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Abstract

In learning from aggregate labels, the training data
consists of sets or “bags” of feature-vectors (in-
stances) along with an aggregate label for each
bag derived from the (usually {0, 1}-valued) labels
of its constituent instances. In learning from label
proportions (LLP), the aggregate label of a bag
is the average of the instance labels, whereas in
multiple instance learning (MIL) it is the OR i.e.,
disjunction. The goal is to train an instance-level
predictor that maximizes the accuracy which is the
fraction of satisfied bags i.e., those on which the
model’s induced labels are consistent with the tar-
get aggregate label. A weak learner in this context
is one which has at a constant accuracy < 1 on
the training bags, while a strong learner’s accuracy
can be arbitrarily close to 1. We study the problem
of using a weak learner on such training bags with
aggregate labels to obtain a strong learner. In a
novel result, our work proves the impossibility of
boosting in the LLP setting using weak learners of
any accuracy < 1 by constructing a collection of
bags for which such weak learners (for any weight
assignment) exist, while not admitting any strong
learner. A variant of this construction also rules out
boosting in MIL for a non-trivial range of weak
learner accuracy. In the LLP setting however, we
show that a weak learner (with small accuracy) on
large enough bags can in fact be used to obtain a
strong learner for small bags, in polynomial time.
We also provide more efficient, sampling based
variant of our procedure with probabilistic guaran-
tees which are empirically validated on three real
and two synthetic datasets.

1 INTRODUCTION

In traditional, fully supervised learning, the training data
consists of a collection of labeled feature-vectors (i.e., train-
ing examples) {(xi ∈ X , yi = y(xi))}ni=1, for some do-
main X where the mapping y provides the feature-vector
labels. In this paper we will consider the binary setting i.e.,
the labels are {0, 1}-valued. The usual training goal is to
find a good classifier f : X → {0, 1} which maximizes
the training accuracy |{i : f(xi) = yi}| /n. In recent times
however, due to privacy [Rueping, 2010] or feasibility [Chen
et al., 2004] constraints, in many applications the training
label for each training example is not available. Instead,
the training data consists of sets or bags of feature-vectors
along with only the average or equivalently sum of the la-
bels for each bag since bag size is known. This is called
learning from label proportions (LLP) in which the training
set consists of labeled bags {(Bj , yj}mj=1 where Bj ⊆ X
and yj =

∑
x∈Bj

y(x). The training goal is to fit a good
classifier f : X → {0, 1} on this bag-level training data.
A related problem is multiple instance learning (MIL) in
which the label for each bag is the OR i.e., the boolean dis-
junction of the labels of its constituent feature vectors, while
the goal of fitting a good feature-vector classifier remains
the same. A natural metric for the goodness of fit in the LLP
setting is to maximize the bag-level accuracy i.e., the frac-
tion of satisfied training bags, where a bag (B, y) is satisfied
if y =

(∑
x∈B f(x)

)
. An analogous notion of accuracy for

MIL is if y =
(∨

x∈B f(x)
)
. Recent works [Saket, 2021,

2022] have studied the computational learning aspect of
LLP and MIL, and in particular showed that the problem
of finding classifiers (even in the realizable case) of high
bag-level accuracy can be NP-hard.

In supervised classification, boosting (see [Freund and
Schapire, 1995, Schapire and Freund, 2012]) is a well
known meta-technique which, given a training dataset uses
an ensemble (typically a majority) of weak classifiers (on
reweighed data) to output a hypothesis which has accuracy
arbitrarily close to 1 i.e., a strong classifier. In the {0, 1}-
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labels case a weak classifier has accuracy at least (1/2 + ε)
for some ε > 0, while that for a strong classifier is (1− ν)
where ν can be made arbitrarily small. Thus, while a strong
classifier is always a weak classifier (by making ν small
enough), a weak classifier with accuracy (1/2 + ε) is not
strong unless ε can be made arbitrarily close to 1/2 (see
Sections 2.3.1 and 2.3.2 of [Schapire and Freund, 2012]).
Note that the threshold of 1/2 for weak classification is the
expected accuracy of random prediction on the training set.
In the rest of the paper, the notion of accuracy shall be used
for bag-level accuracy in LLP or MIL, unless otherwise
specified.

To address the algorithmic learning problems in LLP and
MIL, one could hope to apply boosting techniques to LLP
and MIL settings as well. Here, we can define a weak classi-
fier having some constant accuracy on the bags, while the
notion of a strong classifier remains the same: that with an ar-
bitrarily high accuracy. For LLP, recent works [Saket, 2021,
2022] have given halfspace learning algorithms achieving
accuracy (2/5) and (1/12) on satisfiable collections of 2-
sized and 3-sized bags respectively. These algorithms are
obtained by rounding a semi-definite programming relax-
ation, which is a standard algorithmic tool. It is plausible
that weak classifiers can exist for larger bag sizes as well,
possibly for special cases of feature-vector distributions or
function classes other than halfspaces. Therefore, we ask:

is there a way to do boosting using weak-classifiers to obtain
a strong classifier in learning from aggregate labels?

In this work we show that the above is impossible even
on 2-sized bags for (i) LLP using weak classifiers of any
accuracy < 1, and (ii) for MIL using weak classifiers of
any accuracy < 2/3. Specifically, we construct a collection
of bags such that any probability distribution over the bags
admits a weak classifier of the desired accuracy, while the
original collection does not admit any strong classifier i.e.,
any labeling to the underlying feature vectors satisfies at
most some constant < 1 fraction of the bags. We note that
on bags of size 2, for both LLP and MIL the worst-case
accuracy obtained by using the random or any constant-
valued classifier (all 0s or all 1s), is 1/2. So, even for MIL
we rule out boosting using weak classifiers with non-trivial
accuracy in [1/2, 2/3). Our impossibility of boosting stands
in contrast to previous work (e.g. [Auer and Ortner, 2004, Qi
et al., 2018]) which empirically evaluate boosting heuristics
for LLP and MIL – our results are the first to show that such
algorithms cannot provably yield a strong classifier.

While the above impossibility results are applicable to the
boosting framework, one can ask:

is there some other way to derive a strong classifier from
weak classifiers?

Our next result answers this question in the affirmative for
LLP: a weak classifier (of any constant accuracy γ > 0) on

large bags can be used to derive a strong classifier on a train-
ing set of (smaller) original bags. These large or composite
bags are each a union of t training bags, where t depends
only on γ and the desired accuracy of the strong classifier.
While on m training bags, the number of (≈ mt) unions
are polynomial-time for constant t, we also provide a sig-
nificantly more efficient sampling version of this approach
which provides the same guarantees with high probability.
These are to the best of our knowledge the first methods
obtaining strong classifiers from weak classifiers for LLP.
For MIL on the other hand the question of such weak to
strong learning remains open.

