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ABSTRACT

Vision—language models (VLMs) align images and text with remarkable success,
yet the geometry of their shared embedding space remains poorly understood. To
probe this geometry, we begin from the Iso-Energy Assumption, which exploits
cross-modal redundancy: a concept that is truly shared should exhibit the same
average energy across modalities. We operationalize this assumption with an
Aligned Sparse Autoencoder (SAE) that encourages energy consistency during
training while preserving reconstruction. We find that this inductive bias changes
the SAE solution without harming reconstruction, giving us a representation that
serves as a tool for geometric analysis. Sanity checks on controlled data with
known ground truth confirm that alignment improves when Iso-Energy holds and
remains neutral when it does not. Applied to foundational VLMs, our framework
reveals a clear structure with practical consequences: (i) sparse bimodal atoms
carry the entire cross-modal alignment signal; (i) unimodal atoms act as modality-
specific biases and fully explain the modality gap; (iif) removing unimodal atoms
collapses the gap without harming performance; (iv) restricting vector arithmetic
to the bimodal subspace yields in-distribution edits and improved retrieval. These
findings suggest that the right inductive bias can both preserve model fidelity and
render the latent geometry interpretable and actionable.

1 INTRODUCTION

Vision-language models (VLMs) (Radford et al., 2021; Zhai et al., 2023; Fini et al., 2025; Tschannen
et al., 2025) have become central to applications from visual question answering (Chen et al., 2024)
and medical imaging (Singhal et al., 2023) to autonomous driving (Zhou et al., 2024) and embodied
Al (Shukor et al., 2025), creating shared embedding spaces where visual and textual representations
of similar concepts align. Despite their empirical success, we lack a principled understanding of how
these models internally organize and align semantic content across modalities. This work investigates
the geometric structure of cross-modal embeddings: How do VLMs organize the alignment between
visual and textual semantics, and what principles govern this shared representational space? Under-
standing these mechanisms is crucial for designing more robust and interpretable vision-language
architectures.

From Attributions to Concepts. To address this, the interpretability community has developed
an array of tools (Gilpin et al., 2018; Bau et al., 2017) aimed at dissecting learned representations.
Early efforts centered on attribution methods (Zeiler & Fergus, 2014; Sundararajan et al., 2017;
Smilkov et al., 2017; Petsiuk et al., 2018; Fel et al., 2021) that highlight “where” a model focuses its
attention, but these approaches often fall short (Nguyen et al., 2021; Kim et al., 2022; Colin et al.,
2022; Hase & Bansal, 2020; Sixt et al., 2022) of explaining “what” abstractions and on which basis
the model operates. More recent concept-based methods (Ghorbani et al., 2019; Zhang et al., 2021;
Fel et al., 2023b; Elhage et al., 2022; Fel et al., 2023a) have emerged to answer this, seeking to extract
meaningful features (concepts) that models implicitly compute over. Concept extraction is typically
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framed as a dictionary learning problem (ToSi¢ & Frossard, 2011; Rubinstein et al., 2010; Elad, 2010;
Mairal et al., 2014; Dumitrescu & Irofti, 2018): identifying an overcomplete set of basis vectors
that explain internal activations via sparse coding (Olshausen & Field, 1996; 1997; Lee et al., 2006;
Foldiak & Endres, 2008; Rentzeperis et al., 2023). This approach is a direct response to an underlying
phenomenology of the activation space: the Linear Representation Hypothesis (LRH) (Elhage et al.,
2022; Wattenberg & Viégas, 2024) which posits that model activations can be viewed as sparse
combinations of latent directions drawn from a high-dimensional concept basis. This is motivated
not only by empirical findings, but also by geometric arguments: in high-dimensional spaces, sparse
sets of nearly orthogonal directions can represent exponentially many distinct concepts with minimal
interference, a principle reminiscent of Johnson-Lindenstrauss-style (Johnson et al., 1984; Larsen
& Nelson, 2017) embeddings. Sparse autoencoders (SAEs) (Makhzani & Frey, 2014; Elhage et al.,
2022) directly operationalize this phenomenology by learning an approximate inverse mapping from
model activations to latent conceptual directions. They recover a sparse code that identifies which
overcomplete basis elements (concepts) are active in a given representation, and have been effective
at uncovering semantically meaningful structure in both vision (Gorton, 2024; Fel et al., 2025; Dreyer
et al., 2025; Rao et al., 2024) and language models (Cunningham et al., 2023; Bricken et al., 2023;
Rajamanoharan et al., 2024; Gao et al., 2025; Surkov et al., 2025).

