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ABSTRACT

A novel algorithm, called stochastic order learning (SOL), for reliable rank estima-
tion in the presence of label noise is proposed in this paper. For noise-robust rank
estimation, we first represent label errors as random variables. We then formulate
a desideratum that encourages reducing the dissimilarity of an instance from its
stochastically related centroids. Based on this desideratum, we develop two loss
functions: discriminative loss and stochastic order loss. Employing these two
losses, we train a network to construct an embedding space in which instances are
arranged according to their ranks. Also, after teaching the network, we identify
outliers likely to have extreme label errors and relabel them for data refinement.
Extensive experiments on various datasets show that the proposed SOL algorithm
yields decent rank estimation results even when labels are corrupted by noise.

1 INTRODUCTION

Rank estimation — a task to predict the rank or ‘ordered class’ of an object — is a fundamental
problem in machine learning. It has a variety of applications, including facial age estimation (Ricanek
& Tesafaye, 2006; Shin et al., 2022), aesthetic score regression (Kong et al., 2016), and medical
assessment (Halabi et al., 2019). In many real-world scenarios, however, it is quite challenging to
obtain error-free annotations of ‘ordered data’, as the distinction between adjacent labels is often
unclear. For example, in facial age estimation, changes in facial appearance are not visibly apparent
over a short age gap. Hence, annotation errors are unavoidable when age labels are collected by
human annotators; it was shown by Escalera et al. (2015) that the distribution of apparent ages is
different from that of real ages. Label noise also occurs due to the subjectiveness of a labeling task.
For aesthetic score regression, there is no universal scoring mechanism, as people have different tastes
in beauty and art. Such a subjective nature of aesthetic criteria may lead to unreliable annotations.
Variability in labeling is also reported in medical image analysis (Halabi et al., 2019). Thus, to
improve reliability, annotations are obtained by averaging the estimates of multiple experts.

Many algorithms have been developed to train machines using imperfect data with noisy labels, but
most of them are for classification (Tanno et al., 2019; Song et al., 2019; Ma et al., 2020; Yao et al.,
2022; Ye et al., 2023) or segmentation (Yang et al., 2020; Li et al., 2023). Unlike classification or
segmentation, rank estimation suffers from varying degrees of label errors due to the ordinal property
of classes. Figure 1 compares nominal data for classification and ordered data for rank estimation.
In classification, misclassifying a dog as a cat is as harmful as misclassifying a dog as a bear. In
contrast, in rank estimation, the error of estimating a 43-year-old as a 59-year-old is severer than that
of mistaking a 24-year-old as a 26-year-old. Since noise-robust classification methods treat all noise
identically, they are prone to making big estimation errors and are incapable of identifying extreme
outliers when applied to ordered data.

Although several noise-robust regression methods exist, regression-based models are known to
underperform compared to classification- or ranking-based methods. As pointed out by Zhang et al.
(2023), direct regression may fail to learn high-entropy feature representations, resulting in lower
mutual information between learned representations and target outputs. Order learning approaches
(Lim et al., 2020; Shin et al., 2022; Lee et al., 2022) overcome the limitations of direct regression and
have shown promising results in rank estimation. However, these methods assume clean annotations,
and their performance degrades in the presence of label noise, highlighting the need for noise-robust
order learning algorithms.
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(a) Label noise in classification (b) Label noise in rank estimation

True label Dog Dog Bear True label 24 53 43

Noisy label Cat Bear Dog Noisy label 26 63 59

Noise 

severity

Noise 

severity

Figure 1: Nominal data in classification versus ordered data in rank estimation. Unlike classification,
in rank estimation, certain errors are severer than others.

In this paper, we propose a novel algorithm, stochastic order learning (SOL), to estimate ranks reliably
in the presence of label noise. Given a training dataset with noisy labels, we first model the label
errors with random variables. Hence, each instance relates stochastically to multiple ranks rather than
deterministically to a single rank. We then train an embedding network based on a desideratum, which
encourages minimizing stochastic dissimilarities of instances from their corresponding centroids.
To achieve this, we design the discriminative loss and the stochastic order loss. Moreover, after the
training, we identify outliers, which are likely to have extreme label errors, and relabel them to refine
the noisy dataset. Extensive experiments demonstrate that the proposed SOL provides reliable rank
estimation results on various ordered datasets. Also, SOL even reduces the overall label noise of a
given dataset based on the outlier detection and relabeling.

The contributions of this paper can be summarized as follows.

• We extend the concept of order learning to cope with noisy data by designing a stochastic approach;
we model label errors as random variables and derive embedding space constraints to sort instances
according to their stochastically related ranks.

• We also propose outlier detection and relabeling schemes to identify instances with extreme label
errors and reduce the overall noise level of a given dataset.

• Experiments on various benchmark datasets for facial age estimation, aesthetic score regression,
medical image assessment, and textual regression validate the effectiveness of the proposed SOL
under label noise.

2 RELATED WORK

Learning from noisy labels: With the availability of substantial training data, deep learning has
shown impressive performance in numerous tasks, but the performance may degrade severely when
there is label noise. Thus, learning from noisy labels has been an active area of research; various
attempts have been made to alleviate the adverse impacts of label noise. Some are based on robust loss
functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Lyu & Tsang, 2019; Ma et al., 2020; Ye et al.,
2023), or noise-tolerant objectives such as peer loss (Liu & Guo, 2020) that avoid relying on explicit
noise-rate estimation. Others include regularization (Tanno et al., 2019; Menon et al., 2020; Xia et al.,
2020), robust network architecture (Han et al., 2018a; Goldberger & Ben-Reuven, 2022), selective
data sampling (Han et al., 2018b; Jiang et al., 2018; Song et al., 2019), and representation-learning
approaches such as selective-supervised contrastive learning (Li et al., 2022). However, these methods
focus on classification or segmentation (i.e. pixelwise classification) tasks.

Compared to classification, only a few noise-robust regression methods have been developed. Garg
& Manwani (2020) first considered label noise in ordinal regression. They, inspired by Natarajan
et al. (2013), proposed an unbiased estimator and modified a loss function so that minimizing the
modified loss with corrupted labels leads to the same result as minimizing the original loss with
clean labels. Castells et al. (2020) down-weighted the contributions of samples with large losses
during training, assuming that noisy samples tend to cause large losses. Yao et al. (2022) developed
a variant of Mixup (Zhang et al., 2018), which trains on virtual examples interpolated from two
training samples. To make Mixup more suitable for regression tasks, they sampled a pair with closer
ordinal labels with a higher probability. Wang et al. (2022b) showed that standard regularization
schemes are ineffective under label noise, and proposed a noise-robust text regression algorithm that
mitigates noise by discarding or repairing detected noisy samples. More recently, Kim et al. (2024)
introduced a contrastive fragmentation strategy that partitions the label space into fragments, forms
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Figure 2: Overview of the proposed SOL algorithm

contrasting fragment pairs, and trains expert extractors on each pair for robust feature learning. They
also leveraged neighborhood agreement among the experts to detect clean samples.

Rank estimation: Different from ordinary classification, rank estimation aims to predict the ordered
class of an object. Early methods estimate object ranks directly using regressors or classifiers. Direct
regression (Guo et al., 2009), which predicts scalar values directly, suffers from poor performance
in general because it disregards the physical processes underlying ranks, such as aging processes.
Classification-based methods (Geng et al., 2007) treat rank estimation as a multi-class classification
problem, but they fail to consider the strong ordinal relationship of rank labels. To exploit the ordinal
relationship, some ordinal regression methods convert a rank estimation problem into a series of
simpler binary classification sub-problems (Frank & Hall, 2001; Li & Lin, 2006). Recently, several
techniques have been developed to perform deep ordinal regression effectively, including pairwise
regularization (Liu et al., 2018), soft labels (Diaz & Marathe, 2019), continuity-aware probabilistic
network (Li et al., 2019), and uncertainty-aware regression (Li et al., 2021). Related to ambiguity
modeling, Gao et al. (2017) converted each rank label into a smoothed Gaussian distribution to
capture deterministic label uncertainty, but their formulation does not address stochastic label errors.

Order learning: Order learning (Lim et al., 2020) is a new approach to rank estimation based on
the idea that relative assessment is easier than absolute assessment. Instead of direct prediction, Lim
et al. (2020) estimated the rank of an instance by comparing it with references of known ranks. To
find more reliable references, Lee & Kim (2021) proposed the order-identity decomposition. Shin
et al. (2022) extended the idea of order learning to regression problems, and Lee & Kim (2022)
and Lee et al. (2024) developed weakly-supervised and unsupervised techniques for order learning,
respectively. Also, Lee et al. (2022) proposed a learning mechanism that exploits not only ordering
relations but also metric information among object instances. Similar to the proposed algorithm, they
constructed an embedding space in which objects are sorted according to their ranks. However, their
algorithm assumes that rank labels are deterministic and error-free, so it fails to model the uncertainty
and noise in data. To construct a well-arranged embedding space even in the presence of label noise,
we propose a stochastic approach called SOL in this paper.

3 PROPOSED ALGORITHM

3.1 PROBLEM FORMULATION

There is a training set X , in which each instance is attributed with one of the n ranks (or ordered
classes), represented by consecutive integers in {1, . . . , n}. Let r̄x denote the true rank of instance
x ∈ X . However, only a noisy rank rx is available, given by

rx = r̄x + ex (1)

where ex is the label error of x. Let e be the random variable underlying each error ex. It is assumed
that e has a discrete Gaussian distribution;

ps ≜ Pr(e = s) = 1
C e−

s2

2σ2 (2)

where C =
∑

t e
− t2

2σ2 , and s, t ∈ Z. Note that the noise distribution in (2) is symmetric (ps = p−s)
and unimodal (ps ≥ pt for 0 ≤ s ≤ t). This models label errors in practice. For example, it is more
likely for an annotator to mislabel a 10-year-old as 8 or 12 years old than as 20 years old.

