policy optimization, where answer-only GenRMs achieve higher Gold Elo and
more stable proxy-Gold alignment. We find that reward model scale is the most
decisive factor for policy quality, with gains continuing even when the GenRM
far exceeds the policy in parameters. Moreover, intermediate GRPO checkpoints
of thinking judges can outperform fully-trained checkpoints as rewarders, despite
worse static accuracy. We track these dynamics with Elo arenas under both proxy
and Gold evaluation, providing a fine-grained proxy–Gold alignment diagnostic
beyond saturated validation metrics.

1 INTRODUCTION

Policies trained via reinforcement learning from human feedback systematically exploit imperfec-
tions in their reward models, degrading true quality even as proxy metrics improve (Gao et al., 2022;
Rafailov et al., 2024). Generative reward models (GenRMs) have emerged as a promising response:
by formulating evaluation as conditional text generation rather than scalar prediction, GenRMs can
leverage pre-training priors and chain-of-thought reasoning and achieve strong performance on static
preference benchmarks (Mahan et al., 2024; Zhang et al., 2025; Whitehouse et al., 2025). This suc-
cess has fostered an implicit assumption that more accurate static evaluators should translate to more
effective online rewarders.

Yet GenRMs have been studied almost exclusively as judges on fixed distributions, not as in-loop
rewarders where the policy distribution shifts during training. In this work, we test that assumption
and target the practitioner-facing question it conceals: if one chooses a GenRM as the reward sig-
nal, how should compute and architecture be allocated to maximize downstream policy quality? We
study three design dimensions in the online setting where they matter: (i) thinking versus answer-
only judging, (ii) judge scale, and (iii) policy scale to maximize downstream policy quality rather
than static accuracy? We instantiate these axes in creative writing using LITBENCH (Fein et al.,
2025), a non-verifiable preference domain where correctness cannot be programmatically checked.
In such domains, static evaluator accuracy can saturate while reward hacking and proxy-Gold diver-
gence remain salient, making creative writing an ideal testbed for whether stronger static evaluators
translate to better in-loop reward signals.

Contributions. (1) We present the first systematic scaling study of GenRMs deployed as online
reward signals, sweeping judge format, judge size (0.6B–14B), policy size (0.6B–8B) and training
budgets under online DPO. (2) We introduce a proxy–Gold Elo diagnostic that measures alignment
under optimization pressure and supports cross-configuration comparison. (3) We provide empirical
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guidance for GenRM deployment: judge scale and training duration dominate, answer-only Gen-
RMs yield more stable optimization than thinking variants, and intermediate GenRM checkpoints
can outperform fully-trained models as rewarders.

Our findings reveal a consistent evaluator–rewarder gap. Thinking GenRMs improve in-distribution
accuracy by 1–2% across all scales, yet these gains diminish—and often reverse—when the same
judges drive online optimization. Answer-only GenRMs yield higher peak Gold Elo and more stable
proxy–Gold alignment. In contrast, scaling judge capacity proves decisive: larger judges continue
improving policy quality even when far exceeding the policy in parameters, suggesting that judging
is at least as hard as generating in this domain.

2 METHODOLOGY

We begin with a human preference dataset of the form

Dhuman = {x(i), y
(i)
A , y

(i)
B , I

(i)
H }Ni=1,

where x(i) ∈ X are prompts, y(i)A , y
(i)
B ∈ Y are pairs of responses to the prompts, and I

(i)
H ∈ {A,B}

denotes the human-preferred response.

Gold evaluator. Since human preferences are not available on demand during policy training, we
cannot directly query them to measure policy performance at each checkpoint. To enable con-
tinuous evaluation throughout the optimization process, we train a large generative reward model
(GenRM), denoted Vgold, on Dhuman. This model serves as a Gold evaluator that provides a stable,
queryable preference distribution anchored to human judgments. Grounding Vgold in human prefer-
ences ensures that our experimental setup reflects real-world alignment scenarios where the ultimate
objective is to match human judgment. However, our study does not require Vgold to perfectly repli-
cate human preferences. Rather, we require a consistent anchor distribution against which we can
measure proxy GenRM behavior as policies drift during training. The central question we inves-
tigate is how well smaller proxy GenRMs generalize when used as reward signals, relative to this
anchor—not whether the anchor itself is perfectly human-aligned.