Multimodal Interpretability. However, applying SAEs to VLMs (Bhalla et al., 2024; Pach et al.,
2025) reveals a puzzling behavior: concept dictionaries often segregate by modality (Papadimitriou
et al., 2025). Although VLMs are trained for cross-modal alignment, the extracted concepts tend
to activate exclusively for either image or text inputs. This observation is the concept-based view
of a now well-documented phenomenon called the modality gap. Prior work has described this
separation geometrically, attributing it to a conical structure in the embedding space (Liang et al.,
2022; Ethayarajh, 2019), or through the lens of training dynamics induced by the contrastive loss
(Fahim et al., 2024; Shi et al., 2023; Yaras et al., 2024). Yet these accounts do not explain what such
separation means at the level of shared concepts.

In this work, we introduce a framework for analyzing multimodal representations grounded in an
explicit generative model. Central to this framework is the Iso-Energy Assumption — if a concept
is truly shared across modalities, it should exhibit invariant energy, defined as the average squared
activation, regardless of input domain. This assumption provides a concrete, testable criterion for
identifying bimodal concepts. We then operationalize this simple assumption with a natural method:
an alignment-penalized Matching Pursuit Sparse Autoencoder (Aligned SAE), which encourages
energy consistency across modalities during training. This approach allows us to diagnose whether
extracted concepts genuinely support cross-modal alignment or merely reflect modality-specific
patterns. This work makes the following contributions:

* We introduce the Iso-Energy Assumption, which exploits cross-modal redundancy by requiring that
shared concepts exhibit the same average activation energy in image and text.

* We operationalize this assumption with an Aligned Sparse Autoencoder that enforces energy
consistency during training while preserving reconstruction, and validate it with ground-truth sanity
checks where classical SAEs fail.

* Applied to dual-encoder vision—language foundation models, this inductive bias reveals a geometric
decomposition invisible to classical SAEs: (i) sparse bimodal atoms carry the entire cross-modal
alignment signal, while (if) unimodal atoms carry modality-specific information and fully explain
the modality gap, with a few high energy atoms acting as modality-specific biases.

* Moreover, our work reveals that cross-modal information is carried by shared atoms, as opposed to
idiosyncratic ones described by Papadimitriou et al. (2025).

* This structure enables actionable interventions without loss of performance: (iif) removing unimodal
atoms collapses the modality gap, and (iv) restricting vector arithmetic to the bimodal subspace
yields in-distribution edits.

At the core lies a single theoretical premise: if concepts are genuinely shared across modalities, they
must imprint redundant statistical traces in each domain. We formalize this intuition by modeling
multimodal representations as partial inverses of a shared generative process, and introducing the
Iso-Energy Assumption as the inductive bias that makes concept recovery feasible.

Nomenclature. We distinguish the following terms when referring to concepts based on their
behavior and based on the type of information they carry. (i) Activation patterns: (a) unimodal
concepts activate exclusively on a single modality, whereas (b) bimodal concepts activate on both. This
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distinction is made by thresholding the modality score (., a comparison of domain-wise energy (see
Appendix E.2.2). (ii) Information carried: (c) modality-specific concepts carry information specific
to a given modality, e.g. that an image has cropping artifacts, while (d) cross-modal concepts carry
cross-modal information and participate in the contrastive geometric alignment between modalities.

2 RELATED WORK

Previous work extensively describes salient phenomena in the shared space of multimodal dual-
encoders (Schrodi et al., 2025; Levi & Gilboa, 2025; Jiang et al., 2023; Udandarao, 2022). Most
notably, Liang et al. (2022) describes what is now commonly known as the modality-gap: that image
and text embeddings reside in disjoint cones in the latent space. This modality gap has been attributed
to a cone effect (Liang et al., 2022; Ethayarajh, 2019; Schrodi et al., 2025) and training dynamics
induced by the contrastive loss and by mismatched pairs of data (Fahim et al., 2024; Shi et al., 2023;
Yaras et al., 2024). (Levi & Gilboa, 2025) additionally shows that embeddings are contained near the
surface of ellipsoid empty shells centered near the mean of the two distributions p; and pir.

