
Published as a conference paper at ICLR 2025

MRT5: DYNAMIC TOKEN MERGING FOR EFFICIENT
BYTE-LEVEL LANGUAGE MODELS

Julie Kallini, Shikhar Murty, Christopher D. Manning, Christopher Potts, Róbert Csordás
Stanford University
{kallini, jsmurty, manning, cgpotts, rcsordas}@stanford.edu

ABSTRACT

Models that rely on subword tokenization have significant drawbacks, such as sen-
sitivity to character-level noise like spelling errors and inconsistent compression
rates across different languages and scripts. While character- or byte-level models
like ByT5 attempt to address these concerns, they have not gained widespread
adoption—processing raw byte streams without tokenization results in signifi-
cantly longer sequence lengths, making training and inference inefficient. This
work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that inte-
grates a token deletion mechanism in its encoder to dynamically shorten the input
sequence length. After processing through a fixed number of encoder layers, a
learned delete gate determines which tokens are to be removed and which are to
be retained for subsequent layers. MrT5 effectively “merges” critical information
from deleted tokens into a more compact sequence, leveraging contextual infor-
mation from the remaining tokens. In continued pre-training experiments, we
find that MrT5 can achieve significant gains in inference runtime with minimal
effect on performance, as measured by bits-per-byte. Additionally, with multilin-
gual training, MrT5 adapts to the orthographic characteristics of each language,
learning language-specific compression rates. Furthermore, MrT5 shows compa-
rable accuracy to ByT5 on downstream evaluations such as XNLI, TyDi QA, and
character-level tasks while reducing sequence lengths by up to 75%. Our approach
presents a solution to the practical limitations of existing byte-level models.

https://github.com/jkallini/mrt5

1 INTRODUCTION

Subword tokenization, typically via algorithms such as byte-pair encoding (Sennrich et al., 2016)
or SentencePiece (Kudo & Richardson, 2018), is a fundamental text preprocessing step that has
become ubiquitous in modern large language models (LLMs). Subword tokenizers divide text into
meaningful units known as tokens, which closely resemble words or parts of words. Tokenization
can be seen as a form of compression, since it reduces the sequence length of the input passed to the
compute-intensive Transformer (Vaswani et al., 2017). However, subword tokenizers have several
drawbacks. For example, they are not very robust to character-level noise and manipulations, such as
spelling errors (Kaushal & Mahowald, 2022; Huang et al., 2023); they directly impact how models
process digits and perform arithmetic (Singh & Strouse, 2024; Zhou et al., 2024); and they have dis-
proportionate compression rates for different languages and scripts (Ahia et al., 2023; Petrov et al.,
2023). In addition, current language model APIs charge users per-token, and such discrepancies can
cause users of certain languages to be overcharged due to poorer compression.1

As an alternative to subword models, tokenization-free models skip the tokenization preprocessing
step entirely by passing the raw character or byte stream directly as input. However, character- or
byte-level sequences tend to be significantly longer than tokenized text sequences, which limits the
practical utility of tokenization-free models. For example, ByT5 (Xue et al., 2022), a byte-level
counterpart of mT5 (Xue et al., 2021), is competitive with mT5 on a number of tasks, but it has
a much slower pre-training and inference runtime. Most other tokenization-free models explicitly

1See also Andrej Karpathy’s tweets on tokenization: https://x.com/karpathy/status/
1759996551378940395; https://x.com/karpathy/status/1657949234535211009

1

https://github.com/jkallini/mrt5
https://x.com/karpathy/status/1759996551378940395
https://x.com/karpathy/status/1759996551378940395
https://x.com/karpathy/status/1657949234535211009

Published as a conference paper at ICLR 2025

[–0.1, –28.6, –1.4]
✅✅ ❌

Delete Gate

Testing:
hard deletion
via column
removal

T h eT h e

Training:
soft deletion
via soft attn.

masking

Figure 1: MrT5’s encoder during training and testing. During training, fully-differentiable soft
deletion masks out tokens using the output of MrT5’s delete gate. During testing, hard deletion
removes columns from the computation, which reduces the sequence length and leads to efficiency
gains. In this visual, the delete gate is placed at layer 2, but the gate placement may be tuned.

downsample or pool representations to reduce the sequence length (Clark et al., 2022; Tay et al.,
2022; Nawrot et al., 2022; 2023). Many of these architectures rely on fixed-span downsampling
methods; however, meaningful units of text often span a variable number of bytes or characters.
While some models identify variable-length spans, they introduce substantial modifications to the
standard Transformer architecture, making it difficult to adapt existing pre-trained models.

In this work, we explore the question: can we make an existing byte-level model more efficient?
We propose MrT5 (MergeT5), a variant of the ByT5 architecture that addresses its inefficiencies
while maintaining its performance (Section 3). MrT5 dynamically merges its encoder’s input into a
shorter sequence using a token deletion gating mechanism at a fixed, early encoder layer, as shown in
Figure 1. By allowing the first few encoder layers to process the entire sequence, the encoder creates
contextualized representations of the tokens. When the gating mechanism then deletes a subset of the
tokens, those that remain keep the contextual information about those that were removed, allowing
information to be implicitly merged into a shorter sequence. During training, we use a deletion
regularizer with a tunable weight that can adjust the amount of deletion MrT5 performs. MrT5
effectively learns to merge relevant tokens and delete extraneous ones in a completely unsupervised
manner, by optimizing the balance between the regularization objective and language modeling.

We first train several MrT5 models on diagnostic tasks (Section 4) and find that MrT5 not only
drops irrelevant tokens but also compresses relevant context using task-specific deletion patterns.
Next, we perform continued pre-training experiments by fine-tuning the MrT5 gating mechanism
on top of a pre-trained ByT5 (Section 5). Our results show that MrT5 achieves lower bits-per-byte
than both random and fixed token deletion baselines, as well as pooling-based alternatives, at the
same compression rates. With multilingual training, MrT5 adjusts to each language’s orthographic
features, learning optimal compression rates specific to each language. Finally, in multilingual and
character-level benchmarks (Section 6), MrT5 achieves comparable accuracy to ByT5 while cut-
ting the sequence length by up to 75%, significantly improving inference runtimes. Our approach
improves on the main limitations of ByT5, representing a significant step toward the adoption of
byte-level language models and the elimination of subword tokenization from modern NLP.

2 BACKGROUND: TOKENIZATION-FREE MODELS

Soft Tokenization and Downsampling Methods. Many character- or byte-level models employ
“soft tokenization” or explicit downsampling to shorten input sequences. Here, we focus on spe-
cialized Transformer architectures. CANINE (Clark et al., 2022), a character-level counterpart to
mBERT (Devlin et al., 2019), uses convolutional downsampling before feeding inputs to a 12-layer

2

Published as a conference paper at ICLR 2025

Transformer encoder. Charformer (Tay et al., 2022) learns a gradient-based block scoring func-
tion to pool byte embeddings for efficient training and inference. Islam et al. (2022) propose a
vocabulary-free neural tokenizer trained via supervision from a heuristic-based subword tokenizer.

MegaByte (Yu et al., 2023) scales byte-level decoders to long-context tasks by segmenting sequences
into fixed-length “patches,” though these may not align with meaningful units of text. SpaceByte
(Slagle, 2024) applies global Transformer blocks to specific byte types, such as spaces, but these
bytes are also not chosen dynamically. Hourglass Transformers (Nawrot et al., 2022) incorporate
hierarchical downsampling and upsampling at different layers within decoder models, and the ar-
chitecture was later extended with a gradient-based tokenization module that dynamically pools
characters using a boundary predictor (Nawrot et al., 2023; Ahia et al., 2024). MANTa (Anagnos-
tidis et al., 2024) also learns token boundaries via sliding window attention. More recently, the
Byte Latent Transformer (BLT, Pagnoni et al., 2024) and EvaByte (Zheng et al., 2025) have shown
that tokenizer-free models can scale more efficiently than subword LLMs. BLT utilizes a dynamic
boundary predictor based on byte entropies to segment sequences into variably sized patches, and
EvaByte uses multibyte prediction and linear attention to improve scalability and decoding speed.

ByT5. This paper focuses on ByT5 (Xue et al., 2022), a byte-level sequence-to-sequence Trans-
former architecture designed as a counterpart to mT5 (Xue et al., 2021), the multilingual extension
of T5 (Raffel et al., 2020). Unlike the models discussed previously, ByT5 uses no soft tokenization
or downsampling steps to reduce the sequence length. To compensate for the loss of the parameters
that would normally be used for subword embeddings, ByT5 has a “heavy” encoder with more lay-
ers than the decoder. While ByT5 matches or outperforms mT5 on a variety of downstream tasks,
its heavy encoder, large model and feed forward dimensionalities, and short input sequence length
(1024 bytes) make it quite inefficient. ByT5 requires 1.2 times more operations than mT5, and it
can be up to 10 times slower at inference, depending on the encoder’s input length.

MrT5 modifies the ByT5 architecture to make it more efficient. Unlike previous work, MrT5’s
deletion gating mechanism can be applied to a pre-trained model with minimal fine-tuning and few
additional parameters, or to models trained from scratch. For further related work on adjacent topics
like early exit models, long-context, and additional tokenization-free architectures, see Appendix A.

3 THE MRT5 MODEL ARCHITECTURE

MrT5 introduces a unique deletion gating mechanism: in a fixed encoder layer, a delete gate selects
which tokens to keep for further processing and which to discard, effectively merging information
into a shorter sequence. We apply this gating at a single layer for three reasons: (1) to avoid the over-
head of executing the deletion algorithm multiple times, (2) because performance stabilizes after
early layers (Section 7), and (3) because early deletion yields the greatest computational savings.