1.1 PREVIOUS RELATED WORK

Multiple Instance Learning (MIL). The study by Diet-
terich et al. [1997] introduced MIL for drug activity de-
tection, where the bag label is modeled as an OR of its
(unknown) instance labels, all labels are {0, 1}-valued. The
goal, given such a dataset of bags, is to train a classifier
for instance labels. Theoretically, Blum and Kalai [1998]
proved that noise tolerant PAC learnability implies MIL
PAC learnability for iid bags, and generalization bounds for
the classification error on bags were provided by Sabato and
Tishby [2012]. Methods including logistic regression, max-
imum likelihood and boosting with differentiable approxi-
mations to the OR function [Ray and Craven, 2005, Ramon
and De Raedt, 2000, Zhang et al., 2005] have been proposed.
Diverse-density (DD) method [Maron and Lozano-Pérez,
1997] and its EM-based variant, EM-DD [Zhang and Gold-
man, 2001] are specialised MIL techniques. Over the years
this approach has found many applications in numerous
areas, including drug discovery [Maron and Lozano-Pérez,
1997], analysis of videos [Sikka et al., 2013], medical im-
ages [Wu et al., 2015], time series [Maron, 1998] and
information retrieval [Lozano-Pérez and Yang, 2000].

Learning from Label Proportions (LLP). A variety of
specialized LLP methods have been introduced till date:
de Freitas and Kück [2005] and Hernández-González et al.
[2013] developed MCMC techniques, Musicant et al. [2007]
adapted traditional supervised learning techniques like k-
NN and SVM, while clustering based methods were pro-
posed by Chen et al. [2009] and Stolpe and Morik [2011].
Further, Quadrianto et al. [2009] and Patrini et al. [2014] de-
vised specialized learning algorithms using bag-label mean
estimates, and Yu et al. [2013] developed an SVM approach
with bag-level constraints. Newer methods involve deep
learning [Kotzias et al., 2015, Dulac-Arnold et al., 2019,
Liu et al., 2019, Nandy et al., 2022] and others leverage
characteristics of the distribution of bags [Saket et al., 2022,
Zhang et al., 2022, Chen et al., 2023, Busa-Fekete et al.,
2023]. The theoretical foundations of LLP were investi-
gated by Yu et al. [2014], who defined the problem within
the PAC framework and established bounds on the general-



ization error for the label proportion regression task. Recent
work by Saket [2021], Saket [2022] and Brahmbhatt et al.
[2023] addressed bag-classification using linear classifiers,
providing algorithmic and hardness bounds. Applications
of LLP include privacy in online advertising [O’Brien et al.,
2022], high energy physics [Dery et al., 2017] and IVF
predictions [Hernández-González et al., 2018].

Boosting. The first boosting algorithm was given by
Schapire [1989] which was followed by a more efficient
algorithm by Freund [1990] and subsequently the famous
AdaBoost algorithm [Freund and Schapire, 1995]. Further
work [Chen and Guestrin, 2016, Warmuth et al., 2008, Fre-
und, 2001] resulted in the development of several boost-
ing techniques, while Mason et al. [1999] showed that sev-
eral boosting algorithms (including AdaBoost [Freund and
Schapire, 1995] and LogitBoost [Friedman et al., 2000]) im-
plicitly perform gradient descent in the functional space and
fall into the AnyBoost framework. Related techniques in-
clude ensemble methods such as bootstrapping aggregation
(bagging) and stacking [Mienye and Sun, 2022].

If we consider bags themselves as examples, one can directly
apply existing boosting frameworks to obtain strong bag-
level classifiers (see for e.g. [Lai et al., 2023]). However,
our goal is to obtain feature-vector level strong classifiers
with high accuracy on bags. Previous works have adapted
a subset of the above mentioned boosting approaches to
LLP [Viola et al., 2005, Auer and Ortner, 2004, Qi et al.,
2018] – however they are empirically evaluated heuristics
and not guaranteed to output strong classifiers. For MIL,
Sabato and Tishby [2012] show that an accurate instance-
level PAC-learner can be used as an oracle in a boosting
subroutine to obtain an MIL PAC-learner. Our results on the
other hand rule out boosting weak MIL learners to strong
MIL learners, and are complementary to the algorithmic
results of Sabato and Tishby [2012].

1.2 PROBLEM DEFINITION AND OUR RESULTS

Let X ⊆ Rd for some d ∈ Z+ be the space of feature-
vectors, while a bag B is a finite subset of X . Let Y ⊆ R be
the space of feature-vector labels, andY ⊆ R be the space of
bag-level aggregate labels with some aggregation function
Agg mapping finite Y-valued tuples to Y . We say that a
bag B = (x1, . . . ,xq) with aggregate label σ is satisfied
by a classifier f : X → Y if Agg(f(x1), . . . , f(xq)) = σ.
For convenience we will use bag to refer to a bag and its
aggregate-label. We illustrate this in Figure 1.

An m-sized training set B is a collection {(Bj , σj) ∈
2X × Y}mj=1 of m bags and their aggregate-labels along
with weights wj ≥ 0 for bag Bj (j = 1, . . . ,m) such that∑m

j=1 wj = 1. The accuracy of a classifier on B is the
weighted fraction of bags satisfied by it. For bags without
weights i.e., the unweighted case, each bag is assumed to

have the same weight (1/|B|).

We define a weak classifier to be one with constant accuracy
γ > 0, and a ν-strong classifier to have an accuracy (1− ν).
For ease of exposition we call the latter a strong classifier
when ν can be taken to be an arbitrarily small positive
constant.

For this study, the underlying feature-vector level task is
binary classification, so Y = {0, 1}. For multiple instance
learning (MIL) the aggregation function is OR and therefore
Y = {0, 1}. On the other hand, in learning from label pro-
portions (LLP) we take the aggregation function to be SUM
i.e., the real sum of labels, and therefore Y = {0, 1, 2, . . . }.
Note that for LLP we could have equivalently taken aver-
age as the aggregation (since the size of any bag is known),
however for convenience we use SUM.

We also define the TrvLLP(B) for a collection of LLP bags,
to denote the trivial accuracy threshold on B. Specifically,
it is the minimum weighted accuracy given by the best
among the random classifier and the two constant valued
classifiers (all 0s and all 1s classifiers), over all possible
weight assignments to the bags B. For a collection of MIL
bags B, TrvMIL(B) is defined analogously.

We shall also use the halfspace classifier whose value at
point x ∈ Rd is given by pos (〈r,x〉+ c) for some r ∈
Rd, c ∈ R where pos(a) = 1 if a > 0 and 0 otherwise.
We say that the halfspace passes through the origin i.e., is
homogeneous if c = 0. Next we state this paper’s results.

1.2.1 Our Results

We begin with the impossibility results for boosting in the
LLP (Theorem 1.1) and MIL (Theorem 1.2) settings. These
theorems coupled with the definition of the boosting meta
algorithm (Section 2.1) imply our impossibility results.

Theorem 1.1 (Impossibility of boosting in LLP). Let α ∈
[1/2, 1) be any constant. Then, for any arbitrarily small
constant ε > 0 there exist positive integers d,m and a
collection of bags B = {Bj ⊆ Rd}mj=1 where |Bj | = 2
and the aggregate label (i.e. sum of labels in LLP setting)
of Bj is 1 (j = 1, . . . ,m) and the following properties are
satisfied:

(Existence of weak halfspace classifiers): For any assign-
ment of weights wj to Bj (j = 1, . . . ,m) such that∑m
j=1 wj = 1, for the weighted collection of bags there

is a halfspace classifier with accuracy α.

