
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MRT5: DYNAMIC TOKEN MERGING FOR EFFICIENT
BYTE-LEVEL LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Models that rely on subword tokenization have significant drawbacks, such as sen-
sitivity to character-level noise like spelling errors and inconsistent compression
rates across different languages and scripts. While character or byte-level models
like ByT5 attempt to address these concerns, they have not gained widespread
adoption—processing raw byte streams without tokenization results in signifi-
cantly longer sequence lengths, making training and inference inefficient. This
work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that inte-
grates a token deletion mechanism in its encoder to dynamically shorten the input
sequence length. After processing through a fixed number of encoder layers, a
learnt delete gate determines which tokens are to be removed and which are to
be retained for subsequent layers. MrT5 effectively “merges” critical information
from deleted tokens into a more compact sequence, leveraging contextual infor-
mation from the remaining tokens. In continued pre-training experiments, we find
that MrT5 can achieve significant gains in inference runtime with minimal effect
on performance. When trained on English text, MrT5 demonstrates the capabil-
ity to transfer its deletion feature zero-shot across several languages, with sig-
nificant additional improvements following multilingual training. Furthermore,
MrT5 shows comparable accuracy to ByT5 on downstream evaluations such as
XNLI and character-level tasks while reducing sequence lengths by up to 80%.
Our approach presents a solution to the practical limitations of existing byte-level
models.1

1 INTRODUCTION

Subword tokenization, typically via algorithms such as byte-pair encoding (Sennrich et al., 2016)
or SentencePiece (Kudo & Richardson, 2018), is a fundamental text preprocessing step that has
become ubiquitous in modern language models. Subword tokenizers divide text into meaningful
units known as tokens, which closely resemble words or parts of words. Tokenization can be seen
as a form of compression, since it reduces the sequence length of the input passed to the compute-
intensive Transformer (Vaswani et al., 2017). However, subword tokenizers have several drawbacks.
For example, they are not very robust to character-level noise and manipulations, such as spelling
errors (Kaushal & Mahowald, 2022; Huang et al., 2023); they directly impact how models process
digits and perform arithmetic (Singh & Strouse, 2024); and they have disproportionate compression
rates for different languages and scripts (Ahia et al., 2023; Petrov et al., 2023). In addition, current
language model APIs charge users per-token, and such discrepancies can cause users of certain
languages to be overcharged for poorer compression.2

As an alternative to subword models, tokenization-free models skip the tokenization preprocessing
step entirely by passing the raw character or byte stream directly as input. However, character- or
byte-level sequences tend to be significantly longer than tokenized text sequences, which is a limiting
factor for Transformer models. For example, ByT5 (Xue et al., 2022), a byte-level counterpart of
mT5 (Xue et al., 2021), is competitive with mT5 on a number of tasks, but it has a much slower
pre-training and inference runtime, making it impractical for real use-cases. Most other attempts to

1We will open-source our code upon acceptance.
2See also Andrej Karpathy’s tweets on tokenization: https://x.com/karpathy/status/

1759996551378940395; https://x.com/karpathy/status/1657949234535211009
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Figure 1: MrT5’s encoder during training and testing. During training, fully-differentiable soft
deletion masks out tokens using the output of MrT5’s delete gate. During testing, hard deletion
removes columns from the computation, which reduces the sequence length and leads to efficiency
gains. In this visual, the delete gate is placed at layer 2, but the gate placement may be tuned.

create character-level or byte-level models perform explicit downsampling or pooling to reduce the
sequence length (Clark et al., 2022; Tay et al., 2022). However, relevant units of meaning usually
span a variable number of bytes/characters. These methods also introduce significant alterations to
the standard Transformer architecture that cannot be used to easily adapt existing pre-trained models.

In this work, we propose MrT5 (MergeT5), a variant of the ByT5 architecture that helps address its
inefficiencies while allowing more flexibility than fixed-span downsampling methods (Section 3).
MrT5 dynamically merges its encoder’s input into a shorter sequence using a token deletion gating
mechanism at a fixed, early encoder layer, as shown in Figure 1. By allowing the first few encoder
layers to process the entire sequence, the encoder creates contextualized representations of the to-
kens. When the gating mechanism then deletes a subset of the tokens, those that remain keep the
contextual information about those that were removed, allowing information to be implicitly merged
into a shorter sequence. During training, we use a deletion regularizer with a tunable weight that can
adjust the amount of deletion MrT5 performs. MrT5 effectively learns to merge relevant tokens and
eliminate extraneous ones in a completely unsupervised manner, by optimizing the balance between
the regularization objective and language modeling.

We first train several MrT5 models on synthetic tasks (Section 4); we find that MrT5 not only
drops tokens that are irrelevant to the tasks, but also compresses the relevant context into a shorter
sequence by applying meaningful deletion patterns tailored to the tasks. Next, we perform continued
pre-training experiments by fine-tuning the MrT5 gating mechanism on top of the pre-trained ByT5
Small (Section 5). Our results indicate that MrT5 outperforms random and fixed token dropping
baselines in terms of span corruption loss while removing an equivalent percentage of tokens. We
also conduct zero-shot tests across 15 diverse languages, showing that MrT5 trained only on English
can apply its deletion mechanism to several languages; we also find that we can further improve
MrT5’s deletion rates across languages with different scripts through multilingual training. In our
final set of experiments, we evaluate MrT5 on XNLI and character-level tasks (Section 6), showing
that MrT5 achieves comparable accuracy to ByT5 while significantly improving inference runtimes
by reducing the sequence length by up to 80%. Our approach improves on the main the limitations
of ByT5, presenting a significant step toward the adoption of byte-level models and the elimination
of subword tokenization from modern language models.

2 RELATED WORK

There have been several attempts to design character-level or byte-level models in an effort to over-
come the pitfalls of subword tokenization. Several architectures have employed explicit downsam-
pling steps to reduce their input sequence lengths. For example, CANINE (Clark et al., 2022) is a
character-level model trained on the same languages as mBERT (Devlin et al., 2019), and it uses
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convolutional downsampling to reduce the sequence before feeding it to a 12-layer Transformer en-
coder stack. Charformer (Tay et al., 2022) is another byte-level encoder-decoder model that learns a
gradient-based “soft tokenization” that learns a block scoring function to select the byte embeddings
to pool together for more efficient training and inference.

This paper focuses on ByT5 (Xue et al., 2022), a byte-level sequence-to-sequence Transformer
architecture (Vaswani et al., 2017) that serves as a counterpart to mT5 (Xue et al., 2021), the multi-
lingual version of T5 (Raffel et al., 2020). ByT5 requires significantly fewer parameters for its vo-
cabulary matrix (which is comprised of only 256 embeddings). However, to compensate for the loss
of these parameters, ByT5 has a “heavy” encoder with a larger number of layers than the decoder.
While ByT5 shows impressive performance on a variety of downstream tasks, its heavy encoder,
large model and feed forward dimensionalities, and short input sequence length (1024 bytes) make
it quite inefficient. The architecture itself requires about 1.2 times more operations than mT5, which
contributes to a 33% longer pre-training wall clock time for ByT5, even though it was trained on
only a quarter of the data used for mT5. In terms of inference speed on downstream tasks, ByT5 can
be up to 10 times slower than mT5, depending on the input sequence length.