We employ an encoder h to map each instance x ∈ X into a feature vector hx = h(x) in an
embedding space, as shown in Figure 2. We aim to construct the embedding space in which the
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Figure 3: Illustration of the monotonicity constraint and the training losses for constructing a SOL
embedding space

instances are arranged according to their ranks, and each ‘centroid’ µr is the representative vector
for instances with rank r ∈ {1, . . . , n}. However, since only the noisy rank rx in (1) — instead of
the true rank r̄x — is available, instance x relates stochastically to multiple centroids, rather than
deterministically to the single centroid µr̄x . Specifically, x is associated with µrx−s with probability
ps in (2). Note that, due to the symmetry ps = p−s, x is also associated with µrx+s with ps. Thus, in
the embedding space, the mean squared distance

∑
s psd

2(hx, µrx+s) should be minimized, where d
denotes the Euclidean distance.

We hence define the stochastic dissimilarity of instance x from rank r in the embedding space
determined by the encoder h as

Dh(x, r) =
∑

s psd
2(hx, µr+s). (3)

Then, the objective of SOL is to design the encoder h satisfying the following desideratum for each
x ∈ X :

Dh(x, rx) ≤ Dh(x, r) for all r ∈ {1, . . . , n}. (4)
A sufficient condition for satisfying this desideratum is the monotonicity constraint, given by

d(hx, µrx+s) ≤ d(hx, µrx+t) for all |s| ≤ |t|, (5)

as proven in Appendix A. Intuitively speaking, this monotonicity can be achieved, provided that the
centroids are arranged directionally according to the ranks, and the instance hx is located near the
centroid µrx , as illustrated in Figure 3(a).

In the inference phase, based on the desideratum in (4), we estimate the rank of an unseen instance x
by

r̂x = argminr∈{1,...,n} Dh(x, r). (6)

3.2 STOCHASTIC ORDER LEARNING

To learn or construct an embedding space in which instances and centroids are well aligned according
to the desideratum in (4), we optimize the parameters of the encoder h by minimizing the loss
function

ℓtotal =
∑

x∈X ℓdisc(x) +
∑

x,y∈X ℓorder(x, y) (7)

where ℓdisc is the discriminative loss, and ℓorder is the stochastic order loss.

Discriminative loss: To encourage the desideratum in (4), we employ the discriminative loss

ℓdisc(x) =
∑T

t=1 (Dh(x, rx)−Dh(x, rx + t) +Dh(x, rx)−Dh(x, rx − t)) (8)

=
∑T

t=1

∑
s(2ps − ps−t − ps+t)d

2(hx, µrx+s) (9)

=
∑

s αsd
2(hx, µrx+s) (10)

where αs =
∑T

t=1(2ps − ps−t − ps+t). Also, T is a hyperparameter, and its impacts are analyzed in
Appendix D.1. Note that each term in (8) is non-positive if the desideratum in (4) is satisfied. Thus,
minimizing the discriminative loss directly promotes the desideratum.

Also, the coefficient αs in (10) is a discrete approximation of the 2nd-order derivative of the Gaussian
distribution, which has inflection points. Therefore, there exists a threshold δ such that αs is positive
if |s| < δ, while negative otherwise, as shown in Figure 3(b). Hence, to minimize the discriminative
loss, d(hx, µrx+s) should be reduced if |s| < δ. In other words, hx should be attracted to the
centroids for the ranks within the range (rx − δ, rx + δ). On the contrary, if |s| > δ, d(hx, µrx+s)
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Algorithm 1 Stochastic Order Learning (SOL)
Input: A noisy dataset X , n = the number of ranks

1: Initialize centroids {µr}nr=1 via (18)
2: repeat
3: Fine-tune the encoder h to minimize ℓtotal in (7) ▷ Network training
4: for all r = 1, 2, . . . , n do
5: Update centroid µr via (18) ▷ Centroid rule
6: end for
7: for all x ∈ X do
8: Estimate the rank of x via (6)
9: end for

10: Detect the set of outliers
⋃n

r=1 Xr via (19) ▷ Outlier detection
11: for all x ∈

⋃n
r=1 Xr do

12: Estimate the label noise êx via (20)
13: Refine the label of x via (21) ▷ Relabeling
14: end for
15: until predefined number of epochs
Output: Updated labels {rx}, centroids {µr}nr=1, encoder h

should be increased, thereby repelling hx from the centroids for the ranks outside (rx − δ, rx + δ).
To summarize, ℓdisc makes each hx attracted to the corresponding centroid µrx and its neighbors (to
consider the label error), but repelled from the other centroids.

Stochastic order loss: In order learning (Lim et al., 2020; Lee & Kim, 2021; Lee et al., 2022),
pairwise relationships between instances are used to construct a desired embedding space. Thus,
while the discriminative loss ℓdisc in (8) considers the geometric configuration of a single instance
x with respect to the centroids, the stochastic order loss ℓorder takes into account the geometric
configuration of two instances x and y jointly.

There are three ordering cases between x and y (Lim et al., 2020):

x ≺ y if r̄x − r̄y < −τ, x ≈ y if |r̄x − r̄y| ≤ τ, x ≻ y if r̄x − r̄y > τ, (11)

where τ is a threshold. For these three cases, Lee et al. (2022) use margin losses to align instances
according to the ranks. Similarly, the proposed ℓorder is based on margin losses. But, unlike Lee et al.
(2022), true ranks r̄x and r̄y are unknown in SOL. Also, each instance relates to multiple centroids
randomly in SOL. We hence develop ℓorder to address these differences.

Since only noisy ranks rx and ry are available, the true ranks r̄x and r̄y in (11) need to be re-
represented using (1). Let s and t denote the label noise of samples x and y, respectively. Then,
r̄x − r̄y = rx − ry − s + t. As we model label noise as stochastic variables, we can compute the
probabilities for the three ordering cases using (2):

Pr(x ≺ y) =
∑

s

∑
t:rx−ry−s+t<−τ pspt, (12)

Pr(x ≈ y) =
∑

s

∑
t:|rx−ry−s+t|≤τ pspt, (13)

Pr(x ≻ y) =
∑

s

∑
t:rx−ry−s+t>τ pspt. (14)

Then, we define the margin loss for the case x ≺ y as

ℓx≺y =
∑

r≤rx
max{Dh(x, r)−Dh(y, r)+γ, 0}+

∑
r≥ry

max{Dh(y, r)−Dh(x, r)+γ, 0} (15)

where γ is a margin. To minimize the first sum in (15), Dh(x, r)−Dh(y, r) =
∑

s ps(d
2(hx, µr+s)−

d2(hy, µr+s)) should be reduced for r ≤ rx. Thus, hx should be near µr+s, while hy should be
far from µr+s. Note that this is enforced for small offsets s only because of the Gaussian weights
ps. Similarly, for r ≥ ry and a small s, hx should be far from µr+s, while hy should be near µr+s.
Hence, ℓx≺y helps the arrangement of instances and centroids in the embedding space, as illustrated
in Figure 3(c). Note that the loss ℓx≻y for the case x ≻ y is formulated symmetrically.

Also, when x ≈ y, hx and hy should be close to each other. We hence define

ℓx≈y =
∑

r∈{1,...,n} max(|Dh(x, r)−Dh(y, r)| − γ, 0). (16)
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Table 1: Performance comparison on the MORPH II dataset.

Gaussian Laplacian Uniform Skewed

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.3 κ = 0.3 κ = 0.3

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022a) 8.446 41.71 8.881 34.79 9.239 36.89 8.577 39.89 8.254 40.53 8.980 38.07
ACL (Ye et al., 2023) 9.017 36.75 9.492 35.61 9.314 35.74 8.873 35.87 8.849 35.95 9.613 35.93

ROR-CE (Garg & Manwani, 2020) 2.859 86.79 3.018 86.79 3.170 82.60 3.058 84.97 2.827 87.34 3.663 77.69
C-Mixup (Yao et al., 2022) 3.063 82.26 3.393 77.21 3.395 76.84 3.772 71.77 3.306 77.78 3.378 77.69
ConFrag (Kim et al., 2024) 2.878 84.06 3.000 82.06 3.255 78.96 3.102 80.33 2.763 84.70 3.333 78.14

POE (Li et al., 2021) 2.989 82.88 3.093 80.33 3.253 79.23 3.332 77.50 2.908 83.61 3.389 75.59
MWR (Shin et al., 2022) 2.570 90.07 2.693 89.25 2.851 87.16 2.854 86.61 2.529 90.71 3.327 80.42
GOL (Lee et al., 2022) 2.516 90.89 2.671 89.07 2.861 85.97 2.846 86.16 2.509 90.26 3.351 82.51

SOL 2.489 91.35 2.663 89.62 2.826 87.70 2.794 86.89 2.499 90.89 3.296 83.15

Input 

image

Input 

image

(a) (b)

SPRSPR 48 (+25) 25 (−15)36 (+13)33 (+16) 43 (+18) 36 (−6) 38 (−14)

GOLGOL 40 (+17) 29 (−11)27 (+4)22 (+5) 20 (−5) 46 (+4) 45 (−7)

SOLSOL 36 (+13) 33 (−7)23 (+0)17 (+0) 25 (+0) 42 (+0) 52 (+0)

23True label 40True label 2317 25 42 52

Figure 4: (a) Success and (b) failure cases of age estimation results on the MORPH II dataset. Under
each image, we compare the estimated ages of SPR (Wang et al., 2022a), GOL (Lee et al., 2022), and
the proposed SOL and specify the corresponding errors inside the parentheses.

Overall, we define the stochastic order loss as
ℓorder(x, y) = Pr(x ≻ y)ℓx≻y + Pr(x ≈ y)ℓx≈y + Pr(x ≺ y)ℓx≺y. (17)

Centroid rule: Moreover, we determine each centroid µr to minimize
∑

x∈X Dh(x, rx) based on
the desideratum in (4),

µr =

∑
x∈X pr−rxhx∑
x∈X pr−rx

, r ∈ {1, . . . , n}, (18)

as derived in Appendix B. We update the centroids after every training epoch.