(No Strong Classifier): For the unweighted set of bags
{Bj ⊆ Rd}mj=1 there is no classifier f : ∪mj=1Bj → {0, 1}
having accuracy greater than α+ ε.

The above theorem, proved in Section 3, is optimal from
multiple perspectives: firstly the bags are of size at most 2
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Figure 1: Aggregate Labels

whereas when bags are all of size 1 (i.e., supervised learn-
ing) boosting is indeed possible, showing that as soon as we
transition from the fully supervised to the LLP setting in
terms of bag size, boosting becomes impossible. Secondly,
the result shows that even if weak learners of any constant
accuracy in [1/2, 1) exist, there is no classifier with even a
slightly greater accuracy, by applying the theorem taking α
as the accuracy and ε the slight increment in the accuracy
to be ruled out. This rules out any non-trivial advantage
of boosting, let alone the possibility of obtaining a strong
classifier. In Appendix A we give a simple argument show-
ing that TrvLLP(B) = 1/2 for the bags B constructed in the
above theorem. We now state our result on the impossibility
of boosting in the MIL setting.

Theorem 1.2 (Impossibility of boosting in MIL). For any
arbitrarily small constant ε > 0 there exists positive integer
m and a collection of bags B = {Bj ⊆ Rd}mj=1 along
with the aggregate labels σj for Bj where |Bj | = 2 (j =
1, . . . ,m) and the following properties are satisfied:

(Existence of weak halfspace classifiers): For any assign-
ment of weights wj to Bj (j = 1, . . . ,m) such that∑m
j=1 wj = 1, for the weighted collection of bags there

is a halfspace classifier with accuracy 2/3− ε.

(No Strong Classifier): For the unweighted set of bags
{Bj ⊆ Rd}mj=1 there is no classifier f : ∪mj=1Bj → {0, 1}
having accuracy greater than 3/4.

The above theorem, whose proof is deferred to Appendix
B, shows that in the MIL setting, weak classifiers with any
accuracy< 2/3 cannot be boosted to a strong classifier with
accuracy > 3/4. As shown in Appendix A, TrvMIL(B) =
1/2 for the bags B of the above theorem, and therefore
our result applies to non-trivial weak classifier accuracy in
(1/2, 2/3).

Next we state our results (proved in Section 4) in the LLP
setting for obtaining a strong classifier on a collection of

original bags using a weak classifier on a derived collec-
tion of larger, composite bags. In this case we consider
unweighted collection of bags, since a weighted collection
of m bags can easily be converted into an unweighted col-
lection of Tm bags while preserving the accuracy of any
classifier up to an additive error of O(1/T ) (see Appendix
C). To state our result we assume that there is an oracle
Oq,α(B) which given weighted collection of bags B along
with their aggregate labels, where each bag has size at most
q, outputs a classifier f with weighted accuracy α on B.

Theorem 1.3 (Weak to Strong LLP Learning). For param-
eters α, ε > 0 there exists t = O(1/(εα2)), and algorithms
A1 and A2 s.t. given an unweighted collection of m bags
B, where k = max(B,σ)∈B |B| and n :=

∣∣∪(B,σ)∈BB∣∣, and
assuming that Okt,α exists,

• A1 creates a weighted collection B1 of at most mt+1

bags each of size at most kt such that Okt,α(B1) outputs
a classifier which has accuracy (1− ε) on B.

• for any δ > 0, A2 creates a random collection B2 of s =
O
(
1
α

(
n+ log

(
1
δ

)))
each of size at most kt such that

Okt,α(B2) has accuracy (1− ε) on B with probability at
least (1− δ). IfOkt,α is guaranteed to output a classifier
of VC dimension r then s = O

(
r
α log

(
n
r

)
+ log

(
1
δ

))
suffices.

Theorem 1.3 presents algorithms that, when applied to col-
lections of original bags in the LLP setting, yields high-
accuracy classifiers by employing weak classifiers trained
on a reasonably sized collections of composite bags. This
can in particular be achieved by an efficient randomized
algorithm A2. We also conduct experiments (see Section
5) – on both real and synthetic datasets – to demonstrate
the effectiveness of A2. We use it to construct a limited
collection of composite bags from a given collection of orig-
inal bags and experimentally show that a weak classifier
on the composite bags yields one with significantly higher
accuracy on the constituent original bags.



1.3 OVERVIEW OF TECHNIQUES

Impossibility of Boosting in LLP (Theorem 1.1). Our con-
struction follows from the well-known semi-definite pro-
gramming (SDP) integrality gap of Feige and Schechtman
[2002] for the Max-Cut problem. In this, for some arbitrar-
ily small ε > 0, with d depending on ε, the vertices of the
graph are given by points on the (d− 1)-dimensional unit
sphere Sd−1. For any constant α ∈ [1/2, 1), each edge is
between points that are at an angle of at least απ. Using tech-
niques related to spherical isoperimetry and concentration
of measure in high dimensions, the authors prove that there
is no cut in the graph separating more than (α+ ε)-fraction
of the edges. By creating a 2-sized bag corresponding to
each edge with latter’s two end-points being the bag’s two
feature-vectors, we create a collection of bags, and for each
one we assign an aggregate label 1 i.e., any bag is satisfied if
exactly one of its feature-vectors is labeled 1 or equivalently
the corresponding edge is separated. The cut upper bound
of (α + ε) thus directly gives us the upper bound on the
best possible accuracy of any classifier. On the other hand,
since the angle between the feature-vectors of any edge is
at least απ, a random halfspace passing through the origin
– given by pos

(
rTx

)
for a random unit vector r – has ex-

pected accuracy α for any weight assignment to the bags,
and therefore there is some halfspace achieving accuracy α.

Impossibility of Boosting in MIL (Theorem 1.2). Since
the aggregation function is OR the Max-Cut construction of
Feige and Schechtman [2002] is not applicable. Instead we
hand-craft the set of bags as follows. The set of feature-
vectors is all points on the unit circle S1 and for some
α ∈ (1/2, 1), we create a bag with two points if the an-
gle between them is exactly απ and give an aggregate label
1 to all such two sized bags (let us call them 1-bags). We also
construct 2-sized bags with aggregate label 0 when the angle
between two points is exactly (1−α)π (called as 0-bags). If
we consider any reweighted collection of these bags then a
simple threshold based case-analysis yields weak classifier
of accuracy 2/3− (1− α)/2. To rule out any strong classi-
fier, we consider a labeling where z-fraction of the points in
S1 are labeled as 1. We show that the maximum accuracy
possible is 3/4 which is achieved at z = 1/2. We choose
α = 1 − ε while losing an additional error of ε/2 in the
weak-classifier accuracy due to discretization to obtain the
desired bounds.