The cone effect naturally comes with a salient difference in modality wise means A = pujy — pp
(Levi & Gilboa, 2025; Liang et al., 2022; Fahim et al., 2024), or a perfect linear separability between
image and text embeddings (Schrodi et al., 2025; Levi & Gilboa, 2025; Fahim et al., 2024; Shi et al.,
2023). Furthermore, Schrodi et al. (2025) shows that, surprisingly, a small subset of coordinates
in the canonical latent basis accounts for most of the norm of A. Previous work tries to get rid of
the modality gap by shifting modality-wise means (Liang et al., 2022; Levi & Gilboa, 2025), or by
projecting out the few canonical directions mentioned above (Schrodi et al., 2025). In all of these
works, the proposed intervention decreases cross-modal performance of embeddings, with the notable
exception of Zhang et al. (2023), whose Proposition 1 precedes our more general Proposition 1.
Figure 4 shows that this difference in means, while explaining the bulk of the modality gap and
linear separability between the two sets of embeddings, is not enough to explain the full distributional
mismatch. For that, we need to account for modality-specific information.

Jiang et al. (2023) takes an information-theoretic angle to show that modality specific variability
in representations is necessary to preserve unimodal capabilities. They use this insight to design a
new architecture that would explicitely regularise for the representation of such information. We
show that (/) unregularised foundational VLM encoders possess such representations, and that (ii) the
underlying mechanism is to organise these types of information linearly in distinct subspaces—Iet us
call Q; and Q7 the subspaces containing modality specific information, and I" the one containing
shared information. The projection by Schrodi et al. (2025) described above, though not introduced
for this purpose, is a first attempt at identifying and intervening on €2; & 2, characterised by the span
of the canonical basis vector selected, while I would be the orthogonal complement. However, their
results are negative, as their intervention is detrimental to model performance even on cross-modal
focused tasks—indicating significant unintended alteration of I'—while leaving the gap wide open
(see Appendix L), thus showing that their identified directions can’t describe {2 & Q.

Our novelty lies not in the description of most phenomena discussed above, but rather in the
characterisation of these structures in foundational VLM encoders. Through the use of a concept-
based approach, we are able to identify (i) high-energy unimodal features to unimodal biases, (if)
I' = Cone(6 - D) and Q; 7 = Cone(d;,7 - D). Here, Cone(ey, ..., ex) = {Zle Ai€i | A; > 0},
D € RE*4 s the set of K dictionary atoms of latent dimension d, and & (resp. 87, d7) € {0,1}% is
the binary mask selecting bimodal (resp. image-, text-only) atoms. To claim this characterisation,
we carefully analyse four complementary aspects of the dictionary through novel metrics. Once
validated, we further test its practical value through targeted interventions on these structures.

3 EXPLOITING CROSS-MODAL REDUNDANCY FOR CONCEPT RECOVERY

We formalize the setting by modeling each datum (image, caption, ...) as generated from a latent
concept vector and a domain-specific generator. From this perspective, encoders serve as partial
inverses of a shared multimodal generative process. However, recovering the underlying concepts
is in general an ill-posed inverse problem: without additional inductive biases, nonlinear ICA is
provably unidentifiable (Hyvarinen & Morioka, 2016; Locatello et al., 2019; Khemakhem et al.,
2020)—infinitely many mappings can account for the observed data in the absence of cross-domain
constraints. Introducing Iso-Energy provides a selection principle among these solutions and yields a
representation that is useful for studying the geometry observed in practice. We begin by formally
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(3) Overcomplete Dictionary
Learning lift the shared embedding
to higer-dimensional sparse code,
exposing concept-like atoms.
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A drawing of a Rabbit

(1) Non-linear generators map . (2) Dual encoder (e.g. CLIP, SigLip, ...) map the
abstract concept to real instance Ieapmg throth input to a compressed shared embedding
(e.g. text, image...) a sunlit forest space

Figure 1: Multimodal data-generating process. A latent concept vector ¢ € C (e.g., rabbit,
forest, light, running) is sampled as a sparse combination of abstract concepts and rendered through
domain-specific generators g(+) (e.g., image or text). Dual-encoder models (e.g., CLIP, SigLIP) map
these observations to a shared activation space, which sparse autoencoders (or other overcomplete
dictionary learning methods) then attempt to /ift back to concept-like atoms. However, without
additional inductive bias, encoder-decoder pairs (f, ¢) are not uniquely determined, a well-known
identifiability problem in nonlinear ICA. Here we leverage cross-modal redundancy as a useful
inductive bias, nudging the solution toward recovering bimodal concepts.

introducing our data generative process: each datum arises by (i) sampling a sparse concept vector
and (i) rendering it through a domain-specific generator. Formally, let K € N be the number of latent
concepts and C C R¥ the concept space. Let ® = {di,... ,djp|} index domains with observation

spaces X'(9).