3.3 OUTLIER DETECTION AND RELABELING

To obtain a more reliable rank estimator, we identify outliers, likely to have extreme label errors,
among instances in the noisy training set and refine their labels by estimating the errors. Then, in turn,
we fine-tune the encoder or equivalently revamp the embedding space, so the instances are better
arranged based on the refined rank information.

Outlier detection: We first estimate the rank of each training instance x using the inference rule in
(6). Then, for each rank r ∈ {1, . . . , n}, we detect the set Xr of outliers by

Xr = {x : rx = r and |rx − r̂x| ≥ β ·maxy:ry=r |ry − r̂y|} (19)
where β ∈ (0, 1) is a constant to control the precision of the outlier detection.

Relabeling: For each detected outlier x ∈
⋃n

r=1 Xr, we estimate its label error as

êx =

{
1

2|X |
∑

y∈X |ry − r̂y| if rx > r̂x,

− 1
2|X |

∑
y∈X |ry − r̂y| if rx < r̂x.

(20)

Then, from (1), we refine the rank of x by
rx ← rx − êx. (21)

We note that, in (20), |êx| is determined as half of the mean absolute difference between noisy and
estimated ranks over all training instances. It is to prevent drastic changes in rank labels, which
may rather increase the label errors after relabeling. We repeat the encoder fine-tuning and the
outlier detection and relabeling alternately to gradually reduce the label errors and construct a better
embedding space. Algorithm 1 summarizes the overall process of SOL.
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Table 2: Performance comparison on the CLAP2015 dataset.

Gaussian Laplacian Uniform Skewed

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.3 κ = 0.3 κ = 0.3

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022a) 9.170 44.21 9.215 43.19 9.534 40.12 9.191 38.37 9.269 43.19 9.309 45.69
ACL (Ye et al., 2023) 9.483 41.06 9.239 39.57 9.583 45.23 9.312 42.69 9.742 44.81 9.388 45.25

ROR-CE (Garg & Manwani, 2020) 4.163 72.85 4.432 70.06 4.900 66.27 4.789 67.19 4.174 74.42 4.650 69.42
C-Mixup (Yao et al., 2022) 5.042 61.65 5.285 58.71 5.302 58.52 4.824 62.65 4.511 64.87 4.760 63.11
ConFrag (Kim et al., 2024) 4.898 62.19 4.658 63.11 5.328 58.20 4.690 62.47 4.858 61.17 4.512 64.97

POE (Li et al., 2021) 4.052 70.34 4.169 68.86 4.390 65.52 4.303 66.64 4.061 69.32 4.401 64.97
MWR (Shin et al., 2022) 3.577 79.80 3.830 76.18 4.299 72.85 4.011 74.05 3.685 77.39 4.415 70.06
GOL (Lee et al., 2022) 3.624 77.94 3.866 76.03 4.105 72.10 3.934 75.07 3.613 78.22 4.407 68.40

SOL 3.559 78.68 3.764 77.11 4.002 73.68 3.904 75.16 3.550 79.05 4.379 69.97

Table 3: Performance comparison on the AADB dataset.

Gaussian Laplacian Uniform Skewed

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.3 κ = 0.3 κ = 0.3

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022a) 0.149 81.20 0.150 82.10 0.151 81.60 0.153 81.40 0.150 81.30 0.143 83.10
ACL (Ye et al., 2023) 0.147 82.90 0.148 82.50 0.157 79.43 0.151 81.50 0.153 80.80 0.153 80.74

ROR-CE (Garg & Manwani, 2020) 0.121 88.70 0.122 89.00 0.123 88.70 0.122 89.70 0.122 90.20 0.124 89.50
C-Mixup (Yao et al., 2022) 0.119 91.13 0.122 89.31 0.130 88.51 0.121 90.50 0.121 90.90 0.123 90.70
ConFrag (Kim et al., 2024) 0.129 88.00 0.126 88.70 0.134 86.90 0.126 89.00 0.124 89.70 0.123 88.60

POE (Li et al., 2021) 0.122 89.00 0.123 89.30 0.120 89.10 0.124 89.10 0.124 88.50 0.125 88.50
MWR (Shin et al., 2022) 0.123 89.00 0.124 87.60 0.122 89.80 0.125 88.20 0.124 89.40 0.124 87.80
GOL (Lee et al., 2022) 0.114 92.40 0.117 91.80 0.119 91.00 0.118 91.50 0.117 91.60 0.120 91.00

SOL 0.111 92.70 0.114 93.20 0.115 92.00 0.115 92.30 0.116 93.30 0.118 92.30

4 EXPERIMENTAL RESULTS

We conduct experiments on various datasets for facial age estimation MORPH II (Ricanek & Tesafaye,
2006) and CLAP2015 (Escalera et al., 2015), aesthetic score regression AADB (Kong et al., 2016),
medical assessment RSNA (Halabi et al., 2019), and textual regression WMT2020 (Specia et al.,
2020). We assess the robustness of the proposed SOL under both synthetic and real-world noisy
settings. For synthetic noise, we add Gaussian noise to the rank labels of all training samples, which
well reflects real-world noise in ordinal data and is consistent with prior work (Yao et al., 2022; Kim
et al., 2024). Specifically, label errors are generated according to the zero-mean discrete Gaussian
distribution in (2) with a standard deviation of

σ = κ · σX (22)

where κ is a noise ratio in (0, 1) to control the overall severity of label noise, and σX is the standard
deviation of true rank labels in the training set. In practice, it is unrealistic to know the exact values
of σ for label errors. Therefore, in the test phase, we use a fixed value of σtest to compute ps in (2),
regardless of κ. To provide a broader evaluation of robustness, we further consider Laplacian and
uniform noise perturbations. For assessment on real-world noisy data, we apply SOL to a textual
regression task, where labels are known to be inherently noisy due to subjective human annotations.
Additional details of the datasets and noise generation procedures are described in Appendix C.

4.1 IMPLEMENTATION

We adopt VGG16 (Simonyan & Zisserman, 2015), initialized with the pre-trained parameters on
ILSVRC2012 (Deng et al., 2009), as the encoder h. We use the Adam optimizer (Kingma & Ba,
2015) with a batch size of 32 and a weight decay of 5× 10−4. For data augmentation, we do random
horizontal flips and random crops. More implementation details including hyperparameter settings
are available in Appendix C, and experimental analysis on the hyperparameters is performed in
Appendix D.1.

4.2 COMPARATIVE ASSESSMENT

We compare the proposed SOL with recent noise-robust classification methods (Wang et al., 2022a;
Ye et al., 2023), noise-robust regression methods (Garg & Manwani, 2020; Yao et al., 2022; Kim
et al., 2024), and state-of-the-art rank estimators (Li et al., 2021; Shin et al., 2022; Lee et al., 2022).
For a fair comparison, the same backbone of VGG16 (Simonyan & Zisserman, 2015) is used for all
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Table 4: Performance comparison on the RSNA dataset.

Gaussian Laplacian Uniform Skewed

κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.15 κ = 0.15 κ = 0.15

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022a) 33.80 28.50 36.48 25.00 34.88 20.50 36.77 26.50 35.50 26.00 36.85 26.50
ACL (Ye et al., 2023) 35.09 26.20 35.15 26.50 35.26 25.17 33.82 24.00 34.32 22.00 35.62 20.00

ROR-CE (Garg & Manwani, 2020) 7.844 76.00 8.800 77.19 8.490 72.00 8.726 74.00 8.189 77.00 10.190 64.50
C-Mixup (Yao et al., 2022) 8.200 72.40 8.621 69.71 9.054 66.70 10.603 62.00 10.124 67.00 10.504 67.00
ConFrag (Kim et al., 2024) 8.287 76.50 8.458 77.50 8.805 71.50 8.977 74.50 8.995 73.00 8.814 72.00

POE (Li et al., 2021) 8.517 74.50 8.614 71.50 8.796 73.00 8.856 74.50 8.176 73.50 9.107 70.00
MWR (Shin et al., 2022) 7.833 75.00 8.239 77.50 8.353 72.00 8.272 76.00 7.939 77.50 8.741 72.50
GOL (Lee et al., 2022) 8.170 77.50 7.995 80.00 8.334 75.00 8.453 72.00 7.879 77.50 8.994 71.00

SOL 7.579 78.50 7.706 80.50 8.051 76.50 8.289 76.50 7.816 78.50 8.544 73.00

(a)
54 → 48 (48) 145 → 138 (138) 110 → 120 (120) 19 → 11 (12) 28 → 31 (33)

(b)
217 → 211 (216) 180 → 170 (189)

Figure 5: (a) Success and (b) failure cases of the label refinement on the RSNA training dataset.
Under each image, the noisy, refined, and true ranks are specified: noisy→ refined (true).

methods. For evaluation, we adopt the mean absolute error (MAE) and cumulative score (CS) metrics:
MAE is the average absolute error between estimated and ground-truth ranks, and CS computes
the percentage of instances whose absolute estimation errors are less than or equal to a tolerance
value. The tolerance value is 5 for MORPH II and CLAP2015, 0.25 for AADB, and 12 for RSNA.
Justification for the choice of tolerance values is in Appendix C.4.

Age estimation: For facial age estimation, we employ two popular datasets MORPH II and CLAP-
2015. Table 1 compares the results on MORPH II. SPR (Wang et al., 2022a) and ACL (Ye et al., 2023),
which are recent noise-robust classification methods, treat all label errors identically. Compared
to rank estimation methods, they underperform because they fail to avoid making large estimation
errors (e.g. absolute errors bigger than 20). The noise-robust regression methods ROR-CE (Garg &
Manwani, 2020), C-Mixup (Yao et al., 2022), and ConFrag (Kim et al., 2024) perform better, for
they penalize samples with severe errors. The recent rank estimators MWR (Shin et al., 2022) and
GOL (Lee et al., 2022) provide even better results. However, the proposed SOL outperforms all these
methods without exception in terms of both MAE and CS.