Weak to Strong LLP Learning (Theorem 1.3). The main
idea is, given a collection of original bags B, to construct
all possible composite bags which are unions of up to t
bags from B. Note that the aggregate label for the union is
simply the sum of the aggregate labels of the constituent
bags, and the error of a classifier w.r.t. the aggregate label
on the union of bags is the sum of errors on the constituent
bags. Let f be a classifier with accuracy γ > 0 on the
composite bags, and assume for a contradiction that f has

accuracy less than (1 − ε) on B, for some ε > 0. Call the
bags in B on which f has a non-zero error ∈ Z \ {0} w.r.t.
the aggregate label, as the error bags. Now, if t is large
enough then a random set of t bags from B has, with high
probability ≈ εt error bags. Using a sampling argument we
show that the error on the union of t random bags from B is
distributed like a random Bernoulli combination of the errors
on ≈ 2εt bags. We then apply the Littlewood-Offord-Erdős
anti-concentration lemma to obtain that with probability at
least (1−O(1/(

√
εt)), the union of the bags has non-zero

error induced by f . By choosing t large enough we obtain a
contradiction with the accuracy of α on the composite bags.
Standard sampling techniques can be applied to obtain a
more efficient procedure with high probability guarantees.

We also note here that the above algorithmic techniques
are inapplicable to the MIL setting (see Appendix A.1).
In Appendix A.2 we informally describe how are results
and techniques can be applied to multi-class classification
settings of LLP and MIL, in which the aggregate label of a
bag is a histogram over the label-set.

2 PRELIMINARIES

Lemma 2.1 (Chernoff Bounds). Let X =
∑n
i=1Xi, where

Xi = 1 with probability pi and Xi = 0 with probability
1 − pi, and all Xi are independent. Let µ = E(X) =∑n

i=1 pi. Then (i) Lower Tail: Pr[X ≤ (1 − η)µ] ≤
e−η

2µ/2 ∀ 0 < η < 1, and (ii) Upper Tail: Pr[X ≤
(1 + η)µ] ≤ e−η2µ/(2+η) ∀ 0 ≤ η.

Lemma 2.2 (Littlewood-Offord-Erdős Lemma Erdös
[1945]). Let X1, X2, . . . , Xn be i.i.d {0, 1}-Bernoulli ran-
dom variables with Pr[1] = 1/2, and let a1, a2, ..., an ∈ R
s.t. |ai| ≥ 1, ∀i ∈ [n]. Then, there exists an absolute con-
stant C > 0 such that

Pr
X1,...,Xn

∣∣∣∣∣∣
∑
i∈[n]

aiXi + θ

∣∣∣∣∣∣ ≤ 1

 ≤ C√
n

for any constant θ.

Theorem 2.3 ( Theorem 3.7 from Anthony and Bartlett
[1999]). For a {0, 1}-valued classH of functions with VC-
dimension VC-dim(H) = v, let ΠH(n) denote the max-
imum number of possible {0, 1}-labelings to any set of n
points from the domain ofH. If n ≤ v, ΠH(n) ≤ 2n and for
n > v, ( env )v. Refer to Section 3.3 of Anthony and Bartlett
[1999] for more details on VC Dimension.

2.1 BOOSTING META ALGORITHM FOR
AGGREGATE LABEL SETTING

Given a collection of bags and aggregate labels, a proto-
typical boosting algorithm (given in Figure 2) in the ag-
gregate label setting, involves repeating certain steps over



some number of rounds: in each round the training data is
reweighed, for which a weak classifier is computed. The
final output is some function over the ensemble of computed
weak classifiers.

Input: B = (Bi, ȳi)
m
i=1: Collection of bags and aggregate

labels, D1(i) = 1/m: initial weight distribution associated
with each bag, T : Number of steps of boosting.
1. for t ∈ [T ]:

1.1 Train a weak classifier ht : X −→ {0, 1} for the
bag distribution Dt.

1.2 Using {hr}tr=1, compute a new distribution Dt+1

over B.

2. For some g, output h∗ = g(h1, . . . , hT ) as a (pre-
sumably) strong classifier for B.

Figure 2: Boosting for aggregate label setting

Note that bootstrapping aggregation (bagging) ensemble
method [Mienye and Sun, 2022] can also be framed as a
boosting algorithm. This is because the weak learners in
bagging are trained in parallel using independent samples
from the training data. This fits the iterative framework of
boosting, where each iteration can be made independent of
the rest, using an independent random sample of the training
data which is a special reweighting of the dataset. Stacking
ensemble methods [Mienye and Sun, 2022], which are more
general than bagging as they allow heterogeneous parallel
weak learners, also align with the boosting meta-algorithm.
Therefore, the impossibility results applies to bagging and
stacking as well.

3 IMPOSSIBILITY OF BOOSTING IN
LLP

The Max-Cut problem is: given an undirected graphG(V,E)
find a cut given by the assignment g : V → {0, 1} which
separates the maximum number of edges in E i.e., max-
imizes |{e = {u, v} ∈ E|g(u) 6= g(v)}|. We shall use the
following construction of graph GFS(VFS, EFS) given in Sec.
3.1 of Feige and Schechtman [2002]:

Construction. Let απ = θ ∈ [π/2, π) and ε > 0 be an
arbitrarily small parameter such that θ + επ < π. Let d =
O(1/ε log(1/ε)) and γ = ε2/(2d). Divide the (d − 1)-

dimensional unit sphere Sd−1 into
(
O(1)
γ

)d
equal sized cells

of diameter at most γ each (this is shown to be possible in
Lemma 21 of Feige and Schechtman [2002]). From each
cell pick an arbitrary point v and add it to VFS. Add an edge
{u,v} to EFS for each pair of points u,v ∈ VFS whose
angle is between θ and θ + ε.

Section 3.1 of Feige and Schechtman [2002] shows1 that

Pr
{u,v}∈EFS

[g(u) 6= g(v)] ≤ θ/π+O(ε2) = α+O(ε2) (1)

for any g : VFS → {0, 1}.

3.1 PROOF OF THEOREM 1.1

Let GFS(VFS, EFS) be the graph constructed above using
θ = απ ∈ [π/2, π) and let ε taken to be the same as that in
the statement of Theorem 1.1. Taking VFS to be the underly-
ing set feature-vectors, let the set of bags B be EFS i.e., each
edge {y,v} is a bag. All aggregate labels are 1, so that any
bag is satisfied by g : VFS → {0, 1} iff the corresponding
edge is separated by g.

Now, for any bag {u,v} in B, from the construction of
GFS(VFS, EFS), the angle between u and v is at least θ. Thus,
a random homogeneous halfspace (given by pos

(
rTx

)
for

r chosen uniformly at random from Sd−1) satisfies the bag
with probability at least θ/π = α.

Thus for any assignment of weights wB for
bags B ∈ B, the expected weight of bags sat-
isfied by a random homogeneous halfspace is∑
B wB Prr←Sd−1

[
B is satisfied by pos

(
rTx

)]
=

α
∑
B wB by linearity of expectation. Therefore, there is

one classifier with weighted accuracy α.

The upper bound on the accuracy of any classifier on B
follows directly from (1) and small enough ε > 0.

