

000 001 002 003 004 005 STOCHASTIC ORDER LEARNING: AN APPROACH TO 006 RANK ESTIMATION USING NOISY DATA 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022

023 ABSTRACT 024

025 A novel algorithm, called stochastic order learning (SOL), for reliable rank estima-
026 tion in the presence of label noise is proposed in this paper. For noise-robust rank
027 estimation, we first represent label errors as random variables. We then formulate
028 a desideratum that encourages reducing the dissimilarity of an instance from its
029 stochastically related centroids. Based on this desideratum, we develop two loss
030 functions: discriminative loss and stochastic order loss. Employing these two
031 losses, we train a network to construct an embedding space in which instances are
032 arranged according to their ranks. Also, after teaching the network, we identify
033 outliers likely to have extreme label errors and relabel them for data refinement.
034 Extensive experiments on various datasets show that the proposed SOL algorithm
035 yields decent rank estimation results even when labels are corrupted by noise.
036
037

038 1 INTRODUCTION 039

040 Rank estimation — a task to predict the rank or ‘ordered class’ of an object — is a fundamental
041 problem in machine learning. It has a variety of applications, including facial age estimation (Ricanek
042 & Tesafaye, 2006; Shin et al., 2022), aesthetic score regression (Kong et al., 2016), and medical
043 assessment (Halabi et al., 2019). In many real-world scenarios, however, it is quite challenging to
044 obtain error-free annotations of ‘ordered data’, as the distinction between adjacent labels is often
045 unclear. For example, in facial age estimation, changes in facial appearance are not visibly apparent
046 over a short age gap. Hence, annotation errors are unavoidable when age labels are collected by
047 human annotators; it was shown by Escalera et al. (2015) that the distribution of apparent ages is
048 different from that of real ages. Label noise also occurs due to the subjectiveness of a labeling task.
049 For aesthetic score regression, there is no universal scoring mechanism, as people have different tastes
050 in beauty and art. Such a subjective nature of aesthetic criteria may lead to unreliable annotations.
051 Variability in labeling is also reported in medical image analysis (Halabi et al., 2019). Thus, to
052 improve reliability, annotations are obtained by averaging the estimates of multiple experts.
053

054 Many algorithms have been developed to train machines using imperfect data with noisy labels, but
055 most of them are for classification (Tanno et al., 2019; Song et al., 2019; Ma et al., 2020; Yao et al.,
056 2022; Ye et al., 2023) or segmentation (Yang et al., 2020; Li et al., 2023). Unlike classification or
057 segmentation, rank estimation suffers from varying degrees of label errors due to the ordinal property
058 of classes. Figure 1 compares nominal data for classification and ordered data for rank estimation.
059 In classification, misclassifying a dog as a cat is as harmful as misclassifying a dog as a bear. In
060 contrast, in rank estimation, the error of estimating a 43-year-old as a 59-year-old is severer than that
061 of mistaking a 24-year-old as a 26-year-old. Since noise-robust classification methods treat all noise
062 identically, they are prone to making big estimation errors and are incapable of identifying extreme
063 outliers when applied to ordered data.

064 Although several noise-robust regression methods exist, regression-based models are known to
065 underperform compared to classification- or ranking-based methods. As pointed out by Zhang et al.
066 (2023), direct regression may fail to learn high-entropy feature representations, resulting in lower
067 mutual information between learned representations and target outputs. Order learning approaches
068 (Lim et al., 2020; Shin et al., 2022; Lee et al., 2022) overcome the limitations of direct regression and
069 have shown promising results in rank estimation. However, these methods assume clean annotations,
070 and their performance degrades in the presence of label noise, highlighting the need for noise-robust
071 order learning algorithms.

Figure 1: Nominal data in classification versus ordered data in rank estimation. Unlike classification, in rank estimation, certain errors are severer than others.

In this paper, we propose a novel algorithm, stochastic order learning (SOL), to estimate ranks reliably in the presence of label noise. Given a training dataset with noisy labels, we first model the label errors with random variables. Hence, each instance relates stochastically to multiple ranks rather than deterministically to a single rank. We then train an embedding network based on a desideratum, which encourages minimizing stochastic dissimilarities of instances from their corresponding centroids. To achieve this, we design the discriminative loss and the stochastic order loss. Moreover, after the training, we identify outliers, which are likely to have extreme label errors, and relabel them to refine the noisy dataset. Extensive experiments demonstrate that the proposed SOL provides reliable rank estimation results on various ordered datasets. Also, SOL even reduces the overall label noise of a given dataset based on the outlier detection and relabeling.

The contributions of this paper can be summarized as follows.

- We extend the concept of order learning to cope with noisy data by designing a stochastic approach; we model label errors as random variables and derive embedding space constraints to sort instances according to their stochastically related ranks.
- We also propose outlier detection and relabeling schemes to identify instances with extreme label errors and reduce the overall noise level of a given dataset.
- Experiments on various benchmark datasets for facial age estimation, aesthetic score regression, medical image assessment, and textual regression validate the effectiveness of the proposed SOL under label noise.

2 RELATED WORK

Learning from noisy labels: With the availability of substantial training data, deep learning has shown impressive performance in numerous tasks, but the performance may degrade severely when there is label noise. Thus, learning from noisy labels has been an active area of research; various attempts have been made to alleviate the adverse impacts of label noise. Some are based on robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Lyu & Tsang, 2019; Ma et al., 2020; Ye et al., 2023), or noise-tolerant objectives such as peer loss (Liu & Guo, 2020) that avoid relying on explicit noise-rate estimation. Others include regularization (Tanno et al., 2019; Menon et al., 2020; Xia et al., 2020), robust network architecture (Han et al., 2018a; Goldberger & Ben-Reuven, 2022), selective data sampling (Han et al., 2018b; Jiang et al., 2018; Song et al., 2019), and representation-learning approaches such as selective-supervised contrastive learning (Li et al., 2022). However, these methods focus on classification or segmentation (*i.e.* pixelwise classification) tasks.

Compared to classification, only a few noise-robust regression methods have been developed. Garg & Manwani (2020) first considered label noise in ordinal regression. They, inspired by Natarajan et al. (2013), proposed an unbiased estimator and modified a loss function so that minimizing the modified loss with corrupted labels leads to the same result as minimizing the original loss with clean labels. Castells et al. (2020) down-weighted the contributions of samples with large losses during training, assuming that noisy samples tend to cause large losses. Yao et al. (2022) developed a variant of Mixup (Zhang et al., 2018), which trains on virtual examples interpolated from two training samples. To make Mixup more suitable for regression tasks, they sampled a pair with closer ordinal labels with a higher probability. Wang et al. (2022b) showed that standard regularization schemes are ineffective under label noise, and proposed a noise-robust text regression algorithm that mitigates noise by discarding or repairing detected noisy samples. More recently, Kim et al. (2024) introduced a contrastive fragmentation strategy that partitions the label space into fragments, forms

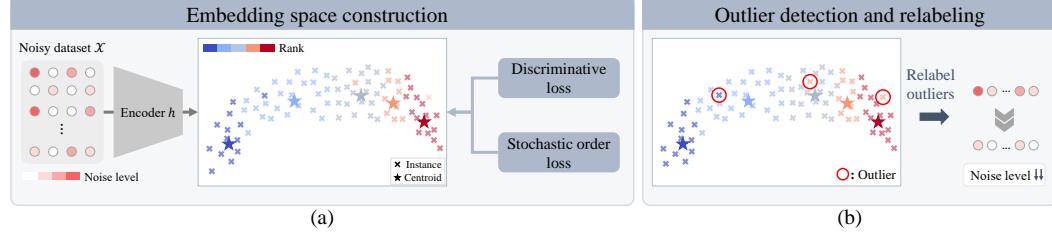


Figure 2: Overview of the proposed SOL algorithm

contrasting fragment pairs, and trains expert extractors on each pair for robust feature learning. They also leveraged neighborhood agreement among the experts to detect clean samples.

Rank estimation: Different from ordinary classification, rank estimation aims to predict the ordered class of an object. Early methods estimate object ranks directly using regressors or classifiers. Direct regression (Guo et al., 2009), which predicts scalar values directly, suffers from poor performance in general because it disregards the physical processes underlying ranks, such as aging processes. Classification-based methods (Geng et al., 2007) treat rank estimation as a multi-class classification problem, but they fail to consider the strong ordinal relationship of rank labels. To exploit the ordinal relationship, some ordinal regression methods convert a rank estimation problem into a series of simpler binary classification sub-problems (Frank & Hall, 2001; Li & Lin, 2006). Recently, several techniques have been developed to perform deep ordinal regression effectively, including pairwise regularization (Liu et al., 2018), soft labels (Diaz & Marathe, 2019), continuity-aware probabilistic network (Li et al., 2019), and uncertainty-aware regression (Li et al., 2021). **Related to ambiguity modeling**, Gao et al. (2017) converted each rank label into a smoothed Gaussian distribution to capture deterministic label uncertainty, but their formulation does not address stochastic label errors.

Order learning: Order learning (Lim et al., 2020) is a new approach to rank estimation based on the idea that relative assessment is easier than absolute assessment. Instead of direct prediction, Lim et al. (2020) estimated the rank of an instance by comparing it with references of known ranks. To find more reliable references, Lee & Kim (2021) proposed the order-identity decomposition. Shin et al. (2022) extended the idea of order learning to regression problems, and Lee & Kim (2022) and Lee et al. (2024) developed weakly-supervised and unsupervised techniques for order learning, respectively. Also, Lee et al. (2022) proposed a learning mechanism that exploits not only ordering relations but also metric information among object instances. Similar to the proposed algorithm, they constructed an embedding space in which objects are sorted according to their ranks. However, their algorithm assumes that rank labels are deterministic and error-free, so it fails to model the uncertainty and noise in data. To construct a well-arranged embedding space even in the presence of label noise, we propose a stochastic approach called SOL in this paper.

3 PROPOSED ALGORITHM

3.1 PROBLEM FORMULATION

There is a training set \mathcal{X} , in which each instance is attributed with one of the n ranks (or ordered classes), represented by consecutive integers in $\{1, \dots, n\}$. Let \bar{r}_x denote the true rank of instance $x \in \mathcal{X}$. However, only a noisy rank r_x is available, given by

$$r_x = \bar{r}_x + e_x \quad (1)$$

where e_x is the label error of x . Let \mathbf{e} be the random variable underlying each error e_x . It is assumed that \mathbf{e} has a discrete Gaussian distribution;

$$p_s \triangleq \Pr(\mathbf{e} = s) = \frac{1}{C} e^{-\frac{s^2}{2\sigma^2}} \quad (2)$$

where $C = \sum_t e^{-\frac{t^2}{2\sigma^2}}$, and $s, t \in \mathbb{Z}$. Note that the noise distribution in (2) is symmetric ($p_s = p_{-s}$) and unimodal ($p_s \geq p_t$ for $0 \leq s \leq t$). This models label errors in practice. For example, it is more likely for an annotator to mislabel a 10-year-old as 8 or 12 years old than as 20 years old.

We employ an encoder h to map each instance $x \in \mathcal{X}$ into a feature vector $h_x = h(x)$ in an embedding space, as shown in Figure 2. We aim to construct the embedding space in which the

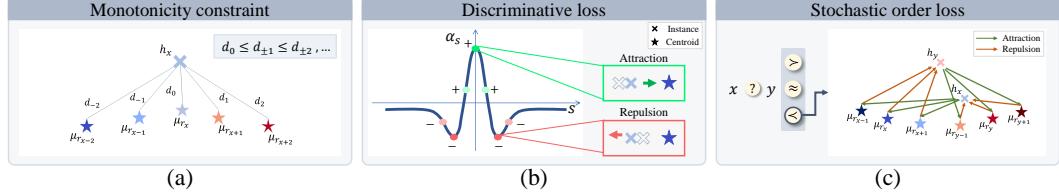


Figure 3: Illustration of the monotonicity constraint and the training losses for constructing a SOL embedding space

instances are arranged according to their ranks, and each ‘centroid’ μ_r is the representative vector for instances with rank $r \in \{1, \dots, n\}$. However, since only the noisy rank r_x in (1) — instead of the true rank \bar{r}_x — is available, instance x relates stochastically to multiple centroids, rather than deterministically to the single centroid $\mu_{\bar{r}_x}$. Specifically, x is associated with μ_{r_x-s} with probability p_s in (2). Note that, due to the symmetry $p_s = p_{-s}$, x is also associated with μ_{r_x+s} with p_s . Thus, in the embedding space, the mean squared distance $\sum_s p_s d^2(h_x, \mu_{r_x+s})$ should be minimized, where d denotes the Euclidean distance.

We hence define the stochastic dissimilarity of instance x from rank r in the embedding space determined by the encoder h as

$$D_h(x, r) = \sum_s p_s d^2(h_x, \mu_{r+s}). \quad (3)$$

Then, the objective of SOL is to design the encoder h satisfying the following desideratum for each $x \in \mathcal{X}$:

$$D_h(x, r_x) \leq D_h(x, r) \quad \text{for all } r \in \{1, \dots, n\}. \quad (4)$$

A sufficient condition for satisfying this desideratum is the monotonicity constraint, given by

$$d(h_x, \mu_{r_x+s}) \leq d(h_x, \mu_{r_x+t}) \quad \text{for all } |s| \leq |t|, \quad (5)$$

as proven in Appendix A. Intuitively speaking, this monotonicity can be achieved, provided that the centroids are arranged directionally according to the ranks, and the instance h_x is located near the centroid μ_{r_x} , as illustrated in Figure 3(a).

In the inference phase, based on the desideratum in (4), we estimate the rank of an unseen instance x by

$$\hat{r}_x = \arg \min_{r \in \{1, \dots, n\}} D_h(x, r). \quad (6)$$

3.2 STOCHASTIC ORDER LEARNING

To learn or construct an embedding space in which instances and centroids are well aligned according to the desideratum in (4), we optimize the parameters of the encoder h by minimizing the loss function

$$\ell_{\text{total}} = \sum_{x \in \mathcal{X}} \ell_{\text{disc}}(x) + \sum_{x, y \in \mathcal{X}} \ell_{\text{order}}(x, y) \quad (7)$$

where ℓ_{disc} is the discriminative loss, and ℓ_{order} is the stochastic order loss.

Discriminative loss: To encourage the desideratum in (4), we employ the discriminative loss

$$\ell_{\text{disc}}(x) = \sum_{t=1}^T (D_h(x, r_x) - D_h(x, r_x + t) + D_h(x, r_x) - D_h(x, r_x - t)) \quad (8)$$

$$= \sum_{t=1}^T \sum_s (2p_s - p_{s-t} - p_{s+t}) d^2(h_x, \mu_{r_x+s}) \quad (9)$$

$$= \sum_s \alpha_s d^2(h_x, \mu_{r_x+s}) \quad (10)$$

where $\alpha_s = \sum_{t=1}^T (2p_s - p_{s-t} - p_{s+t})$. Also, T is a hyperparameter, and its impacts are analyzed in Appendix D.1. Note that each term in (8) is non-positive if the desideratum in (4) is satisfied. Thus, minimizing the discriminative loss directly promotes the desideratum.