We also provide examples of age estimation results in Figure 4. These examples are from MORPH II
with Gaussian noise at κ = 0.4. We compare the prediction results on images for which SOL
correctly estimates ages in Figure 4(a). Along with the successful cases, we also show some failure
cases in Figure 4(b). Note that the noise-robust classifier SPR tends to make big errors as it fails
to consider the ordinal property of age labels. The state-of-the-art rank estimator GOL performs
better with smaller errors. However, SOL manages to make closer estimates to the true ages than the
other algorithms, in both successful and failure cases. Appendix D.12 presents more rank estimation
results.

Table 2 lists the performances on CLAP. SOL again achieves the best MAE scores in all settings. Note
that GOL also aims to sort instances according to their ranks in an embedding space. Compared to
GOL, the proposed SOL provides better results in all cases, and the score gap generally gets bigger as
the level of Gaussian noise (κ) increases. For example, the MAE score gap is 0.103 at κ = 0.4, while
it is 0.065 at κ = 0.2. These results indicate that, despite label errors, SOL arranges the instances
according to their true ranks more reliably. In other words, SOL is more noise-robust than GOL.

Aesthetic score regression: Table 3 compares the aesthetic score regression results on AADB. Since
aesthetic assessment is inherently subjective and ambiguous, accurately predicting aesthetic scores
is highly challenging. Nevertheless, the proposed SOL consistently achieves the best performance
across all settings. At the highest Gaussian noise level κ = 0.4, SOL outperforms the second-best
GOL by 3.4% and 1.1% in terms of MAE and CS, respectively. Even at the lowest κ = 0.2, SOL
reduces the MAE by 2.6% and improves the CS by 0.3%.
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Table 5: Performance comparison on
the WMT2020 dataset

Real-world noise

Algorithm PCC(↑) SRCC(↑)
Base (Wang et al., 2022b) 0.645 0.612
DIS (Wang et al., 2022b) 0.653 0.627
RES (Wang et al., 2022b) 0.660 0.630

SOL 0.680 0.649

Table 6: Ablation studies for the loss functions in (7) on the
CLAP2015 dataset.

Gaussian

κ = 0.2 κ = 0.3 κ = 0.4

Method ℓdisc ℓorder MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
I ✓ 20.029 14.92 16.433 20.76 18.582 17.52
II ✓ 3.586 78.41 3.785 76.74 4.044 73.40
III ✓ ✓ 3.559 78.68 3.764 77.11 4.002 73.68

Medical assessment: In Table 4, we compare the results on the bone age assessment dataset RSNA.
The proposed SOL again yields the best results with large margins, with the single exception of the
MAE metric for the Laplacian noise. For example, even at κ = 0.1, SOL outperforms the second-best
MWR and GOL with significant gaps of 0.254 and 1.0 in the MAE and CS metrics, respectively.
This noise-robustness is meaningful because obtaining error-free annotations on medical datasets is
difficult and costly in general.

Textual regression with real-world noise: To further validate the effectiveness of SOL, we ap-
ply it to a textual regression task in NLP, where labels are known to be noisy due to subjective
human annotations. We use the direct assessment (DA) scores from the Ru-En language pairs in
WMT2020 (Specia et al., 2020) as regression targets, and follow Wang et al. (2022b) by adopting
the same BERT encoder. As shown in Table 5, SOL achieves the best performance with a Pearson’s
correlation of 0.680 and a Spearman’s correlation of 0.649, outperforming the previous state-of-the-art
RES by clear margins of 2.0 and 1.9 points, respectively. These results demonstrate that SOL can
robustly handle real-world label noise beyond controlled synthetic settings.

Overall robustness trend: SOL shows a consistent pattern — its gains over deterministic baselines
such as GOL may be modest on relatively clean data, but the advantage steadily grows as noise
increases or labels become more subjective.

4.3 ANALYSIS

Label refinement: SOL refines noisy ranks present in the training dataset using the outlier detection
and relabeling scheme in Section 3.3. Figure 5 shows examples of detected outliers in RSNA at
κ = 0.15 (Gaussian). Label errors of up to 10 are well refined in the successful cases in Figure 5(a).
In less frequent failure cases, such as Figure 5(b), the refined ranks have bigger errors than the original
ones. These are, however, challenging examples because of finger folding or underexposure. More
results of the outlier detection and relabeling scheme are provided in Appendices D.4 and D.13.

Loss functions: Table 6 compares ablated methods for the loss functions in (7). Method I employs the
discriminative loss ℓdisc only, while method II does the stochastic order loss ℓorder only. Compared
with method III (SOL), methods I and II degrade the rank estimation results, indicating that both
losses contribute to the performance improvement and are complementary to each other. Note
that method I yields poor results, for the discriminative loss alone cannot construct a meaningful
embedding space; it is trivial to reduce ℓdisc to zero by merging all instances into a single point in the
space. However, by comparing II and III, we see that ℓdisc helps to sort instances in the embedding
space properly by attracting and repelling instances according to their ranks.

5 CONCLUSIONS

The SOL algorithm for rank estimation in the presence of label noise was proposed in this work.
First, we represented label errors as random variables. Then, we formulated a desideratum to reduce
the dissimilarity of an instance from the stochastically related centroids. Using the discriminative
loss and the stochastic order loss, we constructed an embedding space satisfying the desideratum,
in which instances are arranged according to their unknown true ranks. Also, we identified outliers,
likely to have extreme label errors, and relabelled them for data refinement. Extensive experiments on
various rank estimation tasks — including facial age estimation, aesthetic score regression, medical
image assessment, and textual regression — demonstrated that SOL yields excellent rank estimation
results even when labels are corrupted by noise.
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A DERIVATION OF MONOTONICITY CONSTRAINT IN (5)

The desideratum in (4) can be written as∑
s psd

2(hx, µrx+s) ≤
∑

s psd
2(hx, µ(rx+k)+s) for all k. (23)

For simpler notations, let Ls ≜ d2(hx, µrx+s). Then, the desideratum is given by∑
s psLs ≤

∑
s psLs+k for all k. (24)

First, let us consider the case for k = 1. From (24), we have

· · ·+ p2L−2 + p1L−1 + p0L0 + p1L1 + p2L2 + · · · ≤ (25)
· · ·+ p3L−2 + p2L−1 + p1L0 + p0L1 + p1L2 + · · ·

since ps in (2) is symmetric. Thus,

(p0 − p1)(L0 − L1) + (p1 − p2)(L−1 − L2) + (p2 − p3)(L−2 − L3) + · · · ≤ 0. (26)

Because ps in (2) is also unimodal, the coefficients (ps − ps+1) are positive for all s ≥ 0. Hence, the
inequality in (26) is satisfied if

L0 ≤ L1, L−1 ≤ L2, L−2 ≤ L3, · · · (27)

or equivalently
L−m ≤ L1+m for all m ≥ 0. (28)

Next, let us consider the case for k = 2. Similar to (26), we have

(p0 − p2)(L0 − L2) + (p1 − p3)(L−1 − L3) + (p2 − p4)(L−2 − L4) + · · · ≤ 0. (29)

This is satisfied if
L1−m ≤ L1+m for all m ≥ 0. (30)

In general, if k ≥ 1, we have the following condition:

L⌊ k
2 ⌋−m ≤ L⌈ k

2 ⌉+m for all m ≥ 0. (31)

Note that (28) and (30) are special cases of (31). Symmetrically, if k ≤ −1, we have the condition:

L⌊ k
2 ⌋−m ≥ L⌈ k

2 ⌉+m for all m ≥ 0. (32)

Both conditions in (31) and (32) are satisfied if

L0 ≤ L±1 ≤ L±2 ≤ L±3 ≤ · · · , (33)

implying that Lk should be a monotonic increasing function of |k|. Rewriting this monotonicity
constraint in the original notations, we have the sufficient condition in (5),

d(hx, µrx+s) ≤ d(hx, µrx+t) for all |s| ≤ |t|. (34)

B DERIVATION OF CENTROID RULE IN (18)

Based on the desideratum in (4), we formulate a cost function

J =
∑

x∈X Dh(x, rx) (35)

=
∑

x∈X
∑

s psd
2(hx, µrx+s) (36)

=
∑

x∈X
∑

s ps(µ
T
rx+sµrx+s − 2hT

xµrx+s + hT
x hx) (37)

=
∑

x∈X
∑

r pr−rx(µ
T
r µr − 2hT

xµr + hT
x hx). (38)

We then update the centroids {µr}nr=1to minimize the cost function J . By differentiating J with
respect to each µr and setting it to zero, we have

∂J
∂µr

=
∑

x∈X pr−rx(2µr − 2hx) = 0. (39)

Hence, the optimal centroid is given by

µr =

∑
x∈X pr−rxhx∑
x∈X pr−rx

, r ∈ {1, . . . , n}. (40)
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C IMPLEMENTATION DETAILS

C.1 DATASETS

MORPH II (Ricanek & Tesafaye, 2006): It is a dataset for facial age estimation, consisting of 55K
facial images in the age range [16, 77]. It provides age, gender, and race labels. As in Chang et al.
(2011), we use 5,492 Caucasian images divided into training and test sets with a ratio of 8:2.

CLAP2015 (Escalera et al., 2015): It is for apparent age estimation. The apparent age of each
image was rated by at least 10 annotators within the range [3, 85], and the mean rating is used as the
ground-truth. This dataset provides 4,691 facial images in total that are split into 2,476 for training,
1,136 for validation, and 1,079 for testing.

AADB (Kong et al., 2016): It is a dataset for aesthetic score regression, composed of 10,000
photographs of various themes such as scenery and close-up. We use 8,500 images for training, 500
for validation, and 1,000 for testing. Each image is annotated with an aesthetic score in [0, 1]. We
quantize the continuous scores with a step size of 0.01 to have 101 discrete ranks.