Definition 1 (Multimodal Concept Generative Process). Sample ¢ ~ p = HkK:1 pi with |supp(c)| <
K. For each d€D, a deterministic generator g\? : C— X yields (9 = g@ (¢). We admit that
each g9 is C" and locally invertible.

A VLM encoder f maps each observation (9 to a shared embedding, and a sparse autoencoder ¢
attempts to disentangle this embedding back into concept coordinates, so that ¢ o f approximates
the inverse of Definition 1. However, recovering latent concepts from nonlinear generators is not
identifiable in general: without additional structure, many different dictionaries can explain the same
data (Hyvarinen & Morioka, 2016; Khemakhem et al., 2020; Locatello et al., 2019). This ambiguity
is visible in practice, where SAE dictionaries often vary substantially across random seeds (Fel
et al., 2025). Domain membership provides auxiliary information, but by itself it is insufficient
to ensure consistent recovery. We therefore introduce a cross-domain simple inductive bias, the
Iso-Energy Assumption, which states that genuinely multimodal concepts should maintain consistent
average energy across modalities. Because such concepts manifest in parallel across domains, their
observations contain redundant signals that can be exploited to guide dictionary recovery toward
more stable and plausible solutions. Formally,

Definition 2 (Iso-Energy Assumption). Let ¥ : | J;cq X @) — RE denote the learned encoder (VLM
f composed with SAE ¢). We say 1 satisfies Iso-Energy if the second moment of each coordinate is
domain-invariant:

Y(X)})= E (v(X)i), withke[1,K], (d,d)e D
Xecx@ Xex@)

Iso-Energy provides a testable, domain-agnostic inductive bias: cross-modal features should cor-
respond to bimodal concepts and maintain comparable energy across domains, whereas modality-
specific factors need not. This constraint narrows the solution set without requiring instance-level
matching. It is reminiscent of the rosetta neurons (Dravid et al., 2023; Gresele et al., 2020) and the
platonic representation hypothesis (Huh et al., 2024), suggesting that independent models (in our
case, the vision and language encoders) converge on shared features.

Operationalization. To operationalize this assumption, we adopt as our base the Matching Pursuit
(MP) sparse autoencoder, recently introduced by Costa et al. (2025) and rooted in the original frame-
work of Mallat & Zhang (1993). MP enforces ¢ sparsity through sequential residual updates, which

for any c there exists a neighborhood U (¢) on which g(d) is injective with continuous inverse.
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aligns with the sparse generative model introduced above and has shown strong empirical reconstruc-
tion performance in vision compared to ReLLU (Bricken et al., 2023), JumpReLU (Rajamanoharan
et al., 2024), or BatchTopK SAEs (Gao et al., 2025; Bussmann et al., 2024) (see Appendix A for
their formal definition). We then incorporate Iso-Energy into the sparse autoencoder recipe as a soft
regularizer: a small penalty encouraging the activations of the same atom to maintain similar strength
across domains. Given ¢5-normalized codes Z (d), ZW) ¢ RbxK , our training loss becomes:

ESA-\FlfA = ESAF + 6 : ﬁalign with ;Calign = —% TI‘(Z(d) Z(dl)T) (1)

with L5 being the training loss of a standard SAE, typically an {5 norm measuring reconstruction
error with a sparsity constraint on the encoder’s output. L.y, is the soft inductive bias, where
b is the batch size and K the number of latent atoms. With a small weight (5 ~ 1074, see
Appendix B), this regularizer gently biases the dictionary toward bimodal features while preserving
reconstruction performance. In Section 4, we demonstrate that this bias does not force the model to
create multimodal concepts that don’t exist in the input data. It is important to note that the minimum
of this loss function is consistent with the iso-energy principle for cross-modal concepts formalized
in Definition 2: maximizing the cosine similarity of codes coming from the aligned samples from the
different modalities leads to codes with the same energy across modalities. From this point onward,
we denote the unregularized model as SAE, and its alignment-augmented counterpart as SAE-A.

4 RECOVERING MULTIMODAL STRUCTURE WITH ALIGNED SAES

Sanity check. Before turning to large-scale embeddings, we validate our approach on controlled
toy data with known ground truth. We construct two synthetic data-generating processes that mimic
CLIP-like cosine similarity statistics (Fig. 9) while giving us exact control over which atoms are
unimodal and which are bimodal (Appendix C.1). Each sample is generated by drawing a sparse
code z with ||z||o = L = 20 and producing normalized embeddings

W = 2T DWW, z®) = 2TDW), 2® ]y = |22 = 1.