3.1 DELETION GATING MECHANISM

The MrT5 deletion gating mechanism is inspired by existing architectures with gating mechanisms
such as Long-Short Term Memory (LSTMs, Hochreiter & Schmidhuber, 1997), Gated Recurrent
Units (GRUs, Cho et al., 2014), and Mixture-of-Experts (MoEs, Shazeer et al., 2017). MrT5’s delete
gate is placed after the output of a fixed encoder layer l and is defined by the following function:

G = kσ(LayerNorm(Hl)W + 1Nb) (1)
where Hl ∈ RN×dmodel are the hidden states output by layer l; W ∈ Rdmodel×1; b ∈ R; G ∈ RN×1;
k is a large negative constant; N is the encoder input sequence length; dmodel is ByT5’s hidden
state/model dimensionality; and 1N ∈ RN×1 is a vector of ones. LayerNorm(Hl) denotes the
application of layer normalization. Following the T5 architecture, this is implemented as root mean
square layer normalization (RMSNorm, Zhang & Sennrich, 2019). The gating activation function
is a rescaled and translated sigmoid function, bounded between k and 0. In our experiments, we
use k = −30. During training, our experiments include adding Gumbel noise to the gate’s logits to
encourage exploration of gate values. However, we found that the model performs well even without
it, making this step optional. See Appendix B for the Gumbel noise formulas.

MrT5’s delete gate introduces only 2dmodel + 1 additional parameters in total; dmodel for the weight
vector W, dmodel for the layer normalization, and one for the bias term. This makes the method
highly parameter-efficient.

3

Published as a conference paper at ICLR 2025

Soft and Hard Deletion. During training, MrT5 deletes tokens softly, where the outputs of the
gating mechanism G are applied as a soft attention mask. These outputs are added directly to the
self-attention mechanism of the subsequent encoder layers, as well as to the cross-attention layers
between the decoder and encoder. The modified attention mechanism for each attention head is
defined as:

SoftDeletionAttention(Q,K,V) = softmax

(
QK⊤
√
dhead

+ 1NG⊤
)
V (2)

where dhead is the dimensionality of the query, key, and value vectors for a single attention head;
Q,K,V ∈ RN×dhead ; and 1N ∈ RN×1 is a vector of ones. A token at sequence position i ∈ [1, N]
with Gi ≈ 0 will not be masked, whereas a token at position j ̸= i ∈ [1, N] with Gj ≈ k
will be masked, since k is a large negative constant. Though soft deletion does not reduce the
sequence length, we apply it during training to emulate the effect of token deletion while being fully
differentiable. To see efficiency gains during inference, we apply hard deletion, where the hidden
states are removed from the sequence, determined by a hard threshold; we set this threshold to be k

2 ,
half of the range of the delete gate’s output.

In a batch, different samples may have different numbers of tokens deleted. With hard deletion, the
new sequence length is set by the longest remaining sequence, and shorter ones are padded. Since
T5 uses relative position biases within the attention mechanism of each layer, deletion and padding
is performed on both the hidden states and position biases. For a theoretical analysis of MrT5’s
compute savings with hard deletion, see Appendix C.

3.2 GATE REGULARIZER

MrT5 allows deletion rates to be adjusted using a tunable regularizer loss:

LG =
1

N

N∑
i=1

Gi (3)

This loss is the average of the gate output values, which encourages them to be more negative (i.e.
closer to k, the minimum gate value). In other words, as this loss decreases, the number of deleted
tokens increases. The total loss is defined as the sum L = LCE + αLG, where LCE is the cross-
entropy loss. Varying the hyperparameter α allows the MrT5 model to delete more or fewer tokens.

Optimizing for a Specific Deletion Ratio. Setting α by hand allows the model to dynamically
discover the deletion ratio depending on the difficulty of the task. However, we can also optimize
for a specific ratio of deleted tokens using an algorithm that resembles the proportional-integral
controller (PI controller) of classical control theory. We additionally use an exponential moving
average on the P-term. Let’s call the target deletion ratio δ ∈ [0, 1], the proportion of deleted tokens
in the current batch δ̂t ∈ [0, 1], and the regularization hyperparameter for the current batch αt. We
update α as follows:

pt+1 = γpt + (1− γ)(δ − δ̂t) (4)

it+1 = it + δ − δ̂t (5)
αt+1 = clamp (kppt+1 + kiit+1) (6)

where clamp(x) = max(x, 0). We initialize p0 = 0 and i0 = 0. In all of our experiments, we
use γ = 0.9. For most experiments (unless otherwise noted), we found that using kp = 0.5 and
ki = 1e−5 worked well in practice. This method is easier to use than manually setting α and
allows α to change dynamically as the model undergoes phase transitions during training, resulting
in more stable learning. Besides our diagnostic task models, all MrT5 models are trained with this
PI controller.

Softmax1. It is possible for all elements of G to equal the minimum gate value such that Gi = k
for all i ∈ [1, N]. This G would satisfy the gate regularizer but fail to act as an attention mask, since
adding the same value to all elements of the input to a standard softmax function does not affect its
output. To help avoid this scenario, we use softmax1 (Miller, 2023) in the attention mechanism:

(softmax1(x))i =
exp(xi)

1 +
∑

j exp(xj)
(7)

4

Published as a conference paper at ICLR 2025

Table 1: Diagnostic tasks with example input and target sequences. In our experiments, sequences
are 64 characters/tokens long, including a start and end token. Legend: vowels to remove, vowels to
keep, sequences to replace.

Task Input Target
Simple Vowel Removal zEKRreJcBxGUJQbZSIos zKRrJcBxGJQbZSs
Contextual Vowel Removal EOubXgaYVbiOgiIrEnld EOubXgYVbOgIrnld
Sequence Merge KjAxIpABCZCxBcniABCs KjAxIpDZCxBcniDs

With the softmax1 function, if Gi = k for all i ∈ [1, N], as k becomes negative, the sum of attention
scores approaches zero. This eliminates the failure case of using tokens that appear to be all deleted.
For consistency, we use softmax1 in all attention modules for MrT5 and baseline ByT5 models.

When training from scratch, we also found that attention scores could inflate to counteract the mask-
ing effect of the delete gate; we found that a simple attention score regularizer mitigated this issue,
as described in Appendix D.

4 SIMULATIONS

We first train tiny 15M-parameter MrT5 and T5 models with 3 encoder layers and 3 decoder layers
from scratch on three diagnostic tasks: a simple vowel removal task, a contextual vowel removal
task, and a sequence merge task. The purpose of these experiments is to verify that the architecture
behaves as intended, particularly with regard to the merging patterns it learns. Does MrT5 merely
drop tokens when they are irrelevant to the output, or does it effectively merge relevant context into
a shorter sequence? These results help set the stage for our continued pre-training experiments in
Section 5 and our downstream task evaluations in Section 6.

Diagnostic Task Specifications. Each of our three diagnostic tasks is a variant of a copy task,
designed to assess MrT5’s ability to identify unimportant or redundant information in the input
sequence or merge relevant information from some tokens into other tokens. Input sequences are 64
bytes long and are comprised of random lowercase and uppercase English characters, plus start and
end tokens. Example inputs and labels are provided in Table 1.

1. Simple Vowel Removal: Generate a copy of the input token sequence, except for any vow-
els. We expect MrT5 to delete vowels, which occur with 19% probability. Thus, the optimal
sequence length decrease is 19%.

2. Contextual Vowel Removal: Generate a copy of the input token sequence, except for any
vowels that follow a lowercase consonant. We increase the probability of vowels such that,
on average, they comprise 40% of the sequence, and about 18% of the sequence is comprised
of vowels that follow a lowercase consonant. If MrT5 learns the relevant deletion pattern, we
would expect a sequence length decrease of 18%.

3. Sequence Merge: Generate a copy of the input token sequence, and translate any occurrence of
the character sequence ‘ABC’ into the character ‘D’. ‘ABC’ sequences are inserted into the input
randomly and occur about 5 times per sequence on average. If MrT5 merges ‘ABC’ into a single
token, we would expect it to drop 10 tokens on average, which is 15.6% of the sequence.

In these experiments, we do not use a controller to enforce a specific deletion ratio. Instead, we train
multiple models with different fixed α values to observe the various deletion patterns that naturally
emerge. In all models, we place the delete gate at the middle encoder layer l = 2. For further model
architecture and training configurations we use for the simulations, see Appendix E.1.

Results. Table 2 presents the performance of several MrT5 models that use different regularizer
α values trained on each of our three diagnostic tasks. In all three diagnostic tasks, MrT5 models
learned to selectively drop tokens in a way that suited each task’s specific requirements. This allowed
them to achieve the same performance as T5 models, while processing shorter sequences. For
instance, in the simple vowel removal task, the MrT5 models selectively dropped vowels but kept
consonants intact. These findings suggest that MrT5 can create complex deletion strategies that
exploit patterns or redundancies in the input.

5

Published as a conference paper at ICLR 2025

Table 2: Diagnostic task performance for T5 and MrT5 with different deletion strategies. Token-
level accuracy measures the percentage of correctly predicted tokens, averaged across sequences;
sequence-level accuracy measures the percentage of sequences with all tokens predicted correctly.
MrT5 learns to delete around the optimal rate for each task while maintaining performance.

Task Model Token-level Seq.-level Seq. Length Description of Deleted TokensAccuracy (%) Accuracy (%) Reduction (%)

Simple Vowel
Removal

T5 100.00 99.93 0.00 —
MrT5 (α = 1e−4) 100.00 99.92 18.58 All vowels.
MrT5 (α = 1e−3) 100.00 99.92 20.15 Start tokens and all vowels.

Contextual
Vowel Removal

T5 100.00 99.91 0.00 —
MrT5 (α = 1e−3) 100.00 99.78 1.56 Only start tokens.
MrT5 (α = 1e−2) 99.99 99.72 18.97 Start tokens and vowels after lowercase consonants.

Sequence
Merge

T5 100.00 99.84 0.00 —
MrT5 (α = 1e−2) 99.99 99.44 10.15 Start tokens and most instances of ‘B’.

MrT5 (α = 1.5e−2) 99.98 99.19 17.37 All ‘B’s, and ‘C’ within ‘ABC’ sequences.

5 CONTINUED PRE-TRAINING

In our main set of experiments, we train MrT5 models on the ByT5 span corruption task. In this
pre-training objective, spans of tokens in unlabeled text data are replaced with a single sentinel token
ID per span, and the model must fill in the missing tokens. For ByT5 and MrT5, these are spans of
bytes, and the masks can potentially interfere with word boundaries.