RSNA (Halabi et al., 2019): It is for pediatric bone age assessment, containing 14,236 hand radio-
graphs. We employ the official evaluation protocol in Halabi et al. (2019) — 12,611 for training,
1,425 for validation, and 200 for testing. The bone age range is [0, 216] in months.

WMT2020 (Specia et al., 2020): It is a dataset for machine translation quality estimation, where
translations are scored with human direct assessment (DA) on a scale of [0, 100]. The dataset includes
seven language pairs of varying resource levels, with sentences mostly sourced from Wikipedia. In
this work, we use the Russian→English (Ru-En) subset for evaluation.

C.2 NOISE DISTRIBUTION SETTINGS

To evaluate the robustness of the proposed SOL, we add random noise generated from three different
probability distributions: Gaussian, Laplacian, uniform, and skewed. In all cases, the noise magnitude
is controlled by adjusting the noise ratio κ.

1. Gaussian distribution:
e ∼ N (0, (κ · σX )2). (41)

2. Laplacian distribution:
e ∼ Laplace(0, κ · σX ) (42)

with probability density

p(e) =
1

2κ · σX
exp

(
− |e|
κ · σX

)
. (43)

3. Uniform distribution:
e ∼ U(−κ · σX , κ · σX ). (44)

4. Skewed distribution:

e ∼ SkewNorm(a = 5, µ = 0, σ = κ · σX ). (45)
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C.3 SPECIFICATION OF σ IN (22)

Table 7 specifies the exact values of σ for generating the noise in (22) for each dataset.

Table 7: The values of σ according to κ.

σ

κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

MORPH II 1.092 1.638 2.184 3.276 4.368 5.460
CLAP2015 1.235 1.853 2.471 3.706 4.941 6.177
AADB 0.018 0.028 0.037 0.055 0.074 0.102
RSNA 4.118 6.177 8.326 12.355 16.473 20.591

C.4 TOLERANCE VALUES FOR COMPUTING CUMULATIVE SCORES

In facial age estimation, the cumulative score (CS) is commonly measured using a tolerance value
of 5 (Chang et al., 2011; Shen et al., 2018). For a fair comparison, we also adopt the tolerance value
of 5 for the MORPH II and CLAP2015 datasets.

The ranks in AADB, an aesthetic score regression dataset, range from 0 to 1. Thus, for AADB, we
use a tolerance value of 0.25, instead of 5.

In medical assessment, previous work only adopts the MAE metric and does not compute CS scores.
Bone ages in the RSNA dataset are measured in months instead of years, so RSNA has a bigger error
range than facial age estimation datasets. If the same tolerance value 5 is used, it yields very poor CS
scores. Thus, we set the tolerance value to be the smallest integer at which the CS scores exceed 75%
for all noise ratios κ. Based on the results in Table 8, we set 12 as the tolerance value for RSNA in all
experiments.

Table 8: CS scores (%) of SOL according to the tolerance values on the RSNA dataset (Gaussian
label noise).

Tolerance value 10 11 12 13 14 15 20 25

κ = 0.1 71.00 75.00 78.50 82.50 84.50 87.50 94.00 97.00
κ = 0.15 68.50 74.50 80.50 85.50 86.50 89.00 95.00 97.50
κ = 0.2 69.50 73.00 76.50 80.00 84.00 86.00 92.00 99.00

We also show the CS curves according to tolerance values on the RSNA dataset in Figure 6. It is
observed that the proposed SOL performs better than the state-of-the-art algorithms with the highest
area under the curve (AuC) at all noise ratios κ.

(a) 𝜅 = 0.1
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Figure 6: Comparison of the CS curves according to tolerance values on the RSNA dataset (Gaussian
label noise). The legend of each graph includes the AuC score for the corresponding algorithm.
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C.5 NETWORK ARCHITECTURE

As described in Section 3.2, we employ an encoder to map each instance into a feature vector in an
embedding space. The network structure for the encoder h is specified in Figure 7. The encoder is
based on the VGG16 network and takes a 224× 224× 3 image as input.

Figure 7: Network structure of the encoder h.

C.6 HYPERPARAMETER SETTINGS

For WMT2020, we train the network for 20 epochs. For all the other datasets, we train the network
for 100 epochs. Table 9 summarizes the hyperparameters for each dataset.

Table 9: Hyperparameter settings

Dataset Learning rate Batch size T in (8) τ in (11) γ in (15) β in (19) σtest

MORPH II 10−4 32 1 3 0.25 0.9 1
CLAP2015 10−4 32 1 3 0.25 0.85 1
AADB 5× 10−5 32 1 5 0.25 0.85 0.01
RSNA 5× 10−5 32 1 3 0.25 0.9 1
WMT2020 2× 10−5 16 1 3 0.25 0.85 1
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D MORE EXPERIMENTAL RESULTS

In the following experiments, we use Gaussian distributions for label noise.

D.1 HYPERPARAMETER ANALYSIS

Analysis on T in (8): Table 10 compares the MAE scores at different T ’s on the CLAP2015 dataset.
In this test, τ = 3, β = 0.85, and σtest = 1. Except at κ = 0.2, where the setting T = 1 yields a
slightly lower MAE by 0.004 than T = 3, the best results are provided by the setting T = 1. Thus,
we set T = 1 as the default mode.

Table 10: MAE scores according to T on the CLAP2015 dataset.

T = 1 T = 2 T = 3

κ = 0.2 3.559 3.565 3.555
κ = 0.3 3.764 3.779 3.832
κ = 0.4 4.002 4.032 4.050
κ = 0.5 4.170 4.196 4.196

Analysis on τ in (11): Table 11 compares the MAE results at different τ ’s on CLAP2015. In this test,
T = 1, β = 0.85, and σtest = 1. Note that τ is a threshold in (11) to control the balance between
rank precision and model robustness. Using τ as big as 3 achieves robustness and yields decent MAE
results. However, when τ is larger than 3, the performance drops because of the model under-fitting.
Hence, we set τ = 3 for CLAP2015.

Table 11: MAE scores according to τ on the CLAP2015 dataset.

τ = 1 τ = 2 τ = 3 τ = 4

κ = 0.2 3.574 3.610 3.559 3.646
κ = 0.3 3.777 3.822 3.764 3.794
κ = 0.4 4.034 3.980 4.002 4.039
κ = 0.5 4.236 4.209 4.170 4.292

Analysis on β in (19): Table 12 lists the results at different β’s on CLAP2015. In this test, T = 1,
τ = 3, and σtest = 1. β is a parameter to control the precision of outlier detection in (19). Increasing
β increases the precision, but it also decreases the number of instances that are detected. With a low
β, more instances can be detected as outliers, but there is also the risk of false positives. Generally,
the setting β ≥ 0.85 yields better results than β < 0.85. This is because less precise outlier detection
at a low β may deteriorate network training by increasing label noise. As specified in Table 9, we set
β = 0.85 for CLAP2015 and AADB and β = 0.9 for MORPH II and RSNA.

Table 12: MAE scores according to β on CLAP2015.

β = 0.8 β = 0.85 β = 0.9 β = 0.95

κ = 0.2 3.566 3.559 3.544 3.570
κ = 0.3 3.849 3.764 3.797 3.804
κ = 0.4 4.070 4.002 4.036 4.062
κ = 0.5 4.173 4.170 4.177 4.171
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D.2 ANALYSIS ON σtest

Gaussian noise assumption and fixed σtest: Many real-world rank-estimation datasets, including
CLAP2015 (Escalera et al., 2015), AADB (Kong et al., 2016), and RSNA (Halabi et al., 2019),
obtain their ground-truth labels by averaging multiple independent human annotations. Due to the
central-limit effect, such averaged labels empirically follow a Gaussian-like distribution; CLAP2015
further provides per-sample variance estimates that directly support this assumption. While individual
annotators may deviate from Gaussian behavior, the aggregated labels are typically well approximated
by a Gaussian model, making the discrete Gaussian noise formulation in (2) a reasonable choice.

In practice, the true standard deviation of annotation noise is unknown at test time. Therefore, SOL
uses a fixed σtest to compute the probabilities ps in (2). The following analysis evaluates how
sensitive SOL is to this hyperparameter.

Sensitivity to σtest: We examine how the performance of SOL changes with different choices of
the fixed σtest used to compute ps in (2). Table 13 summarizes the MAE results on the CLAP2015
dataset under T = 1, τ = 3, and β = 0.85. A larger σtest couples each instance x more strongly
with distant rank centroids, which can weaken rank discrimination. In contrast, a very small value
makes the model sensitive to label errors because x interacts only with nearby centroids. Balancing
these effects, σtest = 1.0 provides the most stable performance in most settings.

Table 13: MAE results according to σtest on the CLAP2015 dataset .

σtest = 0.5 σtest = 1.0 σtest = 1.5 σtest = 2.0 σtest = 2.5 σtest = 3.0 σtest = 3.5

κ = 0.2 3.555 3.559 3.548 3.549 3.588 3.593 3.670
κ = 0.3 3.801 3.764 3.794 3.797 3.848 3.888 3.985
κ = 0.4 4.000 4.002 4.072 4.070 4.061 4.194 4.355
κ = 0.5 4.198 4.170 4.203 4.288 4.259 4.343 4.499

We plot the MAE scores according to σtest in Figure 8. It is observed that MAE results start to degrade
significantly once σtest ≥ 4.0. As shown in Figure 9, the probability distribution ps in (2) flattens
as σtest gets bigger. Thus, the probabilities assigned to different ranks become indistinguishable
for SOL to operate well when σtest ≥ 4.0. Hence, it is appropriate to use a σtest less than 4.0 for
CLAP2015.
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Figure 8: MAE according to σtest on CLAP2015.
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Figure 9: ps in (2) for different σtest.