To make evaluation computationally feasible, we choose Vgold to be an Answer-Only model that
outputs a single indicator token. Using Vgold, we construct a Gold Preference dataset:

Dgold = {x(i), y
(i)
A , y

(i)
B , I

(i)
G }Mi=1,

which is then used to train a variety of smaller GenRMs.

Proxy GenRMs. We consider two types of GenRMs: Answer-Only and Thinking. The Answer-Only
models output a direct judgment token (A or B):

I ∼ vans(· | x, yA, yB),

while the Thinking models first generate a reasoning trace z before producing the final verdict:

z ∼ vthink(· | x, yA, yB), I ∼ vthink(· | x, yA, yB , z).

Training objectives. We train Answer-Only models using supervised fine-tuning (SFT) and Think-
ing models using GRPO. This asymmetry reflects the training pipelines used by practitioners in
real-world settings. For Answer-Only models, the supervision signal is unambiguous: given a pref-
erence label, the model should predict the corresponding token. SFT directly optimizes this objective
and is the natural choice. For Thinking models, however, the supervision problem is fundamentally
different. A chain-of-thought has no single correct trajectory, and current practice overwhelmingly
relies on reinforcement learning objectives like GRPO. Our goal is not to perform an architectural
ablation under identical training algorithms, but rather to compare the best-supported pipeline for
each model type—training each with the method that empirically performs best for its structure.

For GRPO, we employ two reward signals:

1. Accuracy reward: A binary reward (1 if the model reaches the correct verdict, 0 other-
wise).
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2. Positional consistency reward rpos: Inspired by prior work, we observe that models often
produce contradictory judgments when the order of (yA, yB) is swapped in the prompt. To
mitigate this, we explicitly place both orderings (A,B) and (B,A) into the same GRPO
group, and compute a group-level majority vote over the sampled completions. A reward
of 1 is assigned only if the majority verdicts under both orderings are consistent and match
the correct label. To avoid introducing noise, rpos is only given to completions that end at
the correct verdict.

We refer to these trained GenRMs as Proxy models, and evaluate them with respect to Vgold prefer-
ences.

Policy optimization. We train policies πθ of varying sizes using Online Direct Preference Opti-
mization (Online DPO). DPO is a natural choice for preference-based policy optimization because
GenRMs produce pairwise preferences as their native output, which DPO can consume directly
without requiring scalarization or additional transformations. In offline DPO, response pairs are
sampled once from a fixed reference policy and reused across many gradient updates, keeping the
supervision distribution static throughout training. In online DPO, response pairs are repeatedly
resampled from the current policy after each update, so the supervision distribution evolves as the
policy changes. This online setting is particularly important for our study, as we aim to understand
GenRM robustness under distribution shift induced by policy optimization. Empirically, online pref-
erence optimization has been shown to yield more stable and effective alignment dynamics when
implemented carefully (Guo et al., 2024).

The policies are trained on prompts sampled from the same distribution X used for Vgold and the
Proxy models. During training, we periodically save checkpoints and sample responses on a fixed
validation set of prompts. To evaluate these checkpoints, we compute ELO ratings based on pairwise
comparisons of their responses. ELO evaluation provides a more fine-grained measurement than
raw win rates against a fixed reference distribution. We compute ELOs with respect to both Proxy
models and the Gold model, enabling us to analyze the relationship between Proxy-based evaluation
and Gold-standard evaluation.

3 EXPERIMENTAL SETUP

Dataset construction. We construct three disjoint datasets for our experiments:

• Human preference dataset Dhuman: We sample 21,000 preference triplets (x, yA, yB , IH)
from LITBENCH Fein et al. (2025), a large-scale preference dataset over human-written
stories from Reddit. We split these into 20,000 for training and 1,000 for validation. This
dataset is used exclusively for training the Gold evaluator.

• Gold preference dataset Dgold: We sample a separate, non-overlapping set of 21,000
triplets from LITBENCH and re-annotate them using the trained Gold evaluator, yielding
(x, yA, yB , IG) triplets. Critically, while both Dhuman and Dgold are sourced from LIT-
BENCH, they represent different preference distributions: the former reflects human judg-
ments, while the latter reflects the Gold model’s judgments. We split Dgold into 20,000 for
training and 1,000 for validation. This dataset is used for training and evaluating Proxy
GenRMs.