4 WEAK TO STRONG CLASSIFICATION
IN LLP

Given α, ε > 0 we set t to be 32
ε

(
C0

α

)2
where C0 > 0 is

an absolute constant to be decided. We begin by defining
in Fig. 3 a distribution D over bags (B, σ) where B is the
union of at most t bags from B and σ is the sum of their
aggregate labels.

To aid our subsequent analysis we shall use the following
straightforward lemma.

Lemma 4.1. For κ ∈ [0, 1] and any subset
S ⊆ B s.t. |S| ≥ κ|B|, in Step 1. of Fig. 3,
Pr [|{i | (Bi, σi) ∈ S)}| < κt/2] ≤ exp(−κt/8).

Proof. Since each (Bi, σi) independently be-
longs to S w.p. κ, Pr[(Bi, σi) ∈ S] ≥ κ and
therefore µ := E [|{i | (Bi, σi) ∈ S)}|] ≥ κt.
Thus, Pr [|{i | (Bi, σi) ∈ S)}| < κt/2] ≤
Pr [|{i | (Bi, σi) ∈ S)}| < µ/2] ≤ exp(−µ/8) ≤
exp(−κt/8), where we use the Chernoff Tail Bound

1While Feige and Schechtman [2002] state the proof of (1) for
a specific value of θ, the proof applies to all values of θ ∈ [π/2, π).



Input: : Bags B, t.
Steps:

1. Independently for i = 1, . . . , t, let Pi = (Bi, σi) where
(Bi, σi) is sampled u.a.r. from B.

2. Independently for i = 1, . . . , t: set Qi = Pi w.p. 1/2
and setQi = ? w.p. 1/2.

3. Output (B, σ) where

B =
⋃

{i | Qi=(Bi,σi)6=?}

Bi, σ =
∑

{i |,Qi=(Bi,σi)6=?}

σi

(2)

Figure 3: Distribution D.

(Lemma 2.1) using η = 1/2 and the lower bound of κt for
µ.

4.1 ANALYSIS FOR A FIXED CLASSIFIER h

We prove the following lemma.

Lemma 4.2. Let h : X → {0, 1} be a classifier such that
h has accuracy < (1− ζ) on B. Then,

Pr
(B,σ)←D

∑
x∈B

h(x) = σ

 ≤ C0/
√
ζt+ exp(−ζt/8)

for some absolute constant C0 > 0.

Proof. Let Berr be the error bags (B, σ) ∈ B on which∑
x∈B h(x) 6= σ, so that |Berr| ≥ ζ|B|. For convenience,

we shall abuse the notation h(B) to denote
∑

x∈B h(x), and
therefore, for an error bag B, |h(B)− σ| ≥ 1. Depending
on the choices in Step 1. of Fig. 3, define the set I := {i |
(Bi, σi) ∈ Berr)} and let E0 be the event that the following
occurs: {|I| ≥ ζt/2}. Further, let E1 be the event that the
LHS of the following equivalence occurs:

h(B) = σ̄ ⇔
∑

{i |,Qi=(Bi,σi)6=?}

(h(Bi)− σi) = 0 (3)

where (B, σ) is the output in Step 3. Now,

Pr[E1] = Pr[E1|E0] Pr[E0] + Pr[E1|¬E0] Pr[¬E0]

≤ Pr[E1|E0] + Pr[¬E0]

Since |Berr| ≥ ζ|B|, Lemma 4.1 yields that Pr[¬E0] ≤
exp(−ζt/8). On the other hand, fix the set I and bags
{(Bi, σi)}i∈I and let ai := h(Bi)−σi (i = 1, . . . t). Defin-
ing {Xi | i ∈ I} to be i.i.d {0, 1}-valued Bernoulli random
variables which are 1 w.p. 1/2, we obtain that Pr[E1] =
Pr[
∑
i∈I aiXi = 0] ≤ C/

√
|I| by applying Lemma 2.2.

Therefore, Pr[E1|E0] ≤ C/
√

(ζ/2)t and using the above
bounds, Pr[E1] ≤ C/

√
(ζ/2)t+ exp(−ζt/8).

4.2 DETERMINISTIC ALGORITHM A1

Input: : Bags B, k = max(B,σ)∈B |B|, α > 0, t, oracle
Okt,α.
Steps:

1. Let supp(D) be the support of D (Fig. 3), and for each
(B, σ) ∈ supp(D) let its weight w(B,σ) be its probabil-
ity under D. Let B be supp(D) with weights w(B,σ).

2. Output the classifier h∗ given by Okt,α(B).

Figure 4: Algorithm A1.

Figure 4 describes algorithm A1 using2 the distribution
D defined in Figure 3. Suppose for a contradiction that
the output h∗ of A1 has accuracy < (1 − ε) on B. Then,
from Lemma 4.2 we obtain that the probability that (B, σ)
sampled from D is satisfied by h∗ is at most C0/

√
εt +

exp(−εt/8) which – upon plugging in the value of t – is at
most α/2 which contradicts the accuracy of h∗ on B.

We next describe a more efficient, albeit randomized, variant
of the algorithm.

4.3 RANDOMIZED ALGORITHM A2

Figure 6 provides the algorithmA2. Fix any h that has accu-
racy< (1−ε) on B. Then, by Lemma 4.2, and our setting of
t we obtain that Pr(B̂,σ̂)←D[(B̂, σ̂) satisfied by h] ≤ α/2.
Therefore, in Step 1 of A2 it is easy to see by monotonicity
that

Pr
[∣∣∣{j ∈ [s] | (B̂j , σ̂j) satisfied by h}

∣∣∣ ≥ αs] ≤
P

[
s∑
`=1

X` ≥ αs

]
(4)

where each X` (` = 1, . . . , s) is an independent {0, 1}-
valued Bernoulli random variable taking value 1 with prob-
ability α/2. Therefore, using Chernoff Upper Tail bound
from Lemma 2.1 we can upper bound the LHS of (4) by
exp(−αs/6) which is the upper bound on the probability
that h has accuracy ≥ α on B̂.

Let C be the classifier class to which the output of Okt,α
is guaranteed to belong. With n being the total number of
distinct feature-vectors in the bags B, ΠC(n) (as given in
Theorem 2.3) is the number of possible {0, 1}-assignments
to n points induced by classifiers in C. Taking a union-
bound over all of them, we obtain that with probability at
most ΠC(n)exp(−αs/6) the output of A2 has accuracy at
least (1− ε) on B.

2We include in Appendix D an explanation on computing the
probabilities under D.



Model Training 
on Large Bags 

Model 
ℳ

Given a collection of q-sized bags 
(small)
[feature-vectors in bag, bag-label]

Inference small-bags mapped 
to inferred labels:  ℳ is a strong 
classifier for small-bags.

Sample s composite (large) bags by 
sampling from distribution 
[feature vectors in the large bag, 
large-bag label = sum of constituent 
small-bag labels]

Weak Classifier on Composite 
Bags( Large)D ̅

Figure 5: Overview of our proposed randomized algorithm for obtaining strong classifiers on original bags using a weak
classifier on composite bags.