For continued pre-training, we use the multilingual C4 (mC4) corpus (Raffel et al., 2020; Xue et al.,
2021). We train all MrT5 and baseline models on 15 typologically diverse languages: English,
French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili, and Urdu. Finally, we examine how each model’s performance correlates with se-
quence length reduction rates, both overall and for each language. Following related work (Yu et al.,
2023; Pagnoni et al., 2024), we compare models using bits-per-byte (BPB), a tokenizer-agnostic
alternative to perplexity defined as BPB = LCE × log2(e).

Models. We train several MrT5 models with different PI controller target deletion ratios: δ ∈
{0.3, 0.4, 0.5, 0.6, 0.7}. This is a continued pre-training setup; we load the pre-trained weights
and use the architecture settings of ByT5 Small (300M parameters) and only randomly initialize the
weights of MrT5’s gating mechanism. Based on a sweep of different layers, we place the gating
mechanism after encoder layer l = 3 (see Section 7). In addition to the MrT5 models, we also train
several baselines:

1. ByT5 baseline: A ByT5 Small architecture with softmax1, but without deletion.2

2. Random baseline: We implement and train a set of models with a random gating mechanism,
where the choice of how the tokens are deleted is random; some number of gate values are set
to k, and the rest are set to 0. In our experiments, we train five random models with different
average deletion rates: 30%, 40%, 50%, 60%, and 70%.

3. Fixed baseline: We implement and train a set of models that delete the ends of words. We train
five models that delete different percentages of the ends of words: 30%, 40% 50%, 60%, and
70%. For details on the implementation of this baseline, see Appendix F.1.

4. Boundary Predictor (BP) baseline: We implement and train a set of models that integrate an
unsupervised boundary predictor module, inspired by the Hourglass Transformer architecture
(Nawrot et al., 2022; 2023), which detects segment boundaries for mean-pooling representa-
tions. To generate models with different compression rates, we adjust the prior probability of a
boundary, p, across different training runs: p ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Further details on the
implementation of this baseline can be found in Appendix F.2.

5. Convolutional Pooling (CP) baseline: We implement and train a set of models that use a
strided 1D convolutional layer to downsample the sequence, similar to CANINE (Clark et al.,
2022). To generate models with different compression rates, we vary the stride r of the con-
volutional layer: r ∈ {2, 3, 4}. For a sequence of length N , there will be N

r downsampled
representations.

2The validation loss for ByT5 with softmax1 (0.7919) and the loss for an unaltered ByT5 (0.7917) were
comparable, further motivating our use of softmax1. Training settings are described in Appendix E.2.

6

Published as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80
Sequence Length Reduction (%)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Bi
ts

-p
er

-b
yt

e
(B

PB
)

ByT5

MrT5,
=0.3

MrT5,
=0.4

MrT5,
=0.5

MrT5,
=0.6

MrT5,
=0.7Random, 30%

Random, 40%
Random, 50%

Random, 60%

Random, 70%

Fixed, 30%

Fixed, 40%

Fixed, 50%

Fixed, 60%

Fixed, 70%

BP, p=0.7

BP, p=0.6
BP, p=0.5

BP, p=0.4
BP, p=0.3

CP, r=2

CP, r=3
CP, r=4

MrT5
ByT5
Random Deletion
Fixed Deletion
Boundary Predictor with Mean Pooling (BP)
Convolutional Pooling (CP)

Figure 2: Span corruption BPB vs. sequence length reduction for each MrT5 and baseline model.
MrT5 models consistently have much lower BPB than the baselines, and are generally competitive
with unmodified ByT5, even where they achieve very large sequence length reductions.

Table 3: Average inference runtime for a single sequence (in milliseconds) for ByT5 and each MrT5
model. Percentage decrease in runtime relative to ByT5 is displayed in parentheses.

Model ByT5 MrT5
δ = 0.3 δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.7

Runtime (ms) 44.29 34.99 (↓ 20.98%) 31.95 (↓ 27.85%) 29.99 (↓ 32.27%) 28.24 (↓ 36.23%) 24.48 (↓ 44.72%)

For the random and fixed baselines, the gating mechanism is placed at layer l = 3, like the MrT5
models. For the BP and CP baselines, we place the corresponding downsampling modules at layer
l = 3 as well. All models use softmax1 in their attention mechanisms. The ByT5 baseline serves
as a lower bound on the best possible span corruption BPB, since it does not reduce the sequence
length. For further details on model architectures, train/test dataset preparation, and optimization,
see Appendix E.2.

BPB vs. Sequence Length Reduction. First, we compare span corruption BPB across MrT5 and
baseline models with varying sequence length reduction rates. Figure 2 illustrates the relationship
between BPB and sequence length reduction for each model. These results are aggregated across
all languages by averaging the results per language; for language-specific plots, see Figure 6 in
Appendix G. As expected, ByT5 achieves the lowest BPB but does not reduce the sequence length.
While MrT5 models generally have higher BPB than ByT5, they consistently outperform other
baselines at comparable sequence length reduction rates. For example, MrT5 with δ = 0.5 reduces
the sequence by about 50%, similar to the 50% random baseline and CP baseline with r = 2, yet
achieves the lowest BPB. This trend holds across all MrT5 models, demonstrating the effectiveness
of its gating mechanism in balancing sequence length reduction and BPB minimization.

Runtime Speedup. MrT5 models with a higher sequence reduction rate also have a faster inference
runtime, as shown in Table 3. In particular, MrT5 models that reduce the sequence length by 50%
or more can achieve 30% speedup or greater, with our implementation. These results show that hard
deletion improves the efficiency of MrT5 when compared to ByT5, and this speedup can be tuned.

While our main experiments use 300M-parameter models, we also trained MrT5 at a larger 1.23B-
parameter model size and observed even greater efficiency gains over ByT5, with a 44.6% reduction
in runtime at a 49.5% decrease in sequence length. Additionally, the gap in BPB between MrT5
and ByT5 diminished at this scale, indicating that MrT5’s deletion mechanism becomes even more
effective in larger models. For the details of these larger-model experiments, see Appendix H.

7

Published as a conference paper at ICLR 2025

35 40 45 50 55
Sequence Length Reduction (%)

0.6

0.8

1.0

1.2

1.4

Bi
ts

-p
er

-b
yt

e
(B

PB
)

English

French
SpanishGerman

Greek Bulgarian
Russian

Turkish

Arabic

Vietnamese

Thai

Chinese

Hindi

Swahili

Urdu

MrT5
ByT5

Figure 3: Average test set BPB vs. sequence length reduction
for MrT5 (δ = 0.5) across each of the 15 languages. ByT5 is
shown for BPB comparison only (it does not reduce the sequence
length). MrT5 learns language-specific sequence length reduc-
tion rates and achieves over 50% reduction in many languages
with minimal effect on the BPB.

Per-language Evaluation. We
analyze how a single MrT5
model performs across 15 train-
ing languages. Figure 3 plots
test set BPB against sequence
length reduction for MrT5 (with
δ = 0.5) for each language,
alongside ByT5’s BPB as a
baseline. The results show that
MrT5 adapts its deletion rates
to each language, with only a
minor increase in BPB com-
pared to ByT5. More than
half of the languages exhibit a
sequence reduction rate above
50%. In languages with more
information-dense scripts, such
as Chinese, MrT5 still performs
substantial deletions but at a
lower rate than for less dense
scripts. These findings highlight
MrT5’s ability to learn and ap-
ply language-specific, context-
aware deletions when trained on
multilingual data.

6 DOWNSTREAM TASK EVALUATIONS

We next assess MrT5’s performance on downstream tasks, specifically, two cross-lingual bench-
marks (XNLI and TyDi QA) and two character-level tasks (Spelling Correction and Word Search).
The two multilingual tasks evaluate MrT5’s ability to understand high-level semantics and retrieval
in a multilingual setting, while the character-level tasks test whether it retains its sensitivity to
character-level manipulations.

Cross-lingual Benchmarks. We first test the cross-lingual capabilities of MrT5 using the Cross-
lingual Natural Language Inference (XNLI) corpus (Conneau et al., 2018), a benchmark for cross-
lingual sentence classification with 5,000 parallel examples in 15 languages. This is a cross-lingual
zero-shot transfer task; models are fine-tuned on the English MultiNLI corpus (Williams et al.,
2018) only, and are tested on multiple languages. The test set contains the same 15 languages our
models are trained on. Our second cross-lingual evaluation employs the TyDi QA Gold Passage
Task (TyDiQA-GoldP, Clark et al., 2020). In this task, given a passage that is guaranteed to contain
the answer, the model must generate the correct answer to the question. TyDiQA-GoldP covers
nine typologically diverse languages and comprises 204K question-answer pairs: Arabic, Bengali,
English, Finnish, Indonesian, Korean, Russian, Swahili, and Telugu.

For each task, we fine-tune four models: the baseline ByT5 model, MrT5 with δ = 0.5, a BP baseline
with p = 0.5, and a CP baseline with r = 2. Each model is fine-tuned on top of its corresponding
model from our previous continued pre-training experiment, ensuring that MrT5 and the BP/CP
baselines maintain the same target compression rate established during pre-training (enforced by
δ, p, or r, depending on the model). This allows the models to preserve their sequence length
reductions and efficiency improvements while adapting to downstream tasks. Additional training
details can be found in Appendix E.3.

Table 4 presents the results on both XNLI and TyDiQA-GoldP. For the XNLI task, MrT5 is the su-
perior model; it is the most efficient in terms of both sequence length reduction and runtime speedup
(55.60% and 45.13%, respectively), and it achieves the highest task accuracy (65.31%), outper-
forming ByT5. The XNLI task illustrates the efficiency of MrT5’s fast encoder; a 50% deletion
rate results in substantial gains in runtime. This improvement can be attributed to the setup of the
XNLI task, which requires large input sequences (up to 1,024 tokens) and short decoder sequences
(a single token for classification). On the TyDiQA-GoldP task, MrT5 once again proves to be the

8

Published as a conference paper at ICLR 2025

Table 4: Evaluation metrics for XNLI and TyDiQA-GoldP. XNLI task performance is measured by
accuracy (chance: 33%), and TyDiQA-GoldP by EM/F1 scores. MrT5 achieves shorter sequences
and faster runtimes than ByT5 while maintaining similar performance. BP and CP fall short in both
efficiency and task performance. See Table 8 and Table 9 in Appendix I for per-language metrics.