• Policy training dataset: We source prompts from the WRITINGPROMPTS dataset1, the an-
cestor dataset from which LITBENCH was constructed. To avoid data leakage, we exclude
all prompts that appear in LITBENCH, yielding 199,000 candidate prompts. We randomly
sample 91,000 prompts (90,000 for training and 1,000 for validation) unless specified oth-
erwise in specific experiments.

Building on prior work that has extensively evaluated various reward models on LITBENCH facili-
tates future research and cross-comparisons between our results and other studies.

Model families. We use the QWEN3 model family for all GenRMs and policies. For Proxy Gen-
RMs, QWEN3 is the only open-weight model family that supports both Thinking and Answer-Only

1https://huggingface.co/datasets/euclaise/WritingPrompts_preferences
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modes across multiple parameter sizes. This enables controlled comparisons where we can vary
GenRM mode and scale while holding the backbone architecture and instruction-tuning distribution
fixed. For policy models, using the same backbone as the GenRMs allows us to cleanly isolate the
interaction between policy size and GenRM size, which is central to our scaling analysis.

Gold GenRM training. We train the Gold evaluator from QWEN3-32B using supervised fine-
tuning on Dhuman. To improve positional robustness, we train on both orderings (yA, yB) and
(yB , yA), resulting in 40,000 training pairs. We use a batch size of 128 and a learning rate of
1× 10−5.

Proxy GenRM training. We train Proxy GenRMs from the QWEN3 series at sizes {0.6B,
1.7B, 4B, 8B, 14B} using Dgold. We refer to the off-the-shelf, untrained QWEN3 models as
Baseline-{size}-Ans and Baseline-{size}-Think for Answer-Only and Thinking
modes, respectively. For Answer-Only models, we use supervised fine-tuning with batch size 128
and learning rate 1 × 10−5. As with the Gold model, we train on both positional orders, yielding
40,000 training pairs. For Thinking models, we use GRPO with the following configuration: 16
prompts per step, group size 8, minibatch size 64, no KL penalty, and learning rate 1 × 10−6. We
train on both positional orders. We refer to the trained Proxy GenRMs as GenRM-{size}-Ans for
Answer-Only models and GenRM-{size}-Think for Thinking models, where {size} denotes
the parameter scale.

Policy training. We train policies πθ from the QWEN3 series at sizes {0.6B, 1.7B, 4B, 8B} using
Online DPO. All policies are trained with thinking disabled. We use a training batch size of 192,
minibatch size of 64, learning rate of 1× 10−6, and β = 0.02 unless specified otherwise in specific
experiments. For each sampled prompt, we generate response pairs from the current policy and
evaluate them using a Proxy GenRM. To ensure positional consistency, we compute preferences
under both orderings (yA, yB) and (yB , yA), retaining only pairs where the two orderings agree. We
restrict prompt length to 512 tokens and response length to 2048 tokens.

Evaluation. During policy training, we save checkpoints every 10 training steps. For each check-
point, we sample responses on the fixed validation set and compute ELO ratings based on pairwise
comparisons judged by both the Proxy GenRM used during training and the Gold evaluator. Pol-
icy training runs for 460 steps in the main experiments (yielding 47 checkpoints), though specific
ablations may use different training durations.

Reproducibility and LLM usage. Beyond the GenRM and policy models described above, we did
not use LLMs for dataset filtering, rubric creation, label consolidation, or prompt generation. All
prompts used for policy generation and GenRM pairwise evaluation are provided in Appendix B.

4 EXPERIMENTS AND RESULTS

4.1 GENRM TRAINING

Figure 1: Performance of trained GenRMs of different sizes and training methods on the Gold Preference
dataset. Thinking GenRMs consistently outperform Answer-Only models across all scales, while both sub-
stantially exceed baseline performance. Takeaway: Training yields ∼20% accuracy gains; Thinking models
provide a consistent 1–2% edge as static evaluators.
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Gold evaluator alignment. The Gold GenRM achieves 79% agreement with human preferences
on the held-out validation split of Dhuman. Prior work on LITBENCH reports peak accuracies of
approximately 78% Fein et al. (2025), indicating that our Gold evaluator achieves strong alignment
with the human preference distribution. While our study only requires a stable reference distribution
rather than perfect human alignment, the 79% agreement demonstrates that the Gold evaluator is
well-grounded in human judgments.