Our model is closely related to early-exit methods proposed for autoregressive Transformers (El-
bayad et al., 2020; Schuster et al., 2022) and BERT (Xin et al., 2020; 2021). In contrast to previous
approaches, our method is fully differentiable and does not require special training considerations
or calculating the entropy of the final classifier, and the deletion decisions are made in a single layer,
making the model easy to use and efficient.

More recently, MegaByte (Yu et al., 2023) has shown promise in scaling byte-level decoders to long
context problems, but it also includes a step that segments sequences into fixed-length “patches”
that are not determined dynamically and do not necessarily correspond to meaningful units of text.
SpaceByte (Slagle, 2024) employs a similar solution, but adds larger, global Transformer blocks to
certain types of bytes, such as space characters, to improve performance. In a similar vein to these
papers, other work has attempted to address issues with long sequences in Transformer models
more generally. For example, Hierarchical Transformers (Nawrot et al., 2022) add several layers
of downsampling and upsampling to handle long sequences in decoder models. Follow-up work
has implemented dynamic pooling using boundary predictors, but these usually involve a supervised
training step (Nawrot et al., 2023). Other solutions include Nugget (Qin & Van Durme, 2023; Qin
et al., 2023), which encodes the whole sentence, but passes only a dynamic subset of the embeddings
to the decoder. This approach does not save compute on the encoder side.

Unlike previous work, MrT5’s deletion gating mechanism does not require an overhaul of the ex-
isting Transformer architecture, so it can be added to a pre-trained model with fine-tuning using
a small number of additional parameters. The gating can also be applied to models trained from
scratch. While we are particularly interested in byte-level modeling, our approach can also be ap-
plied to subword models, complementing the existing line of work on long-context modeling.

3 THE MRT5 MODEL ARCHITECTURE

The unique aspect of MrT5 is its deletion gating mechanism: after a fixed encoder layer, a delete
gate determines which tokens in the sequence should be kept to be processed by later layers, and
which tokens may be deleted, thereby “merging” information into a shorter sequence. Our choice
to delete tokens only in a single layer has three motivations: (1) we want to avoid the overhead
of executing the deletion algorithm multiple times; (2) we observe that both the performance and
the number of deleted tokens stabilize after a few initial layers (see Section 7); and (3) in terms of
minimizing computation costs, the deletion is most beneficial if done in an early layer.

3.1 DELETION GATING MECHANISM

The MrT5 deletion gating mechanism is inspired by existing architectures with gating mechanisms
such as Long-Short Term Memory (LSTMs, Hochreiter & Schmidhuber, 1997), Gated Recurrent
Units (GRUs, Cho et al., 2014), and Mixture-of-Experts (MoEs, Shazeer et al., 2017). MrT5’s delete
gate is placed after the output of a fixed encoder layer l and is defined by the following function:

G = kσ(HlW + 1Nb) (1)

3
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where Hl ∈ RN×d are the hidden states output by layer l; W ∈ Rd×1; b ∈ R; G ∈ RN×1; k is
a large negative constant; N is the encoder input sequence length; d is ByT5’s hidden state/model
dimensionality; and 1N ∈ RN×1 is a vector of ones. The gating activation function is a rescaled
and translated sigmoid function, bounded between k and 0. In our experiments, we use k = −30.

Hard and Soft Deletion. During training, MrT5 deletes tokens softly, where the outputs of the
gating mechanism G are applied as a soft attention mask. The outputs are added directly to the
self-attention mechanism of the subsequent encoder layers, as well as the cross attentions between
the decoder and encoder. As an example, the hidden states of encoder layer l + 1 are defined as:

Hl+1 = softmax

(
QK⊤
√
d

+ 1NG⊤
)
V (2)

where Q,K,V,Hl+1 ∈ RN×d and 1N ∈ RN×1 is a vector of ones. A token at sequence position
i ∈ [1, N ] and Gi ≈ 0 will not be masked, whereas a token at sequence position j ̸= i ∈ [1, N ] and
Gj ≈ k will be masked, since k is a large negative constant. Though soft deletion does not reduce
the sequence length, we apply it during training to emulate the effect of token deletion while being
fully differentiable. To see efficiency gains during inference, we apply hard deletion, where the
hidden states are removed from the sequence, determined by a hard threshold; we set this threshold
to be k

2 , half of the range of the delete gate’s output.

For different samples in a given batch, different numbers of tokens may be deleted; when applying
hard deletion, the new sequence length is determined by the example in the batch with the largest
number of remaining tokens, and the other examples are padded to the new sequence length. In addi-
tion to deleting and padding the hidden states, since the T5 architecture uses relative position biases
at each layer, the deletion and padding is also performed on the position biases. For a theoretical
analysis of the compute savings gained by MrT5’s hard deletion, see Appendix B.

3.2 GATE REGULARIZER

MrT5 allows deletion rates to be adjusted using a tunable regularizer loss:

LG =
1

N

N∑
i=1

Gi (3)

This loss is the average of the gate output values, which encourages them to be more negative (i.e.
closer to k, the minimum gate value). In other words, as this loss decreases, the number of deleted
tokens increases. The total loss is defined as the sum L = LCE + αLG, where LCE is the cross
entropy loss. Varying the hyperparameter α allows the MrT5 model to delete more or fewer tokens.

Optimizing a Specific Deletion Ratio. For most of our experiments, we set α by hand, which
allows the model to dynamically set the deletion ratio depending on the difficulty of the task. Alter-
natively, we can optimize for a specific ratio of deleted tokens. This can be done using an algorithm
that resembles the proportional controller (P-controller) from classical control theory. Let’s call the
proportion of deleted tokens in the current batch δt ∈ [0, 1], the regularization hyperparameter for
the current batch αt and the target deletion ratio δ̂. We update α after each training step as follows:

αt+1 = clamp
(
αt + kp(δ̂ − δt)

)
(4)

where clamp(x) = max(x, 0). We found that kp = 10−6 and α0 = 0.0 work well in practice. This
method is easier to use than manually setting α and allows α to change dynamically as the model
undergoes phase transitions during training, resulting in more stable learning.