Table 14 shows a similar trend on the WMT2020 dataset. Although the evaluation metrics differ
(PCC and SRCC), the overall variation with respect to σtest remains small, confirming that SOL is
not highly sensitive to this hyperparameter in real-world settings. Finally, the σtest values used for all
datasets in the main paper are summarized in Table 9.

Table 14: PCC and SRCC scores of SOL on the WMT2020 dataset for different values of σtest.

σtest 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PCC (↑) 0.664 0.680 0.672 0.679 0.672 0.670 0.675 0.683
SRCC (↑) 0.639 0.649 0.640 0.654 0.656 0.641 0.646 0.653
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Adaptive σtest: To examine whether σ can be estimated from data, we add a lightweight head that
predicts the mean µ and standard deviation σ, trained with a Gaussian negative log-likelihood loss, so
that the predicted σ replaces the constant in (2). We evaluate two variants: Joint training, where the
σ-prediction head and SOL are optimized together, and Two-stage scheme, where the σ-prediction
head is trained first and then frozen during SOL training. As shown below for CLAP2015 at κ = 0.4,
the fixed setting achieves better MAE and CS than both adaptive variants.

Table 15: Comparison of adaptive σtest strategies on the CLAP2015 dataset at κ = 0.4.

Method MAE (↓) CS (↑)

Joint adaptive σtest 5.032 67.10
Two-stage adaptive σtest 4.171 71.64
Fixed σtest (default) 4.002 73.68

D.3 LOSS FUNCTIONS

Alternatives to ℓdisc in (8): Table 16 compares alternative loss terms for ℓdisc. Method I, which
is also known as the center loss, aims at directly locating an instance x close to its corresponding
centroid µrx . On the other hand, method II decreases not only the distance to the corresponding
centroid but also to its stochastically-related centroids. Method II performs better than method I.
However, the table shows that the proposed discriminative loss ℓdisc yields the best performance.

Table 16: Comparison of alternative choices for ℓdisc in (8) on the CLAP2015 dataset at κ = 0.2.

Method Alternative to ℓdisc MAE (↓)
I d(hx, µrx) 3.593
II Dh(x, rx) 3.585
III ℓdisc in (8) 3.559

D.4 OUTLIER DETECTION AND RELABELING

Impacts of label refinement: To show the effectiveness of the proposed label refinement (i.e. outlier
detection and relabeling) scheme, Table 17 compares the results of SOL with and without the label
refinement, respectively, on CLAP2015. By examining Table 17 together with Table 2, it can be
observed that even without the refinement SOL outperforms the conventional algorithms. However,
by applying the refinement scheme, the proposed SOL further improves overall performance. In
general, the label refinement reduces label noise in a training dataset, making the training process
more reliable. The impact of relabeling also depends on dataset size. Because CLAP2015 is relatively
small, only a few samples are identified as outliers, so the quantitative improvements are modest. In
contrast, larger datasets such as RSNA contain more inconsistent labels, making the refinement more
beneficial. The RSNA results in Table 18 clearly demonstrate this tendency.

Table 17: Comparison of the proposed SOL with and without the label refinement on CLAP2015.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
w/o label refinement 3.556 78.41 3.766 76.37 4.058 73.68 4.208 72.57
w/ label refinement 3.559 78.68 3.764 77.11 4.002 73.68 4.170 71.64

Table 18: Comparison of the proposed SOL with and without the label refinement on RSNA.

κ = 0.10 κ = 0.15 κ = 0.20

Algorithm MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
w/o label refinement 7.967 81.50 7.800 79.50 8.196 74.00
w/ label refinement 7.579 78.50 7.706 80.50 8.051 76.50
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Alternative relabeling schemes: In the proposed relabeling scheme, the ranks of detected outliers are
adjusted by the same magnitude via (20). Here, we assess the performance when each detected outlier
is relabeled using different magnitudes. Specifically, we adjust the rank of each outlier instance by
half of the absolute difference between its noisy and estimated rank. Table 19 lists the results on
the CLAP2015 dataset. Compared to method I performing no relabeling, method II improves MAE.
However, the proposed relabeling scheme provides the best results. Using the same average value to
adjust the ranks prevents drastic changes in rank labels, yielding more reliable performance.

Table 19: Analysis on the relabeling scheme on the CLAP2015 dataset at κ = 0.4.

Relabeling schemes MAE (↓) CS (↑)
I No relabeling 4.058 73.68
II Different magnitudes 4.012 72.75
III Proposed 4.002 73.68

Noise reduction: The proposed SOL can refine noisy ranks. To demonstrate this capability, we report
MAEs between a noisy rank rx and the true rank r̄x and the standard deviations of such noise levels
before and after the label refinement in Table 20. In this test, we use the MORPH II and CLAP2015
datasets. Note that the MAE or the standard deviation is reduced in 11 out of 12 tests, confirming the
effectiveness of the label refinement. For further analysis, we test how the refinement changes the
number of instances at each noise level (i.e. label error). Figure 10 plots such statistics on MORPH II
at various κ’s. The red boxes in Figure 10 specify the numbers of instances with high noise levels.
We see that the numbers of instances with extreme noise levels are reduced in general. Especially, at
κ = 0.4, the number of instances with 2 ≤ ex ≤ 4 is increased, while that with ex ≥ 7 is reduced
significantly. It is desirable because severe label errors hinder the construction of a well-sorted
embedding space. Consequently, the label refinement generally boosts the performance of SOL.

Table 20: Comparison of the average noise levels before and after the label refinement.

MORPH II CLAP2015

Noise ratio MAE Standard Deviation MAE Standard Deviation

κ = 0.2 1.737 → 1.718 1.361 → 1.343 1.961 → 1.959 1.508 → 1.537
κ = 0.3 2.599 → 2.534 1.991 → 1.942 2.970 → 2.896 2.262 → 2.254
κ = 0.4 3.504 → 3.401 2.638 → 2.499 4.006 → 3.793 3.038 → 2.899
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Figure 10: Comparison of the numbers of instances at each noise level before and after the label
refinement on the MORPH II dataset.
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D.5 PERFORMANCE ON PARTIALLY NOISY DATA

In real-world settings, information on which samples are noisy is not given. Hence, for practical
use, we assume that all samples have the risk of labeling errors in the experiments in the main paper.
However, the proposed SOL is also effective when only a subset of samples are mislabeled. In
Table 21, we randomly sample ε% of the total dataset and add noise to their labels. The rest of the
data is left clean. We compare the proposed SOL to the state-of-the-art algorithm GOL (Lee et al.,
2022). In this partially noisy case as well, the proposed SOL generally achieves better performance
than GOL.

Table 21: MAE results of GOL / SOL on CLAP2015 when only parts of the total data are corrupted.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

ε = 10 3.442 / 3.420 3.540 / 3.505 3.590 / 3.549 3.690 / 3.639
ε = 20 3.492 / 3.471 3.568 / 3.547 3.561 / 3.536 3.605 / 3.572
ε = 30 3.498/ 3.480 3.591 / 3.588 3.612 / 3.631 3.731 / 3.696
ε = 40 3.510 / 3.518 3.657 / 3.607 3.736 / 3.731 3.737 / 3.762
ε = 50 3.497 / 3.495 3.715/ 3.704 3.784 / 3.710 3.778 / 3.737

D.6 COMPLEXITY

Training time: Table 22 reports the training time per epoch on the CLAP2015 dataset using an RTX
4090 GPU. We also report the additional runtime introduced by SOL due to its stochastic distance
computation and label refinement, by employing GOL as the non-stochastic baseline. While SOL
introduces an additional computational cost, it remains practical for training.

Table 22: Training time per epoch on CLAP2015.

Algorithm Training time (s)

Ranknet 44.8
SoftRank 96.2
MWR 77.3
GOL (non-stochastic) 27.8
SOL w/o refinement 39.2
SOL 52.1

We also compare GPU memory usage for loss computation (batch size = 32) in Table 23. GOL
consumes substantially more memory, for it constructs full pairwise direction tensors and expanded
index structures, which create large intermediate buffers. In contrast, SOL computes pairwise
probabilities on the fly without forming dense tensors, resulting in a much smaller memory footprint.

Table 23: GPU memory consumption for loss computation (batch size = 32).

Algorithm Memory

GOL 8.19 MB
SOL 0.60 MB

Table 24 compares the times for computing the centroids in (18) to the total training times. Even for
the RSNA dataset consisting of 12,611 training samples, it takes only a few minutes to compute the
centroids. This is fast enough for most use cases since the centroids are updated only once per epoch.

Table 24: The processing times (s) required for training one epoch.

MORPH II CLAP2015 AADB RSNA

Centroid computation 6.1 5.1 39.2 286.1
Training 1 epoch 60.2 52.1 145.4 1160.7
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Training speed-up: Although the centroid computation is not a major bottleneck, its cost can be
further reduced by sub-sampling the training instances used during centroid updates. Table 25 reports
the MAE performance and the corresponding time complexities for different sampling ratios.

Table 25: Sub-sampling for centroid computation on the CLAP2015 dataset at κ = 0.4.

Sampling ratio MAE Centroid computation time (s) Training time per epoch (s)

0.1 4.029 0.9 47.9
0.2 4.018 1.2 48.2
1.0 4.002 5.1 52.1

Computing the stochastic distances in FP16 further reduces runtime with negligible impact on MAE,
as shown in Table 26.

Table 26: Mixed-precision computation on the CLAP2015 dataset at κ = 0.4.

Precision MAE Training time per epoch (s)

FP16 4.008 48.0
FP32 4.002 52.1

Training time on RSNA: Table 27 compares the per-epoch training costs on the RSNA dataset.

Table 27: Training time per epoch on the RSNA dataset.

Algorithm Training time per epoch (s)

MWR 1036.3
GOL 664.1
SOL 1160.7

The large per-epoch cost of SOL on RSNA is due to the data-loading configuration rather than the
loss itself. For comparability with prior studies, all methods were evaluated with num_workers =
1, which introduces an I/O bottleneck. As shown in Table 28, enabling standard parallel data loading
reduces the time from 1160.7 s to 223.6 s. The previously reported 1160.7 s therefore represents
a conservative upper bound caused by serial loading; SOL trains efficiently under typical parallel
pipelines.