Also, the coefficient α_s in (10) is a discrete approximation of the 2nd-order derivative of the Gaussian distribution, which has inflection points. Therefore, there exists a threshold δ such that α_s is positive if $|s| < \delta$, while negative otherwise, as shown in Figure 3(b). Hence, to minimize the discriminative loss, $d(h_x, \mu_{r_x+s})$ should be reduced if $|s| < \delta$. In other words, h_x should be attracted to the centroids for the ranks within the range $(r_x - \delta, r_x + \delta)$. On the contrary, if $|s| > \delta$, $d(h_x, \mu_{r_x+s})$

216 **Algorithm 1** Stochastic Order Learning (SOL)

217 **Input:** A noisy dataset \mathcal{X} , n = the number of ranks

```

218 1: Initialize centroids  $\{\mu_r\}_{r=1}^n$  via (18)
219 2: repeat
220 3:   Fine-tune the encoder  $h$  to minimize  $\ell_{\text{total}}$  in (7) ▷ Network training
221 4:   for all  $r = 1, 2, \dots, n$  do
222 5:     Update centroid  $\mu_r$  via (18) ▷ Centroid rule
223 6:   end for
224 7:   for all  $x \in \mathcal{X}$  do
225 8:     Estimate the rank of  $x$  via (6)
226 9:   end for
227 10:  Detect the set of outliers  $\bigcup_{r=1}^n \mathcal{X}_r$  via (19) ▷ Outlier detection
228 11:  for all  $x \in \bigcup_{r=1}^n \mathcal{X}_r$  do
229 12:    Estimate the label noise  $\hat{e}_x$  via (20)
230 13:    Refine the label of  $x$  via (21) ▷ Relabeling
231 14:  end for
232 15: until predefined number of epochs
233 Output: Updated labels  $\{r_x\}$ , centroids  $\{\mu_r\}_{r=1}^n$ , encoder  $h$ 

```

234
235 should be increased, thereby repelling h_x from the centroids for the ranks outside $(r_x - \delta, r_x + \delta)$.
236 To summarize, ℓ_{disc} makes each h_x attracted to the corresponding centroid μ_{r_x} and its neighbors (to
237 consider the label error), but repelled from the other centroids.

238 **Stochastic order loss:** In order learning (Lim et al., 2020; Lee & Kim, 2021; Lee et al., 2022),
239 pairwise relationships between instances are used to construct a desired embedding space. Thus,
240 while the discriminative loss ℓ_{disc} in (8) considers the geometric configuration of a single instance
241 x with respect to the centroids, the stochastic order loss ℓ_{order} takes into account the geometric
242 configuration of two instances x and y jointly.

243 There are three ordering cases between x and y (Lim et al., 2020):
244

$$245 x \prec y \text{ if } \bar{r}_x - \bar{r}_y < -\tau, \quad x \approx y \text{ if } |\bar{r}_x - \bar{r}_y| \leq \tau, \quad x \succ y \text{ if } \bar{r}_x - \bar{r}_y > \tau, \quad (11)$$

246 where τ is a threshold. For these three cases, Lee et al. (2022) use margin losses to align instances
247 according to the ranks. Similarly, the proposed ℓ_{order} is based on margin losses. But, unlike Lee et al.
248 (2022), true ranks \bar{r}_x and \bar{r}_y are unknown in SOL. Also, each instance relates to multiple centroids
249 randomly in SOL. We hence develop ℓ_{order} to address these differences.

250 Since only noisy ranks r_x and r_y are available, the true ranks \bar{r}_x and \bar{r}_y in (11) need to be re-
251 represented using (1). Let s and t denote the label noise of samples x and y , respectively. Then,
252 $\bar{r}_x - \bar{r}_y = r_x - r_y - s + t$. As we model label noise as stochastic variables, we can compute the
253 probabilities for the three ordering cases using (2):
254

$$\Pr(x \prec y) = \sum_s \sum_{t: r_x - r_y - s + t < -\tau} p_s p_t, \quad (12)$$

$$\Pr(x \approx y) = \sum_s \sum_{t: |r_x - r_y - s + t| \leq \tau} p_s p_t, \quad (13)$$

$$\Pr(x \succ y) = \sum_s \sum_{t: r_x - r_y - s + t > \tau} p_s p_t. \quad (14)$$

255 Then, we define the margin loss for the case $x \prec y$ as
256

$$\ell_{x \prec y} = \sum_{r \leq r_x} \max\{D_h(x, r) - D_h(y, r) + \gamma, 0\} + \sum_{r \geq r_y} \max\{D_h(y, r) - D_h(x, r) + \gamma, 0\} \quad (15)$$

257 where γ is a margin. To minimize the first sum in (15), $D_h(x, r) - D_h(y, r) = \sum_s p_s (d^2(h_x, \mu_{r+s}) -$
258 $d^2(h_y, \mu_{r+s}))$ should be reduced for $r \leq r_x$. Thus, h_x should be near μ_{r+s} , while h_y should be
259 far from μ_{r+s} . Note that this is enforced for small offsets s only because of the Gaussian weights
260 p_s . Similarly, for $r \geq r_y$ and a small s , h_x should be far from μ_{r+s} , while h_y should be near μ_{r+s} .
261 Hence, $\ell_{x \prec y}$ helps the arrangement of instances and centroids in the embedding space, as illustrated
262 in Figure 3(c). Note that the loss $\ell_{x \succ y}$ for the case $x \succ y$ is formulated symmetrically.

263 Also, when $x \approx y$, h_x and h_y should be close to each other. We hence define
264

$$\ell_{x \approx y} = \sum_{r \in \{1, \dots, n\}} \max(|D_h(x, r) - D_h(y, r)| - \gamma, 0). \quad (16)$$

Table 1: Performance comparison on the MORPH II dataset.

Algorithm	Gaussian				Laplacian		Uniform		Skewed	
	MAE(↓)	CS(↑)								
SPR (Wang et al., 2022a)	8.446	41.71	8.881	34.79	9.239	36.89	8.577	39.89	8.254	40.53
ACL (Ye et al., 2023)	9.017	36.75	9.492	35.61	9.314	35.74	8.873	35.87	8.849	35.95
ROR-CE (Garg & Manwani, 2020)	2.859	86.79	3.018	86.79	3.170	82.60	3.058	84.97	2.827	87.34
C-Mixup (Yao et al., 2022)	3.063	82.26	3.393	77.21	3.395	76.84	3.772	71.77	3.306	77.78
ConFrag (Kim et al., 2024)	2.878	84.06	3.000	82.06	3.255	78.96	3.102	80.33	2.763	84.70
POE (Li et al., 2021)	2.989	82.88	3.093	80.33	3.253	79.23	3.332	77.50	2.908	83.61
MWR (Shin et al., 2022)	2.570	90.07	2.693	89.25	2.851	87.16	2.854	86.61	2.529	90.71
GOL (Lee et al., 2022)	2.516	90.89	2.671	89.07	2.861	85.97	2.846	86.16	2.509	90.26
SOL	2.489	91.35	2.663	89.62	2.826	87.70	2.794	86.89	2.499	90.89

Input image						Input image		
True label	17	23	25	42	52	True label	23	40
SPR	33 (+16)	36 (+13)	43 (+18)	36 (-6)	38 (-14)	SPR	48 (+25)	25 (-15)
GOL	22 (+5)	27 (+4)	20 (-5)	46 (+4)	45 (-7)	GOL	40 (+17)	29 (-11)
SOL	17 (+0)	23 (+0)	25 (+0)	42 (+0)	52 (+0)	SOL	36 (+13)	33 (-7)

(a)

(b)

Figure 4: (a) Success and (b) failure cases of age estimation results on the MORPH II dataset. Under each image, we compare the estimated ages of SPR (Wang et al., 2022a), GOL (Lee et al., 2022), and the proposed SOL and specify the corresponding errors inside the parentheses.

Overall, we define the stochastic order loss as

$$\ell_{\text{order}}(x, y) = \Pr(x \succ y) \ell_{x \succ y} + \Pr(x \approx y) \ell_{x \approx y} + \Pr(x \prec y) \ell_{x \prec y}. \quad (17)$$

Centroid rule: Moreover, we determine each centroid μ_r to minimize $\sum_{x \in \mathcal{X}} D_h(x, r_x)$ based on the desideratum in (4),

$$\mu_r = \frac{\sum_{x \in \mathcal{X}} p_{r-r_x} h_x}{\sum_{x \in \mathcal{X}} p_{r-r_x}}, \quad r \in \{1, \dots, n\}, \quad (18)$$

as derived in Appendix B. We update the centroids after every training epoch.

3.3 OUTLIER DETECTION AND RELABELING

To obtain a more reliable rank estimator, we identify outliers, likely to have extreme label errors, among instances in the noisy training set and refine their labels by estimating the errors. Then, in turn, we fine-tune the encoder or equivalently revamp the embedding space, so the instances are better arranged based on the refined rank information.

Outlier detection: We first estimate the rank of each training instance x using the inference rule in (6). Then, for each rank $r \in \{1, \dots, n\}$, we detect the set \mathcal{X}_r of outliers by

$$\mathcal{X}_r = \{x : r_x = r \text{ and } |r_x - \hat{r}_x| \geq \beta \cdot \max_{y: r_y=r} |r_y - \hat{r}_y|\} \quad (19)$$

where $\beta \in (0, 1)$ is a constant to control the precision of the outlier detection.

Relabeling: For each detected outlier $x \in \bigcup_{r=1}^n \mathcal{X}_r$, we estimate its label error as

$$\hat{e}_x = \begin{cases} \frac{1}{2|\mathcal{X}|} \sum_{y \in \mathcal{X}} |r_y - \hat{r}_y| & \text{if } r_x > \hat{r}_x, \\ -\frac{1}{2|\mathcal{X}|} \sum_{y \in \mathcal{X}} |r_y - \hat{r}_y| & \text{if } r_x < \hat{r}_x. \end{cases} \quad (20)$$

Then, from (1), we refine the rank of x by

$$r_x \leftarrow r_x - \hat{e}_x. \quad (21)$$

We note that, in (20), $|\hat{e}_x|$ is determined as half of the mean absolute difference between noisy and estimated ranks over all training instances. It is to prevent drastic changes in rank labels, which may rather increase the label errors after relabeling. We repeat the encoder fine-tuning and the outlier detection and relabeling alternately to gradually reduce the label errors and construct a better embedding space. Algorithm 1 summarizes the overall process of SOL.

Table 2: Performance comparison on the CLAP2015 dataset.

Algorithm	Gaussian						Laplacian		Uniform		Skewed	
	$\kappa = 0.2$		$\kappa = 0.3$		$\kappa = 0.4$		$\kappa = 0.3$		$\kappa = 0.3$		$\kappa = 0.3$	$\kappa = 0.3$
	MAE(\downarrow)	CS(\uparrow)										
SPR (Wang et al., 2022a)	9.170	44.21	9.215	43.19	9.534	40.12	9.191	38.37	9.269	43.19	9.309	45.69
ACL (Ye et al., 2023)	9.483	41.06	9.239	39.57	9.583	45.23	9.312	42.69	9.742	44.81	9.388	45.25
ROR-CE (Garg & Manwani, 2020)	4.163	72.85	4.432	70.06	4.900	66.27	4.789	67.19	4.174	74.42	4.650	69.42
C-Mixup (Yao et al., 2022)	5.042	61.65	5.285	58.71	5.302	58.52	4.824	62.65	4.511	64.87	4.760	63.11
ConFrag (Kim et al., 2024)	4.898	62.19	4.658	63.11	5.328	58.20	4.690	62.47	4.858	61.17	4.512	64.97
POE (Li et al., 2021)	4.052	70.34	4.169	68.86	4.390	65.52	4.303	66.64	4.061	69.32	4.401	64.97
MWR (Shin et al., 2022)	3.577	79.80	3.830	76.18	4.299	72.85	4.011	74.05	3.685	77.39	4.415	70.06
GOL (Lee et al., 2022)	3.624	77.94	3.866	76.03	4.105	72.10	3.934	75.07	3.613	78.22	4.407	68.40
SOL	3.559	78.68	3.764	77.11	4.002	73.68	3.904	75.16	3.550	79.05	4.379	69.97

Table 3: Performance comparison on the AADB dataset.

Algorithm	Gaussian						Laplacian		Uniform		Skewed	
	$\kappa = 0.2$		$\kappa = 0.3$		$\kappa = 0.4$		$\kappa = 0.3$		$\kappa = 0.3$		$\kappa = 0.3$	$\kappa = 0.3$
	MAE(\downarrow)	CS(\uparrow)										
SPR (Wang et al., 2022a)	0.149	81.20	0.150	82.10	0.151	81.60	0.153	81.40	0.150	81.30	0.143	83.10
ACL (Ye et al., 2023)	0.147	82.90	0.148	82.50	0.157	79.43	0.151	81.50	0.153	80.80	0.153	80.74
ROR-CE (Garg & Manwani, 2020)	0.121	88.70	0.122	89.00	0.123	88.70	0.122	89.70	0.122	90.20	0.124	89.50
C-Mixup (Yao et al., 2022)	0.119	91.13	0.122	89.31	0.130	88.51	0.121	90.50	0.121	90.90	0.123	90.70
ConFrag (Kim et al., 2024)	0.129	88.00	0.126	88.70	0.134	86.90	0.126	89.00	0.124	89.70	0.123	88.60
POE (Li et al., 2021)	0.122	89.00	0.123	89.30	0.120	89.10	0.124	89.10	0.124	88.50	0.125	88.50
MWR (Shin et al., 2022)	0.123	89.00	0.124	87.60	0.122	89.80	0.125	88.20	0.124	89.40	0.124	87.80
GOL (Lee et al., 2022)	0.114	92.40	0.117	91.80	0.119	91.00	0.118	91.50	0.117	91.60	0.120	91.00
SOL	0.111	92.70	0.114	93.20	0.115	92.00	0.115	92.30	0.116	93.30	0.118	92.30

4 EXPERIMENTAL RESULTS

We conduct experiments on various datasets for facial age estimation MORPH II (Ricanek & Tesafaye, 2006) and CLAP2015 (Escalera et al., 2015), aesthetic score regression AADB (Kong et al., 2016), medical assessment RSNA (Halabi et al., 2019), and textual regression WMT2020 (Specia et al., 2020). We assess the robustness of the proposed SOL under both synthetic and real-world noisy settings. For synthetic noise, we add Gaussian noise to the rank labels of all training samples, which well reflects real-world noise in ordinal data and is consistent with prior work (Yao et al., 2022; Kim et al., 2024). Specifically, label errors are generated according to the zero-mean discrete Gaussian distribution in (2) with a standard deviation of

$$\sigma = \kappa \cdot \sigma_{\mathcal{X}} \quad (22)$$

where κ is a noise ratio in $(0, 1)$ to control the overall severity of label noise, and $\sigma_{\mathcal{X}}$ is the standard deviation of true rank labels in the training set. In practice, it is unrealistic to know the exact values of σ for label errors. Therefore, in the test phase, we use a fixed value of σ_{test} to compute p_s in (2), regardless of κ . To provide a broader evaluation of robustness, we further consider Laplacian and uniform noise perturbations. For assessment on real-world noisy data, we apply SOL to a textual regression task, where labels are known to be inherently noisy due to subjective human annotations. Additional details of the datasets and noise generation procedures are described in Appendix C.