Softmax1. It is possible for all elements of G to equal the minimum gate value such that Gi = k
for all i ∈ [1, N ]. This G would satisfy the gate regularizer but fail to act as an attention mask, since
adding the same value to all elements of the input to a standard softmax function does not affect its
output. To help avoid this scenario, we use softmax1 (Miller, 2023) in the attention mechanism:

(softmax1(x))i =
exp(xi)

1 +
∑

j exp(xj)
(5)

With the softmax1 function, if Gi = k for all i ∈ [1, N ], as k becomes negative, the sum of attention
scores approaches zero. This eliminates the failure case of using tokens that appear to be all deleted.
For consistency, we use softmax1 for both MrT5 and baseline ByT5 models.

4
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Task Input Target
Simple Vowel Removal zEKRreJcBxGUJQbZSIos zKRrJcBxGJQbZSs
Contextual Vowel Removal EOubXgaYVbiOgiIrEnld EOubXgYVbOgIrnld
Sequence Merge KjAxIpABCZCxBcniABCs KjAxIpDZCxBcniDs

Table 1: Synthetic tasks with example input and target sequences. In our experiments, sequences
are 128 characters/tokens long, including a start and end token. Legend: vowels to remove, vowels
to keep, sequences to replace.

4 SIMULATIONS

We first train tiny 31M-parameter MrT5 and T5 models with 9 encoder layers and 3 decoder layers
from scratch on three synthetic tasks: a simple vowel removal task, a contextual vowel removal
task, and a sequence merge task. The purpose of these experiments is to verify that the architecture
behaves as intended, particularly with regard to the merging patterns it learns. Does MrT5 merely
drop tokens when they are irrelevant to the output, or does it effectively merge relevant context into
a shorter sequence? These results help set the stage for our continued pre-training experiments in
Section 5 and our downstream task evaluations in Section 6.

Synthetic Task Specifications. Each of our three synthetic tasks is a variant of a copy task, designed
to assess MrT5’s ability to identify unimportant or redundant information in the input sequence or
merge relevant information from some tokens into other tokens. Input sequences are comprised of
random lowercase and uppercase English characters, plus start and end tokens. Example inputs and
labels are provided in Table 1.

1. Simple Vowel Removal: generate a copy of the input token sequence, except for any vow-
els. We expect MrT5 to delete vowels, which occur with 19% probability. Thus, the optimal
sequence length decrease is 19%.

2. Contextual Vowel Removal: generate a copy of the input token sequence, except for any
vowels that follow a lowercase consonant. We increase the probability of vowels such that,
on average, they comprise 40% of the sequence, and about 18% of the sequence is comprised
of vowels that follow a lowercase consonant. If MrT5 learns the relevant deletion pattern, we
would expect a sequence length decrease of 18%.

3. Sequence Merge: generate a copy of the input token sequence, and translate any occurrence
of the character sequence ABC into the character D. ABC sequences are inserted into the input
randomly and occur about 10 times per sequence on average. If MrT5 merges ABC into a single
token, we would expect it to drop 20 tokens on average, which is 15.6% of the sequence.

For the model architecture and training configurations we use for the simulations, see Appendix A.1.

Results. Table 2 presents the performance of several MrT5 models that use different regularizer
α values trained on each of our three synthetic tasks. We vary α across model training runs to
examine the different deletion patterns that emerge. In each of the three synthetic tasks, several
MrT5 models with optimal deletion rates outperformed or nearly matched the T5 model while using
shorter sequence lengths. We also observed that some MrT5 models, when tuned with the optimal
value of α, developed token-dropping strategies that exactly aligned with the specific requirements
of the tasks. For instance, in the simple vowel removal task, the MrT5 models that selectively
dropped vowels but kept consonants intact showed improved performance.3 These findings suggest
that MrT5 can create complex deletion strategies that exploit patterns or redundancies in the input.

5 CONTINUED PRE-TRAINING

In our main set of experiments, we train MrT5 models on the ByT5 span corruption task. In this
pre-training objective, spans of tokens in unlabeled text data are replaced with a single sentinel token

3For tasks requiring more contextual information, we found that these models have too much capacity for
the synthetic tasks, and even the T5 models only started to develop non-trivial attention patterns in very late
layers. We found that placing the delete gate at later task layers allowed MrT5 to develop more contextual
token deletion solutions.

5
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Model Token-level Seq.-level Seq. Length Delete Gate Description of
Accuracy (%) Accuracy (%) Reduction (%) Layer Deleted Tokens

T5 99.97 96.44 0.00 — —
MrT5 (α = 0) 99.99 99.64 18.94 3 Most vowels, and no consonants.
MrT5 (α = 1e–4) 99.75 77.51 51.13 3 All vowels and many consonants.

(a) Models trained on the simple vowel removal task. MrT5 solves this task effectively with a non-trivial
deletion rate, but too much deletion—-beyond the optimal rate of 19%-—results in a drop in performance.

Model Token-level Seq.-level Seq. Length Delete Gate Description of
Accuracy (%) Accuracy (%) Reduction (%) Layer Deleted Tokens

T5 99.99 99.19 0.00 — —
MrT5 (α = 1e–3) 99.99 98.54 1.56 3 Only start and end tokens.
MrT5 (α = 1e–3) 99.97 96.51 18.50 7 Vowels after lowercase consonants.
MrT5 (α = 1e–3) 99.96 95.19 18.50 8 Vowels after lowercase consonants.

(b) Models trained on the contextual vowel removal task. Due to the task’s contextual nature, deletion works
best in higher task layers. MrT5 learns to delete around the optimal 18%, with only a slight performance drop.

Model Token-level Seq.-level Seq. Length Delete Gate Description of
Accuracy (%) Accuracy (%) Reduction Layer Deleted Tokens

T5 99.99 98.41 0.00 — —
MrT5 (α = 1e–3) 99.99 98.90 1.56 3 Only start and end tokens.
MrT5 (α = 1e–3) 99.98 97.68 8.30 6 ‘B’ within ‘ABC’ sequences.
MrT5 (α = 1e–3) 99.85 85.34 16.93 7 All ‘B’s, and ‘BC’ within ‘ABC’ sequences.

(c) Models trained on the sequence merge task. MrT5 can learn to merge characters within ABC sequences at
higher task layers, but exceeding the optimal 15.6% deletion rate degrades performance.

Table 2: Synthetic task performance for T5 and MrT5 with different deletion strategies. Token-
level accuracy measures the percentage of correctly predicted tokens, averaged across sequences;
sequence-level accuracy measures the percentage of sequences with all tokens predicted correctly.

ID per span, and the model must fill in the missing tokens. For ByT5 and MrT5, these are spans of
bytes, and the masks can potentially interfere with word boundaries.

We use the English C4 corpus (Raffel et al., 2020) as well as the multilingual C4 (mC4) corpus
(Xue et al., 2021) for continued pre-training. We first train several English-only MrT5 and baseline
models on C4, and we analyze the performance differences for models with different deletion rates.
We also train a multilingual MrT5 and ByT5 model on 15 typologically diverse languages from the
mC4 corpus: English, French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Viet-
namese, Thai, Chinese, Hindi, Swahili, and Urdu. We then compare monolingual and multilingual
MrT5 in cross-lingual evaluations, analyzing the zero-shot transfer of English MrT5 and evaluating
the performance gains achieved through multilingual training.