Input: : Bags B, k = max(B,σ)∈B |B|, α > 0, t, oracle
Okt,α, s ∈ Z+.
Steps:

1. Let B̂ = {(B̂j , σ̂j)}sj=1 be s i.i.d. samples from D
(Fig. 3).

2. Output the classifier h̃ given by Okt,α(B̂).

Figure 6: Algorithm A2.

When C is unrestricted then ΠC(n) ≤ 2n and there-
fore ΠC(n)exp(−αs/6) ≤ δ is ensured by taking
s = O ((n+ log(1/δ))/α). On the other hand if the
VC dimension of C is at most r, then ΠC(n) ≤
(en/r)r (from Theorem 2.3) , and therefore taking s =
O
(
r
α log

(
n
r

)
+ log

(
1
δ

))
suffices.

We include Figure 5 illustrating how our algorithm trains
a strong classifier for original (small) bags using a weak
classifier trained on composite (large) bags.

5 EXPERIMENTS

In our experiments, we generate a collection of original q-
sized bags as training data using fully supervised datasets.
We use a fixed value of q ∈ {5, 15}.

Synthetic Datasets. In this case we experiment in the real-
izable setting for which we select a random linear classifier
f∗ passing though the origin to provide {0, 1}-labels to
the feature-vectors. For a given bag-size q ∈ {5, 15}, we
generate two types of bag collections as follows:

1. Random: In this case each q-sized bag is created by ran-
domly sampling points uniformly from the unit sphere
as its constituent feature vectors.

2. Hard Bags: For these bags we first randomly construct
pairs of points on the unit-sphere which are either (i) very
close but have different labels under f∗, or (ii) nearly
antipodal but have the same label. Each bag consists of
several such randomly constructed pairs and one random

point (since q is odd).

In both the above cases, the aggregate label of a bag is the
sum of the labels of its feature-vectors given by f∗.We also
have a test-set of labeled feature-vectors whose distribution
is given by sampling each u.a.r. from a random training bag.

Real Datasets. We use the following supervised UCI
datasets: Heart (303 instances, [Janosi and Detrano, 1988]),
Australian (690 instances, [Quinlan]) and Adult (48842 in-
stances, [Becker and Kohavi, 1996]) which have previously
been used by Patrini et al. [2014] to evaluate LLP methods.
The feature-vector labels are available and the bags are cre-
ated by partitioning the training-set into -sized bags. The
test-set is given by a random subset of 15% of the dataset.

Applying Algorithm A2. For each collection of training
bags, and an appropriate choice of t and s (see Figure 6) we
create a collection of s composite bags by sampling each
iid from the distribution D given in Figure 3.

Model Training. We train a linear model g(x) with a sig-
moid activation function on the composite bags using bag-
level MSE loss between the aggregate label of a bag and
its aggregate prediction. In particular, for a composite bag
B and aggregate label σ the contribution to the loss is(
σ −

∑
x∈B g(x)

)2
. and the total loss is the sum over the

composite bags in collection. The optimization is done using
a mini-batch training with 512 bags in each mini-batch. The
learning rate is 1e-2 with SGD optimizer for all experiments,
and the model is trained till it reaches convergence on the
instance-level test set.

Results. Tables 1 and 2 have the experimental results for the
synthetic, Heart, Australian and Adult datasets respectively.
For each setting of q, t and s, we report the mean accuracy
and standard deviation on the training set for both composite
bags and their constituent original bags, along with the
accuracy on test instances, averaged over 15 runs. The main
takeaways from the experimental results are:

1. In all experiments, even with low accuracy on composite
bags we obtain classifiers with high accuracy on the
constituent original bags and even higher accuracy on the



Table 1: Results on the Synthetic Datasets.

q t s
Random Bags Hard Bags

Composite Original Test Instance Composite Original Test Instance

5
10

5000 52.891± 5.196 85.357± 3.085 96.067± 1.218 32.629± 3.439 68.374± 4.428 91.120± 1.978
15000 72.295± 5.275 93.089± 2.057 97.840± 0.829 47.276± 5.241 81.802± 3.789 95.160± 1.365

50
5000 21.330± 3.110 85.513± 3.434 96.453± 0.780 12.789± 2.192 68.463± 5.828 91.427± 1.785

15000 32.890± 5.032 93.076± 1.466 97.867± 0.626 18.311± 2.544 82.562± 3.637 95.560± 1.299

15
10

5000 21.792± 3.189 50.133± 7.520 93.037± 1.674 14.731± 2.337 31.600± 5.138 86.855± 2.638
15000 32.259± 3.444 68.733± 4.334 96.566± 0.890 17.115± 1.501 40.067± 5.189 89.939± 1.921

50
5000 8.674± 1.537 52.400± 7.079 93.778± 2.060 5.252± 1.715 34.000± 5.438 85.657± 3.132

15000 11.106± 3.042 67.467± 4.389 96.067± 1.412 6.409± 1.457 40.800± 6.753 91.677± 2.336

Table 2: Results on the Real Datasets.

q t s Composite Bags Original Bags Test Instance

Heart

5
10 2500 24.207± 4.418 55.407± 8.419 79.911± 4.349

10000 31.337± 5.363 65.333± 8.516 77.956± 3.767

50 2500 5.356± 2.715 47.407± 8.172 78.400± 3.676
10000 9.128± 3.192 59.556± 8.021 77.689± 5.622

15
10 2500 12.950± 7.030 35.111± 15.006 71.378± 7.870

10000 20.539± 8.041 49.778± 16.498 69.156± 7.089

50 2500 0.803± 1.521 26.222± 16.226 73.867± 5.829
10000 1.946± 2.143 30.667± 10.328 72.178± 6.852

Australian

5
10 3500 24.956± 3.709 55.962± 5.783 84.275± 2.626

10000 29.774± 2.600 62.692± 4.319 84.039± 1.999

50 3500 5.454± 4.127 53.846± 9.449 82.039± 3.015
10000 9.303± 2.806 58.141± 6.510 82.431± 2.837

15
10 3500 10.396± 4.906 28.190± 8.072 75.313± 6.233

10000 15.746± 4.950 37.524± 10.792 78.222± 5.824

50 3500 0.257± 0.596 24.190± 7.233 74.707± 5.073
10000 1.342± 1.910 30.095± 8.215 77.657± 4.000

Adult

5
10 10000 11.169± 1.156 41.418± 2.684 80.234± 2.526

80000 17.055± 0.591 47.873± 0.716 83.802± 0.243

50 10000 0.168± 0.148 34.396± 2.668 75.651± 3.222
80000 2.161± 0.306 46.835± 1.060 83.111± 0.831

15
10 10000 1.515± 0.853 13.000± 1.970 76.005± 3.249

80000 5.801± 0.760 22.878± 1.316 83.461± 0.822

50 10000 0.001± 0.003 8.797± 5.715 75.077± 2.638
80000 0.044± 0.036 21.498± 0.667 82.185± 0.908

instance-level test set. For example, on synthetic random
bags with q = 5, t = 50 and s = 5000, an accuracy
of just 21.3% on composite bags yields an accuracy of
85.5% on original bags and 96.4% on the test set. On the
Adult dataset, with q = 15, t = 50 and s = 80000, with
accuracy of just 0.044% on composite bags, we obtain a
classifier with accuracy of 21.5% on original bags and
82.2% on the test set.