Table 28: Effect of data-loading parallelization on SOL training time for the RSNA dataset.

num_workers Training time per epoch (s)

1 1160.7
8 223.6

Testing time: We also compare the average processing time required for testing a single image in
Table 29. We use an RTX 4090 GPU and test on the CLAP2015 dataset. For efficiency, we extract
the features of all training images and compute the centroids in advance. Therefore, during the test,
only the feature extraction of a test image is required. Note that GOL uses k-NN while SOL uses the
nearest expectation as the inference rule. Compared to GOL, SOL achieves faster inference.

Table 29: The processing times (s) required for testing a single image on CLAP2015.

Algorithm Feature extraction (s) Inference (s) Total (s)

GOL 0.040 0.083 0.123
SOL 0.040 0.051 0.091
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Memory efficiency: For large-scale training, memory efficiency is also important. Hence, we
compare the number of parameters of SOL with those of conventional methods in Table 30. SOL
requires the fewest parameters, indicating its potential for large-scale applications.

Table 30: Comparison of the network complexity.

Algorithm # of parameters

ACL (Ye et al., 2023) 134.68M
MWR (Shin et al., 2022) 139.41M
GOL (Lee et al., 2022) 14.75M
SOL 14.72M

D.7 INFLUENCE OF LABEL NOISE AT DIFFERENT NOISE RATIOS κ

5.5

0 0.2 0.3 0.4 0.5

Noise ratio (κ)

M
A
E
(↓
)

5.0

4.5

4.0

3.5

0.1

ROR-CE

GOL

SOL

Figure 11: MAE results according
to the noise ratio κ on CLAP2015.

𝜅 = 0 𝜅 = 0.2 𝜅 = 0.4

3~7 8~12 13~17 18~22 23~27 28~32 33~37 38~42 43~47 48~52 53~57 58~62 63~67 68~72 73~77 78~82 83~87
True age

Figure 12: t-SNE visualization of the embedding spaces for the
CLAP2015 dataset at different noise ratios κ.

Noise ratios: Figure 11 analyzes the influence of label noise on the CLAP2015 dataset, by comparing
the proposed SOL with ROR-CE and GOL at different noise ratios κ. For each algorithm, the increase
in κ degrades the MAE performance. However, the degradation of the conventional algorithms is
severer than that of SOL, demonstrating the superior noise-robustness of SOL.

Embedding spaces: Figure 12 visualizes the embedding spaces of SOL using t-SNE (Maaten &
Hinton, 2008). As κ increases, different ages are more mixed up in the space due to bigger label
errors. However, at all κ, the instances are generally well aligned according to their true ages. We
show more t-SNE visualizations in Appendix D.11.

D.8 COMPARISON TO LEARNING-TO-RANK METHODS

For a more complete comparison with learning-to-rank techniques, we additionally implemented
RankNet (Burges et al., 2005) and SoftRank (Taylor et al., 2008) under our experimental setup. Both
models were trained using the same VGG16 backbone and evaluated through k-NN regression. The
results on the MORPH II dataset are summarized in Table 31.

Table 31: Comparison with RankNet and SoftRank on the MORPH II dataset.

Gaussian Laplacian Uniform Skewed

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.3 κ = 0.3 κ = 0.3

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
RankNet (Burges et al., 2005) 2.639 89.80 2.990 86.16 3.116 82.79 3.146 84.15 2.634 88.89 3.490 80.97
SoftRank (Taylor et al., 2008) 3.147 83.06 3.394 81.97 3.427 80.15 3.801 75.96 3.137 84.34 4.018 73.32

SOL 2.489 91.35 2.663 89.62 2.826 87.70 2.794 86.89 2.499 90.89 3.296 83.15
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D.9 OUTLIERS IN THE WMT2020 DATASET

We provide a qualitative analysis of outlier cases detected by SOL on the real-noise WMT2020
translation-quality dataset. Unlike synthetic noise, discrepancies in WMT2020 originate from genuine
human variability, including strong penalties applied to fluent translations and unexpectedly high
scores assigned to mistranslated or semantically incorrect outputs. Typical outliers are categorized
into two classes.

• Type A: fluent or semantically acceptable translations that receive abnormally low human scores,
• Type B: mistranslated or semantically incorrect outputs that nevertheless receive unusually high

scores.

Table 32 presents representative examples identified by SOL. Each case exhibits a clear mismatch
between linguistic quality and the annotated score, highlighting the presence of nontrivial and
asymmetric annotation noise in WMT2020.

Table 32: Representative outliers detected by SOL on the WMT2020 dataset.

Type Real Score Pred Score Source Text Translation Issue

A1 4 22 Ne po cheloveku spes’. Don’t rush into it. Fluent sentence but unusually low human score.
A2 6 17 Ne penyay na zerkalo, kol’ rozha kriva. Don’t foam at the mirror if it’s crooked. Acceptable fluency, score is unrealistically low.
B1 66 6 Zadkom, kuvyrkom, da i pod gorku. Backward, somersault, and downhill. Literal mistranslation; idiomatic meaning (“things going downhill”) is lost.
B2 56 8 Religiya yad – beregi rebyat. Religion Poison – Save the Children Ungrammatical; missing verb (“Religion is poison”), resulting in awkward phrasing.
B3 67 15 Chto za chudak, da i chudilo. What a freak, and a miracle. Semantic error; “chudilo” mistranslated as “miracle,” losing intended meaning.

D.10 ABLATION STUDIES AND ANALYSIS ON ADDITIONAL DATASETS

To verify that the same design choices transfer beyond CLAP2015, we conducted ablation studies on
RSNA (Gaussian noise with κ = 0.15) and WMT2020. As summarized in Table 33, both datasets
follow the same pattern observed earlier: using either ldisc or lorder alone provides partial performance
gains, whereas combining both terms yields the best results.

Table 33: Ablation studies on RSNA and WMT2020.

RSNA WMT2020

Method ldisc lorder MAE (↓) CS (↑) PCC (↑) SRCC (↑)

I ✓ 8.357 74.50 0.396 0.354
II ✓ 8.040 77.50 0.673 0.634
III ✓ ✓ 7.706 80.50 0.680 0.649
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D.11 MORE T-SNE VISUALIZATIONS

We visualize the embedding spaces according to different noise ratios κ using t-SNE. The t-SNE plots
for the MORPH II, AADB, and RSNA datasets are shown in Figures 13, 14, and 15, respectively.

𝜅 = 0 𝜅 = 0.2 𝜅 = 0.4

15~19 20~24 25~29 30~34 35~39 40~44 45~49 50~54 55~59 60~64 65~69 70~74 75~79
True age

Figure 13: t-SNE visualization of the embedding spaces for MORPH II at different noise ratios κ.

𝜅 = 0 𝜅 = 0.2 𝜅 = 0.4

0.01~0.1 0.11~0.2 0.21~0.3 0.31~0.4 0.41~0.5 0.51~0.6 0.61~0.7 0.71~0.8 0.81~0.9
True score

0.91~1.0

Figure 14: t-SNE visualization of the embedding spaces for AADB at different noise ratios κ.

𝜅 = 0 𝜅 = 0.1 𝜅 = 0.2

0~19 20~39 40~59 60~79 80~99 100~119 120~139 140~159 160~179 180~199 200~219
True bone age

220~239

Figure 15: t-SNE visualization of the embedding spaces for RSNA at different noise ratios κ.
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D.12 MORE RANK ESTIMATION EXAMPLES

Figures 16, 17, and 18 show rank estimation results of the proposed SOL on the CLAP2015, AADB,
and RSNA datasets, respectively.

CLAP (𝜅 = 0.3)

17 (17) 20 (19) 26 (26) 30 (29) 33 (33) 38 (38) 40 (40) 46 (46) 68 (68)

19 (19) 21 (21) 24 (24) 29 (29) 30 (32) 37 (37) 38 (38) 44 (43) 51 (51)

(b) Failure cases

31 (38) 25 (35) 41 (53)

(a) Successful cases

25 (32) 35 (28) 44 (29) 30 (48) 30 (50)42 (60)

CLAP (𝜅 = 0.4)

14 (14) 18 (18) 20 (20) 24 (25) 29 (29) 31 (31) 45 (45) 50 (50) 57 (57)

15 (14) 21 (21) 22 (22) 25 (25) 31 (33) 34 (34) 42 (42) 52 (52) 55 (56)

(b) Failure cases

17 (10) 22 (17) 25 (16)

(a) Successful cases

18 (26) 19 (28) 28 (21) 29 (36) 57 (63)35 (43)

CLAP (𝜅 = 0.5)

17 (17) 19 (20) 23 (23) 26 (26) 31 (31) 33 (33) 39 (39) 46 (48) 65 (65)

18 (17) 20 (20) 23 (23) 26 (25) 32 (32) 33 (35) 39 (39) 46 (46) 56 (55)

(b) Failure cases

33 (42) 37 (26) 43 (54)

(a) Successful cases

22 (32) 52 (62) 33 (21) 37 (52) 27 (45)40 (55)

Figure 16: (a) Success and (b) failure cases of age estimation results on the CLAP2015 dataset. Under
each image, the estimated ages are specified with the ground-truth in parentheses.
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AADB (𝜅 = 0.3)

(b) Failure cases

(a) Successful cases

0.52 (0.50) 0.81 (0.85)

0.45 (0.45) 0.50 (0.50) 0.75 (0.75)

0.32 (0.55) 0.55 (0.25) 0.79 (0.65)

0.60 (0.60)

0.68 (0.45)0.43 (0.80) 0.44 (0.10)

0.31 (0.30) 0.35 (0.35) 0.65 (0.65)

0.05 (0.05) 0.40 (0.40) 0.70 (0.70)

AADB (𝜅 = 0.4)