Models. We train several MrT5 models, varying the α hyperparameter of the deletion regularizer.
In our experiments, we found that α ∈ [5e–3, 1.5e–2] resulted in a broad range of deletion rates.
This is a continued pre-training setup; we load the pre-trained weights and use the architecture
settings of ByT5 Small (300M parameters) and only randomly initialize the weights of MrT5’s
gating mechanism. Based on a sweep of different layers, we place the gating mechanism after
encoder layer l = 3 (see Section 7). In addition to the MrT5 models, we also train several baselines:

1. ByT5 baseline: A ByT5 Small architecture with softmax1, but without deletion.
2. Random baseline: We implement and train a set of models with a random gating mechanism,

where the choice of how the tokens are deleted is random; some number of gate values are set
to k, and the rest are set to 0. In our experiments, we train five random models with different
average deletion rates: 15%, 40% 50%, 60%, and 70%.

3. Fixed baseline: We implement and train a set of models that delete the ends of words. We train
five models that delete different percentages of the ends of words: 15%, 40% 50%, 60%, and
70%. For details on the implementation of this baseline, see Appendix A.4.

For the random and fixed baselines, the gating mechanism is placed at layer l = 3, like the MrT5
models. All models use softmax1 in their attention mechanisms. The ByT5 baseline serves as a

6
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Figure 2: Span corruption cross entropy loss vs. sequence length reduction for each MrT5 and base-
line model. MrT5 models consistently have much lower loss than the baselines, and are generally
competitive with unmodified ByT5, even where they achieve very large sequence length reductions.

Model ByT5 MrT5
α = 5e–3 α = 6e–3 α = 8e–3 α = 1e–2 α = 1.4e–2

Runtime (ms) 56.27 53.98 (↓ 4.08%) 43.92 (↓ 21.96%) 40.78 (↓ 27.53%) 39.62 (↓ 29.59%) 33.81 (↓ 39.92%)

Table 3: Average inference runtime for a single sequence (in milliseconds) for ByT5 and each MrT5
model. Percentage decrease in runtime relative to ByT5 is displayed in parentheses.

lower bound on the best possible span corruption loss, since it does not reduce the sequence length.
For further details on model architectures, dataset preparation, and optimization, see Appendix A.2.

Monolingual Results. Our first set of results are for the monolingual MrT5 models trained only on
English data. We evaluate span corruption loss on a held-out test set of 10,000 examples. Figure 2
illustrates the relationship between span corruption cross entropy loss and sequence length reduction
for each MrT5 model compared to their respective baselines. As anticipated, ByT5 achieves the low-
est loss; however, it does not reduce sequence length. While the MrT5 models, along with the fixed
and random baselines, exhibit higher losses overall, the MrT5 models consistently achieve lower
losses than the other baselines at comparable deletion rates. For instance, MrT5 with α = 8e–3
removes approximately 57% of tokens, which is a similar deletion rate to the 60% fixed and random
baselines, yet MrT5 achieves the lowest loss. This pattern is consistent across all MrT5 models and
baselines, showing the effectiveness of MrT5’s gating mechanism in reducing the sequence length
while minimizing loss.

MrT5 models with a higher deletion rate also have a faster inference runtime, as shown in Table 3.
In particular, MrT5 models that reduce the sequence length by more than 50% can achieve 25%
speedup or greater, with our implementation. These results show that hard deletion improves the
efficiency of MrT5 when compared to ByT5, and this speedup can be tuned.

Multilingual Results. In our second set of results, we evaluate MrT5 and ByT5 models on 15
languages. For the monolingual models trained on English only, these are zero-shot evaluations.
Each language’s test set is sampled from its mC4 validation split and contains 10,000 examples,
except for Swahili and Urdu, which only have 2,800 and 9,300 examples, respectively. Figure 3
shows the test set span corruption loss versus sequence length reduction for a monolingual MrT5
(with constant α = 1e–2) and a multilingual MrT5 model (with constant α = 1.2e–2) across 15
languages. We choose to compare these two models because they learned similar deletion rates for
English (≈63%). We also include the corresponding ByT5 models’ losses, trained on the same data,
as a baseline.
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Figure 3: Average test set span corruption loss vs. sequence length reduction for monolingual (top)
and multilingual (bottom) MrT5 models across 15 languages. ByT5 is shown for loss comparison
only (it does not reduce the sequence length). MrT5 can transfer its deletion feature to new languages
when trained in English, but performs best with multilingual training. A multilingual MrT5 model
achieves over 50% sequence length reduction in most languages with minimal effect on the loss.

The monolingual MrT5 model achieves the highest sequence length reduction for English, as ex-
pected, and performs moderately well in zero-shot settings for Latin-script languages (e.g., Spanish,
French, Vietnamese, and Russian), with reduction rates above 40%. However, it struggles with
sequence length reduction for Chinese, which uses a completely different script. In contrast, the
multilingual MrT5 significantly improves the sequence length reduction across all languages, with
most languages achieving 60% reduction; at the same time, the loss increase compared to ByT5
shrinks across all languages. These results demonstrate that the MrT5 architecture can learn to per-
form contextual deletions and transfer this capability across languages, but its effectiveness in doing
so, especially across different scripts, is greatly enhanced when trained with multilingual data.

6 DOWNSTREAM TASK EVALUATIONS

We next assess MrT5’s performance on downstream tasks, specifically XNLI and two character-
level tasks. XNLI evaluates MrT5’s ability to understand semantic relationships between sentences,
while the character-level tasks test whether it retains its sensitivity to character-level manipulations.

Cross-lingual Natural Language Inference. We first test our multilingual MrT5 model using the
Cross-lingual Natural Language Inference (XNLI) corpus (Conneau et al., 2018), a benchmark for
cross-lingual sentence classification with 5,000 parallel examples in 15 languages. These are the
same 15 languages our multilingual MrT5 model was trained on. We selected XNLI for testing
because the ByT5 authors noted it as one of the downstream tasks with the worst inference runtimes,
primarily due to the long input sequences; ByT5 was 6.4 to 9.5 times slower than mT5. We fine-tune
two models on the English MultiNLI corpus (Williams et al., 2018): our multilingual MrT5 model
(α = 1.2e–2) and the baseline multilingual ByT5 model. For training details, see Appendix A.3.