4.1 IMPLEMENTATION

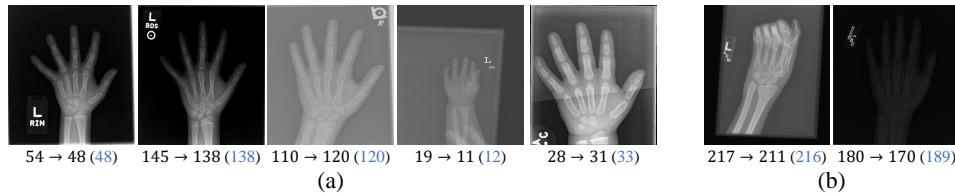
We adopt VGG16 (Simonyan & Zisserman, 2015), initialized with the pre-trained parameters on ILSVRC2012 (Deng et al., 2009), as the encoder h . We use the Adam optimizer (Kingma & Ba, 2015) with a batch size of 32 and a weight decay of 5×10^{-4} . For data augmentation, we do random horizontal flips and random crops. More implementation details including hyperparameter settings are available in Appendix C, and experimental analysis on the hyperparameters is performed in Appendix D.1.

4.2 COMPARATIVE ASSESSMENT

We compare the proposed SOL with recent noise-robust classification methods (Wang et al., 2022a; Ye et al., 2023), noise-robust regression methods (Garg & Manwani, 2020; Yao et al., 2022; Kim et al., 2024), and state-of-the-art rank estimators (Li et al., 2021; Shin et al., 2022; Lee et al., 2022). For a fair comparison, the same backbone of VGG16 (Simonyan & Zisserman, 2015) is used for all

378
379
380 Table 4: Performance comparison on the RSNA dataset.
381
382
383
384
385
386
387
388

Algorithm	Gaussian				Laplacian		Uniform		Skewed	
	$\kappa = 0.1$	$\kappa = 0.15$	$\kappa = 0.2$		$\kappa = 0.15$					
SPR (Wang et al., 2022a)	33.80	28.50	36.48	25.00	34.88	20.50	36.77	26.50	35.50	26.00
ACL (Ye et al., 2023)	35.09	26.20	35.15	26.50	35.26	25.17	33.82	24.00	34.32	22.00
ROR-CE (Garg & Manwani, 2020)	7.844	76.00	8.800	77.19	8.490	72.00	8.726	74.00	8.189	77.00
C-Mixup (Yao et al., 2022)	8.200	72.40	8.621	69.71	9.054	66.70	10.603	62.00	10.124	67.00
ConFrag (Kim et al., 2024)	8.287	76.50	8.458	77.50	8.805	71.50	8.977	74.50	8.995	73.00
POE (Li et al., 2021)	8.517	74.50	8.614	71.50	8.796	73.00	8.856	74.50	8.176	73.50
MWR (Shin et al., 2022)	7.833	75.00	8.239	77.50	8.353	72.00	8.272	76.00	7.939	77.50
GOL (Lee et al., 2022)	8.170	77.50	7.995	80.00	8.334	75.00	8.453	72.00	7.879	77.50
SOL	7.579	78.50	7.706	80.50	8.051	76.50	8.289	76.50	7.816	78.50
										8.544
										73.00

390
391
392
393
394
395 Figure 5: (a) Success and (b) failure cases of the label refinement on the RSNA training dataset.
Under each image, the noisy, refined, and true ranks are specified: noisy → refined (true).
396
397
398

399 methods. For evaluation, we adopt the mean absolute error (MAE) and cumulative score (CS) metrics:
400 MAE is the average absolute error between estimated and ground-truth ranks, and CS computes
401 the percentage of instances whose absolute estimation errors are less than or equal to a tolerance
402 value. The tolerance value is 5 for MORPH II and CLAP2015, 0.25 for AADB, and 12 for RSNA.
403 Justification for the choice of tolerance values is in Appendix C.4.

404 **Age estimation:** For facial age estimation, we employ two popular datasets MORPH II and CLAP-
405 2015. Table 1 compares the results on MORPH II. SPR (Wang et al., 2022a) and ACL (Ye et al., 2023),
406 which are recent noise-robust classification methods, treat all label errors identically. Compared
407 to rank estimation methods, they underperform because they fail to avoid making large estimation
408 errors (*e.g.* absolute errors bigger than 20). The noise-robust regression methods ROR-CE (Garg &
409 Manwani, 2020), C-Mixup (Yao et al., 2022), and ConFrag (Kim et al., 2024) perform better, for
410 they penalize samples with severe errors. The recent rank estimators MWR (Shin et al., 2022) and
411 GOL (Lee et al., 2022) provide even better results. However, the proposed SOL outperforms all these
412 methods without exception in terms of both MAE and CS.

413 We also provide examples of age estimation results in Figure 4. These examples are from MORPH II
414 with Gaussian noise at $\kappa = 0.4$. We compare the prediction results on images for which SOL
415 correctly estimates ages in Figure 4(a). Along with the successful cases, we also show some failure
416 cases in Figure 4(b). Note that the noise-robust classifier SPR tends to make big errors as it fails
417 to consider the ordinal property of age labels. The state-of-the-art rank estimator GOL performs
418 better with smaller errors. However, SOL manages to make closer estimates to the true ages than the
419 other algorithms, in both successful and failure cases. Appendix D.12 presents more rank estimation
420 results.

421 Table 2 lists the performances on CLAP. SOL again achieves the best MAE scores in all settings. Note
422 that GOL also aims to sort instances according to their ranks in an embedding space. Compared to
423 GOL, the proposed SOL provides better results in all cases, and the score gap generally gets bigger as
424 the level of Gaussian noise (κ) increases. For example, the MAE score gap is 0.103 at $\kappa = 0.4$, while
425 it is 0.065 at $\kappa = 0.2$. These results indicate that, despite label errors, SOL arranges the instances
426 according to their true ranks more reliably. In other words, SOL is more noise-robust than GOL.

427 **Aesthetic score regression:** Table 3 compares the aesthetic score regression results on AADB. Since
428 aesthetic assessment is inherently subjective and ambiguous, accurately predicting aesthetic scores
429 is highly challenging. Nevertheless, the proposed SOL consistently achieves the best performance
430 across all settings. At the highest Gaussian noise level $\kappa = 0.4$, SOL outperforms the second-best
431 GOL by 3.4% and 1.1% in terms of MAE and CS, respectively. Even at the lowest $\kappa = 0.2$, SOL
432 reduces the MAE by 2.6% and improves the CS by 0.3%.

432
433
434
Table 5: Performance comparison on the WMT2020 dataset

Algorithm	Real-world noise	
	PCC(\uparrow)	SRCC(\uparrow)
Base (Wang et al., 2022b)	0.645	0.612
DIS (Wang et al., 2022b)	0.653	0.627
RES (Wang et al., 2022b)	<u>0.660</u>	<u>0.630</u>
SOL	0.680	0.649

435
436
437
438
439
Table 6: Ablation studies for the loss functions in (7) on the CLAP2015 dataset.

Method	ℓ_{disc}	ℓ_{order}	$\kappa = 0.2$		$\kappa = 0.3$		$\kappa = 0.4$	
			MAE(\downarrow)	CS(\uparrow)	MAE(\downarrow)	CS(\uparrow)	MAE(\downarrow)	CS(\uparrow)
I	✓		20.029	14.92	16.433	20.76	18.582	17.52
II		✓	3.586	78.41	3.785	76.74	4.044	73.40
III	✓	✓	3.559	78.68	3.764	77.11	4.002	73.68

440
441
442 **Medical assessment:** In Table 4, we compare the results on the bone age assessment dataset RSNA.
443 The proposed SOL again yields the best results with large margins, with the single exception of the
444 MAE metric for the Laplacian noise. For example, even at $\kappa = 0.1$, SOL outperforms the second-best
445 MWR and GOL with significant gaps of 0.254 and 1.0 in the MAE and CS metrics, respectively.
446 This noise-robustness is meaningful because obtaining error-free annotations on medical datasets is
447 difficult and costly in general.

448 **Textual regression with real-world noise:** To further validate the effectiveness of SOL, we apply
449 it to a textual regression task in NLP, where labels are known to be noisy due to subjective
450 human annotations. We use the direct assessment (DA) scores from the Ru-En language pairs in
451 WMT2020 (Specia et al., 2020) as regression targets, and follow Wang et al. (2022b) by adopting
452 the same BERT encoder. As shown in Table 5, SOL achieves the best performance with a Pearson’s
453 correlation of 0.680 and a Spearman’s correlation of 0.649, outperforming the previous state-of-the-art
454 RES by clear margins of 2.0 and 1.9 points, respectively. These results demonstrate that SOL can
455 robustly handle real-world label noise beyond controlled synthetic settings.

456 **Overall robustness trend:** SOL shows a consistent pattern — its gains over deterministic baselines
457 such as GOL may be modest on relatively clean data, but the advantage steadily grows as noise
458 increases or labels become more subjective.

459
460

4.3 ANALYSIS

461 **Label refinement:** SOL refines noisy ranks present in the training dataset using the outlier detection
462 and relabeling scheme in Section 3.3. Figure 5 shows examples of detected outliers in RSNA at
463 $\kappa = 0.15$ (Gaussian). Label errors of up to 10 are well refined in the successful cases in Figure 5(a).
464 In less frequent failure cases, such as Figure 5(b), the refined ranks have bigger errors than the original
465 ones. These are, however, challenging examples because of finger folding or underexposure. More
466 results of the outlier detection and relabeling scheme are provided in Appendices D.4 and D.13.

467 **Loss functions:** Table 6 compares ablated methods for the loss functions in (7). Method I employs the
468 discriminative loss ℓ_{disc} only, while method II does the stochastic order loss ℓ_{order} only. Compared
469 with method III (SOL), methods I and II degrade the rank estimation results, indicating that both
470 losses contribute to the performance improvement and are complementary to each other. Note
471 that method I yields poor results, for the discriminative loss alone cannot construct a meaningful
472 embedding space; it is trivial to reduce ℓ_{disc} to zero by merging all instances into a single point in the
473 space. However, by comparing II and III, we see that ℓ_{disc} helps to sort instances in the embedding
474 space properly by attracting and repelling instances according to their ranks.

475
476

5 CONCLUSIONS

477 The SOL algorithm for rank estimation in the presence of label noise was proposed in this work.
478 First, we represented label errors as random variables. Then, we formulated a desideratum to reduce
479 the dissimilarity of an instance from the stochastically related centroids. Using the discriminative
480 loss and the stochastic order loss, we constructed an embedding space satisfying the desideratum,
481 in which instances are arranged according to their unknown true ranks. Also, we identified outliers,
482 likely to have extreme label errors, and relabelled them for data refinement. Extensive experiments on
483 various rank estimation tasks — including facial age estimation, aesthetic score regression, medical
484 image assessment, and textual regression — demonstrated that SOL yields excellent rank estimation
485 results even when labels are corrupted by noise.

486 REFERENCES
487

488 Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
489 Hullender. Learning to rank using gradient descent. In *ICML*, 2005. 23

490 Thibault Castells, Philippe Weinzaepfel, and Jerome Revaud. Superloss: A generic loss for robust
491 curriculum learning. In *NIPS*, 2020. 2

492 Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung. Ordinal hyperplanes ranker with cost
493 sensitivities for age estimation. In *CVPR*, 2011. 14, 15

494 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
495 hierarchical image database. In *CVPR*, 2009. 7

496 Raul Diaz and Amit Marathe. Soft labels for ordinal regression. In *CVPR*, 2019. 3

497 Sergio Escalera, Junior Fabian, Pablo Pardo, Xavier Baró, Jordi Gonzàlez, Hugo J. Escalante, Dusan
500 Misevic, Ulrich Steiner, and Isabelle Guyon. ChaLearn looking at people 2015: Apparent age and
501 cultural event recognition datasets and results. In *ICCV Workshops*, 2015. 1, 7, 14, 18, 32

502 Eibe Frank and Mark Hall. A simple approach to ordinal classification. In *ECML*, 2001. 3

503 Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, and Xin Geng. Deep label distribution learning
504 with label ambiguity. *TIP*, 26(6):2825–2838, 2017. 3

505 Bhanu Garg and Naresh Manwani. Robust deep ordinal regression under label noise. In *PMLR*, 2020.
506 2, 6, 7, 8

507 Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles. Automatic age estimation based on facial aging
508 patterns. *IEEE Transactions on pattern analysis and machine intelligence*, 29(12), 2007. 3

509 Aritra Ghosh, Himanshu Kumar, and P. Shanti Sastry. Robust loss functions under label noise for
510 deep neural networks. In *AAAI*, 2017. 2

511 Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
512 layer. In *ICLR*, 2022. 2

513 Guodong Guo, Guowang Mu, Yun Fu, and Thomas S Huang. Human age estimation using bio-
514 inspired features. In *CVPR*, 2009. 3

515 Safwan S Halabi, Luciano M Prevedello, Jayashree Kalpathy-Cramer, Artem B Mamonov, Alexander
516 Bilbily, Mark Cicero, Ian Pan, Lucas Araújo Pereira, Rafael Teixeira Sousa, Nitamar Abdala,
517 Felipe Campos Kitamura, Hans H. Thodberg, Leon Chen, George Shih, Katherine Andriole, Marc
518 D. Kohli, Bradley J. Erickson, and Adam E. Flanders. The RSNA pediatric bone age machine
519 learning challenge. *Radiology*, 290(2):498–503, 2019. 1, 7, 14, 18

520 Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama.
521 Masking: A new perspective of noisy supervision. In *NIPS*, 2018a. 2

522 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
523 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
524 *NIPS*, 2018b. 2

525 Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning data-
526 driven curriculum for very deep neural networks on corrupted labels. In *ICLR*, 2018. 2

527 Chris Dongjoo Kim, Sangwoo Moon, Jihwan Moon, Dongyeon Woo, and Gunhee Kim. Sample
528 selection via contrastive fragmentation for noisy label regression. In *NIPS*, 2024. 2, 6, 7, 8