(b) Failure cases

(a) Successful cases

0.45 (0.45) 0.84 (0.80)

0.45 (0.45) 0.55 (0.55) 0.86 (0.85)

0.37 (0.60) 0.54 (0.30) 0.81 (0.45)

0.50 (0.50)

0.76 (0.65)0.44 (0.65) 0.58 (0.90)

0.25 (0.25) 0.35 (0.35) 0.70 (0.70)

0.30 (0.30) 0.33 (0.35) 0.65 (0.65)

AADB (𝜅 = 0.5)

(b) Failure cases

(a) Successful cases

0.50 (0.50) 0.88 (0.85)

0.50 (0.50) 0.55 (0.55) 0.77 (0.75)

0.27 (0.40) 0.52 (0.30) 0.79 (0.65)

0.65 (0.65)

0.75 (0.55)0.45 (0.70) 0.41 (0.70)

0.30 (0.30) 0.40 (0.40) 0.72 (0.70)

0.30 (0.30) 0.43 (0.40) 0.70 (0.70)

Figure 17: (a) Success and (b) failure cases of aesthetic score estimation results on the AADB dataset.
Under each image, the estimated scores are specified with the ground-truth in parentheses.
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RSNA (𝜅 = 0.1)

(a) Successful cases

130 (130.32) 24 (24.52) 198 (198.64) 151 (151.90) 143 (144.03) 132 (130.45)

(b) Failure cases

194 (219.01) 63 (83.45) 137 (118.23) 110 (127.82) 81 (97.35) 87 (70.90) 48 (62.07) 60 (47.41) 138 (125.90)

172 (172.07) 69 (69.11) 160 (161.12)

RSNA (𝜅 = 0.15)

(a) Successful cases

130 (130.12) 11 (11.21) 199 (198.64) 88 (88.39) 131 (130.52) 145 (145.85) 151 (151.90) 193 (191.97) 150 (151.36)

(b) Failure cases

102 (136.76) 111 (133.24) 198 (219.06) 128 (145.21) 81 (97.35) 201 (186.33) 60 (47.41) 101 (113.50) 71 (83.45)

RSNA (𝜅 = 0.2)

(a) Successful cases

145 (144.92) 139 (138.86) 11 (11.21) 25 (24.53) 131 (130.32) 185 (185.71) 55 (54.14) 142 (142.93) 193 (194.02)

(b) Failure cases

61 (47.41) 114 (127.82) 83 (97.35) 46 (62.70) 138 (118.23) 124 (145.21) 117 (93.63) 131 (155.98) 193 (219.06)

Figure 18: (a) Success and (b) failure cases of bone age assessment results on the RSNA dataset.
Under each image, the estimated ages (in months) are specified with the ground-truth in parentheses.
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D.13 MORE EXAMPLES OF DETECTED OUTLIERS

Figures 19, 20, and 21 show examples of detected outliers on the MORPH II, CLAP2015, and AADB
datasets, respectively.

(a)

44 → 46 (46)

66 → 65 (65)

(b)

17 → 16 (16)

42 → 41 (41) 58 → 56 (56)

42 → 41 (41)43 → 44 (44)

50 → 51 (51)

28 → 30 (30)

49 → 52 (52)

36 → 33 (33)

43 → 44 (44)

15 → 17(17)

46 → 48 (48) 58 → 60 (57) 63 → 65 (62)

18 → 19 (17) 54 → 55 (52)

MORPH II (𝜅 = 0.2)

(a)

24 → 22 (23)

19 → 17 (17)

(b)

58 → 55 (55)

24 → 22 (23) 48 → 51 (51)

41 → 39 (39)47 → 45 (45)

19 → 16 (16)

44 → 46 (47)

21 → 18 (18)

64 → 67 (67)

52 → 48 (48)

62 → 65(65)

18 → 24 (24) 46 → 50 (42) 75 → 72 (76)

14 → 11 (18) 63 → 67 (61)

MORPH II (𝜅 = 0.3)

(a)

17 → 20 (20)

38 → 40 (40)

(b)

20 → 17 (17)

24 → 22 (22) 45 → 47 (47)

21 → 18 (18)67 → 65 (65)

44 → 46 (46)

54 → 56 (56)

37 → 39 (39)

45 → 41 (41)

30 → 32 (32)

44 → 36(36)

25 → 24 (24) 44 → 45 (39) 39 → 40 (35)

43 → 37 (33) 44 → 42 (33)

MORPH II (𝜅 = 0.4)

(a)

46 → 45 (45)

62 → 64 (64)

(b)

13 → 18 (18)

37 → 41 (41) 50 → 52 (52)

61 → 64 (64)44 → 47 (47)

32 → 33 (33)

70 → 64 (64)

27 → 29 (29)

39 → 37 (37)

18 → 16 (16)

24 → 18(18)

39 → 42 (42) 68 → 71 (56) 67 → 74 (64)

20 → 19 (25) 47 → 49 (46)

MORPH II (𝜅 = 0.5)

Figure 19: (a) Success and (b) failure cases of the label refinement on the MORPH II dataset. Under
each image, the noisy, refined, and true ranks are specified: noisy→ refined (true).
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CLAP2015 (𝜅 = 0.2)

(a)

13 → 15 (15)10 → 11 (11) 20 → 22 (22)7 → 9 (9) 13 → 16 (16)

44 → 42 (42) 41 → 40 (40)38 → 41 (41) 63 → 62 (62)48 → 51 (51)

42 → 39 (39)38 → 40 (40)

53 → 51 (51) 73 → 71 (71)

(b)
23 → 18 (24) 40 → 42 (36)

27 → 25 (32) 37 → 33 (39)

CLAP2015 (𝜅 = 0.3)

(a)

23 → 25 (25)23 → 20 (20) 45 → 41 (41)9 → 8 (8) 23 → 26 (23)

55 → 59 (59) 57 → 60 (60)60 → 54 (54) 55 → 51 (51)67 → 63 (63)

44 → 39 (39)42 → 39 (39)

37 → 41 (41) 80 → 85 (85)

(b)
12 → 16 (10) 53 → 51 (56)

68 → 63 (67) 9 → 16 (7)

CLAP2015 (𝜅 = 0.4)

(a)

59 → 63 (63)51 → 46 (46) 28 → 32 (32)50 → 52 (52) 52 → 57 (57)

23 → 26 (26) 25 → 26 (26)18 → 23 (23) 54 → 51 (51)66 → 72 (72)

50 → 54 (54)65 → 62 (62)

34 → 26 (26) 9 → 11 (11)

(b)
52 → 58 (49)

57 → 58 (52)

44 → 59 (50)

81 → 73 (78)

CLAP2015 (𝜅 = 0.5)

(a)

28 → 24 (24)25 → 19 (19) 28 → 25 (25)14 → 19 (19) 30 → 24 (24)

32 → 37 (37) 57 → 51 (51)26 → 33 (33) 59 → 63 (63)29 → 26 (26)

28 → 32 (32)23 → 28 (28)

51 → 56 (56) 73 → 69 (69)

(b)
66 → 68 (63) 78 → 77 (80)

57 → 59 (50) 31 → 39(32)

Figure 20: (a) Success and (b) failure cases of the label refinement on the CLAP dataset. Under each
image, the noisy, refined, and true ranks are specified: noisy→ refined (true).
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AADB (𝜅 = 0.2)

(b)

0.32 → 0.44 (0.30)

0.46 → 0.33 (0.50)

0.65 → 0.70 (0.70)

(a)

0.29 → 0.35 (0.35) 0.80 → 0.85 (0.85)0.50 → 0.55 (0.55)

0.13 → 0.10 (0.10) 0.62 → 0.60 (0.60)0.34 → 0.30 (0.30) 0.55 → 0.50 (0.50)

0.24 → 0.30 (0.30)

0.86 → 0.80 (0.80)

AADB (𝜅 = 0.3)

(b)

0.46 → 0.35 (0.50)

0.53 → 0.43 (0.55)

0.95 → 1.00 (1.00)

(a)

0.21 → 0.30 (0.30) 0.14 → 0.10 (0.10)0.64 → 0.7 (0.70)

0.90 → 0.80 (0.80) 0.59 → 0.65 (0.65)0.76 → 0.70 (0.70) 0.82 → 0.75 (0.75)

0.91 → 0.95 (0.95)

0.72 → 0.75 (0.75)

AADB (𝜅 = 0.4)

(b)

0.5 → 0.39 (0.55)

0.49 → 0.38 (0.54)

0.19 → 0.30 (0.30)

(a)

0.90 → 0.95 (0.95) 0.54 → 0.65 (0.65)0.29 → 0.55 (0.55)

0.89 → 0.75 (0.75) 0.69 → 0.65 (0.65)0.76 → 0.70 (0.70) 0.63 → 0.40 (0.40)

0.79 → 0.85 (0.85)

0.20 → 0.15 (0.15)

AADB (𝜅 = 0.5)

(b)

0.35 → 0.56 (0.30)

0.52 → 0.44 (0.56)

0.39 → 0.55 (0.55)

(a)

0.56 → 0.65 (0.65) 0.78 → 0.85 (0.85)0.13 → 0.20 (0.20)

0.73 → 0.60 (0.60) 0.99 → 0.85 (0.85)0.57 → 0.45 (0.45) 0.74 → 0.65 (0.65)

0.40 → 0.50 (0.50)

0.44 → 0.35 (0.35)

Figure 21: (a) Success and (b) failure cases of the label refinement on the AADB dataset. Under each
image, the noisy, refined, and true ranks are specified: noisy→ refined (true).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E BROADER IMPACTS

Due to the intrinsic imbalance of facial datasets (Ricanek & Tesafaye, 2006; Escalera et al., 2015),
there may be unwanted gender or racial bias for deep learning-based facial analysis methods. When
trained on such facial datasets, the proposed algorithm is not free from this bias either. Thus, the
bias should be resolved before any practical usage. We recommend using the proposed algorithm for
research only.
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