Trained GenRMs substantially outperform baselines. We train GenRMs of sizes 0.6B, 1.7B,
4B, 8B, and 14B, with both Answer-Only (SFT) and Thinking (GRPO) variants (Figure 1). The
untrained baseline models (both Answer-Only and Thinking) achieve similar accuracies across all
sizes, suggesting no apparent bias in the Gold evaluator toward either format. Across all scales,
trained models show an approximately 20% accuracy improvement over their respective baselines,
confirming substantial room for optimization and indicating that the Gold anchor distribution is
sufficiently distinct from the untrained proxy distributions.

GRPO is an effective training method for Thinking GenRMs. To validate our choice of GRPO
for training Thinking models, we conducted an ablation study on the 4B model. When evaluated
on the Gold Preference dataset, the off-the-shelf model achieves 60.0%, STaR achieves 60.7%,
distillation from QWEN3-32B thinking traces (SFT-style) achieves 64.7%, and GRPO with accuracy
and positional consistency rewards achieves 83.2%. Only GRPO yields substantial improvements,
validating its use as the primary training method for Thinking GenRMs.

Thinking GenRMs outperform Answer-Only models on in-distribution evaluation. On average
across all scales, trained Thinking GenRMs achieve 1.7% higher accuracy than their Answer-Only
counterparts when evaluated on the Gold Preference dataset. To evaluate whether sampling multiple
completions yields additional gains, we compute majority-vote accuracy over k = 5 and k = 16
samples from the Thinking models (Figure 1). This yields modest further improvements of 0.5%
and 0.8% respectively (e.g., at 14B, 89.1% → 89.6% → 90.0%). Given the computational overhead
and minimal gains, we do not employ multi-sampling during policy training.

4.2 TRAINED GENRMS VS. BASELINE MODELS IN POLICY TRAINING

(a) Trained vs. baseline GenRMs (b) Intermediate Thinking checkpoints

Figure 2: Proxy vs. Gold ELO ratings for policies trained with different GenRMs. (a) Comparison of trained
vs. baseline GenRMs. (b) Policies trained on 50,000 prompts with Thinking GenRMs, where the GenRM is
checkpointed at intermediate stages of GRPO training (50–250 steps). In both plots, the x-axis shows Proxy
ELO and the y-axis shows Gold ELO, with the dotted line indicating perfect alignment (45◦).

Does training the GenRM improve downstream policy quality compared to off-the-shelf models?

We compare policy training using trained versus baseline (off-the-shelf) GenRMs. In this ex-
periment, both the policy and GenRM are 4B models, with Answer-Only and Thinking vari-
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ants (Figure 2a). Trained GenRMs dramatically outperform their baseline counterparts. No-
tably, while Thinking outperforms Answer-Only at baseline, this advantage reverses after training:
GenRM-4B-Ans exceeds GenRM-4B-Think by over 200 Elo points. We discuss this reversal
further in the next subsection.

4.3 ANSWER-ONLY VS THINKING

Figure 3: Proxy vs. Gold ELO ratings for policies trained with Answer-Only (blue) vs. Thinking GenRMs
(orange) across multiple policy sizes and GenRM sizes. Top row: policy sizes 0.6B, 1.7B, 4B, 8B with fixed
4B GenRM. Bottom row: 4B policy with GenRM sizes 0.6B, 1.7B, 8B, 14B. The dotted line indicates perfect
alignment. Takeaway: Answer-Only GenRMs consistently achieve higher Gold Elo and tighter proxy-Gold
alignment than Thinking GenRMs across all configurations.

Does chain-of-thought reasoning improve GenRM effectiveness as online rewarders?

Across all combinations of policy sizes (0.6B, 1.7B, 4B, 8B) and GenRM sizes (0.6B–14B), policies
trained with Answer-Only GenRMs achieve both higher maximum Gold ELO and smaller discrep-
ancies between Proxy and Gold ratings compared to those trained with Thinking GenRMs (Figure 3).