Table 4 presents the evaluation metrics for the ByT5 and MrT5 models on the XNLI English test
split, as well as their average performance across all languages. On English, MrT5 outperforms
ByT5’s accuracy while reducing the sequence length by 52.56% and cutting down the inference
runtime by 38.0%. Across languages, MrT5 significantly decreases both the sequence length and
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Language Accuracy (%) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

English 76.47 78.88 8.95 5.55 38.00 52.56
All Languages 51.34 49.63 14.25 8.19 42.50 46.82

Table 4: XNLI evaluation metrics for ByT5 and MrT5 models. Except for English, all evaluations
are zero-shot. Chance accuracy is 33%. MrT5 achieves significantly reduced sequence lengths and
faster runtimes compared to ByT5 while maintaining comparable accuracy, and it even outperforms
ByT5 on English. See Table 6 in Appendix C for metrics on each language individually.

Task Seq.-level Accuracy (%) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

Spelling Correction 58.19 56.07 3.25 2.18 32.90 78.88
Word Search 75.37 74.30 4.95 2.22 55.15 73.91

Table 5: Character-level task metrics for ByT5 and MrT5 models. MrT5 significantly reduces run-
time and sequence lengths across both tasks, with a minimal accuracy trade-off in spelling correction
and comparable accuracy in word search. See Table 7 and Table 8 in Appendix C for metrics on
individual test splits for each task.

runtime, with a small accuracy decrease of just 1.7% compared to ByT5. The XNLI task illustrates
the efficiency of MrT5’s fast encoder; a 50% deletion rate results in substantial gains in runtime. This
improvement can be attributed to the setup of the XNLI task, which requires large input sequences
(up to 1,024 tokens) and short decoder sequences (a single token for classification).4

Character-level Tasks. We fine-tune and evaluate an English MrT5 model on the Spelling Correc-
tion with Context and Word Search character-level tasks from Huang et al. (2023). In the Spelling
Correction task, the input is a sentence containing a spelling error, and the goal is to generate the
same sentence with the error corrected. In the Word Search task, the input follows the format
definition: letters, and the objective is to identify the substring in letters that, when re-
versed, matches the given definition. We selected these two tasks from the suite because they
both require understanding meaning and context and involve processing longer sequence lengths.
For each character-level task, we fine-tune two models: our English-only MrT5 model (α = 1e–2)
and the baseline English-only ByT5 model. See Appendix A.3 for fine-tuning optimization details.
We evaluate on all test splits from Huang et al. (2023), which are designed to rigorously assess a
model’s ability to integrate meaning and context in its predictions.

Table 5 displays the test set results for each character-level task. For both tasks, MrT5 reduces
the sequence length by over 70%, speeding up the inference runtime by 32.9% for the Spelling
Correction task and and 55.15% for the Word Search task. At the same time, MrT5 maintains
accuracy scores that are competitive with ByT5. These results show that MrT5’s method of sequence
merging effectively preserves its sensitivity to character-level information.

7 ANALYSIS

Per-sample Sequence Length Reduction. We present a per-sample analysis of the cross entropy
loss and sequence length reduction for the English MrT5 models and random baselines. We take
a sample of 1,000 English sentences from the mC4 test set and calculate the percent increase in
loss on a per-sample basis, using the English ByT5’s loss as the baseline (i.e. the percent increase
between the MrT5 model’s loss and ByT5’s loss for individual samples). For each sample, we also
get the sequence length reduction. Across five MrT5 models with different deletion rates, we found
no correlation between the percent increase in the loss and the percentage of tokens deleted (average
correlation of r = −0.014).5 This reflects what we would expect from the MrT5 models; for an

4We note that the accuracy of our ByT5 Small model on XNLI (51.3%) falls short of the accuracy reported
in the ByT5 paper (69.1%). We attribute this discrepancy primarily to the significantly longer training duration
used in their fine-tuning setup—262,144 steps, compared to our 4,000 steps.

5When averaging correlation coefficients, we apply Fisher’s Z transformation to stabilize the variance.
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Figure 4: Cross-entropy loss and sequence length reduction for MrT5 models with delete gates at
different layers. Loss is higher in layers 1 and 2, but stabilizes from layer 3 onward. Layers 4 and 5
only enable slightly more deletion than layer 3, so we select layer 3 as optimal for gate placement.

individual sample, MrT5 learns when it can delete more tokens without incurring a large increase
in the loss. In contrast, for five random models with different sequence length reduction rates, we
found a moderate positive correlation (average correlation of r = 0.298). When the random model
removes more tokens, it is more likely to cause an increase in loss. These results further support
the observation that the MrT5 models more strategically and contextually delete tokens compared to
the baselines. See Figure 6 in Appendix D for plots presenting the correlations for each individual
MrT5 and random baseline model.

Gate Placement. We present an analysis of MrT5 models with delete gates placed at various
encoder layers. To maximize efficiency, it is ideal to position the delete gate in the earliest encoder
layer possible. However, placing the gate too early reduces the contextual information in the
token representations, leading to more significant performance degradation compared to ByT5. We
trained several English-only MrT5 models, all using the same training setup and architecture as
described in Section 5, with a fixed regularizer α = 1e–2. The only variable was the placement
of the delete gate, as shown in Figure 4. Our findings indicate that the loss is higher when the
gate is placed in early layers but stabilizes after layer 3. Although higher layers remove slightly
more tokens, our goal is to place the gate as early as possible. Therefore, we selected layer 3 as
the optimal point for gate placement. This analysis provides further evidence that MrT5 merges
information into fewer tokens, since deletion at earlier, less contextual layers results in a higher loss.

The gate placement sets an upper bound on the compute savings achievable with our model. We
provide a detailed analysis of MrT5’s theoretical compute savings in Appendix B. With typical
hyperparameters from our tasks, we can achieve a maximum speedup of around three times with
reasonable deletion rates.

8 CONCLUSION

In this paper, we introduce MrT5 (MergeT5), a variant of the ByT5 architecture designed to ad-
dress the inefficiencies of byte-level language modeling. MrT5’s token deletion mechanism forces
the model to merge input tokens into a more compact sequence, allowing for computational savings
while preserving model performance. Our synthetic experiments demonstrate that MrT5 effectively
merges relevant context into a shorter sequence using strategies that align with task-specific objec-
tives. In our continued pre-training experiments, MrT5 outperforms both random and fixed deletion
baselines when trained in English, and with multilingual training, MrT5 achieves over 50% reduc-
tion in sequence length across multiple languages with minimal impact on the loss. Our model
learns very fast: the continued pre-training requires only a few thousand additional training steps.
Furthermore, MrT5 maintains competitive accuracy with ByT5 on downstream tasks such as XNLI
and character-level manipulations while improving inference runtimes. This demonstrates MrT5’s
capacity to handle tasks requiring semantic information, while still effectively processing character-
level details–the main advantage of byte-level modeling. Our work takes a significant step toward
the viability of byte-level language models and eliminating the need for subword tokenization.
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REPRODUCIBILITY STATEMENT

Steps for reproducing each of our experiments are detailed in Appendix A. Descriptions of the
model architectures and training configurations/hyperparameters for our synthetic task experiments
are provided in Appendix A.1; details of the model architectures, span corruption data preprocessing
steps, and training configurations/hyperparameters for continued pre-training are provided in Ap-
pendix A.2; and training configurations/hyperparameters for fine-tuning on the XNLI and character-
level downstream tasks are provided in Appendix A.3. We provide anonymized source code as part
of the submission, and we will open-source our code upon acceptance.
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A EXPERIMENTAL DETAILS

A.1 SIMULATION DETAILS

Model Architectures. We train our synthetic models with 9 encoder layers and 3 decoder layers,
following the 3:1 ratio of encoder to decoder layers in ByT5, and we use dff = 1024 and dmodel =
512. We use softmax1 for all T5 and MrT5 models. Other architectural settings match the standard
ByT5 Small, resulting in an architecture with 31M parameters (10% of ByT5 Small’s parameter
count).