Language Task Performance Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

XNLI 64.72 65.31 59.37 49.94 45.13 33.22 36.32 55.60 53.95 50.07
TyDiQA-GoldP 69.90/79.58 68.27/77.73 40.59/54.04 54.99/65.85 33.31 13.38 31.97 47.48 22.55 50.05

Table 5: Evaluation metrics for character-level tasks. MrT5 provides the best efficiency improve-
ments (runtime and sequence length reduction), while maintaining competitive accuracy with ByT5.
See Table 10 and Table 11 in Appendix I for metrics on individual test splits for each task.

Task Seq.-Level Accuracy (%) Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

Spelling Correction 66.73 63.18 54.81 57.29 22.30 16.48 23.13 50.54 49.30 50.00
Word Search 76.61 72.02 74.33 68.23 59.29 44.18 53.29 74.53 69.78 75.00

most efficient model, outperforming the alternative baselines in terms of runtime savings (33.31%).
Moreover, MrT5 comes closest to matching ByT5’s exact match (EM) and F1 scores, with 68.27 EM
and 77.73 F1, demonstrating that it retains much of the original model’s accuracy while significantly
improving efficiency.

Character-level Tasks. We fine-tune and evaluate MrT5 and baseline models on the Spelling Cor-
rection with Context and Word Search character-level tasks from Huang et al. (2023). In the Spelling
Correction task, the input is a sentence containing a spelling error, and the goal is to generate the
same sentence with the error corrected. In the Word Search task, the input follows the format
definition: letters, and the objective is to identify the substring in letters that, when re-
versed, matches the given definition. We selected these two tasks from the suite because they
both require understanding meaning and context and involve processing longer sequence lengths.

We follow the same fine-tuning approach used for the multilingual benchmarks, using models ini-
tialized from our previous continued pre-training experiment. For Spelling Correction, we fine-tune
MrT5 with δ = 0.5, BP with p = 0.5, and CP with r = 2, maintaining the same target compression
rates from pre-training. However, for Word Search, we adjust the compression parameters to further
optimize efficiency, using MrT5 with δ = 0.7, a BP baseline with p = 0.3, and a CP baseline with
r = 4. We evaluate on all test splits from Huang et al. (2023), which are designed to rigorously
assess a model’s ability to integrate meaning and context in its predictions. Further training details
can be found in Appendix E.3.

Table 5 displays the test set results for each character-level task. MrT5 stands out as the most efficient
model, achieving notable reductions in both sequence length (50.54% for spelling correction and
74.53% for word search) and runtime (22.30% and 59.29%, respectively). Despite these optimiza-
tions, it maintains competitive sequence-level accuracy (63.18% for spelling correction and 72.02%
for word search), making it a well-balanced choice between speed and performance. These results
show that MrT5’s method of sequence merging effectively preserves its sensitivity to character-level
information.

7 ANALYSIS

Per-sample Sequence Length Reduction. We present a per-sample analysis of bits-per-byte and
sequence length reduction for several MrT5 models and random baselines with different sequence
length reduction rates. We take a sample of 1,000 English sentences from the mC4 test set and cal-
culate the percent increase in BPB on a per-sample basis, using ByT5’s BPB as the baseline (i.e. the
percent increase between MrT5’s BPB and ByT5’s BPB for individual samples). For each sample,
we also get the sequence length reduction. Across five MrT5 models with different deletion rates,
we found a very weak/negligible correlation between the percent increase in BPB and the sequence

9

Published as a conference paper at ICLR 2025

length reduction (average correlation of r = 0.103).3 This reflects what we would expect from the
MrT5 models; for an individual sample, MrT5 learns when it can delete more tokens without incur-
ring a large increase in the loss. In contrast, for five random models with different sequence length
reduction rates, we found a moderate positive correlation (average correlation of r = 0.295). When
the random model removes more tokens, it is more likely to degrade performance. These results fur-
ther support the observation that the MrT5 models more strategically and contextually delete tokens
compared to the baselines. See Figure 7 in Appendix J for plots presenting the correlations for each
individual MrT5 and random baseline model.

1 2 3 4 5
Layer of Delete Gate

1.020

1.025

1.030

1.035

1.040

Bi
ts

-p
er

-b
yt

e
(B

PB
)

29

30

31

32

A
ve

ra
ge

 R
un

tim
e

(m
s)

Figure 4: BPB and inference runtime for a single se-
quence for MrT5 models with delete gates at different
layers (l ∈ [1, 5]). All MrT5 models are trained with
a PI controller with a target deletion ratio of δ = 0.5.
BPB is consistently higher in early layers; since the
gate should be placed as early as possible, we select
layer 3 as optimal.

Gate Placement. We present an analy-
sis of MrT5 models with delete gates
placed at various encoder layers. To max-
imize efficiency, it is ideal to position
the delete gate at the earliest possible en-
coder layer. However, placing the gate too
early reduces the contextual information in
the token representations, leading to more
significant performance degradation com-
pared to ByT5. We trained several MrT5
models with a target deletion ratio of δ =
0.5, all using the same training setup and
architecture as described in Section 5. The
only variable was the placement of the
delete gate, as shown in Figure 4. Infer-
ence runtime is lower and test set BPB is
higher when the gate is placed in early lay-
ers. Since our goal is to place the gate
as early as possible, we selected layer 3
as the optimal point for gate placement,
since its BPB is comparable to layers 4
and 5. This analysis provides further ev-
idence that MrT5 merges information into
fewer tokens, since deletion at earlier, less
contextual layers results in a higher BPB.

The gate placement sets an upper bound
on the compute savings achievable with our model. We provide a detailed analysis of MrT5’s theo-
retical compute savings in Appendix C. With typical hyperparameters of our tasks, we can achieve
a maximum speedup of around three times with reasonable deletion rates.

8 CONCLUSION

In this paper, we introduce MrT5 (MergeT5), a variant of the ByT5 architecture designed to ad-
dress the inefficiencies of byte-level language modeling. MrT5’s token deletion mechanism forces
the model to merge input tokens into a more compact sequence, allowing for computational savings
while preserving model performance. Our diagnostic experiments demonstrate that MrT5 effec-
tively merges relevant context into a shorter sequence using strategies that align with task-specific
objectives. In our continued pre-training experiments, MrT5 outperforms alternative deletion base-
lines and downsampling/pooling methods, and with multilingual training, MrT5 achieves language-
specific sequence length reduction rates with minimal impact on performance. Our model learns
very fast: the continued pre-training requires only a few thousand additional training steps. Further-
more, MrT5 maintains competitive accuracy with ByT5 on downstream multilingual benchmarks
and character-level tasks while improving inference runtimes. This demonstrates MrT5’s capac-
ity to handle tasks requiring semantic information, while still effectively processing character-level
details—the main advantage of byte-level modeling. Our work takes a significant step toward the
viability of byte-level language models and eliminating the need for subword tokenization.

3When averaging correlation coefficients, we apply Fisher’s Z transformation to stabilize the variance.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors would like to thank the members of the Stanford NLP Group and Jurafsky Lab for help-
ful feedback and discussions at various stages of this project. We would also like to thank Sabah
Kallini for suggesting the name “MrT5.” Julie Kallini is supported by a National Science Foundation
Graduate Research Fellowship under grant number DGE-2146755. This work is supported in part
by a grant from the Laboratory Directed Research and Development program at Sandia National
Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of
Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA0003525.

REPRODUCIBILITY STATEMENT

Steps for reproducing each of our experiments are detailed in Appendix E. Descriptions of the model
architectures and training configurations/hyperparameters for our diagnostic task experiments are
provided in Appendix E.1; details of the model architectures, span corruption data preprocessing
steps, and training configurations/hyperparameters for continued pre-training are provided in Ap-
pendix E.2; and training configurations/hyperparameters for fine-tuning on the multilingual and
character-level downstream tasks are provided in Appendix E.3. We provide our source code at
https://github.com/jkallini/mrt5.

REFERENCES

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and
Yulia Tsvetkov. Do all languages cost the same? Tokenization in the era of commercial language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 9904–9923, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614.
URL https://aclanthology.org/2023.emnlp-main.614.

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Valentin Hofmann, Tomasz Limisiewicz, Yulia
Tsvetkov, and Noah A. Smith. MAGNET: Improving the multilingual fairness of language models
with adaptive gradient-based tokenization. arXiv preprint arXiv: 2407.08818, 2024.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Lluı́s Màrquez, Chris Callison-Burch, and Jian Su
(eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pp. 349–359, Lisbon, Portugal, September 2015. Association for Computational Linguistics.
doi: 10.18653/v1/D15-1041. URL https://aclanthology.org/D15-1041/.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv: 1308.3432, 2013.

Colin Cherry, George Foster, Ankur Bapna, Orhan Firat, and Wolfgang Macherey. Revisiting
character-based neural machine translation with capacity and compression. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 4295–4305, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1461. URL https://aclanthology.org/D18-1461/.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans

11

https://github.com/jkallini/mrt5
https://aclanthology.org/2023.emnlp-main.614
https://aclanthology.org/D15-1041/
https://aclanthology.org/D18-1461/

Published as a conference paper at ICLR 2025

(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. TyDi QA: A benchmark for information-seeking question answering in
typologically diverse languages. Transactions of the Association for Computational Linguistics,
2020.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. CANINE: Pre-training an effi-
cient tokenization-free encoder for language representation. Transactions of the Association
for Computational Linguistics, 10:73–91, 2022. doi: 10.1162/tacl a 00448. URL https:
//aclanthology.org/2022.tacl-1.5.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2018.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular? inspect-
ing functional modularity through differentiable weight masks. In International Conference on
Learning Representations, Virtual only, May 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In Inter-
national Conference on Learning Representations, Virtual only, May 2020.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual language pro-
cessing from bytes. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 1296–1306, San Diego, California,
June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1155. URL
https://aclanthology.org/N16-1155/.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv: 2312.00752, 2023.