529 Diederik P. Kingma and Jimmy L. Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.
530 7

531 Shu Kong, Xiaohui Shen, Zhe Lin, Radomir Mech, and Charless Fowlkes. Photo aesthetics ranking
532 network with attributes and content adaptation. In *ECCV*, 2016. 1, 7, 14, 18

540 Seon-Ho Lee and Chang-Su Kim. Deep repulsive clustering of ordered data based on order-identitiy
 541 decomposition. In *ICLR*, 2021. 3, 5
 542

543 Seon-Ho Lee and Chang-Su Kim. Order learning using partially ordered data via chainization. In
 544 *ECCV*, 2022. 3

545 Seon-Ho Lee, Nyeong-Ho Shin, and Chang-Su Kim. Geometric order learning for rank estimation.
 546 In *NIPS*, 2022. 1, 3, 5, 6, 7, 8, 21, 23
 547

548 Seon-Ho Lee, Nyeong-Ho Shin, and Chang-Su Kim. Unsupervised order learning. In *ICLR*, 2024. 3
 549

550 Ling Li and Hsuan-Tien Lin. Ordinal regression by extended binary classification. In *NIPS*, 2006. 3
 551

552 Peixia Li, Pulak Purkait, Thalaiyasingam Ajanthan, Majid Abdolshah, Ravi Garg, Hisham Husain,
 553 Chenchen Xu, Stephen Gould, Wanli Ouyang, and Anton Van Den Hengel. Semi-supervised
 554 semantic segmentation under label noise via diverse learning groups. In *ICCV*, 2023. 1
 555

556 Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu. Selective-supervised contrastive learning
 557 with noisy labels. In *CVPR*, 2022. 2
 558

559 Wanhua Li, Jiwen Lu, Jianjiang Feng, Chunjing Xu, Jie Zhou, and Qi Tian. BridgeNet: A continuity-
 560 aware probabilistic network for age estimation. In *CVPR*, 2019. 3
 561

562 Wanhua Li, Xiaoke Huang, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Learning probabilistic ordinal
 563 embeddings for uncertainty-aware regression. In *CVPR*, 2021. 3, 6, 7, 8
 564

565 Kyungsun Lim, Nyeong-Ho Shin, Young-Yoon Lee, and Chang-Su Kim. Order learning and its
 566 application to age estimation. In *ICLR*, 2020. 1, 3, 5
 567

568 Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing noise
 569 rates. In *ICML*, 2020. 2

570 Yanzhu Liu, Adams Wai Kin Kong, and Chi Keong Goh. A constrained deep neural network for
 571 ordinal regression. In *CVPR*, 2018. 3
 572

573 Yueming Lyu and Ivor W Tsang. Curriculum loss: Robust learning and generalization against label
 574 corruption. *arXiv preprint arXiv:1905.10045*, 2019. 2
 575

576 Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
 577 malized loss functions for deep learning with noisy labels. In *ICLR*, 2020. 1, 2
 578

579 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *Journal of Machine
 580 Learning Research*, 9:2579–2605, 2008. 23
 581

582 Aditya Krishna Menon, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Can gradient
 583 clipping mitigate label noise? In *ICLR*, 2020. 2
 584

585 Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
 586 noisy labels. In *NIPS*, 2013. 2
 587

588 Karl Ricanek and Tamirat Tesafaye. MORPH: A longitudinal image database of normal adult
 589 age-progression. In *FGR*, 2006. 1, 7, 14, 32
 590

591 Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and Alan L Yuille. Deep regression forests for
 592 age estimation. In *CVPR*, 2018. 15
 593

594 Nyeong-Ho Shin, Seon-Ho Lee, and Chang-Su Kim. Moving window regression: A novel approach
 595 to ordinal regression. In *CVPR*, 2022. 1, 3, 6, 7, 8, 23
 596

597 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 598 recognition. In *ICML*, 2015. 7
 599

600 Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust deep
 601 learning. In *ICML*, pp. 5907–5915, 2019. 1, 2

594 Lucia Specia, Frédéric Blain, Marina Fomicheva, Erick Fonseca, Vishrav Chaudhary, Francisco
 595 Guzmán, and André F. T. Martins. Findings of the WMT 2020 shared task on quality estimation.
 596 In *Proceedings of the Fifth Conference on Machine Translation*, 2020. 7, 9, 14
 597

598 Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C Alexander, and Nathan Silber-
 599 man. Learning from noisy labels by regularized estimation of annotator confusion. In *CVPR*, 2019.
 600 1, 2

601 Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing non-smooth
 602 rank metrics. In *Proceedings of the 2008 International Conference on Web Search and Data
 603 Mining*, 2008. 23

604 Yikai Wang, Xinwei Sun, and Yanwei Fu. Scalable penalized regression for noise detection in
 605 learning with noisy labels. In *CVPR*, 2022a. 6, 7, 8

606 Yuxia Wang, Timothy Baldwin, and Karin Verspoor. Noisy label regularisation for textual regression.
 607 In *Proceedings of the 29th International Conference on Computational Linguistics*, 2022b. 2, 9

608 Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
 609 Robust early-learning: Hindering the memorization of noisy labels. In *ICLR*, 2020. 2

610 Longrong Yang, Fanman Meng, Hongliang Li, Qingbo Wu, and Qishang Cheng. Learning with noisy
 611 class labels for instance segmentation. In *ECCV*, 2020. 1

612 Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, and Chelsea Finn. C-Mixup: Improving
 613 generalization in regression. In *NIPS*, 2022. 1, 2, 6, 7, 8

614 Xichen Ye, Xiaoqiang Li, songmin dai, Tong Liu, Yan Sun, and Weiqin Tong. Active negative loss
 615 functions for learning with noisy labels. In *NIPS*, 2023. 1, 2, 6, 7, 8, 23

616 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 617 risk minimization. In *ICLR*, 2018. 2

618 Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng, and Angela Yao. Improving deep
 619 regression with ordinal entropy. In *ICLR*, 2023. 1

620 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 621 with noisy labels. In *NIPS*, 2018. 2

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DERIVATION OF MONOTONICITY CONSTRAINT IN (5)
649650 The desideratum in (4) can be written as
651

652
$$\sum_s p_s d^2(h_x, \mu_{r_x+s}) \leq \sum_s p_s d^2(h_x, \mu_{(r_x+k)+s}) \quad \text{for all } k. \quad (23)$$

653 For simpler notations, let $L_s \triangleq d^2(h_x, \mu_{r_x+s})$. Then, the desideratum is given by
654

655
$$\sum_s p_s L_s \leq \sum_s p_s L_{s+k} \quad \text{for all } k. \quad (24)$$

656 First, let us consider the case for $k = 1$. From (24), we have
657

658
$$\begin{aligned} \cdots + p_2 L_{-2} + p_1 L_{-1} + p_0 L_0 + p_1 L_1 + p_2 L_2 + \cdots &\leq \\ \cdots + p_3 L_{-2} + p_2 L_{-1} + p_1 L_0 + p_0 L_1 + p_1 L_2 + \cdots \end{aligned} \quad (25)$$

660 since p_s in (2) is symmetric. Thus,
661

662
$$(p_0 - p_1)(L_0 - L_1) + (p_1 - p_2)(L_{-1} - L_2) + (p_2 - p_3)(L_{-2} - L_3) + \cdots \leq 0. \quad (26)$$

663 Because p_s in (2) is also unimodal, the coefficients $(p_s - p_{s+1})$ are positive for all $s \geq 0$. Hence, the
664 inequality in (26) is satisfied if
665

666
$$L_0 \leq L_1, \quad L_{-1} \leq L_2, \quad L_{-2} \leq L_3, \quad \cdots \quad (27)$$

667 or equivalently
668

669
$$L_{-m} \leq L_{1+m} \quad \text{for all } m \geq 0. \quad (28)$$

670 Next, let us consider the case for $k = 2$. Similar to (26), we have
671

672
$$(p_0 - p_2)(L_0 - L_2) + (p_1 - p_3)(L_{-1} - L_3) + (p_2 - p_4)(L_{-2} - L_4) + \cdots \leq 0. \quad (29)$$

673 This is satisfied if
674

675
$$L_{1-m} \leq L_{1+m} \quad \text{for all } m \geq 0. \quad (30)$$

676 In general, if $k \geq 1$, we have the following condition:
677

678
$$L_{\lfloor \frac{k}{2} \rfloor - m} \leq L_{\lceil \frac{k}{2} \rceil + m} \quad \text{for all } m \geq 0. \quad (31)$$

679 Note that (28) and (30) are special cases of (31). Symmetrically, if $k \leq -1$, we have the condition:
680

681
$$L_{\lfloor \frac{k}{2} \rfloor - m} \geq L_{\lceil \frac{k}{2} \rceil + m} \quad \text{for all } m \geq 0. \quad (32)$$

682 Both conditions in (31) and (32) are satisfied if
683

684
$$L_0 \leq L_{\pm 1} \leq L_{\pm 2} \leq L_{\pm 3} \leq \cdots, \quad (33)$$

685 implying that L_k should be a monotonic increasing function of $|k|$. Rewriting this monotonicity
686 constraint in the original notations, we have the sufficient condition in (5),
687

688
$$d(h_x, \mu_{r_x+s}) \leq d(h_x, \mu_{r_x+t}) \quad \text{for all } |s| \leq |t|. \quad (34)$$

689 B DERIVATION OF CENTROID RULE IN (18)
690691 Based on the desideratum in (4), we formulate a cost function
692

693
$$J = \sum_{x \in \mathcal{X}} D_h(x, r_x) \quad (35)$$

694
$$= \sum_{x \in \mathcal{X}} \sum_s p_s d^2(h_x, \mu_{r_x+s}) \quad (36)$$

695
$$= \sum_{x \in \mathcal{X}} \sum_s p_s (\mu_{r_x+s}^T \mu_{r_x+s} - 2h_x^T \mu_{r_x+s} + h_x^T h_x) \quad (37)$$

696
$$= \sum_{x \in \mathcal{X}} \sum_r p_{r-r_x} (\mu_r^T \mu_r - 2h_x^T \mu_r + h_x^T h_x). \quad (38)$$

697 We then update the centroids $\{\mu_r\}_{r=1}^n$ to minimize the cost function J . By differentiating J with
698 respect to each μ_r and setting it to zero, we have
699

700
$$\frac{\partial J}{\partial \mu_r} = \sum_{x \in \mathcal{X}} p_{r-r_x} (2\mu_r - 2h_x) = 0. \quad (39)$$

701 Hence, the optimal centroid is given by
702

703
$$\mu_r = \frac{\sum_{x \in \mathcal{X}} p_{r-r_x} h_x}{\sum_{x \in \mathcal{X}} p_{r-r_x}}, \quad r \in \{1, \dots, n\}. \quad (40)$$

702 **C IMPLEMENTATION DETAILS**
 703

704 **C.1 DATASETS**
 705

706 **MORPH II** (Ricanek & Tesafaye, 2006): It is a dataset for facial age estimation, consisting of 55K
 707 facial images in the age range [16, 77]. It provides age, gender, and race labels. As in Chang et al.
 708 (2011), we use 5,492 Caucasian images divided into training and test sets with a ratio of 8:2.

709 **CLAP2015** (Escalera et al., 2015): It is for apparent age estimation. The apparent age of each
 710 image was rated by at least 10 annotators within the range [3, 85], and the mean rating is used as the
 711 ground-truth. This dataset provides 4,691 facial images in total that are split into 2,476 for training,
 712 1,136 for validation, and 1,079 for testing.

713 **AADB** (Kong et al., 2016): It is a dataset for aesthetic score regression, composed of 10,000
 714 photographs of various themes such as scenery and close-up. We use 8,500 images for training, 500
 715 for validation, and 1,000 for testing. Each image is annotated with an aesthetic score in [0, 1]. We
 716 quantize the continuous scores with a step size of 0.01 to have 101 discrete ranks.

717 **RSNA** (Halabi et al., 2019): It is for pediatric bone age assessment, containing 14,236 hand radio-
 718 graphs. We employ the official evaluation protocol in Halabi et al. (2019) — 12,611 for training,
 719 1,425 for validation, and 200 for testing. The bone age range is [0, 216] in months.

720 **WMT2020** (Specia et al., 2020): It is a dataset for machine translation quality estimation, where
 721 translations are scored with human direct assessment (DA) on a scale of [0, 100]. The dataset includes
 722 seven language pairs of varying resource levels, with sentences mostly sourced from Wikipedia. In
 723 this work, we use the Russian→English (Ru-En) subset for evaluation.

725 **C.2 NOISE DISTRIBUTION SETTINGS**
 726

727 To evaluate the robustness of the proposed SOL, we add random noise generated from three different
 728 probability distributions: Gaussian, Laplacian, uniform, and skewed. In all cases, the noise magnitude
 729 is controlled by adjusting the noise ratio κ .