Optimization. We use a batch size of 128 examples and a sequence length of 128 tokens, and we
train each model for a total of 20,000 gradient steps. We use the AdamW optimizer with a learning
rate that linearly warms up to 1e–4 over 1,000 steps and linearly decays. For MrT5 models, the
delete gate’s regularizer is enabled half-way through training, at 10,000 steps. We set a constant
regularizer α throughout training.

A.2 CONTINUED PRE-TRAINING DETAILS

Model Architectures. All MrT5 and baseline models use the model configuration of a standard
ByT5 Small, which has dff = 3584, dmodel = 1472, 12 encoder layers, 4 decoder layers, and 300M
total parameters. The only difference for MrT5 and the baselines is the additional delete gate and
the use of softmax1 in the attention mechanisms.

Data. When training on the span corruption objective, we calculate the corrupted spans such that
the average masked span length is 20 tokens with a noise density of 15% (i.e. 15% of tokens in the
sequence are masked out), following the specification in the ByT5 paper. For both monolingual and
multilingual model training, we ensure that the samples of the mC4 corpus are sufficiently large
to avoid training the models for multiple epochs. In the case of multilingual training, we extract
equal-sized samples for each language from the mC4 training split.

Optimization. We train each model for 3,000 gradient steps over batches of 220 tokens (i.e. an
encoder sequence length of 1024 with an effective batch size of 1024). We use the AdamW optimizer
with an initial learning rate of 1e–4 with linear decay and no warmup. As with the simulations from
the previous section, we keep the gate regularizer α constant throughout training to allow the model
to discover its own deletion rate, but we vary α across runs. Since we are continuing to train on
ByT5’s pre-training objective, we do not delay the regularizer.

At test time, we use an eval batch size of 214 tokens (i.e. an encoder sequence length of 1024 with a
batch size of 16). We use use the last model checkpoint at step 3,000 for all evaluations.

A.3 DOWNSTREAM TASK DETAILS

XNLI Training Details. We train all models for 4,000 gradient steps (≈10.43 epochs) with a batch
size of 1,024 and a maximum sequence length of 1,024 tokens. We use the AdamW optimizer
with an initial learning rate of 1e–3 that linearly decays with no warmup. For MrT5, we apply a
P-controller to achieve a target deletion ratio δ̂ = 0.5, aiming for a sequence length reduction of
≈50%, and we delay the regularizer until 500 steps into fine-tuning. The controller parameters are
kp = 10−6 and α0 = 0.0.

We evaluate both models on the XNLI dataset, testing them in English and conducting zero-shot
evaluations in the 14 additional languages. For evaluation, we use a batch size of 16 and a maximum
sequence length of 1,024 tokens.

Character-level Task Training Details. For the Spelling Correction task, we train for 200,000
gradient steps (≈33.7 epochs); for the Word Search task, we train for 300,000 steps (≈ 61.0 epochs).
When training MrT5, we apply a P-controller to achieve a target deletion ratio. On the Spelling
Correction task, we set the target deletion ratio δ̂ = 0.6, aiming for a sequence length reduction of
≈60% (although the model learned to delete closer to ≈80% of tokens). On the Word Search task,
we set a target deletion ratio δ̂ = 0.7, aiming for a sequence length reduction of ≈70%. We delay
the regularizer until 10,000 steps into fine-tuning for both tasks.
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Figure 5: Reduction in the total amount of compute as a function of the deletion ratio δ.

For both tasks, we use a batch size of 16 examples, and we use the AdamW optimizer with an initial
learning rate of 5e–4 that linearly decays with no warmup. For evaluation, we use a batch size of
16. The Spelling Correction and Word Search tasks have a maximum input sequence length of 64
and 128 tokens, respectively.

A.4 DESCRIPTION OF FIXED DELETION BASELINES

The fixed deletion baseline deletes tokens at layer l = 3 using deterministic rules based on the token
identity. All tokens/columns corresponding to whitespace, punctuation, and symbolic characters are
identified: \t, \n, , !, ", #, $, %, &, ’, (, ), , +, ,, -, ., /, :, ;, <,
=, >, ?, @, [, \, ], ,̂ , ,̀ {, |, }, ˜, </s>. These separator tokens are used to
locate word boundaries. Then, based on the fixed deletion percentage, the delete gate will drop the
tokens/columns corresponding to the ends of words. For example, if the target percentage is 50%,
the delete gate will remove the tokens corresponding to the final two characters of a five letter word,
and the final three characters of a six character word.

B THEORETICAL COMPUTE SAVINGS

Here we analyze the theoretical amount of compute used by MrT5 given a deletion rate. Let’s call
the average length of the input sequence NE and the average length of the output sequence ND. The
width of the residual is dmodel, the dimension of the up-projection in the MLP is dff, our encoder
has LE and the decoder has LD layers. The deletion occurs after the Ldel layer and the average
proportion of deleted tokens is δ. We assume that the total size of the head projections is equals
to dmodel, as typical for Transformers (dhead ∗ Nheads = dmodel). Then, we can approximate the total
number of multiply-accumulate operations (MACs) for the model as follows. Before deletion, the
self attention in the encoder uses NEd

2
model MACs for both the Q, K, V and the output projections

and N2
Edmodel MACs for both the A = QKT and AV projections. The MLP layer uses NEdmodeldff

additional MACs. Thus, the total number of MACs used per layer is 4NEd
2
model + 2N2

Edmodel +
NEdmodeldff. This much compute is used for the first Ldel layers, after which the sequence length is
reduced to NE(1− δ) for the remaining LE − Ldel layers. Thus, the encoder uses

N encoder
MACs = (LE − Ldel) (1− δ)

(
4NEd

2
model + 2N2

Edmodel(1− δ) +NEdmodeldff
)
+

Ldel
(
4NEd

2
model + 2N2

Edmodel +NEdmodeldff
) (6)

The MACs used by the decoder can be calculated similarly, but additionally the cross attention has to
be taken into account. The cross attention uses NE(1− δ)d2model MACs for the K and V projections,
NDd2model MACs for the Q and output projections, and (1− δ)NENDdmodel MACs for the attention
matrix itself.