Curtis Hawthorne, Andrew Jaegle, Cătălina Cangea, Sebastian Borgeaud, Charlie Nash, Mateusz
Malinowski, Sander Dieleman, Oriol Vinyals, Matthew Botvinick, Ian Simon, Hannah Sheahan,
Neil Zeghidour, Jean-Baptiste Alayrac, Joao Carreira, and Jesse Engel. General-purpose, long-
context autoregressive modeling with Perceiver AR. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 8535–8558. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/hawthorne22a.html.

Geoffrey Hinton. Neural networks for machine learning. Coursera, video lectures., 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Jing Huang, Zhengxuan Wu, Kyle Mahowald, and Christopher Potts. Inducing character-level
structure in subword-based language models with type-level interchange intervention training.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pp. 12163–12180, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.770. URL
https://aclanthology.org/2023.findings-acl.770.

12

https://aclanthology.org/D14-1179
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/N19-1423
https://aclanthology.org/N16-1155/
https://proceedings.mlr.press/v162/hawthorne22a.html
https://proceedings.mlr.press/v162/hawthorne22a.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2023.findings-acl.770

Published as a conference paper at ICLR 2025

Kazuki Irie, Pavel Golik, Ralf Schlüter, and Hermann Ney. Investigations on byte-level convolu-
tional neural networks for language modeling in low resource speech recognition. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5740–5744,
2017. doi: 10.1109/ICASSP.2017.7953256.

Md Mofijul Islam, Gustavo Aguilar, Pragaash Ponnusamy, Clint Solomon Mathialagan, Chengyuan
Ma, and Chenlei Guo. A vocabulary-free multilingual neural tokenizer for end-to-end task learn-
ing. In Spandana Gella, He He, Bodhisattwa Prasad Majumder, Burcu Can, Eleonora Giunchiglia,
Samuel Cahyawijaya, Sewon Min, Maximilian Mozes, Xiang Lorraine Li, Isabelle Augenstein,
Anna Rogers, Kyunghyun Cho, Edward Grefenstette, Laura Rimell, and Chris Dyer (eds.), Pro-
ceedings of the 7th Workshop on Representation Learning for NLP, pp. 91–99, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.repl4nlp-1.10.
URL https://aclanthology.org/2022.repl4nlp-1.10/.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Ayush Kaushal and Kyle Mahowald. What do tokens know about their characters and how do
they know it? In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2487–2507, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
179. URL https://aclanthology.org/2022.naacl-main.179.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp.
2741–2749. AAAI Press, 2016.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.), Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 66–71, Brussels, Belgium, November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, and Luke Zettlemoyer. MYTE:
Morphology-driven byte encoding for better and fairer multilingual language modeling. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15059–15076,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.804. URL https://aclanthology.org/2024.acl-long.804/.

Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin Wang, and Guoping Hu. CharBERT:
Character-aware pre-trained language model. In Donia Scott, Nuria Bel, and Chengqing Zong
(eds.), Proceedings of the 28th International Conference on Computational Linguistics, pp.
39–50, Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.4. URL https://aclanthology.org/2020.
coling-main.4/.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

Evan Miller. Attention is off by one, Jul 2023. URL https://www.evanmiller.org/
attention-is-off-by-one.html.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. In Ma-
rine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of the
Association for Computational Linguistics: NAACL 2022, pp. 1559–1571, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.117.
URL https://aclanthology.org/2022.findings-naacl.117.

13

https://aclanthology.org/2022.repl4nlp-1.10/
https://aclanthology.org/2022.naacl-main.179
https://aclanthology.org/D18-2012
https://aclanthology.org/2024.acl-long.804/
https://aclanthology.org/2020.coling-main.4/
https://aclanthology.org/2020.coling-main.4/
https://www.evanmiller.org/attention-is-off-by-one.html
https://www.evanmiller.org/attention-is-off-by-one.html
https://aclanthology.org/2022.findings-naacl.117

Published as a conference paper at ICLR 2025

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403–6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/2023.
acl-long.353.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtz-
man, and Srinivasan Iyer. Byte latent transformer: Patches scale better than tokens. arXiv preprint
arXiv: 2412.09871, 2024.

Aleksandar Petrov, Emanuele La Malfa, Philip H. S. Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages. arXiv preprint arXiv:2305.15425, 2023.

Guanghui Qin and Benjamin Van Durme. Nugget: Neural agglomerative embeddings of text. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 28337–28350. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/qin23a.html.

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil Rao, and Benjamin Van Durme. Nugget
2D: Dynamic contextual compression for scaling decoder-only language models. arXiv preprint
arXiv:2310.02409, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Jorunal of Machine Learning Research (JMLR), 21:140:1–140:67, 2020.

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux, and
Desmond Elliott. Language modelling with pixels. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=FkSp8VW8RjH.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, New Orleans,
LA, USA, November 2022.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=B1ckMDqlg.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv: 2409.17422, 2024.

Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic in
frontier LLMs. arXiv preprint arXiv:2402.14903, 2024.

Kevin Slagle. SpaceByte: Towards deleting tokenization from large language modeling. arXiv
preprint arXiv:2404.14408, 2024.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin,
Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers via
gradient-based subword tokenization. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=JtBRnrlOEFN.

14

https://aclanthology.org/2023.acl-long.353
https://aclanthology.org/2023.acl-long.353
https://proceedings.mlr.press/v202/qin23a.html
https://openreview.net/forum?id=FkSp8VW8RjH
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=JtBRnrlOEFN

Published as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush. MambaByte:
Token-free selective state space model. arXiv preprint arXiv: 2401.13660, 2024.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL, pp. 2246–2251, Virtual only, July 2020.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 91–104, Virtual only, April 2021.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 483–498, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL https://aclanthology.org/2021.
naacl-main.41.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics, 10:291–306, 2022. doi:
10.1162/tacl a 00461. URL https://aclanthology.org/2022.tacl-1.17.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
MEGABYTE: Predicting million-byte sequences with multiscale transformers. arXiv preprint
arXiv:2305.07185, 2023.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems 32, Vancouver, Canada, 2019. URL https://openreview.net/
references/pdf?id=S1qBAf6rr.

Lin Zheng, Xueliang Zhao, Guangtao Wang, Chen Wu, David Dong, Angela Wang, Mingran Wang,
Yun Du, Haige Bo, Amol Sharma, Bo Li, Kejie Zhang, Changran Hu, Urmish Thakker, and
Lingpeng Kong. Evabyte: Efficient byte-level language models at scale, 2025. URL https:
//hkunlp.github.io/blog/2025/evabyte.

Zhejian Zhou, JIayu Wang, Dahua Lin, and Kai Chen. Scaling behavior for large language mod-
els regarding numeral systems: An example using pythia. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP
2024, pp. 3806–3820, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.218. URL https://aclanthology.org/
2024.findings-emnlp.218/.

15

http://aclweb.org/anthology/N18-1101
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2022.tacl-1.17
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/references/pdf?id=S1qBAf6rr
https://hkunlp.github.io/blog/2025/evabyte
https://hkunlp.github.io/blog/2025/evabyte
https://aclanthology.org/2024.findings-emnlp.218/
https://aclanthology.org/2024.findings-emnlp.218/

Published as a conference paper at ICLR 2025

A FURTHER RELATED WORK

Early Exit Models. Our architecture is related to early-exit methods proposed for autoregressive
Transformers (Elbayad et al., 2020; Schuster et al., 2022) and BERT (Xin et al., 2020; 2021). In
contrast to previous approaches, our method is fully differentiable and does not require special
training considerations or calculating the entropy of the final classifier, and the deletion decisions
are made in a single layer, making the model efficient and easy to use.

Long-context Models. Other work has addressed long-context modeling more broadly. Perceiver
AR (Hawthorne et al., 2022) uses cross-attention to map inputs to a smaller set of latent vectors,
enabling autoregressive modeling over sequences up to 100K tokens. However, it was not evaluated
on character-level tasks or language tasks without tokenization. Other solutions include Nugget (Qin
& Van Durme, 2023; Qin et al., 2023), which encodes the whole sentence, but passes only a dynamic
subset of the embeddings to the decoder. This approach does not save compute on the encoder side.
Recently, GemFilter (Shi et al., 2024) has improved inference runtimes in decoder-only models by
using early LLM layers as a filter to select input tokens to be processed by the full model; while this
method requires no additional training, it requires two forward passes during inference.

Additional Tokenization-free Models. Before the Transformer, character-level LSTMs, with their
compact vocabularies, were effective across a range of NLP tasks, particularly in morphologically
rich languages (Gillick et al., 2016; Kim et al., 2016; Ballesteros et al., 2015; Cherry et al., 2018).
Building on this idea, CharBERT (Ma et al., 2020) enhances subword models with character-level
embeddings from a bidirectional GRU and a noise-aware pretraining task to improve robustness.
More recently, MambaByte (Wang et al., 2024) extends the Mamba architecture (Gu & Dao, 2023)
to byte-level inputs, offering a fully tokenization-free alternative. Tokenization-free approaches
have also been explored in other modalities, including speech (Irie et al., 2017) and text rendered as
images (Rust et al., 2023).

B GUMBEL-SIGMOID

The Gumbel-Sigmoid is a special case of Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)
for binary choices. Please refer to Csordás et al. (2021) for more details. Given the logit l ∈ R and
random samples u1, u2 ∼ Uniform(0, 1), the Gumbel-Sigmoid can be calculated as

s = σ (l − log (log u1/ log u2)) (8)

where σ(x) = 1
1+e−x is the standard logistic sigmoid and − log (log u1/ log u2) is the Gumbel

noise. We use this soft formulation of the Gumbel-Sigmoid without discretization.