731 1. Gaussian distribution:

$$\mathbf{e} \sim \mathcal{N}(0, (\kappa \cdot \sigma_{\mathcal{X}})^2). \quad (41)$$

732 2. Laplacian distribution:

$$\mathbf{e} \sim \text{Laplace}(0, \kappa \cdot \sigma_{\mathcal{X}}) \quad (42)$$

733 with probability density

$$p(e) = \frac{1}{2\kappa \cdot \sigma_{\mathcal{X}}} \exp\left(-\frac{|e|}{\kappa \cdot \sigma_{\mathcal{X}}}\right). \quad (43)$$

734 3. Uniform distribution:

$$\mathbf{e} \sim \mathcal{U}(-\kappa \cdot \sigma_{\mathcal{X}}, \kappa \cdot \sigma_{\mathcal{X}}). \quad (44)$$

735 4. Skewed distribution:

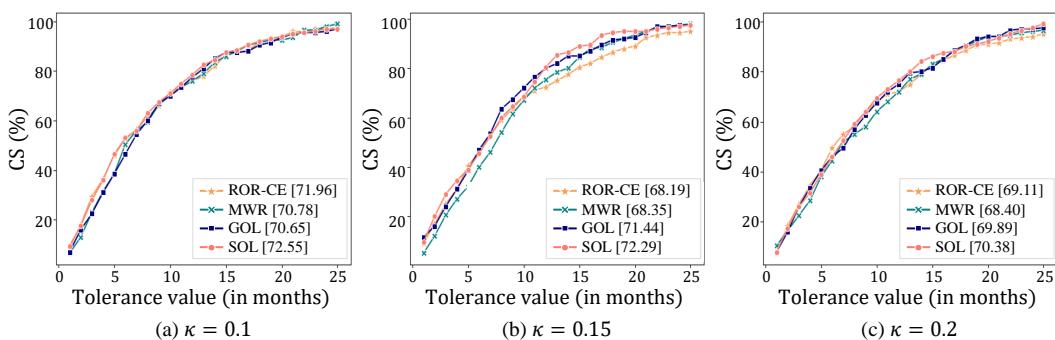
$$\mathbf{e} \sim \text{SkewNorm}(a = 5, \mu = 0, \sigma = \kappa \cdot \sigma_{\mathcal{X}}). \quad (45)$$

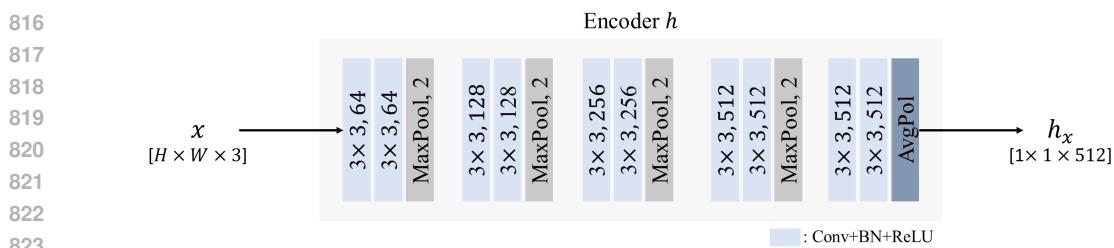
756 C.3 SPECIFICATION OF σ IN (22)
757758 Table 7 specifies the exact values of σ for generating the noise in (22) for each dataset.
759760 Table 7: The values of σ according to κ .
761

	σ					
	$\kappa = 0.1$	$\kappa = 0.15$	$\kappa = 0.2$	$\kappa = 0.3$	$\kappa = 0.4$	$\kappa = 0.5$
MORPH II	1.092	1.638	2.184	3.276	4.368	5.460
CLAP2015	1.235	1.853	2.471	3.706	4.941	6.177
AADB	0.018	0.028	0.037	0.055	0.074	0.102
RSNA	4.118	6.177	8.326	12.355	16.473	20.591

768 C.4 TOLERANCE VALUES FOR COMPUTING CUMULATIVE SCORES
769770 In facial age estimation, the cumulative score (CS) is commonly measured using a tolerance value
771 of 5 (Chang et al., 2011; Shen et al., 2018). For a fair comparison, we also adopt the tolerance value
772 of 5 for the MORPH II and CLAP2015 datasets.
773774 The ranks in AADB, an aesthetic score regression dataset, range from 0 to 1. Thus, for AADB, we
775 use a tolerance value of 0.25, instead of 5.
776777 In medical assessment, previous work only adopts the MAE metric and does not compute CS scores.
778 Bone ages in the RSNA dataset are measured in months instead of years, so RSNA has a bigger error
779 range than facial age estimation datasets. If the same tolerance value 5 is used, it yields very poor CS
780 scores. Thus, we set the tolerance value to be the smallest integer at which the CS scores exceed 75%
781 for all noise ratios κ . Based on the results in Table 8, we set 12 as the tolerance value for RSNA in all
782 experiments.
783784 Table 8: CS scores (%) of SOL according to the tolerance values on the RSNA dataset (Gaussian
785 label noise).
786

Tolerance value	10	11	12	13	14	15	20	25
$\kappa = 0.1$	71.00	75.00	78.50	82.50	84.50	87.50	94.00	97.00
$\kappa = 0.15$	68.50	74.50	80.50	85.50	86.50	89.00	95.00	97.50
$\kappa = 0.2$	69.50	73.00	76.50	80.00	84.00	86.00	92.00	99.00

791 We also show the CS curves according to tolerance values on the RSNA dataset in Figure 6. It is
792 observed that the proposed SOL performs better than the state-of-the-art algorithms with the highest
793 area under the curve (AuC) at all noise ratios κ .
794806 Figure 6: Comparison of the CS curves according to tolerance values on the RSNA dataset (Gaussian
807 label noise). The legend of each graph includes the AuC score for the corresponding algorithm.
808

810 C.5 NETWORK ARCHITECTURE
811812 As described in Section 3.2, we employ an encoder to map each instance into a feature vector in an
813 embedding space. The network structure for the encoder h is specified in Figure 7. The encoder is
814 based on the VGG16 network and takes a $224 \times 224 \times 3$ image as input.
815816
817
818
819
820
821
822
823
824
825
826
827
828
829
830 Figure 7: Network structure of the encoder h .831 C.6 HYPERPARAMETER SETTINGS
832833 For WMT2020, we train the network for 20 epochs. For all the other datasets, we train the network
834 for 100 epochs. Table 9 summarizes the hyperparameters for each dataset.
835836 Table 9: Hyperparameter settings
837

Dataset	Learning rate	Batch size	T in (8)	τ in (11)	γ in (15)	β in (19)	σ_{test}
MORPH II	10^{-4}	32	1	3	0.25	0.9	1
CLAP2015	10^{-4}	32	1	3	0.25	0.85	1
AADB	5×10^{-5}	32	1	5	0.25	0.85	0.01
RSNA	5×10^{-5}	32	1	3	0.25	0.9	1
WMT2020	2×10^{-5}	16	1	3	0.25	0.85	1

864
865 D MORE EXPERIMENTAL RESULTS
866867 In the following experiments, we use Gaussian distributions for label noise.
868869 D.1 HYPERPARAMETER ANALYSIS
870871 **Analysis on T in (8):** Table 10 compares the MAE scores at different T 's on the CLAP2015 dataset.
872 In this test, $\tau = 3$, $\beta = 0.85$, and $\sigma_{\text{test}} = 1$. Except at $\kappa = 0.2$, where the setting $T = 1$ yields a
873 slightly lower MAE by 0.004 than $T = 3$, the best results are provided by the setting $T = 1$. Thus,
874 we set $T = 1$ as the default mode.
875876 Table 10: MAE scores according to T on the CLAP2015 dataset.
877

	$T = 1$	$T = 2$	$T = 3$
$\kappa = 0.2$	3.559	3.565	3.555
$\kappa = 0.3$	3.764	3.779	3.832
$\kappa = 0.4$	4.002	4.032	4.050
$\kappa = 0.5$	4.170	4.196	4.196

882 **Analysis on τ in (11):** Table 11 compares the MAE results at different τ 's on CLAP2015. In this test,
883 $T = 1$, $\beta = 0.85$, and $\sigma_{\text{test}} = 1$. Note that τ is a threshold in (11) to control the balance between
884 rank precision and model robustness. Using τ as big as 3 achieves robustness and yields decent MAE
885 results. However, when τ is larger than 3, the performance drops because of the model under-fitting.
886 Hence, we set $\tau = 3$ for CLAP2015.
887888 Table 11: MAE scores according to τ on the CLAP2015 dataset.
889

	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$
$\kappa = 0.2$	3.574	3.610	3.559	3.646
$\kappa = 0.3$	3.777	3.822	3.764	3.794
$\kappa = 0.4$	4.034	3.980	4.002	4.039
$\kappa = 0.5$	4.236	4.209	4.170	4.292

890 **Analysis on β in (19):** Table 12 lists the results at different β 's on CLAP2015. In this test, $T = 1$,
891 $\tau = 3$, and $\sigma_{\text{test}} = 1$. β is a parameter to control the precision of outlier detection in (19). Increasing
892 β increases the precision, but it also decreases the number of instances that are detected. With a low
893 β , more instances can be detected as outliers, but there is also the risk of false positives. Generally,
894 the setting $\beta \geq 0.85$ yields better results than $\beta < 0.85$. This is because less precise outlier detection
895 at a low β may deteriorate network training by increasing label noise. As specified in Table 9, we set
896 $\beta = 0.85$ for CLAP2015 and AADB and $\beta = 0.9$ for MORPH II and RSNA.
897898 Table 12: MAE scores according to β on CLAP2015.
899

	$\beta = 0.8$	$\beta = 0.85$	$\beta = 0.9$	$\beta = 0.95$
$\kappa = 0.2$	3.566	3.559	3.544	3.570
$\kappa = 0.3$	3.849	3.764	3.797	3.804
$\kappa = 0.4$	4.070	4.002	4.036	4.062
$\kappa = 0.5$	4.173	4.170	4.177	4.171

918
919D.2 ANALYSIS ON σ_{test} 920
921
922
923
924
925
926

Gaussian noise assumption and fixed σ_{test} : Many real-world rank-estimation datasets, including CLAP2015 (Escalera et al., 2015), AADB (Kong et al., 2016), and RSNA (Halabi et al., 2019), obtain their ground-truth labels by averaging multiple independent human annotations. Due to the central-limit effect, such averaged labels empirically follow a Gaussian-like distribution; CLAP2015 further provides per-sample variance estimates that directly support this assumption. While individual annotators may deviate from Gaussian behavior, the aggregated labels are typically well approximated by a Gaussian model, making the discrete Gaussian noise formulation in (2) a reasonable choice.

927
928
929

In practice, the true standard deviation of annotation noise is unknown at test time. Therefore, SOL uses a fixed σ_{test} to compute the probabilities p_s in (2). The following analysis evaluates how sensitive SOL is to this hyperparameter.

930
931
932
933
934
935
936

Sensitivity to σ_{test} : We examine how the performance of SOL changes with different choices of the fixed σ_{test} used to compute p_s in (2). Table 13 summarizes the MAE results on the CLAP2015 dataset under $T = 1$, $\tau = 3$, and $\beta = 0.85$. A larger σ_{test} couples each instance x more strongly with distant rank centroids, which can weaken rank discrimination. In contrast, a very small value makes the model sensitive to label errors because x interacts only with nearby centroids. Balancing these effects, $\sigma_{\text{test}} = 1.0$ provides the most stable performance in most settings.

937
938
939
940
941
942
943
944Table 13: MAE results according to σ_{test} on the CLAP2015 dataset .

	$\sigma_{\text{test}} = 0.5$	$\sigma_{\text{test}} = 1.0$	$\sigma_{\text{test}} = 1.5$	$\sigma_{\text{test}} = 2.0$	$\sigma_{\text{test}} = 2.5$	$\sigma_{\text{test}} = 3.0$	$\sigma_{\text{test}} = 3.5$
$\kappa = 0.2$	3.555	3.559	3.548	3.549	3.588	3.593	3.670
$\kappa = 0.3$	3.801	3.764	3.794	3.797	3.848	3.888	3.985
$\kappa = 0.4$	4.000	4.002	4.072	4.070	4.061	4.194	4.355
$\kappa = 0.5$	4.198	4.170	4.203	4.288	4.259	4.343	4.499

945
946
947
948
949

We plot the MAE scores according to σ_{test} in Figure 8. It is observed that MAE results start to degrade significantly once $\sigma_{\text{test}} \geq 4.0$. As shown in Figure 9, the probability distribution p_s in (2) flattens as σ_{test} gets bigger. Thus, the probabilities assigned to different ranks become indistinguishable for SOL to operate well when $\sigma_{\text{test}} \geq 4.0$. Hence, it is appropriate to use a σ_{test} less than 4.0 for CLAP2015.

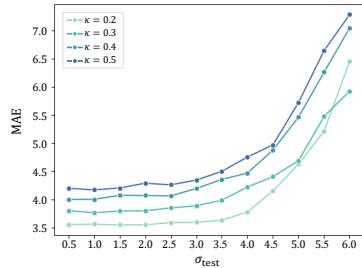
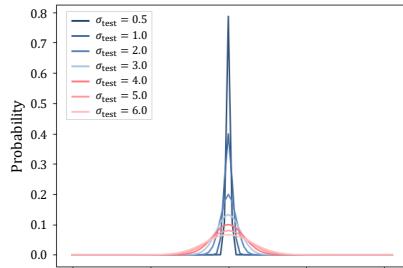
950
951
952
953
954
955
956
957
958
959960
961Figure 8: MAE according to σ_{test} on CLAP2015.Figure 9: p_s in (2) for different σ_{test} .962
963
964
965
966

Table 14 shows a similar trend on the WMT2020 dataset. Although the evaluation metrics differ (PCC and SRCC), the overall variation with respect to σ_{test} remains small, confirming that SOL is not highly sensitive to this hyperparameter in real-world settings. Finally, the σ_{test} values used for all datasets in the main paper are summarized in Table 9.

967
968
969
970
971Table 14: PCC and SRCC scores of SOL on the WMT2020 dataset for different values of σ_{test} .

σ_{test}	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
PCC (\uparrow)	0.664	0.680	0.672	0.679	0.672	0.670	0.675	0.683
SRCC (\uparrow)	0.639	0.649	0.640	0.654	0.656	0.641	0.646	0.653

972 **Adaptive σ_{test} :** To examine whether σ can be estimated from data, we add a lightweight head that
 973 predicts the mean μ and standard deviation σ , trained with a Gaussian negative log-likelihood loss, so
 974 that the predicted σ replaces the constant in (2). We evaluate two variants: *Joint training*, where the
 975 σ -prediction head and SOL are optimized together, and *Two-stage scheme*, where the σ -prediction
 976 head is trained first and then frozen during SOL training. As shown below for CLAP2015 at $\kappa = 0.4$,
 977 the fixed setting achieves better MAE and CS than both adaptive variants.

978
979 Table 15: Comparison of adaptive σ_{test} strategies on the CLAP2015 dataset at $\kappa = 0.4$.

Method	MAE (\downarrow)	CS (\uparrow)
Joint adaptive σ_{test}	5.032	67.10
Two-stage adaptive σ_{test}	4.171	71.64
Fixed σ_{test} (default)	4.002	73.68

980
981 D.3 LOSS FUNCTIONS

982 **Alternatives to ℓ_{disc} in (8):** Table 16 compares alternative loss terms for ℓ_{disc} . Method I, which
 983 is also known as the center loss, aims at directly locating an instance x close to its corresponding
 984 centroid μ_{r_x} . On the other hand, method II decreases not only the distance to the corresponding
 985 centroid but also to its stochastically-related centroids. Method II performs better than method I.
 986 However, the table shows that the proposed discriminative loss ℓ_{disc} yields the best performance.

987
988 Table 16: Comparison of alternative choices for ℓ_{disc} in (8) on the CLAP2015 dataset at $\kappa = 0.2$.

Method	Alternative to ℓ_{disc}	MAE (\downarrow)
I	$d(h_x, \mu_{r_x})$	3.593
II	$D_h(x, r_x)$	3.585
III	ℓ_{disc} in (8)	3.559

989 D.4 OUTLIER DETECTION AND RELABELING

990 **Impacts of label refinement:** To show the effectiveness of the proposed label refinement (*i.e.* outlier
 991 detection and relabeling) scheme, Table 17 compares the results of SOL with and without the label
 992 refinement, respectively, on CLAP2015. By examining Table 17 together with Table 2, it can be
 993 observed that even without the refinement SOL outperforms the conventional algorithms. However,
 994 by applying the refinement scheme, the proposed SOL further improves overall performance. In
 995 general, the label refinement reduces label noise in a training dataset, making the training process
 996 more reliable. The impact of relabeling also depends on dataset size. Because CLAP2015 is relatively
 997 small, only a few samples are identified as outliers, so the quantitative improvements are modest. In
 998 contrast, larger datasets such as RSNA contain more inconsistent labels, making the refinement more
 999 beneficial. The RSNA results in Table 18 clearly demonstrate this tendency.