N decoder
MACs = LD

(
4NDd2model + 2N2

Ddmodel +NDdmodeldff + 2NE(1− δ)d2model+

2NDd2model + 2(1− δ)NENDdmodel
) (7)

Note that δ = 0 corresponds to the baseline ByT5. For MrT5, dmodel = 1472, dff = 3584, LE =
12, LD = 4, Ldel = 3, NE = 1024, ND = 189. Given these numbers, we plot the total reduction in
compute (compared to ByT5) as a function of δ in Fig. 5.
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Language Accuracy (%) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

English 76.47 78.88 8.95 5.55 38.0 52.56
French 53.90 52.25 10.75 6.66 38.0 47.58
Spanish 55.99 53.84 10.13 6.09 39.9 50.67
German 45.68 46.20 10.42 6.59 36.8 47.61
Greek 52.01 52.33 19.08 9.77 48.8 54.79
Bulgarian 56.31 53.16 17.58 9.68 44.9 47.82
Russian 55.35 55.85 18.02 9.95 44.8 47.95
Turkish 44.86 43.31 9.73 6.03 38.0 46.72
Arabic 51.89 47.29 14.12 8.31 41.1 43.78
Vietnamese 48.63 47.39 12.60 7.67 39.2 46.51
Thai 48.35 44.57 25.28 11.77 53.5 61.07
Chinese 50.70 50.50 7.94 5.83 26.7 24.96
Hindi 43.87 39.99 24.50 13.68 44.2 43.56
Swahili 40.64 38.42 9.08 5.62 38.1 48.48
Urdu 45.48 40.45 15.63 9.77 37.5 38.32

All Languages 51.34 49.63 14.25 8.19 42.5 46.82

Table 6: Per-language XNLI evaluation metrics for ByT5 and MrT5 models. Except for English, all
evaluations are zero-shot.

Spelling Correction
Test Split

Seq.-Level Accuracy (%) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

Dependent 37.63 35.05 3.28 2.26 31.21 78.77
Independent 76.45 74.76 3.21 2.11 34.44 78.98

All Splits 58.19 56.07 3.25 2.18 32.90 78.88

Table 7: Evaluation metrics for all splits for the Spelling Correction with Context character-level
task. The “Dependent” split requires incorporating context to correct the spelling error; the “Inde-
pendent” split does not.

C ADDITIONAL DOWNSTREAM TASK EVALUATIONS

Table 6 contains XNLI evaluation metrics for ByT5 and MrT5 for each of the 15 languages. Table 7
contains evaluations on all test splits for the Spelling Correction with Context task. Table 8 contains
evaluation on all test splits for the Word Search task.

Word Search
Test Split

Seq.-Level Accuracy (%) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

OOV 78.05 79.99 5.20 2.55 50.95 72.52
Paraphrase 83.67 82.06 4.89 2.17 55.58 72.27
Overlap 77.58 76.22 4.94 2.20 55.55 76.14
Paraphrase + Overlap 58.46 57.60 4.95 2.21 55.41 73.95

All Splits 75.37 74.30 4.95 2.22 55.15 73.91

Table 8: Evaluation metrics for all splits for the Word Search character-level task. The “OOV”
split contains hidden words with mT5 tokenization not seen in the training split (this does not apply
to our work, since we only train byte-level models, not subword models); the “Paraphrase” split
contains definitions from The Online Plain Text English Dictionary, testing the ability to understand
context; the “Overlap” split contains overlapping hidden words; and the “Paraphrase + Overlap”
split contains both paraphrased definitions and overlapping hidden words.
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(a) MrT5 models. All models show no correlation
between loss increase and sequence length reduction,
showing the MrT5 can deletes at different percent-
ages depending on the sequence, without incurring a
loss increase.
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(b) Random baseline models. All models show a
weak to moderate positive correlation between loss
increase and sequence length reduction.

Figure 6: Percent increase in the span corruption loss vs. the percentage of deleted tokens for each
(a) MrT5 model and (b) random baseline model. Percent increase is calculated using ByT5’s loss as
a baseline for a particular sample. Each point represents a single sample.

D ADDITIONAL PER-SAMPLE ANALYSES

Figure 6 shows per-sample correlation plots between the cross entropy loss percent increase and
the sequence length reduction for five MrT5 models and five random baseline models with different
deletion rates.

E ADDITIONAL EXPERIMENTS WITH POOLING BASELINES

As an additional baseline, we implemented the boundary predictor with pooling method of Nawrot
et al. (2023) and report its performance relative to MrT5 in this section.

It is important to note that the boundary predictor method from Nawrot et al. (2023) required several
updates in order to be adapted to our experimental setting, as it was originally designed for decoder
architectures. Specifically, we made the following modifications to enable its use with an encoder-
only model:

1. Removal of null-group representations: Null-group representations, which are padded at the
beginning of sequences, were excluded as they are unnecessary in an encoder-only context. We
found that they hurt model performance.

2. Handling relative position biases: The original method does not support models with relative
position biases, which are used in the attention mechanism of each layer. To address this lim-
itation, we devised a solution that uses the position biases associated with the initial boundary
as the position bias for the span of pooled tokens.

We integrated the boundary predictor and pooling module after the third layer, consistent with the
placement of the delete gate for MrT5 in both span corruption and downstream task experiments.
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Target Compression (%) Cross Entropy Loss Seq. Len. Reduction (%)
MrT5 Nawrot et al. (2023) MrT5 Nawrot et al. (2023)

15 0.79 1.01 15.71 18.77
30 0.80 1.06 30.50 33.64
40 0.81 1.08 41.28 44.10
60 0.83 1.16 60.80 64.11
70 0.87 1.19 72.24 73.43

Table 9: Comparison of cross entropy loss and sequence length reduction for MrT5 models and
models using the boundary predictor with pooling method of Nawrot et al. (2023).

We follow Nawrot et al. and use a temperature of 0.5 for the boundary predictor. The results of this
comparison are presented below.

Overall, in both the continued pre-training and downstream task experiments, MrT5 outperforms
Nawrot et al.’s method in terms of task loss or accuracy while achieving comparable or better com-
pression rates. These results highlight MrT5’s ability to effectively balance performance and effi-
ciency, offering a superior alternative to the pooling-based approach.

E.1 CONTINUED PRE-TRAINING

We first test the cross entropy loss on the English span corruption task for MrT5 models with models
trained using Nawrot et al.’s boundary predictor. All models are trained with the same hyperparam-
eter/training configuration and the same number of gradient steps, as described in Appendix A.2.