C THEORETICAL COMPUTE SAVINGS

Here we analyze the theoretical amount of compute used by MrT5 given a deletion rate. Let’s call
the average length of the input sequence NE and the average length of the output sequence ND. The
width of the residual is dmodel, the dimension of the up-projection in the MLP is dff, the encoder has
LE layers and the decoder has LD layers. The deletion occurs after the lG layer, and the average
proportion of deleted tokens is δ. We assume that the total size of the head projections is equal to
dmodel, as typical for Transformers (dhead ∗ Nheads = dmodel). Then, we can approximate the total
number of multiply-accumulate operations (MACs) for the model as follows. Before deletion, the
self-attention in the encoder uses NEd

2
model MACs for both the Q, K, V and the output projections

and N2
Edmodel MACs for both the A = QK⊤ and AV projections. The MLP layer uses NEdmodeldff

additional MACs. Thus, the total number of MACs used per layer is 4NEd
2
model + 2N2

Edmodel +
NEdmodeldff. This much compute is used for the first lG layers, after which the sequence length is
reduced to NE(1− δ) for the remaining LE − lG layers. Thus, the encoder uses

N encoder
MACs = (LE − lG) (1− δ)

(
4NEd

2
model + 2N2

Edmodel(1− δ) +NEdmodeldff
)
+

lG
(
4NEd

2
model + 2N2

Edmodel +NEdmodeldff
) (9)

The MACs used by the decoder can be calculated similarly, but additionally the cross attention has to
be taken into account. The cross attention uses NE(1−δ)d2model MACs for the K and V projections,

16

Published as a conference paper at ICLR 2025

NDd2model MACs for the Q and output projections, and (1− δ)NENDdmodel MACs for the attention
matrix itself.

N decoder
MACs = LD

(
4NDd2model + 2N2

Ddmodel +NDdmodeldff + 2NE(1− δ)d2model+

2NDd2model + 2(1− δ)NENDdmodel
) (10)

Note that δ = 0 corresponds to the baseline ByT5. For MrT5 Small, dmodel = 1472, dff = 3584,
LE = 12, LD = 4, lG = 3, NE = 1024, and ND = 189. Given these numbers, we plot the total
reduction in compute (compared to ByT5) as a function of δ in Fig. 5.

0.0 0.2 0.4 0.6 0.8 1.0
Deletion ratio ()

0.00

0.25

0.50

0.75

1.00
C

om
pu

te
 v

s B
yT

5

Figure 5: Reduction in the total amount of compute as a function of the deletion ratio δ.

D REGULARIZATION OF ATTENTION SCORES

Directly adding the delete gate values to the attention scores as in Equation (2) can lead to an unin-
tended inflation of the attention scores. This inflation would arise when training MrT5 from scratch,
counteracting the intended masking effect of the delete gate values and allowing deleted tokens to
influence the encoder and cross-attentions. To mitigate this issue, we introduce a regularization term
designed to prevent the attention scores from inflating excessively, thereby preserving the delete
gate’s intended function.

Let E and C denote the number of encoder layers and cross-attention layers, respectively. We define
lG < E as the encoder layer where the delete gate is placed in MrT5.

For any encoder layer e ∈ {lG, . . . , E}, let Qe and Ke denote the query and key matrices, respec-
tively. Similarly, for any cross-attention layer c ∈ {1, . . . , C}, let Qc and Kc denote the correspond-
ing query and key matrices. The attention scores for these layers are computed as:

Se = QeK
⊤
e , ∀e ∈ {lG, . . . , E} (11)

Sc = QcK
⊤
c , ∀c ∈ {1, . . . , C} (12)

To control attention score inflation, we first apply a clamping operation at a minimum threshold m,
compute the mean of the clamped scores, and subtract m:

µ(S) =

(
1

|S|
∑
s∈S

max(s,m)

)
−m (13)

where s is an element of the scores matrix S, and |S| represents the number of elements in the
matrix. Finally, we compute the aggregate regularization loss across all encoder and cross-attention
layers, excluding encoder layers before lG:

LS =
1

E − (lG − 1) + C

[
E∑

e=lG

µ(Se) +

C∑
c=1

µ(Sc)

]
(14)

This final result LS represents an aggregate measure over all encoder and cross-attention layers. We
use a minimum threshold m is to avoid over-penalizing attention scores, which could negatively
impact model performance. Instead of regularizing all attention scores, we only aim to regularize

17

Published as a conference paper at ICLR 2025

excessively large values. We found that with m = 5.0, we could mitigate attention score inflation
when training from scratch, and in continued pre-training experiments, the regularizer had no effect
on MrT5 with no deletion (δ = 0.0) compared to the baseline ByT5 model. This shows that the
regularization can target excessively large attention scores, without affecting the keys and queries in
a way that deteriorates the performance of the model.

The final loss is calculated as L = LCE + αLG + βLS, where LCE is the cross entropy loss, and
LG is the delete gate loss defined in Equation (3). We can vary the strength of the regularization by
tuning the parameter β. We found β = 5.0 to work well in practice, and this is the value we apply
in all experiments.

E EXPERIMENTAL DETAILS

E.1 SIMULATION DETAILS

Model Architectures. We train our diagnostic models with 3 encoder layers and 3 decoder layers,
and we use dff = 1024, dmodel = 512, and 4 attention heads in each layer. We use softmax1 for all
T5 and MrT5 models. Other architectural settings match the standard ByT5 Small, resulting in an
architecture with 15M parameters (5% of ByT5 Small’s parameter count). All models use softmax1
in their attention mechanisms.

Optimization. We use a batch size of 128 examples and a sequence length of 64 tokens, and we
train each model for a total of 30,000 gradient steps. We use the AdamW optimizer with a learning
rate that linearly warms up to 1e−4 over 3,000 steps and linearly decays. For MrT5 models, the
delete gate’s regularizer is enabled at 10,000 steps. We set a constant regularizer α throughout
training and use attention score regularization, as described in Appendix D.

E.2 CONTINUED PRE-TRAINING DETAILS

Model Architectures. All MrT5 and baseline models use the model configuration of a standard
ByT5 Small, which has dff = 3584, dmodel = 1472, 12 encoder layers, 4 decoder layers, 6 attention
heads in each layer, and 300M total parameters. MrT5’s gating mechanism introduces an additional
2,945 parameters; the boundary predictor baseline’s downsampling module introduces an additional
5M parameters; and the convolutional pooling baseline’s downsampling module introduces and ad-
ditional 6.5M parameters. All models use softmax1 in their attention mechanisms.

Data. When training on the span corruption objective, we calculate the corrupted spans such that the
average masked span length is 20 tokens with a noise density of 15%—that is, 15% of tokens in the
sequence are masked out—following the specification outlined in the ByT5 paper. To avoid training
models for multiple epochs, we ensure that the samples drawn from the mC4 corpus are sufficiently
large. Additionally, we extract equal-sized samples for each language (in terms of bytes) from the
mC4 training split.

For evaluation, we sample each language’s test set from its mC4 validation split. Each language is
tested on 10,000 examples, except for Swahili and Urdu, which only have 2,800 and 9,300 examples
in their validation splits, respectively. We sample a disjoint sample of 16,000 examples of English
C4 to use as a validation set during training.

Optimization. We train each model for 5,000 gradient steps over batches of 220 tokens (i.e. an
encoder sequence length of 1024 with an effective batch size of 1024). We use the AdamW opti-
mizer with an initial learning rate of 1e−4 with linear decay and no warmup. For MrT5, we use a
controller to optimize different deletion ratios and use attention score regularization, as described in
Appendix D.

At test time, we use an eval batch size of 214 tokens (i.e. an encoder sequence length of 1024 with a
batch size of 16). We use the last model checkpoint at step 5,000 for all evaluations.

E.3 DOWNSTREAM TASK DETAILS

Models. All MrT5 and baseline models are initialized from a corresponding model in our continued
pre-training experiments and inherit the configuration of a standard ByT5 Small. This configuration

18

Published as a conference paper at ICLR 2025

includes dff = 3584, dmodel = 1472, 12 encoder layers, 4 decoder layers, 6 attention heads per layer,
and a total of 300M parameters. All models employ softmax1 in their attention mechanisms.

The specific model selected for initialization is based on the desired compression rate for fine-tuning.
For instance, since we aim for 50% compression in XNLI, we initialize fine-tuning from the MrT5
model pre-trained with δ = 0.5, and we continue to fine-tune with that target deletion ratio.

Data. For XNLI, all models are trained on the English MNLI training set and evaluated on the
full XNLI test set in English, as well as zero-shot in 14 additional languages. For TyDiQA-GoldP,
the multilingual training set is split into 80% for training and 20% for validation, and evaluation is
performed on the separate TyDiQA-GoldP test set. For the character-level tasks, we use the provided
train/validation sets for training and evaluate on each task’s respective test split.

Optimization. For all downstream tasks, we fine-tune all MrT5 and baseline models using the
AdamW optimizer with a cosine learning rate schedule and no warmup. MrT5 models use a PI
controller to achieve a target deletion ratio and use attention score regularization, as described in
Appendix D. Training and evaluation details for each task are summarized in Table 6.

Table 6: Fine-tuning and evaluation details for the XNLI, TyDiQA-GoldP, Spelling Correction, and
Word Search downstream tasks. The maximum sequence length shown is for the encoder. LR
denotes the initial learning rate used during fine-tuning.

Task Steps Epochs Batch Size Max Seq. Length LR PI Controller
XNLI 6,000 ≈7.82 512 1,024 1e−4 δ = 0.5, kp = 0.5, ki = 1e−5
TyDiQA-GoldP 6,000 ≈35.07 512 2,048 5e−5 δ = 0.5, kp = 0.5, ki = 1e−5
Spelling Correction 207,690 35 16 64 3e−5 δ = 0.5, kp = 0.5, ki = 1e−5
Word Search 319,670 65 16 128 5e−4 δ = 0.7, kp = 1e−3, ki = 1e−6

For XNLI, we use an evaluation batch size of 16; for the character-level tasks, we use an evaluation
batch size of 64; and for TyDiQA-GoldP, we use an eval batch size of 1 (since the answers are
generated by the model for each sequence). For each task, the eval maximum sequence length
matches the training sequence length. The final checkpoint is used for evaluation. For XNLI and
TyDiQA-GoldP, this is step 6,000; for Spelling Correction, this is step 200,000; and for Word Search,
this is step 310,000.

F BASELINE IMPLEMENTATION DETAILS

F.1 DESCRIPTION OF FIXED DELETION BASELINES

The fixed deletion baseline deletes tokens at layer l = 3 using deterministic rules based on the token
identity. All tokens/columns corresponding to whitespace, punctuation, and symbolic characters are
identified: \t, \n, , !, ", #, $, %, &, ’, (,), , +, ,, -, ., /, :, ;, <,
=, >, ?, @, [, \,], ,̂ , ,̀ {, |, }, ˜, </s>. These separator tokens are used to
locate word boundaries. Then, based on the fixed deletion percentage, the delete gate will drop the
tokens/columns corresponding to the ends of words. For example, if the target percentage is 50%,
the delete gate will remove the tokens corresponding to the final two characters of a five-letter word,
and the final three characters of a six-letter word.