This finding is surprising for two reasons. First, in-distribution evaluation (Section 4.1) showed
Thinking GenRMs outperforming Answer-Only models by ∼1–2% accuracy. Second, baseline (un-
trained) models displayed the opposite trend, with Thinking variants aligning better with the Gold
model than Answer-Only. Despite these initial advantages, Thinking GenRMs prove less reliable
when used as reward models for online policy optimization.

We interpret this as evidence that Thinking GenRMs are more vulnerable to off-distribution shifts
introduced by policy training. Two factors may explain this gap.

First, higher in-distribution GenRM accuracy does not necessarily translate to better policy training.
Since Online DPO changes the response distribution during training, GenRM robustness across the
full domain matters more than performance on a fixed validation set. Figure 2b provides direct evi-
dence: we trained policies using intermediate checkpoints of a 4B Thinking GenRM during GRPO
training (at 0, 50, 100, 150, 200, and 250 steps). While GenRM accuracy steadily improves on the
in-distribution set (from 59.7% to 82.3%), policy Gold Elo peaks at an intermediate checkpoint and
then degrades. Notably, the 250-step checkpoint (79.2% accuracy) produces policies that perform
close to the Answer-Only baseline in Gold Elo, with a more favorable slope between Proxy and
Gold ratings. This suggests overfitting to the evaluation distribution hurts generalization during pol-
icy optimization, and that intermediate Thinking checkpoints may provide more effective learning
signals than fully-trained models.

Second, GRPO optimizes final preferences rather than reasoning correctness, allowing flawed rea-
soning paths that still reach correct labels. These weaknesses may be tolerated in-distribution but

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

exploited out-of-distribution. Because Thinking models split computation between latent activations
and explicit language traces, this may introduce additional failure modes compared to Answer-Only
models, which perform computation entirely in the latent space.

In summary, Answer-Only reward models are more token efficient and demonstrably more robust
for preference-based policy optimization in this domain, though intermediate Thinking checkpoints
retain potential if their training dynamics are better understood.

4.4 EFFECT OF GENRM SIZE

(a) Answer-Only GenRMs (b) Thinking GenRMs

Figure 4: Proxy vs. Gold ELO ratings for policies trained with GenRMs of different sizes. The policy is fixed at
4B. Left: Answer-Only GenRMs (0.6B–14B). Right: Thinking GenRMs (0.6B–14B). The dotted line indicates
perfect alignment. Takeaway: Increasing GenRM size improves Gold Elo and tightens proxy-Gold alignment,
with gains continuing even when the GenRM far exceeds the policy in parameters.

Does scaling the reward model improve policy quality, and do gains continue when the GenRM
exceeds the policy in size?

We investigate the effect of scaling GenRM size while fixing the policy size at 4B. Figure 4 shows
results for both Answer-Only and Thinking GenRMs across scales from 0.6B to 14B.

We observe clear and consistent gains from increasing GenRM size. Notably, performance contin-
ues to improve even when the GenRM is much larger than the policy: at 14B, both Answer-Only and
Thinking models yield substantial gains over smaller counterparts. This trend suggests that the ca-
pacity of the evaluator plays a decisive role in stabilizing and guiding preference-based training. The
result highlights an important asymmetry: within this domain, “judging” appears to be as hard—or
harder—than “generating.”

4.5 EFFECT ON POLICY SIZE

Does scaling the policy improve quality, and does the effect differ between Answer-Only and Think-
ing supervision?

We examine the effect of scaling policy size while fixing the GenRM. Figure 5 shows results for
policies ranging from 0.6B to 8B trained with both Answer-Only and Thinking GenRMs.

For Answer-Only supervision, the trend is straightforward: larger policies consistently achieve
higher Gold ELO, with steady improvements across scales. This aligns with the expectation that
larger policies better exploit the reward signal and generalize more effectively.