Two parameters govern the process. First, 7 sets the cross-modal alignment of each shared (bimodal)
atom k € B by fixing the cosine between its per-modality components. Second, 75 fixes the average
paired image—text similarity at the embedding level:

y d(ﬂ) d(”)
cosé(d,(c“),d,(c))— ()

_ _ () () }:
Hdgf)||2||d,(€”)||2 71, and E[<w , T > T2.

with the Iso-Energy case corresponding to 7, = 1 (the bimodal atom is identical across modalities up
to scale).

Using this approach, we can generate a distribution that matches the alignment statistics found in CLIP
embeddings. We then compare a standard Sparse Autoencoder (SAE) to its “aligned” variant trained
with the loss function in Eq. 1. This new loss encourages energy consistency without compromising
reconstruction quality, as indicated by the high R-squared value (R? > 0.99) we observed in all our
experiments. Recovery is evaluated against (D*, Z*) using the Wasserstein distance W between
learned and true atoms (lower is better) and mean matching accuracy (mma) of usage patterns after
optimal bipartite matching (higher is better). When Iso-Energy is violated (13 # 1), both SAE
and SAE-A recover the dictionary equally well W ~ 0.19, mma ~ 0.82), confirming that the
regularizer does not hallucinate bimodal atoms. When Iso-Energy holds (7; = 1), the standard SAE
fails W = 0.396, mma = 0.29) while the aligned SAE-A succeeds (V¥ = 0.184, mma = 0.52),
showing that the inductive bias is neutral when unnecessary and decisive when appropriate. Full
experimental details are provided in Appendix C.2. Having validated the principle in controlled
settings, we next study its behavior on embeddings from foundation-scale VLMs.

4.1 EMPIRICAL EVALUATION ON VISION-LANGUAGE FOUNDATIONS

Setup. We train both SAE and its aligned counterpart SAE-A on activations from six representative
models: CLIP (ViT-B/32, ViT-L/14) (Radford et al., 2021), OpenCLIP, OpenCLIP-L (Cherti et al.,
2023), SigLIP (Zhai et al., 2023), and SigLIP2 (Tschannen et al., 2025) (see Appendix D for more
details on these models). All SAE models are trained with identical hyperparameters (expansion ratio
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Metric CLIP CLIP-L OpenCLIP  OpenCLIP-L SigLIP SigLIP2

MSE () 0.141 0.163 0.207 0.213 0.246 0.257 0.244 0.253 0.212 0.214 0.115 0.115
R2 (D) 0.859 0.837 0.793 0.787 0.754 0.742  0.755 0.747 0.788 0.784 0.884 0.885

Dace (1) 0.847 0915 0.843 0.868 0.849 0.880 0.845 0.873 0.897 0.899 0.886 0.903
p (M 0.327 4232 1.566 4.086 4.072 16.02 8.737 16.58 1.370 2.182 0.713 1.475
FDA (1) 2.630 4.559 3.914 4.800 4.369 8.160 9.787 16.49 8.831 34.95 8.246 18.24
o () 0.224 0.125 0.039 0.021 0.037 0.018 0.001 -0.000 0.023 0.006 0.007 -0.006

Table 1: Comparison of unregularized vs. aligned sparse autoencoders across six VLMs. We
report reconstruction fidelity (MSE, R?) and multimodality-sensitive metrics: probing accuracy
(Pacc), functional alignment (p), Functional and Distributional Agreement (FDA), and interventional
robustness (d,). Left values correspond to SAE, right values to SAE-A. While reconstruction is nearly
identical, the aligned variant consistently improves on all multimodality metrics : p increases by
more than an order of magnitude, FDA doubles (or triples), and d, remains near zero, demonstrating
that bimodal atoms alone sustain cross-modal alignment while unimodal ones contribute little beyond
modality specific bias.

8, target £ = 20) using a subset of 1 million LAION embeddings chosen at random, ensuring that
observed differences are attributable to the Iso-Energy regularizer rather than training artifacts. Clas-
sical reconstruction metrics (MSE, R?) reveal little difference between the two methods, confirming
that the alignment penalty does not compromise fidelity. Yet reconstruction alone is uninformative:
two dictionaries with identical R? may encode radically different concept structures. To capture
these distinctions, we introduce a suite of multimodality-sensitive metrics, each designed to probe a
complementary aspect of the recovered dictionary. For the full definitions of these metrics, we refer
the reader to Appendix E.