1000
1001 Table 17: Comparison of the proposed SOL with and without the label refinement on CLAP2015.

Algorithm	$\kappa = 0.2$		$\kappa = 0.3$		$\kappa = 0.4$		$\kappa = 0.5$	
	MAE (\downarrow)	CS (\uparrow)	MAE (\downarrow)	CS (\uparrow)	MAE (\downarrow)	CS (\uparrow)	MAE (\downarrow)	CS (\uparrow)
w/o label refinement	3.556	78.41	3.766	76.37	4.058	73.68	4.208	72.57
w/ label refinement	3.559	78.68	3.764	77.11	4.002	73.68	4.170	71.64

1020
1021 Table 18: Comparison of the proposed SOL with and without the label refinement on RSNA.

Algorithm	$\kappa = 0.10$		$\kappa = 0.15$		$\kappa = 0.20$	
	MAE (\downarrow)	CS (\uparrow)	MAE (\downarrow)	CS (\uparrow)	MAE (\downarrow)	CS (\uparrow)
w/o label refinement	7.967	81.50	7.800	79.50	8.196	74.00
w/ label refinement	7.579	78.50	7.706	80.50	8.051	76.50

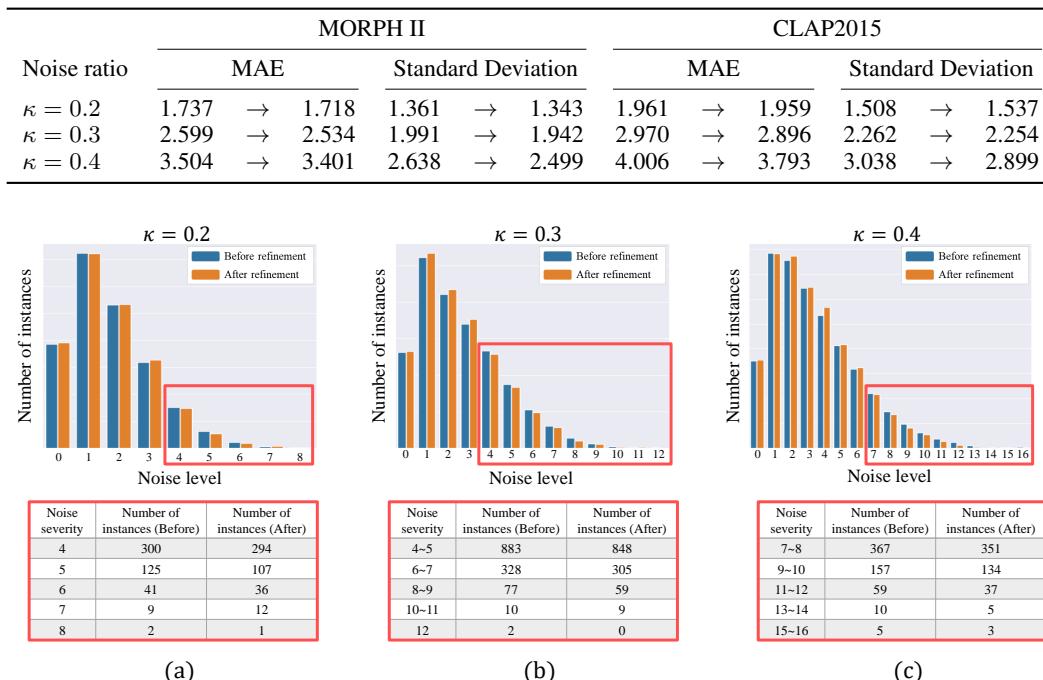
1026
 1027 **Alternative relabeling schemes:** In the proposed relabeling scheme, the ranks of detected outliers are
 1028 adjusted by the same magnitude via (20). Here, we assess the performance when each detected outlier
 1029 is relabeled using different magnitudes. Specifically, we adjust the rank of each outlier instance by
 1030 half of the absolute difference between its noisy and estimated rank. Table 19 lists the results on
 1031 the CLAP2015 dataset. Compared to method I performing no relabeling, method II improves MAE.
 1032 However, the proposed relabeling scheme provides the best results. Using the same average value to
 1033 adjust the ranks prevents drastic changes in rank labels, yielding more reliable performance.

1034 Table 19: Analysis on the relabeling scheme on the CLAP2015 dataset at $\kappa = 0.4$.

	Relabeling schemes	MAE (\downarrow)	CS (\uparrow)
I	No relabeling	4.058	73.68
II	Different magnitudes	4.012	72.75
III	Proposed	4.002	73.68

1042 **Noise reduction:** The proposed SOL can refine noisy ranks. To demonstrate this capability, we report
 1043 MAEs between a noisy rank r_x and the true rank \bar{r}_x and the standard deviations of such noise levels
 1044 before and after the label refinement in Table 20. In this test, we use the MORPH II and CLAP2015
 1045 datasets. Note that the MAE or the standard deviation is reduced in 11 out of 12 tests, confirming the
 1046 effectiveness of the label refinement. For further analysis, we test how the refinement changes the
 1047 number of instances at each noise level (*i.e.* label error). Figure 10 plots such statistics on MORPH II
 1048 at various κ 's. The red boxes in Figure 10 specify the numbers of instances with high noise levels.
 1049 We see that the numbers of instances with extreme noise levels are reduced in general. Especially, at
 1050 $\kappa = 0.4$, the number of instances with $2 \leq e_x \leq 4$ is increased, while that with $e_x \geq 7$ is reduced
 1051 significantly. It is desirable because severe label errors hinder the construction of a well-sorted
 1052 embedding space. Consequently, the label refinement generally boosts the performance of SOL.

1054 Table 20: Comparison of the average noise levels before and after the label refinement.

1078 Figure 10: Comparison of the numbers of instances at each noise level before and after the label
 1079 refinement on the MORPH II dataset.

1080
1081

D.5 PERFORMANCE ON PARTIALLY NOISY DATA

1082
1083
1084
1085
1086
1087
1088

In real-world settings, information on which samples are noisy is not given. Hence, for practical use, we assume that all samples have the risk of labeling errors in the experiments in the main paper. However, the proposed SOL is also effective when only a subset of samples are mislabeled. In Table 21, we randomly sample $\varepsilon\%$ of the total dataset and add noise to their labels. The rest of the data is left clean. We compare the proposed SOL to the state-of-the-art algorithm GOL (Lee et al., 2022). In this partially noisy case as well, the proposed SOL generally achieves better performance than GOL.

1089
1090

Table 21: MAE results of GOL / SOL on CLAP2015 when only parts of the total data are corrupted.

1091
1092
1093
1094
1095
1096
1097

	$\kappa = 0.2$	$\kappa = 0.3$	$\kappa = 0.4$	$\kappa = 0.5$
$\varepsilon = 10$	3.442 / 3.420	3.540 / 3.505	3.590 / 3.549	3.690 / 3.639
$\varepsilon = 20$	3.492 / 3.471	3.568 / 3.547	3.561 / 3.536	3.605 / 3.572
$\varepsilon = 30$	3.498 / 3.480	3.591 / 3.588	3.612 / 3.631	3.731 / 3.696
$\varepsilon = 40$	3.510 / 3.518	3.657 / 3.607	3.736 / 3.731	3.737 / 3.762
$\varepsilon = 50$	3.497 / 3.495	3.715 / 3.704	3.784 / 3.710	3.778 / 3.737

1098
1099

D.6 COMPLEXITY

1100
1101
1102
1103
1104

Training time: Table 22 reports the training time per epoch on the CLAP2015 dataset using an RTX 4090 GPU. We also report the additional runtime introduced by SOL due to its stochastic distance computation and label refinement, by employing GOL as the non-stochastic baseline. While SOL introduces an additional computational cost, it remains practical for training.

1105
1106
1107
1108
1109
1110
1111
1112
1113

Table 22: Training time per epoch on CLAP2015.

Algorithm	Training time (s)
Ranknet	44.8
SoftRank	96.2
MWR	77.3
GOL (non-stochastic)	27.8
SOL w/o refinement	39.2
SOL	52.1

1114
1115
1116
1117
1118

We also compare GPU memory usage for loss computation (batch size = 32) in Table 23. GOL consumes substantially more memory, for it constructs full pairwise direction tensors and expanded index structures, which create large intermediate buffers. In contrast, SOL computes pairwise probabilities on the fly without forming dense tensors, resulting in a much smaller memory footprint.

1119
1120
1121
1122
1123
1124

Table 23: GPU memory consumption for loss computation (batch size = 32).

Algorithm	Memory
GOL	8.19 MB
SOL	0.60 MB

1125
1126
1127
1128

Table 24 compares the times for computing the centroids in (18) to the total training times. Even for the RSNA dataset consisting of 12,611 training samples, it takes only a few minutes to compute the centroids. This is fast enough for most use cases since the centroids are updated only once per epoch.

1129
1130

Table 24: The processing times (s) required for training one epoch.

1131
1132
1133

	MORPH II	CLAP2015	AADB	RSNA
Centroid computation	6.1	5.1	39.2	286.1
Training 1 epoch	60.2	52.1	145.4	1160.7

1134
 1135 **Training speed-up:** Although the centroid computation is not a major bottleneck, its cost can be
 1136 further reduced by sub-sampling the training instances used during centroid updates. Table 25 reports
 1137 the MAE performance and the corresponding time complexities for different sampling ratios.

1138 Table 25: Sub-sampling for centroid computation on the CLAP2015 dataset at $\kappa = 0.4$.
 1139

Sampling ratio	MAE	Centroid computation time (s)	Training time per epoch (s)
0.1	4.029	0.9	47.9
0.2	4.018	1.2	48.2
1.0	4.002	5.1	52.1

1145 Computing the stochastic distances in FP16 further reduces runtime with negligible impact on MAE,
 1146 as shown in Table 26.
 1147

1148 Table 26: Mixed-precision computation on the CLAP2015 dataset at $\kappa = 0.4$.
 1149

Precision	MAE	Training time per epoch (s)
FP16	4.008	48.0
FP32	4.002	52.1

1155 **Training time on RSNA:** Table 27 compares the per-epoch training costs on the RSNA dataset.
 1156

1157 Table 27: Training time per epoch on the RSNA dataset.
 1158

Algorithm	Training time per epoch (s)
MWR	1036.3
GOL	664.1
SOL	1160.7

1164 The large per-epoch cost of SOL on RSNA is due to the data-loading configuration rather than the
 1165 loss itself. For comparability with prior studies, all methods were evaluated with `num_workers` =
 1166 1, which introduces an I/O bottleneck. As shown in Table 28, enabling standard parallel data loading
 1167 reduces the time from 1160.7s to 223.6s. The previously reported 1160.7s therefore represents
 1168 a conservative upper bound caused by serial loading; SOL trains efficiently under typical parallel
 1169 pipelines.
 1170

1171 Table 28: Effect of data-loading parallelization on SOL training time for the RSNA dataset.
 1172

num_workers	Training time per epoch (s)
1	1160.7
8	223.6

1177 **Testing time:** We also compare the average processing time required for testing a single image in
 1178 Table 29. We use an RTX 4090 GPU and test on the CLAP2015 dataset. For efficiency, we extract
 1179 the features of all training images and compute the centroids in advance. Therefore, during the test,
 1180 only the feature extraction of a test image is required. Note that GOL uses k -NN while SOL uses the
 1181 nearest expectation as the inference rule. Compared to GOL, SOL achieves faster inference.
 1182

1183 Table 29: The processing times (s) required for testing a single image on CLAP2015.
 1184

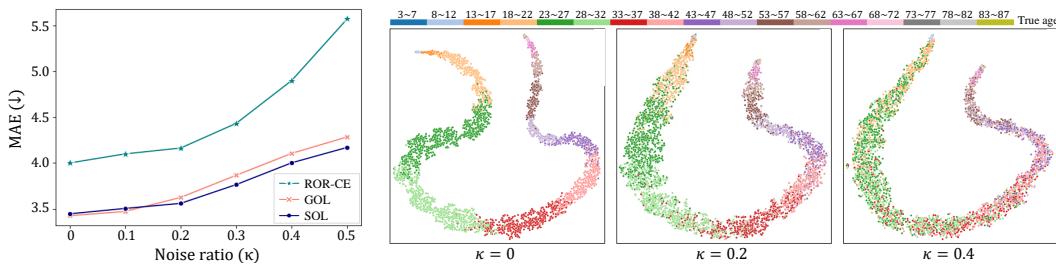
Algorithm	Feature extraction (s)	Inference (s)	Total (s)
GOL	0.040	0.083	0.123
SOL	0.040	0.051	0.091

1188
 1189 **Memory efficiency:** For large-scale training, memory efficiency is also important. Hence, we
 1190 compare the number of parameters of SOL with those of conventional methods in Table 30. SOL
 1191 requires the fewest parameters, indicating its potential for large-scale applications.
 1192

Table 30: Comparison of the network complexity.

Algorithm	# of parameters
ACL (Ye et al., 2023)	134.68M
MWR (Shin et al., 2022)	139.41M
GOL (Lee et al., 2022)	14.75M
SOL	14.72M

1203 D.7 INFLUENCE OF LABEL NOISE AT DIFFERENT NOISE RATIOS κ



1204
 1205 Figure 11: MAE results according to the noise ratio κ on CLAP2015. The left plot shows MAE(↓) vs
 1206 Noise ratio (κ) for ROR-CE (red), GOL (blue), and SOL (green). SOL shows the lowest MAE across
 1207 all noise ratios. The right plot shows t-SNE visualizations of the embedding spaces for the
 1208 CLAP2015 dataset at different noise ratios κ . As κ increases, the instances become more mixed up in
 1209 the space due to bigger label errors. However, at all κ , the instances are generally well aligned according to
 1210 their true ages. We show more t-SNE visualizations in Appendix D.11.
 1211

1212 **Noise ratios:** Figure 11 analyzes the influence of label noise on the CLAP2015 dataset, by comparing
 1213 the proposed SOL with ROR-CE and GOL at different noise ratios κ . For each algorithm, the increase
 1214 in κ degrades the MAE performance. However, the degradation of the conventional algorithms is
 1215 severer than that of SOL, demonstrating the superior noise-robustness of SOL.
 1216

1217 **Embedding spaces:** Figure 12 visualizes the embedding spaces of SOL using t-SNE (Maaten &
 1218 Hinton, 2008). As κ increases, different ages are more mixed up in the space due to bigger label
 1219 errors. However, at all κ , the instances are generally well aligned according to their true ages. We
 1220 show more t-SNE visualizations in Appendix D.11.
 1221

1222 D.8 COMPARISON TO LEARNING-TO-RANK METHODS

1223 For a more complete comparison with learning-to-rank techniques, we additionally implemented
 1224 RankNet (Burges et al., 2005) and SoftRank (Taylor et al., 2008) under our experimental setup. Both
 1225 models were trained using the same VGG16 backbone and evaluated through k-NN regression. The
 1226 results on the MORPH II dataset are summarized in Table 31.
 1227

Table 31: Comparison with RankNet and SoftRank on the MORPH II dataset.