For Thinking supervision, however, the picture is less clear. While the largest policy does achieve the
highest peak performance, its Gold ELO curve saturates and bends downward earlier than smaller

7
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(a) Answer-Only GenRMs (b) Thinking GenRMs

Figure 5: Proxy vs. Gold ELO ratings for policies of different sizes trained with fixed GenRMs. Left: Answer-
Only GenRMs. Right: Thinking GenRMs. The dotted line indicates perfect alignment. Takeaway: Larger
policies consistently improve under Answer-Only supervision, but under Thinking supervision, large policies
saturate earlier, suggesting a more fragile interaction between policy and GenRM capacity.

policies, which continue to improve steadily. This suggests two possible explanations: (i) large poli-
cies may more quickly exhaust the effective capacity of the GenRM, reaching its “ceiling” earlier, or
(ii) beyond a certain scale, further increasing policy size without correspondingly stronger GenRMs
may become counterproductive.

Additional training is required to disentangle these explanations, but the evidence points toward an
important asymmetry: scaling policy size is reliably beneficial under Answer-Only supervision, but
under Thinking supervision, the interaction between policy capacity and GenRM capacity is more
fragile.

4.6 EFFECT OF THE β COEFFICIENT IN ONLINE DPO

(a) Proxy vs. Gold ratings across β
values

(b) KL divergence vs. rating

Figure 6: Effect of the β coefficient in Online DPO. Left: Proxy vs. Gold ELO ratings for Answer-Only
GenRMs at different β values. Right: KL divergence vs. rating tradeoff, showing how larger β suppresses
exploration. The dotted line indicates perfect alignment. Takeaway: Smaller β values (0.002–0.01) yield
higher Gold Elo by allowing more exploration, but the effect is secondary compared to GenRM or policy
scaling. All policies have been trained on 50,000 prompts.
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How does the DPO regularization strength affect policy quality and the exploration-exploitation
tradeoff?

We analyze the effect of the β coefficient in Online DPO. Figure 6(a) shows Proxy vs. Gold ELO
ratings for policies trained with β ∈ 0.1, 0.02, 0.01, 0.005, 0.002 under Answer-Only supervision.
Overall, smaller β values consistently yield better Gold performance. While gains become increas-
ingly incremental as β decreases, the smallest value (β = 0.002) achieves the highest Gold ELO.

Importantly, lower β does not simply increase Proxy ratings at the expense of Gold performance.
Instead, the lowest β exhibits the slope closest to the 45° line, indicating the least degree of over-
optimization among all settings.

Figure 6(b) further illustrates the KL–performance tradeoff. Larger β values overly constrain the
policy to the reference distribution, limiting attainable Gold ratings. Reducing β relaxes this con-
straint and improves alignment with Gold outcomes, without inducing severe divergence.

Overall, smaller β values are strictly preferable in this regime. Although the marginal gains diminish
at very low β, the smallest values simultaneously achieve the highest Gold ELO and the most faithful
Proxy–Gold correspondence.

5 LIMITATIONS AND DISCUSSION

Gold evaluator is a learned proxy, not humans. We mitigate label noise by fine-tuning a 32B
Gold evaluator on human preferences, re-annotating pairwise data with this model, and discarding
items with inconsistent Gold verdicts (Gao et al., 2022). This improves consistency but couples our
objective to the Gold model’s inductive biases. At 32B parameters, the Gold judge is stronger than
our proxies, leaving headroom for improvement, yet it still reflects preferences from its training set.
Takeaway. Interpret results as optimization toward a strong, learned proxy.

Answer-only format for the Gold evaluator. The Gold judge emits a single verdict token. This
choice improves throughput and simplifies adjudication, but might favor answer-only proxies in
subtle ways. We investigated this concern empirically and found no evidence of systematic bias.
First, off-the-shelf (untrained) answer-only and thinking judges show similar agreement patterns on
the Gold-labeled set, with differences small relative to the trained-vs-baseline gap (Figure 1): at
smaller sizes Thinking models slightly outperform, at mid-size they are comparable, and at larger
sizes Answer-Only holds a small edge. Second, in Figure 2a (baseline proxies), policies trained
with thinking baseline judges trace a slope closer to the diagonal, indicating tighter proxy–Gold
agreement even though Gold is answer-only. These observations suggest that the Answer-Only
advantage we report in trained GenRMs reflects genuine optimization dynamics rather than evaluator
format bias. Nonetheless, we do not evaluate an alternative thinking-style Gold, which would further
strengthen robustness. Takeaway. Empirical checks show no format bias at baseline; a rationale-
producing Gold remains valuable future work.