Tuning 3. In Equation (1), we select 3 via a log-sweep over {107¢,..., 1071} and pick the largest
value such that the difference in explained variance compared to non regularised SAE is less than
0.05. This rule reproduces our settings without hand-tuning and, under this criterion, we also observe
no degenerate (always-on) features in practice; see Appendix B for details.

Metrics:

(i) Probing accuracy p,.. (Appendix E.2.2). This metric tests whether the geometry of dictionary
atoms reflects the modality structure of the embedding space. Unimodal atoms should act as strong
linear classifiers for domain membership, while bimodal atoms should remain domain-agnostic. pacc
gathers all these classifiers’ performance in a single scalar. High p,.. therefore indicates that the
dictionary correctly distinguishes modality-specific and shared information.

(ii) Functional alignment p (Appendix E.2.2). Beyond geometry, we ask which features actually drive
cross-modal alignment. p measures the ratio of alignment explained by bimodal versus unimodal
features through instance-level co-activation patterns. Values of p > 1 indicate that alignment is
predominantly supported by bimodal concepts, consistent with the Iso-Energy Assumption.

(iii) Functional and Distributional Agreement (FDA) (Appendix E.2.2). At the population level, FDA
measures whether the functional role of features is consistent with their geometric organization. While
p is local and instance-based, FDA checks distributional alignment across large batches. Intuitively,
high FDA confirms that bimodal atoms globally sustain the match between modalities. Neither p nor
FDA considers the contrastive aspect of alignment, which is done by our final metric.

(iv) Interventional robustness 0, (Appendix E.2.2). To test for causality, we measure how performance
in retrieval tasks changes when we remove unimodal features. We use 9, to quantify the change in
recall after ablating these unimodal atoms. A small §, suggests that these atoms aren’t essential,
while a large drop indicates they are necessary for the contrastive aspect of the embeddings.

Results. As shown in Table 1, SAE-A matches SAE’s MSE and R2 scores but consistently out-
performs it on all multimodality-sensitive metrics. In particular, p increases by more than an order
of magnitude across models, indicating that alignment is almost entirely driven by bimodal atoms.
Likewise, FDA improves substantially, confirming consistency at the distributional level. Probing
accuracy improves modestly, reflecting a more distinct geometric separation, while J, remains small,
demonstrating that unimodal atoms can be safely ablated without harming retrieval performance and
therefore do not contain cross-modal information. Taken together, these results offer converging
evidence that, in SAE-A, unimodal atoms encode modality-specific information, while bimodal
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Figure 2: (Left) Energy distribution across learned atoms. The majority of features are bimodal
and medium-energy (inside diagonals defined by constant modality score p-Appendix E.2.2), while
only a handful of high-energy unimodal features dominate modality-specific variance. These high-
energy unimodal atoms behave like modality biases and are responsible for much of the observed
modality gap. (Right) Geometric organization of concepts. Low-dimensional projections reveal
three distinct clusters: image-only, text-only, and bimodal. Unimodal atoms align with the modality
cones of the embedding space, while bimodal atoms occupy a modality-agnostic subspace orthogonal
to these directions, thereby sustaining cross-modal alignment.

atoms, identified via Iso-Energy, constitute the principal basis for cross-modal alignment. In SAE,
however, the picture is less clear, and some unimodal atoms carry cross-modal information.

These findings indicate that the Iso-Energy Assumption reveals a qualitatively distinct structure: a
compact cross-modal subspace, entirely spanned by bimodal concepts, that retains the contrastive
power of the original embeddings while fully supporting cross-modal alignment. As we will see in
Section 5, making this structure explicit also makes it actionable: it allows us to manipulate represen-
tations directly, from closing the modality gap to performing in-distribution semantic arithmetic. But
before making this structure actionable, we propose an in-depth analysis of the solution to understand
some aspects of the geometry.

4.2 CONCEPT GEOMETRY UNDER ISO-ENERGY

Having established the effectiveness of Iso-Energy on real VLMs, we now turn to a qualitative
characterization of the learned concepts. This analysis focuses on how energy is distributed, how
atoms are geometrically organized, and how interpretable they are in practice.

Energy distribution. A first observation concerns how energy is distributed across modalities.
As illustrated in Figure 2, the vast majority of features are bimodal and exhibit moderate energy
levels, whereas a small subset of unimodal features concentrates disproportionately high energy.
These high-energy unimodal atoms dominate modality-specific variance and act as biases, as further
detailed in Appendix F.