F.2 DESCRIPTION OF BOUNDARY PREDICTOR BASELINES

As an additional baseline, we implement a version of T5 that downsamples a sequence using a
Gumbel-Sigmoid boundary predictor, enabling end-to-end learnable segmentation, similar to Hour-
glass Transformers (Nawrot et al., 2023). This method allows adaptive sequence compression by
mean-pooling adjacent tokens into variable-length segments, which are subsequently processed at
a reduced resolution. We first summarize the boundary prediction and downsampling approach of
Nawrot et al. (2023), followed by a description of the modifications we made to adapt the approach
to our setting.

Boundary Prediction via Gumbel-Sigmoid. The Hourglass Transformer employs a boundary pre-
dictor to learn segment boundaries in an autoregressive fashion. The goal is to find a sequence of

19

Published as a conference paper at ICLR 2025

segment boundaries b ∈ {0, 1}N , where N is the input sequence length. Consider two tokens xt

and xt+1, where t ∈ [1, N] is the index of the token xt in the sequence. Given the hidden state ht

of xt, a multi-layer perceptron with parameters ϕ produces the probability of a boundary b̂t between
token xt and token xt+1:

b̂t = p(bt = 1) = σ(MLPϕ(ht)). (15)

To enable gradient-based optimization while sampling discrete boundary indicators, the boundary
predictor uses the Gumbel-Sigmoid trick with a relaxed Bernoulli distribution:

b̄t = σ

log(b̂tu

(1− b̂t)(1− u)

)1/τ
 , u ∼ Uniform(0, 1) (16)

bt = 1b̄t>0.5 (17)

where 1x is the indicator function. Following Nawrot et al. (2023), we use the straight-through
estimator (Hinton, 2012; Bengio et al., 2013) to make this operation differentiable:

bt = 1b̄t>0.5 − [b̂t]stop + b̂t (18)

where [·]stop is an operator for preventing backward gradient flow. Here, u introduces stochasticity,
and τ is a temperature parameter controlling the sharpness of boundary decisions.

Segment Pooling via Algebraic Manipulation. Once boundaries bt are determined, tokens within
the same segment are aggregated using mean pooling into a shortened sequence length S = 1 +∑

t bt. This is computed via a binary assignment matrix B ∈ RN×S , where Bij = 1 if token
i is assigned to segment j, and 0 otherwise. The pooled segment representations S ∈ RS×dmodel

(where dmodel is the model dimensionality) are computed via weighted averaging of the hidden states
H ∈ RN×dmodel :

S = (B⊤H)⊘ (B⊤1N×dmodel) (19)

where ⊘ denotes element-wise (Hadamard) division and 1N×dmodel ∈ RN×dmodel is a matrix of ones.
The shortened sequence S is then processed by subsequent Transformer layers.

Regularization via a Binomial Prior. To prevent trivial segmentations (i.e. excessively fine or
coarse partitions), a Binomial prior is imposed on the expected number of segment boundaries:

Binomial(k;N, p) =

(
N

k

)
pk(1− p)l−k, (20)

where k =
∑

t bt is the total number of boundaries, N is the sequence length, and p is a tunable
prior controlling the expected segmentation rate.

Adaptations to the T5 Setting. The boundary predictor method used in Hourglass Transformers
required several modifications to be applicable in our experimental setting, as it was originally de-
signed for autoregressive architectures. To enable its use with an encoder model, we introduced the
following adaptations:

1. Removal of null-group representations: In the original method, the last segment of the se-
quence is removed, and a null-group representation is prepended to sequences to prevent po-
tential data leakage from the future to the past in an autoregressive setting. However, in an
encoder model, such representations are unnecessary and were found to degrade performance.
We therefore excluded them.

2. Handling padded sequences: In an encoder model, sequences of varying lengths are often
batched together with padding tokens. To prevent padding tokens from being included in pool-
ing, we identify the position i of the first pad token in each sequence and enforce a boundary at
position i− 1 (i.e. setting bi−1 = 1). Additionally, any boundaries predicted beyond this posi-
tion are zeroed out. This ensures that the final downsampled segment includes only non-padding
tokens, preventing pad tokens from being pooled into the shortened representations.

3. Updating the attention mask: Token pooling reduces the sequence length dynamically, and
each sequence within a batch might have different numbers of segment boundaries. To ensure
that attention operates only over valid pooled representations, we construct a new attention

20

Published as a conference paper at ICLR 2025

mask that aligns with the shortened sequence. Specifically, for each sequence in the batch, any
positions beyond the number of shortened segments S are masked, preventing the model from
attending to extraneous representations.

4. Handling relative position biases: The original boundary predictor does not support models
that incorporate relative position biases, which are used in the attention mechanisms of each T5
layer. To address this, we designed a solution that uses the position bias of the first token within
a span as the position bias of the entire shortened segment.

In our experiments, we place the boundary predictor module at encoder layer l = 3, the same
layer at which MrT5’s delete gate is placed. Subsequent encoder layers operate on the mean-pooled
hidden states S. Following Nawrot et al. (2023), we set the Gumbel temperature to τ = 0.5 for all
experiments. We vary the prior probability of a boundary p across training runs to obtain models
with different compression rates.

G PER-LANGUAGE SPAN CORRUPTION EVALUATIONS

Figure 6 contains the span corruption BPB across several MrT5 and baseline models with varying
sequence length reduction rates. Evaluations are performed in each of the 15 training languages
individually. The shapes and colors correspond to the same models evaluated in Figure 2.

H CONTINUED PRE-TRAINING EXPERIMENTS WITH LARGE MODELS

We present additional continued pre-training experiments using larger model sizes. Specifically,
we train one ByT5 model and one MrT5 model, both initialized from the pre-trained 1.23-billion
parameter ByT5 Large. While ByT5 Small consists of 12 encoder layers and 4 decoder layers, ByT5
Large has a much deeper architecture with 36 encoder layers and 12 decoder layers. ByT5 Large
also has dff = 3840, dmodel = 1536, and 16 attention heads in each layer. MrT5 Large’s gating
mechanism introduces an additional 3,073 parameters. In MrT5, the delete gate is applied at layer
l = 3, and all other data and training configurations remain consistent with those used in our primary
continued pre-training experiments, as detailed in Appendix E.2. We employ a PI controller to target
a deletion ratio of δ = 0.5. We evaluate on a smaller batch size of 4 examples (212 tokens) using a
test set containing 2500 examples in each of the 15 languages.

The results in Table 7 underscore the effectiveness of MrT5 at a larger model scale. Notably, the
gap in bits-per-byte (BPB) between ByT5 and MrT5 is significantly reduced compared to smaller-
scale models, suggesting that MrT5’s performance greatly improves as model capacity increases. At
the same time, the efficiency gains become even more pronounced; a 49.5% decrease in sequence
length results in a 44.6% reduction in inference runtime. This improved efficiency can be attributed
to the deeper encoder architecture, where only 3 out of MrT5’s 36 encoder layers process the full se-
quence, significantly reducing computational overhead. These findings suggest that MrT5’s deletion
mechanism scales effectively with larger models, offering an appealing trade-off between efficiency
and modeling performance in high-resource settings.

Table 7: Performance comparison of ByT5 Large and MrT5 Large (δ = 0.5).

Bits-per-byte (BPB) Average Runtime (ms) MrT5 Runtime
Decrease (%)

MrT5 Seq. Len.
Reduction (%)ByT5 MrT5 ByT5 MrT5

0.70 0.74 177.27 98.21 44.6 49.5

I ADDITIONAL DOWNSTREAM TASK EVALUATIONS

Table 8 contains XNLI evaluation metrics for MrT5 and all baseline models for each of the 15 XNLI
languages. Table 9 contains the TyDiQA-GoldP evaluation metrics for all MrT5 and baseline models
for each of the 9 TyDi QA languages. Table 10 contains evaluations on all test splits for the Spelling
Correction with Context task. Table 11 contains evaluations on all test splits for the Word Search
task.

21

Published as a conference paper at ICLR 2025

0 20 40 60
Sequence Length Reduction (%)

1.0

1.1

1.2

1.3

1.4

1.5
Bi

ts
-p

er
-b

yt
e

(B
PB

)

(a) Arabic.

0 20 40 60
Sequence Length Reduction (%)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(b) Bulgarian.

0 20 40 60
Sequence Length Reduction (%)

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(c) Chinese.

0 20 40 60
Sequence Length Reduction (%)

1.2

1.4

1.6

1.8

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(d) English.

0 20 40 60
Sequence Length Reduction (%)

1.2

1.4

1.6

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(e) French.

0 20 40 60
Sequence Length Reduction (%)

1.2

1.4

1.6

1.8

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(f) German.

0 20 40 60
Sequence Length Reduction (%)

0.8

1.0

1.2

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(g) Greek.

0 20 40 60
Sequence Length Reduction (%)

0.9

1.0

1.1

1.2

1.3

1.4

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(h) Hindi.

0 20 40 60
Sequence Length Reduction (%)

0.8

1.0

1.2

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(i) Russian.

0 20 40 60
Sequence Length Reduction (%)

1.2

1.4

1.6

1.8

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(j) Spanish.

0 20 40 60
Sequence Length Reduction (%)

1.4

1.6

1.8

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(k) Swahili.

0 20 40 60
Sequence Length Reduction (%)

0.6

0.7

0.8

0.9

1.0

1.1

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(l) Thai.

0 20 40 60
Sequence Length Reduction (%)

1.2

1.4

1.6

1.8

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(m) Turkish.

0 20 40 60
Sequence Length Reduction (%)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(n) Urdu.

0 20 40 60
Sequence Length Reduction (%)

1.1

1.2

1.3

1.4

1.5

1.6

Bi
ts

-p
er

-b
yt

e
(B

PB
)

(o) Vietnamese.