Domain scope. All experiments use creative writing; we do not systematically evaluate other do-
mains such as safety, helpfulness, or verifiable tasks (math, code). Replicating our full experimental
grid in additional domains would scale cost roughly linearly: each (judge, policy) configuration
requires an online DPO run plus Elo evaluation, costing 6–20 hours on 8×H100, not including
judge training. Given our ablation count (policy size × judge size × judge mode × training-
budget/β/checkpoint sweeps), full multi-domain replication would require thousands of additional
H100-hours. To provide preliminary evidence, we ran cross-domain checks on OpenOrca using
off-the-shelf Qwen3 models (Appendix A.1); these support the same qualitative pre-training trend
(thinking judges start stronger as static evaluators). Takeaway. Our conclusions are scoped to non-
verifiable creative writing; domain transfer is an important open question.

Relation to prior creative-writing studies. Creative-writing preferences are subjective. Optimiz-
ing win rate can reduce stylistic diversity. We observe some style convergence (Chung et al., 2025)
in late-stage policies against both judge modes, while draw rates do not show large collapses. Fein
et al. (2025) report that chain-of-thought can degrade verification accuracy for creative writing, and
that trained BT and generative verifiers outperform zero-shot judges on their benchmark. In our set-
ting, distilling Qwen3-32B traces into Qwen3-4B also yields negligible gains as evaluators, which
aligns with these observations. However, after training, thinking judges significantly improve as
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static evaluators. The gap between thinking and answer-only during policy optimization therefore
cannot be explained by domain “unsuitability” alone; it indicates different optimization dynamics.
Takeaway. Our evaluation–optimization divergence is a property of the training loop in this domain,
not only a property of static judging.

Family and algorithm scope, and behavioral priors. All models use Qwen3 backbones where
pretraining data are not public. Cross-family studies suggest that behavioral priors, including syn-
thetic data that instantiate verification or backtracking, can modulate RL improvements and collapse
family gaps (Gandhi et al., 2025). Such priors could shift our coefficients. We do not evaluate
PPO-style RLHF for policies or alternative thinking-judge recipes. Additionally, we do not include
Best-of-N (BoN) inference-time comparisons; our focus is on GenRMs as training signals for policy
optimization rather than inference-time scaling, where the primary gains in our setting arise from
gradient-based learning rather than reranking at generation time. BoN comparisons remain valuable
future work for understanding the full compute-performance tradeoff. Takeaway. Our coefficients
and inflection points are conditional on online DPO and Qwen3 underlying behavioral priors.

Elo anchoring and schedule. Elo is anchored to the Gold evaluator and depends on the match
schedule (Chiang et al., 2024). We report both global and size-stratified arenas, but we do not study
alternative anchors or tournament designs. Takeaway. Absolute Elo levels can shift with the anchor,
while within-arena orderings are more stable.

6 RELATED WORK

Alignment from preferences exhibits predictable overoptimization: gold reward degrades as policies
drift from a reference, following smooth scaling laws for both RLHF (Ouyang et al., 2022; Gao et al.,
2022) and direct methods like DPO that remove explicit reward heads (Rafailov et al., 2023; 2024).
This motivated architecturally unified judges. Generative Reward Models (GenRMs) replace scalar
heads with next-token prediction, enabling rationales alongside verdicts (Mahan et al., 2024; Zhang
et al., 2025). Mahan et al. (2024) trained GenRMs via iterative self-taught reasoning with DPO,
achieving strong out-of-distribution generalization. Subsequent work scales these approaches: J1
extends with GRPO and positional consistency rewards (Whitehouse et al., 2025), DeepSeek-GRM
adds Self-Principled Critique Tuning with meta-aggregation for inference-time scaling (Liu et al.,
2025), and Heimdall demonstrates test-time improvements via majority voting in verification tasks
(Wang et al., 2025; Shi & Jin, 2025). Complementary supervision strategies include self-generated
critiques (Yu et al., 2025) and criteria trees (Liang et al., 2025), while EvalPlanner frames evaluation
as plan-and-reason generation (Saha et al., 2025). Despite extensive work on judge reliability (Ye
et al., 2024) and benchmarks (Lambert et al., 2024), the field conflates static evaluation accuracy
with rewarder effectiveness. We disambiguate these roles through controlled scaling experiments
with answer-only (SFT) versus thinking (GRPO) GenRMs as both evaluators and online DPO re-
warders, using Elo arenas (Chiang et al., 2024) for unified comparison. Our results reveal when
inference-time reasoning helps evaluation but hinders policy optimization under matched FLOPs
and KL budgets.