Geometric organization. The high values of p,.. show a near-perfect alignment between latent
structure and concept organization. This can be visualized by projecting the learned atoms into a
low-dimensional space, revealing a clear separation into three clusters: image-only, text-only, and
bimodal (Fig. 2, right). Unimodal atoms align tightly with the cones spanned by image and text
embeddings, reproducing the geometry of the modality gap. In contrast, bimodal atoms occupy a
modality-agnostic subspace, orthogonal to the unimodal directions. This geometry explains why
bimodal (resp. unimodal) atoms carry cross-modal (resp. modality-specific) information.

Qualitative inspection. Finally, we examine the semantic meaning of individual atoms by inspect-
ing their most activating examples (Appendix G). Bimodal atoms are semantically stable, consistently
capturing the same concept across modalities (e.g., colors, objects, actions). Unimodal atoms, on the
other hand, often reflect idiosyncratic modality-specific signals (such as poor cropping artifacts in
images or “name patterns” in text) that contribute little to cross-modal semantics. Together, these
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Figure 3: The modality gap arises from multiple unimodal concepts, while bimodal concepts are
sufficient to sustain cross-modal alignment. Left: CLIP embeddings are re-expressed through a
learned dictionary. A PCA projection highlights the separation between modalities, and a UMAP
layout distinguishes two types of atoms: unimodal and bimodal. Right: Removing unimodal atoms
with a binary mask & € {0, 1}¥ closes the gap. The reconstructed embeddings A continue to support
retrieval, indicating that bimodal atoms alone capture the structure necessary for alignment.
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Figure 4: Filtering unimodal atoms closes the modality gap without harming performance.
(Left) Synthetic illustration comparing our method with the embedding shift baseline (Liang et al.,
2022). Only our approach merges image and text distributions. (Right) Histogram of distances from
each image (ID) and caption (OOD) embedding to its 10th nearest image neighbor. The modality gap
is measured as the separation between the ID and OOD histograms. Filtering unimodal atoms aligns
the two distributions, whereas shift degrades performance and leaves the gap wide open.

three perspectives converge on the same conclusion: unimodal atoms function as modality-specific
biases, while bimodal atoms encode the shared conceptual backbone that supports cross-modal
alignment.

5 ACTIONABLE INTERVENTIONS ON MULTIMODAL EMBEDDINGS

Together, these analyses demonstrate that our dictionaries yield a structured and interpretable de-
composition of multimodal embeddings. Building on this foundation, we now shift from analysis
to intervention: once Iso-Energy isolates the cross-modal backbone, it enables direct manipulation
of embeddings in ways that were previously inaccessible. In particular, we consider the minimal
intervention that removes modality information and examine its effect on two structural aspects. In
fact, we show that such transformations are possible without altering ranking-related capabilities even
when the modality information is non-trivial (e.g., not a bias, as proposed by Zhang et al. (2023)’s
Proposition 1) and under realistic assumptions of orthogonality.

Proposition 1 (Modality information removal impact on ranking.). Consider v € R? with decompo-
sition v = w(x) + y(x) where w(x) € Q encodes modality-specific information, y(x) € T captures
cross-modal content, and R* = Q@ T. If visual and textual information are orthogonal, then ranking
preservation is guaranteed.

Proof. See Appendix K. O

Closing the modality gap. First, we find that by filtering out unimodal atoms with a binary mask
(Figure 3), we nearly eliminate the modality gap while preserving retrieval and zero-shot performance.
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Text Bias - - > Red ' ——> Embedding
X - - > Stone
Image Bias - = & Blue ! x  Query

"Is not red
but blue"

Figure 5: Semantic vector arithmetic restricted to cross-modal information. Starting from a Ruby
(red stone), the target is a Sapphire (blue stone). The classical edit vector A = Text + Blue — Red is
polluted by unimodal directions, producing a query Q = I + A that drifts out-of-distribution. In
contrast, restricting to bimodal atoms yields Qsag, which lies on the semantic manifold and reliably
retrieves the correct target. This illustrates how unimodal features inject modality-specific bias into
A, while Iso-Energy isolates the truly shared concepts that support valid semantic arithmetic.