We first evaluate the cross-entropy loss on the span corruption task, comparing MrT5 models to
those trained with Nawrot et al.’s boundary predictor method. For MrT5, we use a controller to
target specific sequence length reduction rates and train five models with target deletion ratios of
δ = 0.15, 0.30, 0.40, 0.60, and 0.70. Similarly, we train models using Nawrot et al.’s method with
priors of 0.85, 0.7, 0.6, 0.4, and 0.3, which correspond to the same target reduction rates of 15%,
30%, 40%, 60%, and 70%, respectively.

For all pairs of models with similar compression ratios, MrT5 achieves much lower cross-entropy
loss compared to the models using Nawrot et al.’s method (Table 9).

E.2 DOWNSTREAM TASKS

For the downstream tasks, all models are trained with the same hyperparameter/training configu-
rations and for the same number of epochs, as specified in Appendix A.3 of the paper. We adjust
the prior for the models that use Nawrot’s boundary predictor in order to test different compression
rates.

XNLI. For the XNLI task, which requires a multilingual base model, we first train a model with
multilingual span corruption data that uses Nawrot et al.’s method before fine-tuning it on XNLI,
as we had done for the ByT5 and MrT5 models. We use a prior of 0.5, which will give it the same
approximate compression rate as the MrT5 model (50%). We maintain this prior when fine-tuning
the model on NLI.

Across all languages, MrT5 outperforms Nawrot et al.’s method (Table 10). We also note that the
MrT5 model has more dynamic compression rates for different languages, adapting to the specific
information density of a particular language. In Nawrot et al.’s paper, their experiments required
setting different explicit priors for different languages, which is a limitation in terms of flexibility
when compared to our approach.

Character-level Tasks. For the spelling correction task, we try two settings for Nawrot et al.’s
method: one with prior = 0.5, and one with prior = 0.3. MrT5 outperforms Nawrot et al.’s method
in terms of both task accuracy and sequence length reduction rates (Table 11).
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Language Accuracy (%) Seq. Len. Reduction (%)
ByT5 MrT5 Nawrot MrT5 Nawrot

English 76.47 78.84 71.48 52.56 52.02
French 53.90 51.89 47.17 47.58 52.89
Spanish 55.99 53.96 51.17 50.67 53.16
German 45.68 45.94 41.88 47.61 52.80
Greek 52.01 52.75 43.79 54.79 55.63
Bulgarian 56.31 53.62 46.12 47.82 47.81
Russian 55.35 55.97 43.61 47.95 48.57
Turkish 44.86 42.91 40.68 46.72 51.86
Arabic 51.89 47.13 42.26 43.78 56.65
Vietnamese 48.63 47.51 46.08 46.51 51.93
Thai 48.35 44.07 40.23 61.07 48.54
Chinese 50.70 50.44 40.72 24.96 53.76
Hindi 43.87 40.25 39.91 43.56 46.30
Swahili 40.64 38.61 42.38 48.48 52.99
Urdu 45.48 40.88 38.97 38.32 55.78

All Languages 51.34 49.65 45.10 46.82 52.05

Table 10: Per-language XNLI results for ByT5, MrT5, and a model that uses the boundary predictor
with pooling method of Nawrot et al. (2023).

Split Accuracy (%) Seq. Len. Reduction (%)
ByT5 MrT5 Nawrot (prior=0.5) Nawrot (prior=0.3) MrT5 Nawrot (prior=0.5) Nawrot (prior=0.3)

Dependent 37.63 35.05 34.92 33.21 78.77 50.24 70.19
Independent 76.45 74.76 73.30 71.29 78.98 50.20 70.25

All Splits 58.19 56.07 55.24 53.37 78.88 50.22 70.22

Table 11: Spelling Correction with Context task results for ByT5, MrT5, and two models that use
the boundary predictor with pooling method of Nawrot et al. (2023).

For the word search task, we try two settings for Nawrot et al.’s method: one with prior = 0.3, and
one with prior = 0.7. Even with much lower sequence length reduction rates, Nawrot et al.’s method
has very poor accuracy and is vastly outperformed by MrT5 (Table 12).

F ADDITIONAL EXPERIMENTS WITH LARGE MODEL SIZES

Here, we show the results for continued pre-training experiments using ByT5 Large as the base
model. ByT5 Large has 1.23B parameters, 36 encoder layers, 12 decoder layers, dmodel = 1536,
and dmodel = 3840. We train for 1500 gradient steps over batches of 220 tokens. All other data and
optimization settings match the continued pre-training experiments for ByT5 Small detailed in A.2.

For MrT5, we place the deletion gate at layer l = 3, and we use a P-controller to target different
deletion rates (δ = 0.15, 0.3, 0.4, 0.5, 0.6, 0.7). We also train a ByT5 baseline model as well as
random deletion baseline models with different deletion rates (15%, 30%, 40%, 50%, 60%, 70%).

Split Accuracy (%) Seq. Len. Reduction (%)
ByT5 MrT5 Nawrot (prior=0.7) Nawrot (prior=0.3) MrT5 Nawrot (prior=0.7) Nawrot (prior=0.3)

OOV 78.05 79.99 59.70 38.82 72.52 20.75 78.37
Paraphrase 83.67 82.06 19.16 3.68 72.27 21.50 78.32
Overlap 77.58 76.22 74.09 54.71 76.14 22.47 75.84
Paraphrase + Overlap 58.46 57.60 14.75 3.14 73.95 21.53 78.20

All Splits 75.37 74.30 38.68 22.45 73.91 21.76 77.51

Table 12: Word Search task results for ByT5, MrT5, and two models based on the boundary predic-
tor method of Nawrot et al. (2023) with different priors.
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Figure 7: Span corruption cross entropy loss vs. sequence length reduction for each MrT5 Large and
large baseline model. MrT5 models consistently have much lower loss than the baselines, and are
generally competitive with unmodified ByT5, even where they achieve very large sequence length
reductions.

Model ByT5 MrT5

δ = 0.15 δ = 0.3 δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.7

Runtime (ms) 1890.15 1650.61 1388.89 1187.09 1058.60 968.63 817.66
Percent Decrease (%) – 12.67 26.52 37.20 43.99 48.75 56.73

Table 13: Average inference runtime for a single sequence (in milliseconds) for ByT5 Large and
each MrT5 Large model.

With a larger model size, MrT5 consistently outperforms the random baselines and achieves a loss
closer to the ByT5 baseline compared to the smaller model experiments (Figure 7). Additionally, the
larger MrT5 model demonstrates significantly greater runtime improvements because ByT5 Large
includes 36 encoder layers, as opposed to just 12 in ByT5 Small. Placing the gate at layer 3 allows
the sequence length to be reduced for a much larger portion of the encoder layers in the large model
experiments, resulting in notable runtime gains (Table 13).
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