Figure 6: BPB vs. sequence length reduction for each MrT5 and baseline model, evaluated on span
corruption test sets for 15 languages individually. Legend: ⋆ = MrT5; • = ByT5; = random
deletion baseline; ♦ = fixed deletion baseline; ■ = boundary predictor (BP) baseline with mean
pooling; ▼ = convolutional pooling (BP) baseline.

22

Published as a conference paper at ICLR 2025

Table 8: Per-language XNLI evaluation metrics for ByT5, MrT5, BP, and CP models. Except for
English, all evaluations are zero-shot.

Language Accuracy (%) Average Runtime (ms) Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

English 80.30 80.20 78.90 73.53 9.01 5.62 7.33 5.90 37.64 18.63 34.50 50.22 43.38 50.10
French 73.93 73.03 69.02 55.19 10.76 6.67 8.21 7.02 38.04 23.69 34.75 50.21 48.50 50.08
Spanish 74.85 74.25 69.78 59.78 10.15 6.15 7.79 6.63 39.44 23.29 34.63 51.88 48.11 50.09
German 69.58 69.70 63.61 50.66 10.44 6.77 8.01 6.82 35.12 23.28 34.66 47.04 47.97 50.08
Greek 64.73 65.03 57.33 46.53 18.81 9.32 10.75 11.79 50.48 42.85 37.32 63.65 65.51 50.05
Bulgarian 67.47 68.14 61.88 52.79 17.37 8.63 10.78 10.96 50.30 37.96 36.89 63.57 60.49 50.05
Russian 64.21 66.25 60.48 51.46 17.80 8.72 10.85 11.20 50.99 39.03 37.07 64.32 61.27 50.06
Turkish 61.68 63.11 58.88 47.31 9.77 6.22 8.13 6.40 36.37 16.85 34.49 48.48 43.46 50.08
Arabic 62.97 63.61 57.29 49.34 14.00 7.82 9.57 8.96 44.15 31.63 36.01 57.98 54.38 50.06
Vietnamese 67.37 66.57 58.64 47.92 12.54 7.64 8.75 8.10 39.10 30.20 35.41 51.35 53.83 50.07
Thai 55.45 58.02 46.19 43.55 24.95 11.87 12.34 15.42 52.45 50.57 38.23 67.08 74.89 50.04
Chinese 62.12 60.34 57.92 44.17 8.07 4.93 6.96 5.29 38.89 13.67 34.44 48.03 40.04 50.12
Hindi 55.41 57.15 48.22 41.24 24.19 11.51 14.48 14.96 52.43 40.14 38.17 66.96 66.49 50.04
Swahili 60.04 57.92 55.85 44.57 9.14 5.92 7.48 6.01 35.23 18.16 34.23 47.34 44.03 50.10
Urdu 50.76 56.31 46.59 41.08 15.49 8.83 10.47 9.85 43.01 32.39 36.44 55.87 56.87 50.06

All Languages 64.72 65.31 59.37 49.94 14.17 7.77 9.46 9.02 45.13 33.22 36.32 55.60 53.95 50.07

Table 9: Per-language TyDiQA-GoldP evaluation metrics for ByT5, MrT5, BP, and CP models.
When runtime relative to ByT5 is not reduced, the percent decrease in runtime is omitted (–).

Language Exact Match / F1 (%) Average Runtime (ms) Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

Russian 65.02/75.64 60.59/71.41 31.90/43.27 49.63/60.66 45.87 28.44 36.87 29.60 38.00 19.62 35.46 54.70 30.60 50.03
Arabic 69.27/81.84 68.62/80.98 40.17/59.72 60.69/75.44 39.13 24.90 33.29 26.12 36.36 14.94 33.27 56.09 25.37 50.04
Bengali 55.75/67.22 56.64/66.08 23.01/31.41 38.94/51.24 77.87 38.88 57.42 47.51 50.06 26.26 38.99 66.68 43.21 50.01
Telugu 77.88/85.41 77.43/84.87 29.90/42.40 59.04/68.78 57.22 29.96 44.84 35.70 47.65 21.63 37.60 65.33 36.34 50.03
Finnish 69.18/78.92 67.90/76.97 45.65/58.88 54.22/65.76 26.31 22.28 25.97 19.71 15.31 1.30 25.09 31.19 13.88 50.05
Swahili 77.96/85.28 76.55/82.77 63.33/71.95 60.92/67.89 19.00 17.04 20.84 16.92 10.33 – 10.93 40.68 5.39 50.09
Korean 58.70/66.26 57.61/65.66 31.88/40.07 38.04/44.67 31.37 25.28 29.42 22.30 19.43 6.22 28.91 32.77 17.00 50.04
Indonesian 75.58/84.23 73.10/83.19 50.09/65.11 61.06/72.10 28.76 22.16 27.04 20.81 22.93 5.98 27.64 39.27 16.61 50.06
English 63.64/73.50 62.50/70.93 36.82/51.20 48.41/57.79 31.05 23.07 28.45 21.48 25.69 8.36 30.80 40.48 21.48 50.04

All Languages 69.90/79.58 68.27/77.73 40.59/54.04 54.99/65.85 37.22 24.83 32.24 25.32 33.31 13.38 31.97 47.48 22.55 50.05

Table 10: Evaluation metrics for all splits for the Spelling Correction with Context character-level
task. The “Dependent” split requires incorporating context to correct the spelling error; the “Inde-
pendent” split does not.

Spelling Correction
Test Split

Seq.-Level Accuracy (%) Average Runtime (ms) Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

Dependent 49.41 44.20 36.51 37.40 3.86 2.98 3.20 2.94 22.59 16.99 23.72 50.85 49.34 50.00
Independent 82.11 80.04 71.08 74.96 3.90 3.04 3.28 3.02 22.05 16.04 22.62 50.26 49.25 50.00

All Splits 66.73 63.18 54.81 57.29 3.88 3.01 3.24 2.98 22.30 16.48 23.13 50.54 49.30 50.00

Table 11: Evaluation metrics for all splits for the Word Search character-level task. The “OOV”
split contains hidden words with mT5 tokenization not seen in the training split (this does not apply
to our work, since we only train byte-level models, not subword models); the “Paraphrase” split
contains definitions from The Online Plain Text English Dictionary, testing the ability to understand
context; the “Overlap” split contains overlapping hidden words; and the “Paraphrase + Overlap”
split contains both paraphrased definitions and overlapping hidden words.

Word Search
Test Split

Seq.-Level Accuracy (%) Average Runtime (ms) Runtime Decrease (%) Seq. Len. Reduction (%)
ByT5 MrT5 BP CP ByT5 MrT5 BP CP MrT5 BP CP MrT5 BP CP

OOV 78.49 73.96 78.42 71.25 6.56 2.63 3.62 3.02 59.90 44.79 53.98 71.77 69.95 75.00
Paraphrase 85.92 81.51 81.84 72.30 6.76 2.75 3.75 3.14 59.39 44.51 53.52 71.88 69.72 75.00
Overlap 77.31 72.72 77.41 74.86 6.77 2.76 3.80 3.18 59.19 43.92 53.06 77.69 69.80 75.00
Paraphrase + Overlap 60.37 55.48 57.01 51.89 6.76 2.77 3.80 3.18 59.06 43.82 53.00 75.40 69.78 75.00

All Splits 76.61 72.02 74.33 68.23 6.75 2.75 3.77 3.15 59.29 44.18 53.29 74.53 69.78 75.00

23

Published as a conference paper at ICLR 2025

J ADDITIONAL PER-SAMPLE ANALYSES

Figure 7 shows per-sample correlation plots between the increase in BPB and the sequence length
reduction for five MrT5 models and five random baseline models with different deletion rates. The
percent increase in BPB is measured relative to ByT5’s BPB for that example.

Eval Percent Deleted Tokens

0

100 MrT5, =0.3 (r=0.14, p=0.000)

Eval Percent Deleted Tokens

0

100 MrT5, =0.4 (r=0.13, p=0.000)

Eval Percent Deleted Tokens

0

100 MrT5, =0.5 (r=0.13, p=0.000)

Eval Percent Deleted Tokens

0

100 MrT5, =0.6 (r=0.08, p=0.007)

20 40 60 80
Sequence Length Reduction (%)

0

100 MrT5, =0.7 (r=0.03, p=0.316)

In
cr

ea
se

 in
 B

PB
 (%

)

(a) MrT5 models. All models show very weak to negli-
gible correlation between BPB increase and sequence
length reduction, showing that MrT5 can delete at dif-
ferent percentages depending on the sequence, without
incurring a significant performance drop.

Eval Percent Deleted Tokens

0

100 Random, 30.0% (r=0.28, p=0.000)

Eval Percent Deleted Tokens

0

100 Random, 40.0% (r=0.30, p=0.000)

Eval Percent Deleted Tokens

0

100 Random, 50.0% (r=0.32, p=0.000)

Eval Percent Deleted Tokens

0

100 Random, 60.0% (r=0.29, p=0.000)

20 40 60 80
Sequence Length Reduction (%)

0

100 Random, 70.0% (r=0.28, p=0.000)

In
cr

ea
se

 in
 B

PB
 (%

)

(b) Random baseline models. All models show a weak
to moderate positive correlation between BPB increase
and sequence length reduction.

Figure 7: Percent increase in span corruption BPB vs. sequence length reduction for each (a) MrT5
model and (b) random baseline model. Percent increase is calculated using ByT5’s BPB as a baseline
for a particular sample. Each point represents a single sample.

24

	Introduction
	Background: Tokenization-Free Models
	The MrT5 Model Architecture
	Deletion Gating Mechanism
	Gate Regularizer

	Simulations
	Continued Pre-training
	Downstream Task Evaluations
	Analysis
	Conclusion
	Further Related Work
	Gumbel-Sigmoid
	Theoretical Compute Savings
	Regularization of Attention scores
	Experimental Details
	Simulation Details
	Continued Pre-training Details
	Downstream Task Details

	Baseline Implementation Details
	Description of Fixed Deletion Baselines
	Description of Boundary Predictor Baselines

	Per-language Span Corruption Evaluations
	Continued Pre-Training Experiments with Large Models
	Additional Downstream Task Evaluations
	Additional Per-sample Analyses