2. For a given q and t, increasing the number of composite
bags s improves performance across the board, consistent
with our theoretical bounds.

3. The bag-level performance scores are noticeably lower
on the hard bags case as compared to the random bags
case, even though both are from the realizable setting.

4. Accuracy scores on composite bags decrease with in-
creasing q or t. This is understandable since this results
in increased size of composite bags, making them more
difficult to satisfy.

The above observations, especially points 1 and 2, demon-
strate that Algorithm A2 does indeed provide a way to use
weak classifiers on composite bags to obtain strong classi-
fiers on original bags, which in turn are strong classifiers at
the instance-level. The scalability of our techniques is also
validated by the experiments on the substantially sized Adult
dataset. Each of these experiments on a standard GPU/CPU
took less than 12 hrs, and most completed within an hour3.
For each dataset, the original bags were fixed, and composite
bags were sampled for each repeated run of the experiment.
For the synthetic, Heart, and Australian datasets, the model
was trained for 160 epochs, while for the Adult dataset, it
was trained for 60 epochs. Each experiment was run on a
single NVIDIA A100 40GB GPU and 2x Intel Broadwell 22
cores 44 threads CPU. In Appendix E, we include additional
experiments for training on the original bags.

6 CONCLUSION

In conclusion, our study is the first to demonstrate the im-
possibility of boosting weak classifiers to a strong classifier
in the LLP and MIL settings. For LLP our work rules out
boosting using weak classifiers of any accuracy < 1, while
for MIL the possibility of boosting weak classifiers with ac-
curacy < 2/3 is eliminated. Complementing these findings
in the LLP context, we propose an algorithm that converts
a weak classifier for composite bags into a strong classifier
for an input collection of original bags. The algorithm con-
structs unions of constantly many original bags to achieve
error amplification. A more efficient sampling based version
of the same provides high probability guarantees, which
we also experimentally validate on three real and two syn-
thetic datasets. Future work includes ruling out boosting
for MIL using weak classifiers with accuracy in [2/3, 1).
A related question remains on how to effectively obtain a
strong classifier in the MIL setting on using weak classifiers
on composite bags.

3The experimental code for the paper is available at
https://github.com/google-deepmind/wtos_
agglabels_uai25

https://github.com/google-deepmind/wtos_agglabels_uai25
https://github.com/google-deepmind/wtos_agglabels_uai25
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A TRIVIAL ACCURACY IN THE LLP AND MIL

First consider the LLP bags B from Theorem 1.1, each bag is of size 2 with aggregate label 1 i.e., it is satisfied if exactly one
of its feature-vectors is labeled 1. Now consider just one bag from B. This bag is not satisfied by the constant 0 or constant 1
classifier. On the other hand the expected accuracy of random labeling is 1/2, and therefore TrvLLP(B) = 1/2.

Next, let B be the MIL bags from Theorem 1.2. These are bags of size 2 each and some of them have aggregate label 0 and
some have aggregate label 1. Consider just two bags one with aggregate label 0 and the other with aggregate label 1. Now,
the constant a labeling satisfies the bag with aggregate label a and does not satisfy the bag with aggregate label (1− a), for
a ∈ {0, 1}. On the other hand the random labeling satisfies the 0 aggregate label bag with probability 1/4 and the bag with
aggregate label 1 with probability 3/4. Thus, the expected number of bags satisfied is the random labeling is 1. Therefore,
TrvMIL(B) = 1/2.

A.1 INAPPLICABILITY OF BAG COMPOSITION FOR WEAK TO STRONG LEARNING IN MIL

Suppose we are given a classifier on the original small bags with accuracy bounded away from 1. In LLP, when we form
composite bags, each as a union of several randomly chosen original bags, we obtain an erroneous prediction on most of the
composite bags thus formed. Our LLP algorithm uses this error-gap amplification. However, in MIL, the union of several
randomly chosen original bags will give a bag-label of 1 even if one of the constituent original bags has bag-label 1. This
would happen with high probability when a significant number of original bags have bag-label 1. Thus, taking large unions
would result in most bags having bag-label 1 and therefore the constant predictor will have a high accuracy, even if it has
low accuracy on the original bags.

A.2 EXTENSION OF OUR RESULTS TO MULTI-CLASS CLASSIFICATION

Our results on the impossibility of boosting (Theorems 1.1, 1.2) rule out boosting in LLP and MIL for binary classification
and since this is a special case of the multi-class setting, they also rule out boosting in the multi-class setting. Our algorithmic
results (Theorem 1.3) are also for binary classification. However, they can be extended to multi-class classification. For this
we can define LLP in the multi-class setting, where the bag-label is a histogram over label-set, and a bag is satisfied if the
predicted label histogram matches its bag-label. The algorithms will be the same, up to change in parametric dependencies
on the label-set size. The application of Lemma 2.2 can be done separately for each label along with a union bound over the
error probability.

B IMPOSSIBILITY OF BOOSTING IN MIL

Along similar lines as the previous section, we provide a geometric construction of MIL on 2-sized bags. We begin with
a continuous set of points which we analyze and subsequently discretize while preserving its key properties. We fix a
parameter α ∈ (1/2, 1).

Construction. Let X c be set of all points on the unit circle S1. For any two points that subtend an angle of exactly απ we
create a 2-sized bag with aggregate label 1 (we call it a 1-bag) containing those points. Similarly, bags with aggregate label
0 (which we call 0-bags) are formed by pairs of points at an angle of (1− α)π. By mapping a 1-bag to the mid-point of the
smaller arc subtended by the two points in the bag (end-points), and noting that all the 1-bags have unique mid-points, we
obtain that the measure of the set of 1-bags is same as that of S1. Similarly, this holds true for the set of 0-bags. To construct
a measure, define the following bag-sampling procedure: sample a uniform point on the unit circle and randomly output
either the unique 1-bag corresponding to it with probability 1/2 or the unique 0-bag corresponding to it with probability
1/2. In particular, the set of 0-bags and the set of 1-bags are of equal measure. Let Bc be this infinite (continuous) collection
of 1-bags and 0-bags.

Existence of Weak Classifier. Observe that the constant 0 classifier given by pos(−1) will satisfy all 0-bags and none of
the 1-bags.

Now, consider a random homogeneous halfspace given by pos(rTx) for r uniformly sampled from S1. The two points of a
0-bag will not be separated w.p. α and conditioned on this, with probability 1/2 both will be assigned 0, implying that any
0-bag will be satisfied with probability α/2. On the other hand, both the points of a 1-bag will be assigned 0 w.p. (1− α)/2
implying that it will be satisfied w.p. (1 + α)/2.



Let there be any probability measure on Bc s.t. the measure of the 0-bags is p and that of the 1-bags is (1− p). If p ≥ 2/3
then the constant 0 classifier satisfies all the 0-bags yielding an accuracy of p ≥ 2/3. If not, then the random homogeneous
halfspace satisfies in expectation

pα/2 + (1− p)(1 + α)/2 = (1 + α)/2− p/2
≥ 1/2 + α/2− 1/3

= 2/3− (1− α)/2 (5)

Therefore, there is always a weak classifier, for any reweighing of the bags, of accuracy 2/3− (1− α)/2.