Algorithm	Gaussian						Laplacian		Uniform		Skewed	
	$\kappa = 0.2$		$\kappa = 0.3$		$\kappa = 0.4$		$\kappa = 0.3$		$\kappa = 0.3$		$\kappa = 0.3$	
	MAE(↓)	CS(↑)										
RankNet (Burges et al., 2005)	2.639	89.80	2.990	86.16	3.116	82.79	3.146	84.15	2.634	88.89	3.490	80.97
SoftRank (Taylor et al., 2008)	3.147	83.06	3.394	81.97	3.427	80.15	3.801	75.96	3.137	84.34	4.018	73.32
SOL	2.489	91.35	2.663	89.62	2.826	87.70	2.794	86.89	2.499	90.89	3.296	83.15

1242 D.9 OUTLIERS IN THE WMT2020 DATASET
1243

1244 We provide a qualitative analysis of outlier cases detected by SOL on the real-noise WMT2020
 1245 translation-quality dataset. Unlike synthetic noise, discrepancies in WMT2020 originate from genuine
 1246 human variability, including strong penalties applied to fluent translations and unexpectedly high
 1247 scores assigned to mistranslated or semantically incorrect outputs. Typical outliers are categorized
 1248 into two classes.

- 1249 • Type A: fluent or semantically acceptable translations that receive abnormally low human scores,
 1250
- 1251 • Type B: mistranslated or semantically incorrect outputs that nevertheless receive unusually high
 1252 scores.

1253 Table 32 presents representative examples identified by SOL. Each case exhibits a clear mismatch
 1254 between linguistic quality and the annotated score, highlighting the presence of nontrivial and
 1255 asymmetric annotation noise in WMT2020.

1256
1257 Table 32: Representative outliers detected by SOL on the WMT2020 dataset.
1258

Type	Real Score	Pred Score	Source Text	Translation	Issue
A1	4	22	Ne po cheloveku spes'.	Don't rush into it.	Fluent sentence but unusually low human score.
A2	6	17	Ne penyay na zerkalo, kol' rozha kriva.	Don't foam at the mirror if it's crooked.	Acceptable fluency, score is unrealistically low.
B1	66	6	Zadkom, kuvyrkom, da i pod gorku.	Backward, somersault, and downhill.	Literal mistranslation; idiomatic meaning ("things going downhill") is lost.
B2	56	8	Religiya yad – beregi rebyat.	Religion Poison – Save the Children	Ungrammatical; missing verb ("Religion is poison"), resulting in awkward phrasing.
B3	67	15	Chito za chudak, da i chudilo.	What a freak, and a miracle.	Semantic error; "chudilo" mistranslated as "miracle," losing intended meaning.

1262 D.10 ABLATION STUDIES AND ANALYSIS ON ADDITIONAL DATASETS
1263

1264 To verify that the same design choices transfer beyond CLAP2015, we conducted ablation studies on
 1265 RSNA (Gaussian noise with $\kappa = 0.15$) and WMT2020. As summarized in Table 33, both datasets
 1266 follow the same pattern observed earlier: using either l_{disc} or l_{order} alone provides partial performance
 1267 gains, whereas combining both terms yields the best results.

1268
1269 Table 33: Ablation studies on RSNA and WMT2020.
1270

Method	l_{disc}	l_{order}	RSNA		WMT2020	
			MAE (\downarrow)	CS (\uparrow)	PCC (\uparrow)	SRCC (\uparrow)
I	✓		8.357	74.50	0.396	0.354
II		✓	8.040	77.50	0.673	0.634
III	✓	✓	7.706	80.50	0.680	0.649

1296
1297

D.11 MORE t-SNE VISUALIZATIONS

1298
1299
1300

We visualize the embedding spaces according to different noise ratios κ using t-SNE. The t-SNE plots for the MORPH II, AADB, and RSNA datasets are shown in Figures 13, 14, and 15, respectively.

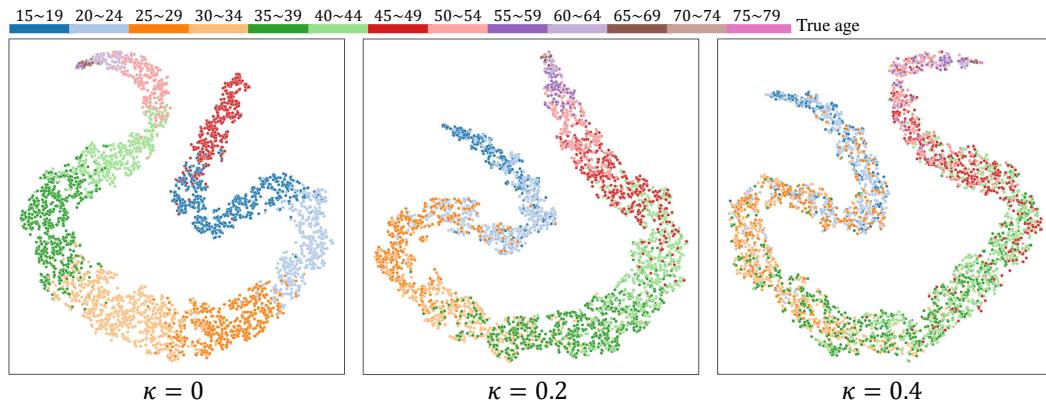
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

Figure 13: t-SNE visualization of the embedding spaces for MORPH II at different noise ratios κ .

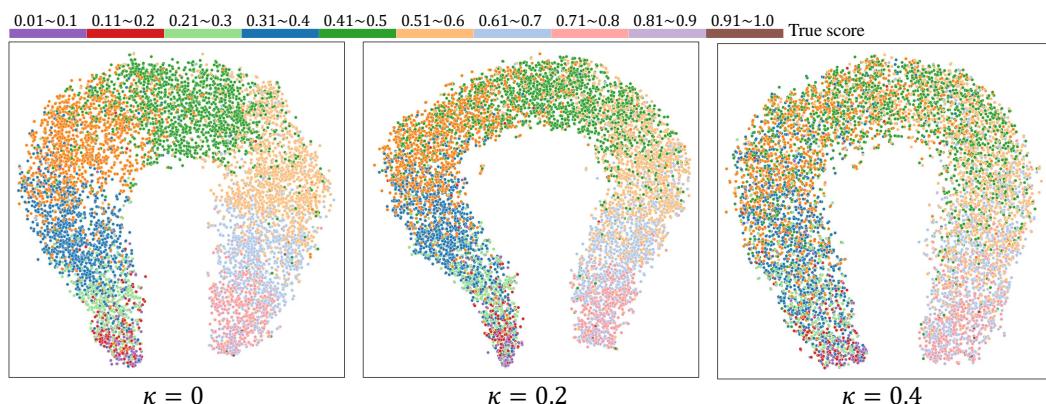
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Figure 14: t-SNE visualization of the embedding spaces for AADB at different noise ratios κ .

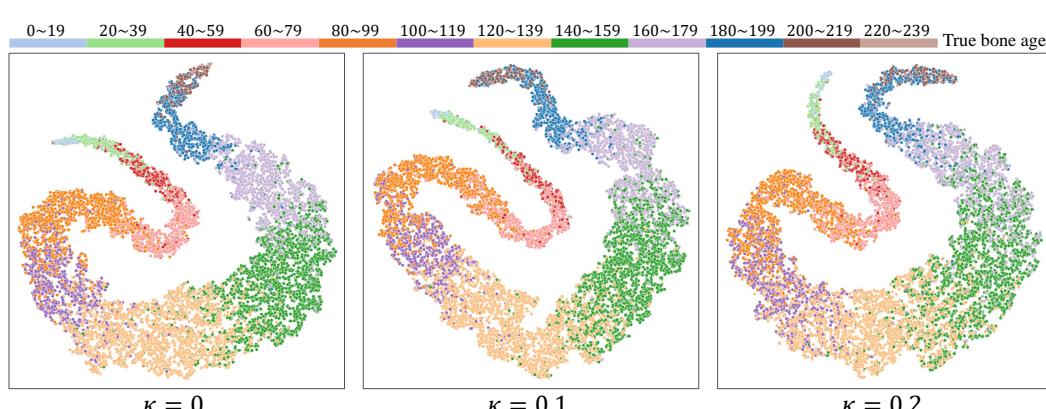
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 15: t-SNE visualization of the embedding spaces for RSNA at different noise ratios κ .

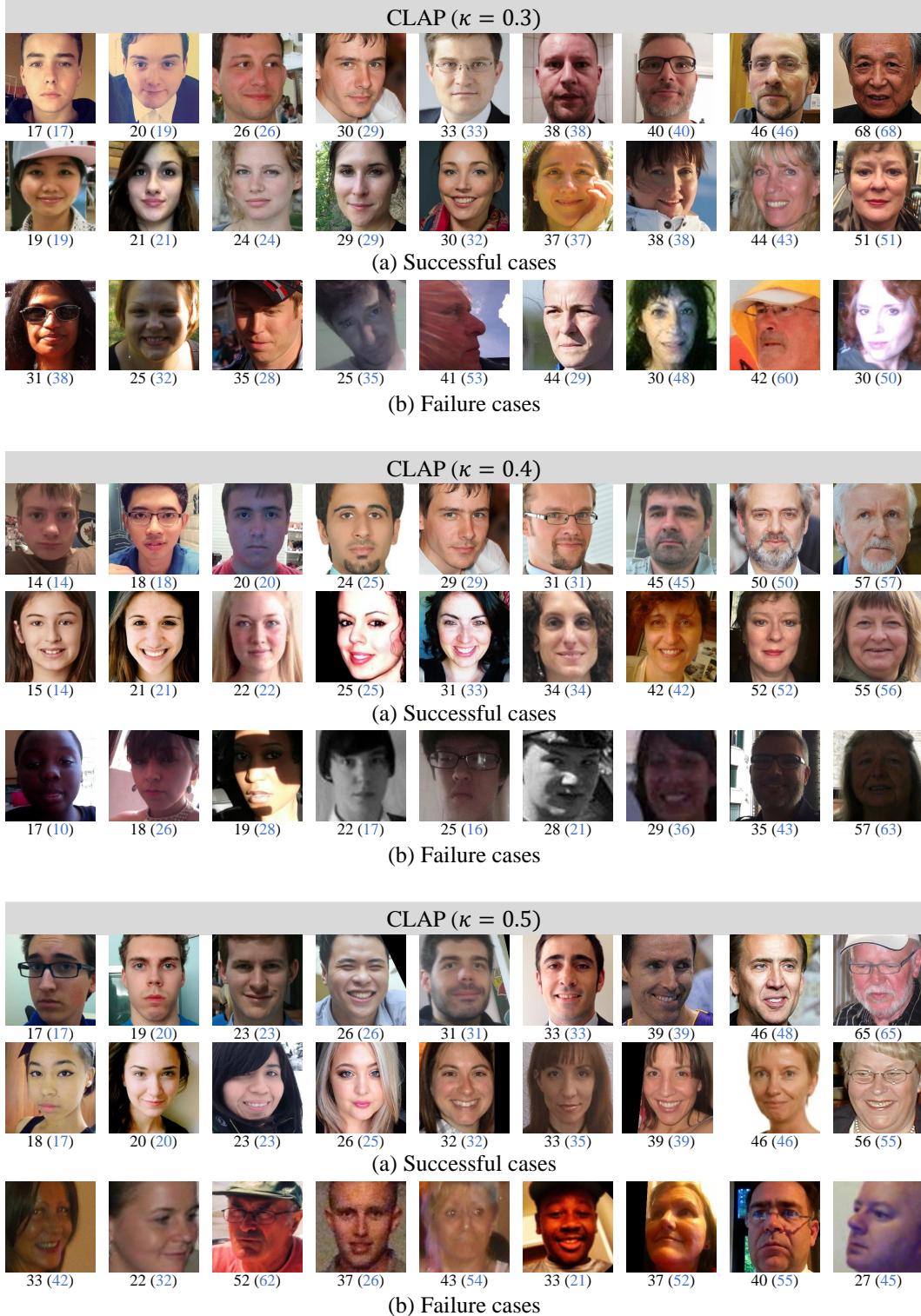
1350 D.12 MORE RANK ESTIMATION EXAMPLES
13511352 Figures 16, 17, and 18 show rank estimation results of the proposed SOL on the CLAP2015, AADB,
1353 and RSNA datasets, respectively.
1354

Figure 16: (a) Success and (b) failure cases of age estimation results on the CLAP2015 dataset. Under each image, the estimated ages are specified with the ground-truth in parentheses.