-_J

As illustrated in Figure 4, this intervention merges the image and text distributions, unlike embedding
shift baselines (Liang et al., 2022), which enforce matching means but still leave distributions well
separated. Crucially, our approach preserves contrastive capabilities, showing that our dictionaries
faithfully capture both contrastive and modality-specific information separately through bimodal
and unimodal atoms. Measuring the modality gap is typically done by measuring the distance
between the mean of text and image distributions, or by measuring their linear separability. However,
these fail to account for distributional mismatches remaining post intervention. For this reason, we
chose to turn to the out-of-distribution (OOD) literature to measure the modality gap, and borrow a
method described by Sun et al. (2022). This method measures the separation between the blue and
orange histograms in Figure 4. Our method consists in the following intervention on the activations,
indicated with a tilde: A := (Z ® §)D, where Z € RNYXK contains the sparse codes, D is the
concept dictionary, and 4 is the binary mask filtering out unimodal features, broadcast to the size of Z.
Reconstructed activations are indicated with a hat: A := Z D. The embedding shift intervention, and
variants described in the appendix, consists in adding a modality-wise constant, essentially moving
the mean of each distribution pr,7. Liang et al. (2022)’s shift method transforms the images by

Igigg =T — py + 2L J;“T , similarly for texts Typig.

Semantic vector arithmetic. Iso-Energy also grounds semantic manipulations. Let I.. be the
source image, and A be the textual description of the difference between the source and target image —
i.e., the relative caption. Restricting vector arithmetic to bimodal atoms Qsag = Isc + A (Figure 5)
produces queries that remain in-distribution (Figure 6 and Table 2) while preserving retrieval (Ap-
pendix H). In contrast, classical arithmetic ) = I, + A incorporates unimodal noise from the text
embedding on top of the interesting cross-modal information, yielding degenerate queries that drift
outside the embedding distribution. Our intervention consistently produces queries in-distribution
without degrading performance on the FashionlQ benchmark Wu et al. (2021), demonstrating that the
bimodal backbone revealed by Iso-Energy is practically useful.

M\ Osae
y?”"' / OODscore (1) Q| Qsae
\\\\ / CLIP 097 | 0.77
N CLIP-L 0.95 | 0.76
g'ozsine Distancglélo 10-th Near?eft Neighbor 08 Lo OpenCLIP 0.86 0.68
OpenCLIP-L  0.87 | 0.72
- . ofodictributi . . . SigLIP 0.99 | 0.70
Figure 6: Out-of-distribution behavior of semantic queries. SigLIP2 099 | 0.61

Histogram of distances between each query and its 10th nearest
neighbor in the target image distribution. Classical arithmetic
Q = I, + A drifts out-of-distribution, while our bimodal-
restricted query Qsag remains aligned with the target space. Base-
lines using only the source image (Q%*°""°) or only the caption

Table 2: OOD scores for clas-
sical queries vs. concept-based
queries Qsag. Lower is better,
) best results per line in bold.
difference (Q‘E“h“e) confirm the expected extremes: perfectly

in-distribution and fully OOD, respectively.
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Consider the following example. Let I, be an image of a ruby, A be the prompt ”is not red but blue’
and the target be an image of a saphire. This is the example illustrated in Figure 5. Adding A to the
ruby produces a query that contains both textual-only and visual-only concepts and therefore that do
not correspond to any realistic embedding. Adding only the cross-modal concepts of A, however,
produces a query that actually corresponds to an image of a saphire.

6 CONCLUSION

The Iso-Energy Assumption introduces a simple yet effective inductive bias for analyzing multimodal
representations. In synthetic settings, it facilitates the recovery of ground-truth structure; in large-scale
vision—language models, it consistently reveals a compact bimodal basis that supports cross-modal
alignment. This basis makes multimodal concepts accessible, isolates unimodal concepts, closes the
modality gap, and enables controlled semantic edits even in foundation-scale VLMs. In contrast,
standard sparse autoencoders tend to learn a diffuse mixture of unimodal and bimodal atoms despite
similar reconstruction quality, which obscures the structure that underpins alignment.

Despite its promising results, our approach has several limitations. First, the alignment penalty
is sensitive to the choice of its weighting coefficient 5: when too small, it becomes ineffective;
when too large, it can lead to degenerate feature representations. In this work, we select /3 through
simple sweeps, but a more principled calibration—e.g., by coupling the penalty to a performance
constraint or stability criterion—remains an important direction for future work. Second, our analysis
is conducted on reconstructions produced by the sparse autoencoder, rather than on the original
embeddings. This constrains the reported performance to the autoencoder’s reconstruction regime.
Finally, our experiments are limited to dual-encoder vision—language models. Whether the same
structural invariants and alignment properties hold in models with cross-attention mechanisms or
generative training objectives remains an open question.

More broadly, our results support a hypothesis-driven approach to interpretability: inductive biases
should be selected to reflect the structural properties relevant to downstream tasks, rather than
applied indiscriminately. When properly aligned with task-relevant objectives, even simple biases
can illuminate underlying mechanisms that might otherwise remain hidden—and offer actionable
control without compromising core performance.
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