7 CONCLUSION

We present the first systematic study of generative reward models as online training signals. Our
experiments reveal a consistent evaluator-rewarder gap: Thinking GenRMs outperform Answer-
Only variants on static evaluation, yet this advantage reverses during policy optimization, where
Answer-Only models yield higher Gold Elo and more stable alignment.

Three findings offer practical guidance: (1) reward model scale dominates other factors, with gains
continuing even when the GenRM far exceeds the policy in size; (2) intermediate GenRM check-
points can outperform fully-trained models as rewarders; and (3) in-distribution accuracy does not
predict training effectiveness. These results suggest that optimizing GenRMs for static benchmarks
may be counterproductive for downstream alignment.
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A APPENDIX

Additional experimental details and supplementary results.

A.1 PRELIMINARY CROSS-DOMAIN EVALUATION: OPENORCA

To provide preliminary evidence on domain generalization (see §5), we ran cross-domain checks on
OpenOrca using off-the-shelf Qwen3 policies, judges, and Gold evaluator. No fine-tuning was per-
formed. These results support the same qualitative pre-training trend observed in the main creative-
writing domain: prior to GenRM training, Thinking judges show stronger alignment with the Gold
evaluator than Answer-Only judges.

A.2 ELO RATING COMPUTATION

Given a set of policy checkpoints S, we generate pairwise matches (i, j) ∈ S × S on held-out
prompts and obtain Gold evaluator decisions wij ∈ {0, 1}. Elo ratings {Rs}s∈S are estimated by
maximizing the logistic likelihood:

max
{Rs}

∑
(i,j)

[
wij log σ

(
Ri−Rj

s

)
+ (1− wij) log σ

(
Rj−Ri

s

)]
,

with scale s fixed. Proxy Elo ratings are computed analogously using proxy GenRM decisions in
place of Gold decisions.
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Figure 7: Proxy vs. Gold net score on OpenOrca. All models are off-the-shelf (no GenRM training). A full
replication with trained GenRMs and policy optimization remains future work.

B PROMPT TEMPLATES

We provide the exact prompt templates used for policy generation and GenRM pairwise evaluation.
All models receive these prompts without modification.

B.1 POLICY PROMPT

The policy model receives the following prompt template for creative writing generation:

Creative Writing Prompt:
{QUESTION}
Goal: write an original short story that directly answers the prompt.
Requirements: Output only the story text. no titles, notes, commentary
or meta-text.

where {QUESTION} is replaced with the specific creative writing instruction from the evaluation
set.

B.2 GENRM PAIRWISE EVALUATION PROMPT

The generative reward model receives the following prompt template for pairwise comparison:

Two AI models were given the same instruction and each produced a reply.
Your task is to judge which reply better fulfills the instruction.
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[BEGIN INSTRUCTIONS GIVEN TO BOTH MODELS]
{POLICY_PROMPT}
[END INSTRUCTIONS]

[BEGIN REPLY A]
{RESPONSE_A}
[END REPLY A]

[BEGIN REPLY B]
{RESPONSE_B}
[END REPLY B]

Output ONLY one of:
<answer>[[A]]</answer>
<answer>[[B]]</answer>

where {POLICY PROMPT} contains the full policy prompt with the specific question, and
{RESPONSE A} and {RESPONSE B} contain the two candidate responses to be compared. The
model outputs a structured verdict indicating which response better satisfies the original instruction.
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C SUPPLEMENTARY FIGURES

C.1 BETA COEFFICIENTS
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C.2 GENRM EVALUATION

C.3 GENRM SIZES (ANSWER)
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C.4 GENRM SIZES (THINKING)
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C.5 PARAM BALANCE (ANSWER)
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C.6 PARAM BALANCE (THINKING)
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C.7 POLICY SIZES (ANSWER)
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C.8 POLICY SIZES (THINKING)
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