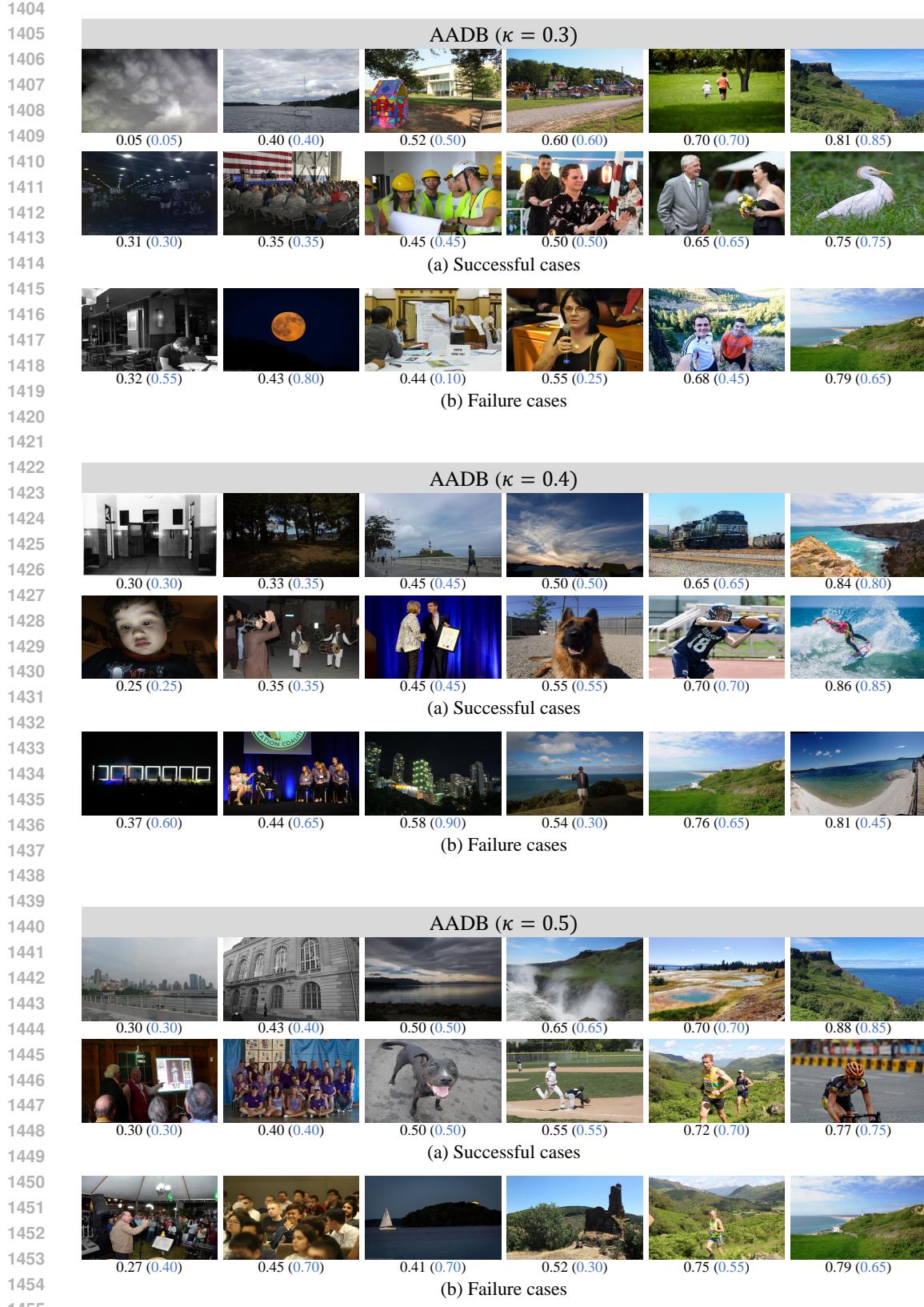


Figure 17: (a) Success and (b) failure cases of aesthetic score estimation results on the AADB dataset. Under each image, the estimated scores are specified with the ground-truth in parentheses.

Figure 18: (a) Success and (b) failure cases of bone age assessment results on the RSNA dataset. Under each image, the estimated ages (in months) are specified with the ground-truth in parentheses.

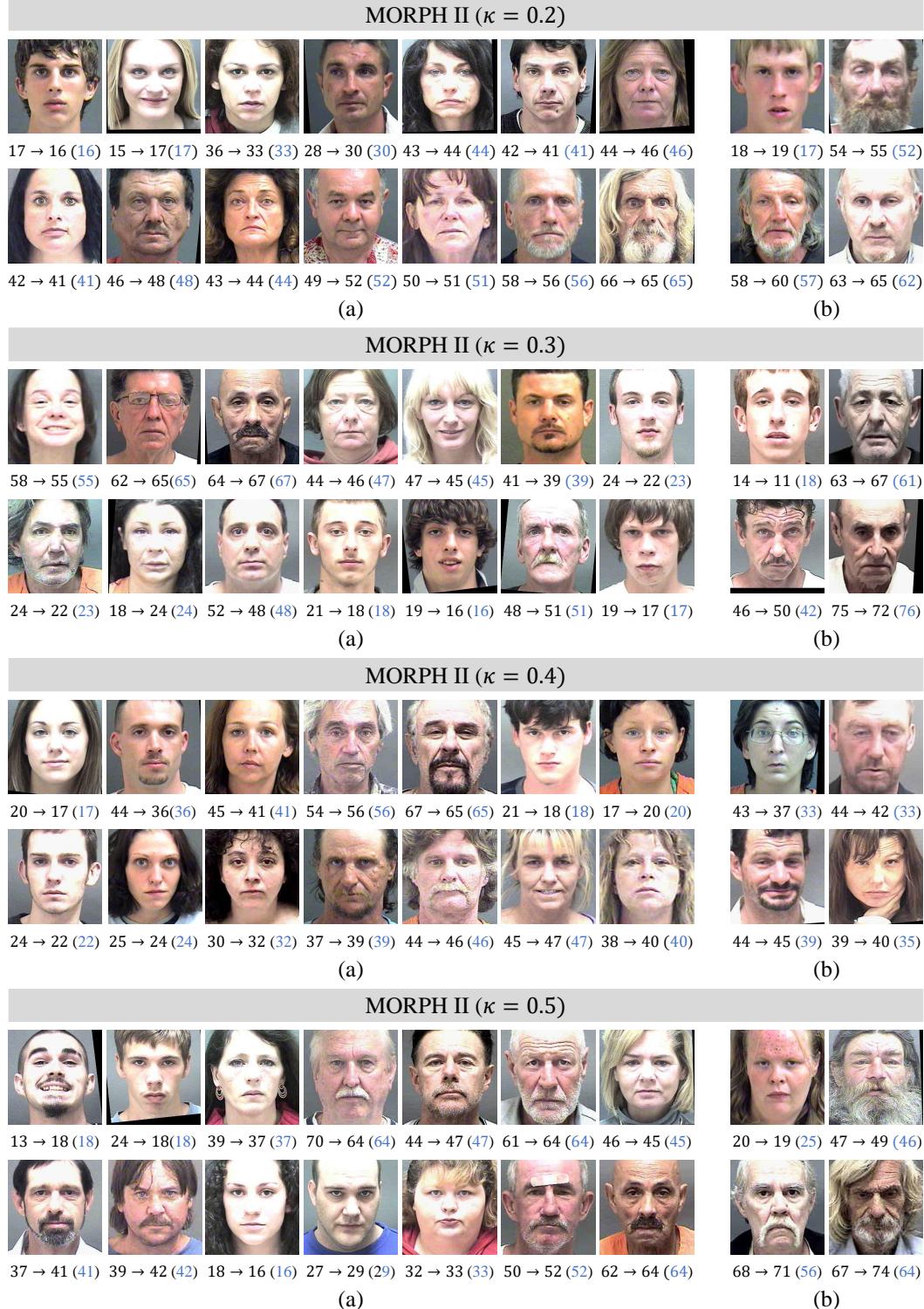
1512 D.13 MORE EXAMPLES OF DETECTED OUTLIERS
15131514 Figures 19, 20, and 21 show examples of detected outliers on the MORPH II, CLAP2015, and AADB
1515 datasets, respectively.

Figure 19: (a) Success and (b) failure cases of the label refinement on the MORPH II dataset. Under each image, the noisy, refined, and true ranks are specified: noisy → refined (true).

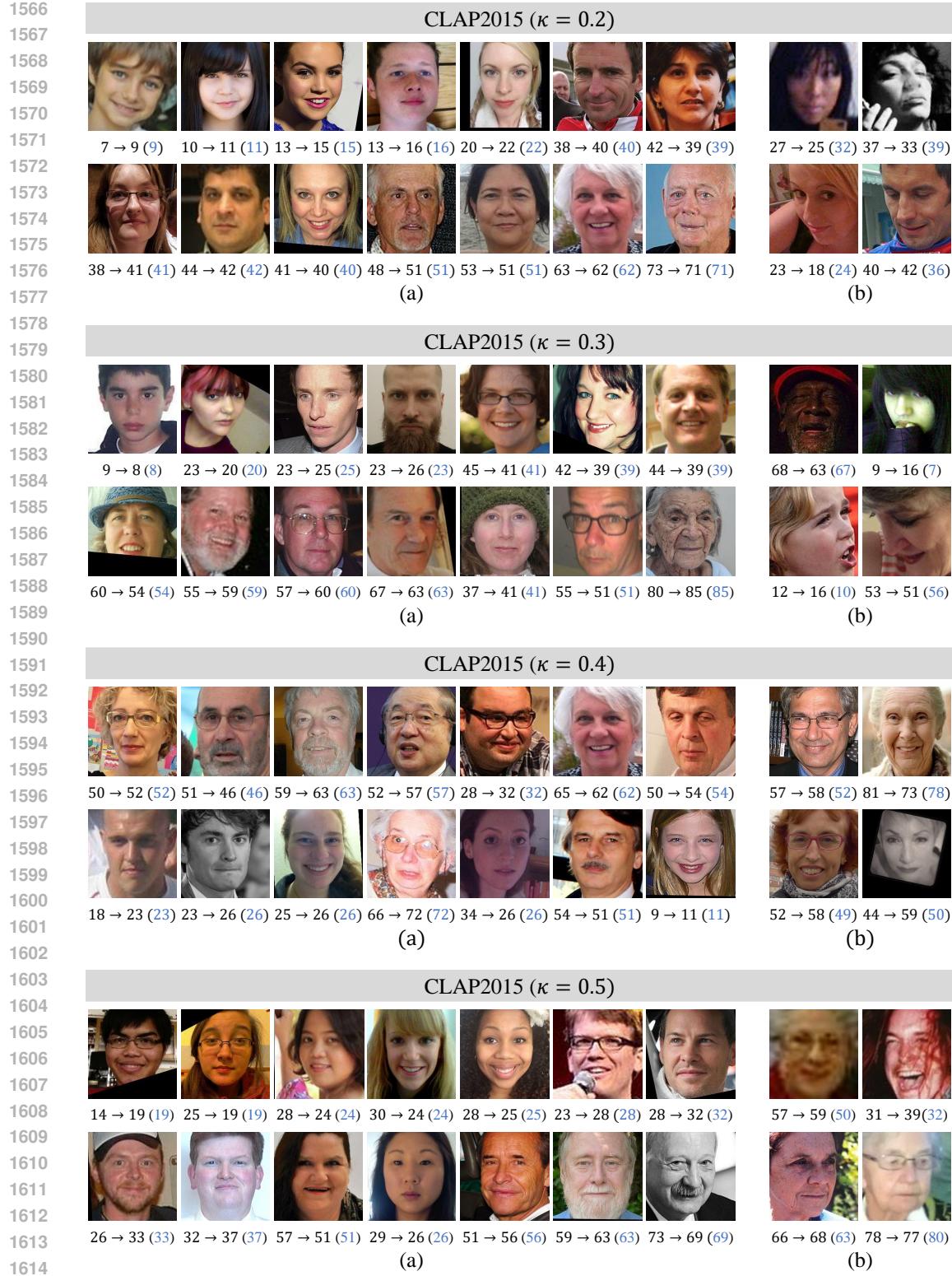


Figure 20: (a) Success and (b) failure cases of the label refinement on the CLAP dataset. Under each image, the noisy, refined, and true ranks are specified: noisy \rightarrow refined (true).

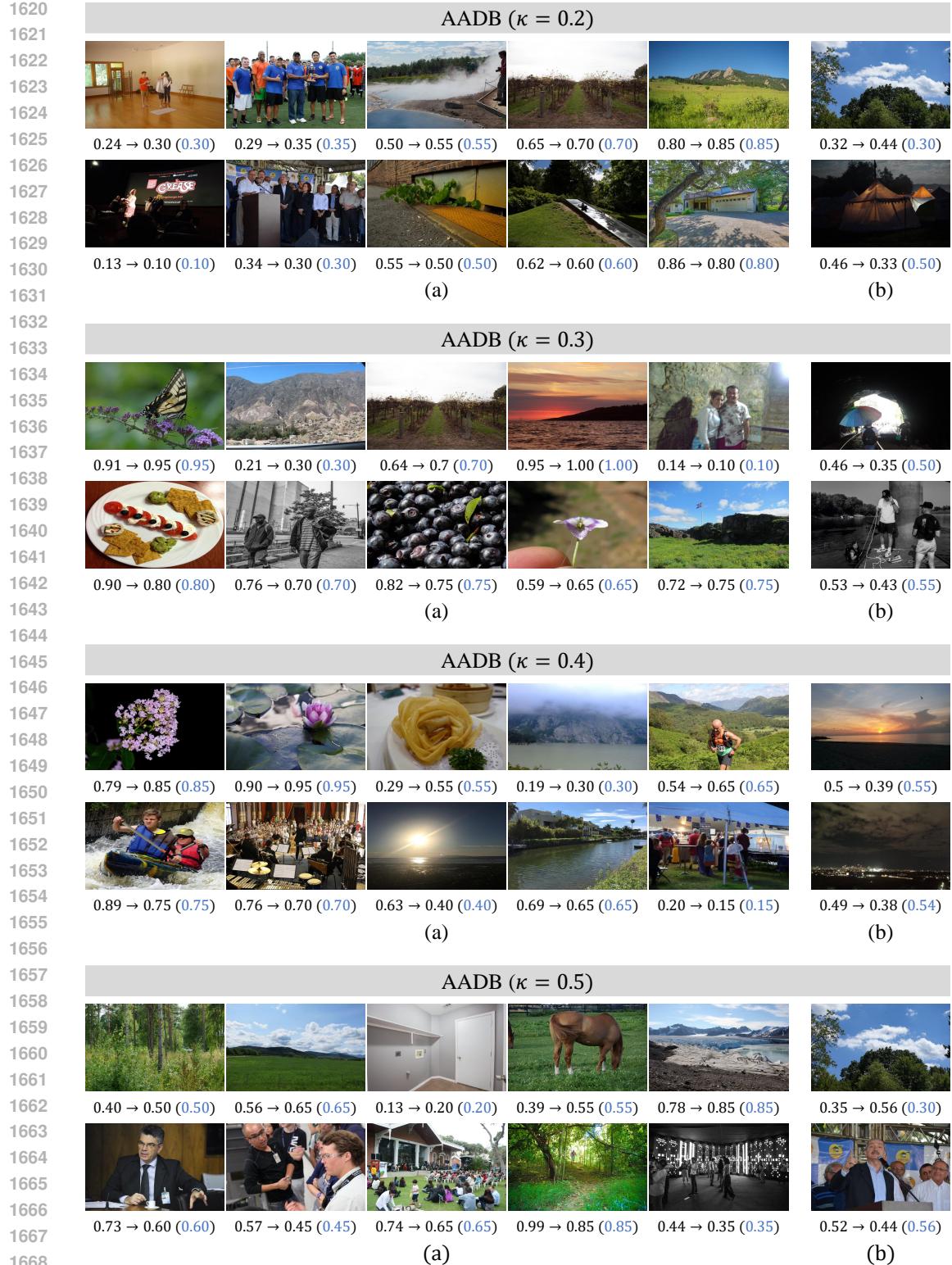


Figure 21: (a) Success and (b) failure cases of the label refinement on the AADB dataset. Under each image, the noisy, refined, and true ranks are specified: noisy → refined (true).

1674 E BROADER IMPACTS
16751676 Due to the intrinsic imbalance of facial datasets (Ricanek & Tesafaye, 2006; Escalera et al., 2015),
1677 there may be unwanted gender or racial bias for deep learning-based facial analysis methods. When
1678 trained on such facial datasets, the proposed algorithm is not free from this bias either. Thus, the
1679 bias should be resolved before any practical usage. We recommend using the proposed algorithm for
1680 research only.
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727