No Strong Classifier. Consider any {0, 1}-labeling of S1, where the subset labeled 1 is measurable. Let z ∈ [0, 1] represent
the fraction of points on S1 labeled as 1, with the remaining fraction 1 − z labeled as 0. Sampling a 0-bag uniformly at
random (u.a.r.) and randomly choosing one of its points yields the uniform distribution over S1. Thus, the probability that a
random 0-bag is satisfied is ≤ 1− z. Each point in S1 is an element of exactly two distinct 1-bags, so the probability that in
a random 1-bag at least one of its points is labeled 1 is at most min{2z, 1}.

Therefore, the probability that a random bag from Bc is satisfied by the labeling is at most

1− z + min{2z, 1}
2

=

{
1− z/2 if z ≥ 1/2

1/2 + z/2 otherwise
(6)

which attains a maximum of 3/4 at z = 1/2. Thus, no classifier can have accuracy > 3/4 on Bc
Discretization. Let T be a large positive integer, and divide S1 into 2T continuous, non-overlapping arcs {Ai}2Ti=1 of length
δπ each, where δ = 1/T . We choose T large enough so that 2δ < min{(2α− 1), (1− α)}, ensuring that:
(i) there is no segment that contains both endpoints of any bag in Bc, and
(ii) for any pair of segments Ai and Aj , if there is a 0-bag in Bc with one point in Ai and another in Aj , then there is no
such 1-bag, and similarly if there is a 1-bag in Bc with one point in Ai and another in Aj , then there is no such 0-bag.

Using property (ii) above, let us construct a discrete set of bags Bd as follows. If a pair of segments Ai and Aj are such that
there is a 0-bag in Bc with one point in Ai and another in Aj , then add {Ai, Aj} as 0-bag with weight as the measure of all
the bags in Bc (which are necessarily 0-bags) with one point in Ai and another in Aj . Analogously, add pairs of segments as
1-bags. Note that from property (i), all bags in Bd have size 2.

No Strong Classifier. Let us first consider any {0, 1}-labeling to {Ai}2Ti=1. This directly corresponds to a {0, 1}-labeling
to S1 by assigning a point the label of the segment containing it. Further, from its construction, the weight of the bags Bc
satisfied by the labeling to the segments equals the measure of the bags in Bc satisfied by the corresponding labeling to S1
which, as shown above, is at most 3/4.

In particular, the above argument also shows that the measure of bags in Bd satisfied by the constant 0 labeling to {Ai}2Ti=1

is the same as that in Bc satisfied by the constant 0 labeling to S1.

Weak Classifier. Lastly, we translate the labeling by a homogeneous halfspace on S1 to a labeling for {Ai}2Ti=1 by assigning
each Ai the label of its mid-point. Consider the error set of points in S1 whose label given by the homogeneous halfspace
differs from the label of the segment containing it. For any homogeneous halfspace, the error set is entirely contained
within the two diametrically opposite segments intersected by the halfspace. Similarly, the error bags in Bc are those whose
aggregate label given by the homogeneous halfspace differs from the aggregate label of the corresponding bag in Bd.

The error bags in Bc are a subset of those which have at least one end-point in the the error set of points. Given any bag in
Bc the probability over a random homogeneous halfspace that it is an error bag is at most the probability that one of its
endpoints is in a segment intersected by the halfspace. By symmetry, a segment is intersected with probability 1/T . So the
probability that any bag in Bc is an error bag is at most 2/T = 2δ.

Thus, from (5) we obtain that for any weighing of the bags in Bd, there is a classifier of accuracy 2/3− (1− α)/2− 2δ.

B.1 COMPLETING THE PROOF OF THEOREM 1.2.

For this, we can take ε to be small enough, say ε ∈ (0, 0.1) and set α = 1− ε along with T = d4/εe so that δ ≤ ε/4 and
2δ < min{(2α− 1), (1− α)} and 2/3− (1− α)/2− 2δ ≥ 2/3− ε.



C WEIGHTED BAGS TO UNWEIGHTED BAGS

Input: : Bags Bw = (Bi, wi)
m
i=1, T .

Steps:
1. Normalize the weight with a factor Z such that

∑m
i=1 wi = m.

2. Define B to be the unweighted collection of bags and initialize it to ∅.
3. for i ∈ [m]:

3.1 Define ni = dwi(T − 1)e.
3.2 Add ni copies of Bi to B.

Output: Output B.

Figure 7: Weighted to unweighted collection of bags

The algorithm to convert a weighted collection of bags to an unweighted collection is given in Fig. 7. First, observe that
|B| =

∑m
i=1dwi(T − 1)e ≤

∑m
i=1(wi(T − 1) + 1) ≤ (T − 1)m+m = Tm, where we use

∑m
i=1 wi = m. On the other

hand, |B| =
∑m
i=1dwi(T − 1)e ≥ (T − 1)m.

Now, to see that the error in accuracy is at most O(1/T ), observe that for any subset I ⊆ [m],
∑
i∈I wi(T − 1) ≤∑

i∈Idwi(T − 1)e ≤
∑
i∈I wi(T − 1) + |I|. Therefore, the normalized error in the weight corresponding to I is at most

|I|/((T − 1)m) ≤ m/((T − 1)m) ≤ 1/(T − 1) = O(1/T ) for T > 1.

D PROBABILITIES FOR THE SUPPORT OF D

In Step 2 of Figure 3, the for a fixed configuration {Qi}ti=1 with r : |{i ∈ [t] | Qi = ?}|, its probability under D is mr

mt
1
2r ,

since the number of choices for the ?-coordinates is mr, while the total number of choices is mt. Further, with (1/2)t

probability we have the specific choices of the r coordinates with ? in Step 2. Iterating over all possible configurations
{Qi}ti=1 and assigning theur probabilities to the resultant (B, σ) in Step 3, yields the support of D along with their
probabilities.

E ADDITIONAL EXPERIMENTS

In Table 3, we report results obtained by training directly on the original small bags. When comparing these results with
those in Tables 1 and 2, we find that training directly on original bags yields better accuracy on the test sets of original bags
and individual instances for the Heart dataset and comparable performance on the Australian and Adult datasets. For both
Synthetic datasets, however, the strong classifier obtained using our proposed algorithm achieves better performance on
original bags compared to direct training.



q Train Bags Test Instances

Heart
5 46.370± 5.871 82.578± 4.767

15 31.111± 12.258 74.844± 5.960

Australian
5 55.064± 6.881 84.196± 3.815

15 26.190± 6.000 77.121± 5.776

Adult
5 47.368± 0.650 83.539± 0.588

15 12.899± 1.762 80.119± 2.172

Synthetic Random
5 81.783± 2.369 95.627± 0.736

15 42.400± 3.795 88.535± 2.357

Synthetic Hard
5 74.546± 6.029 92.170± 2.506

15 32.313± 4.112 82.592± 5.045

Table 3: Results after training directly on orginal (small) bags.
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