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Abstract

Multi-agent reinforcement learning (MARL) has long been seen as inseparable from
Markov games (Littman, 1994). Yet, the most remarkable achievements of practical
MARL have arguably been in extensive-form games (EFGs)—spanning games
like Poker, Stratego, and Hanabi. At the same time, little is known about provable
equilibrium convergence for MARL algorithms applied to EFGs as they stumble
upon the inherent nonconvexity of the optimization landscape and the failure of the
value-iteration subroutine in EFGs. To this goal, we utilize contemporary advances
in nonconvex optimization theory to prove that regularized alternating policy
gradient with (i) direct policy parametrization, (ii) softmax policy parametrization,
and (iii) softmax policy parametrization with natural policy gradient updates
converge to an approximate Nash equilibrium (NE) in the last-iterate in imperfect-
information perfect-recall zero-sum EFGs. Namely, we observe that since the
individual utilities are concave with respect to the sequence-form strategy, they
satisfy gradient dominance with respect to the behavioral strategy—or, policy,
in reinforcement learning terms. We exploit this structure to further prove that
the regularized utility satisfies the much stronger proximal Polyak-Łojasiewicz
condition. In turn, we show that the different flavors of alternating policy gradient
methods converge to an ϵ-approximate NE with a number of iterations and trajectory
samples that are polynomial in 1/ϵ and the natural parameters of the game. Our
work is a preliminary—yet principled—attempt in bridging the conceptual gap
between the theory of Markov and imperfect-information EFGs while it aspires to
stimulate a deeper dialogue between them.

1 Introduction

Reinforcement learning (RL) dominates contemporary applied and theoretical research. The flagship
of RL, policy optimization methods, appears to lend reasoning capabilities to language models (Shao
et al., 2024), defeats human Go world champions (Silver et al., 2016), and navigates real-world
roads safely (Lu et al., 2023; Cusumano-Towner et al., 2025). As is evident from even more ex-
amples (Vinyals et al., 2019; Schrittwieser et al., 2020), machine gameplay has transformed by
incorporating RL techniques into its algorithmic arsenal. Although theoretical literature (Littman,
1994) posits that the canonical model of MARL are Markov games (MGs), MARL has handled
imperfect-information extensive-form games (EFGs) with commendable success (Brown and Sand-
holm, 2019b; Bard et al., 2020; Perolat et al., 2022).

At first, the theory and practice of imperfect-information EFGs can seem saturated. Exhaustive re-
search in the properties of EFGs has exposed its convex structure using sequence-form strategies (Ro-
manovskii, 1962; Koller et al., 1996; Von Stengel, 1996) and yielded the different counterfactual-regret
minimization algorithms (CFR) (Zinkevich et al., 2007; Tammelin, 2014; Brown and Sandholm,
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2019a). These algorithms can solve games using tabular policies with unmatched computational
efficiency. Notwithstanding, these techniques seem to hit a wall when faced with large-scale games
whose size makes the use of tabular policies infeasible and calls for a neural network parametrized
policy (or, more generally, policy function approximation). The picture is even more grave when
CFR needs to be combined with model-free counterfactual value estimation. Its call for importance
sampling yields a feedback of prohibitively high variance. Further, CFR’s average-iterate conver-
gence makes the task of extracting a single policy network highly nontrivial. Since practitioners
have extensively studied policy optimization for imperfect-information games (Lanctot et al., 2017;
Srinivasan et al., 2018; Lockhart et al., 2019; Hennes et al., 2020; Rudolph et al., 2025) without
offering guarantees of polynomial time convergence, we are naturally lead to the question:

Do policy gradient methods provably converge to an equilibrium in
imperfect-information EFGs using a polynomial number of iterations and samples?

(♥)

To answer, we need to face the two obstacles that imperfect-information games raise against optimiza-
tion, the failure of value iteration—which we sidestep by solely using policy gradient updates—and a
highly nonconvex policy optimization landscape—which we prove to be benign.

Failure of value iteration In MARL for MGs, the overwhelming majority (Shapley, 1953; Wei
et al., 2021; Zhao et al., 2022; Alacaoglu et al., 2022b; Zhang et al., 2019) of existing algorithmic
solutions for equilibrium learning or computation makes use of a value iteration subroutine or a value
critic—which is in essence a backwards induction of the estimated value of the game. Instead, solving
imperfect-information games requires leveraging the opponent’s uncertainty about the underlying
state. In other words, one needs to trade off exploiting private information and the benefit of keeping
it secret. This precludes solving subtree-by-subtree conditioned on private information and leads to
the emergence of behaviors such as bluffing at optimality.

Gradient Domination in Nonconvex Problems. Contemporary machine learning is arguably
propelled by large-scale optimization of systems of astounding size to perform increasingly elaborate
tasks. The corresponding objective functions are by no means convex in terms of parameters,
which precludes theoretical guarantees of even reaching a local optimum in a reasonable number
of iterations (Murty and Kabadi, 1985). Yet, practice indicates a different reality and theory is
gradually catching up. It has painstakingly been demonstrated that the nonconvexity of various
ML optimization problems is seriously benign—significantly often, stationarity implies global
optimality. Cases in point, gradient domination is exhibited for the loss functions of overparametrized
neural networks (Liu et al., 2022a; Scaman et al., 2022), the linear quadratic regulator (Fazel et al.,
2018), value functions of Markov decision processes (MDPs) (Agarwal et al., 2021; Bhandari and
Russo, 2024), matrix completion (Ge et al., 2016), dictionary learning (Sun et al., 2015), and more.
For a thorough discussion of gradient domination and other regularity conditions we refer the reader
to (Karimi et al., 2016; Li and Pong, 2018; Drusvyatskiy and Paquette, 2019; Drusvyatskiy and
Lewis, 2018; Liao et al., 2024; Rebjock and Boumal, 2024; Oikonomidis et al., 2025) and references
therein. With the latter in mind, one could make the case that when game theory researchers seek
equilibrium computation in general nonconvex games (Cai et al., 2024a; Angelopoulos et al., 2025)
they set the bar too high. Still, the study of benign nonconvexity seems of great importance and rather
underexplored (Yang et al., 2020; Mulvaney-Kemp et al., 2023; Vlatakis-Gkaragkounis et al., 2021;
Sakos et al., 2023).

1.1 Contributions

We answer (♥) in the affirmative by developing three policy gradient methods (Theorems 3.1 to 3.3).
All three algorithmic approaches lead to last-iterate convergence to a regularized NE of the EFG. We
contribute,

• a novel decentralized exploration scheme that yields sufficient visitation of all information sets;
• a proof that the nonconvex utilities of the (un-)regularized game satisfy gradient domination;
• guarantee of last-iterate convergence of three different alternating policy gradient (PG) methods:

(1) PG with direct parametrization and ℓ2-norm regularization (2) PG softmax parametrization
and entropy regularization (3) natural policy gradient (NPG) with softmax parametrization and
entropy regularization.
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On a sidenote, we offer a sharper dependence of the PŁ modulus to the hidden convexity modulus
than the one suggested by (Karimi et al., 2016, Appendix G) for constrained optimization.

1.2 Overview of Techniques

The theoretical guarantees for our three algorithmic solutions are pinpointed by a simple unifying
conceptual principle. That is, the nonconvex optimization problem of computing an equilibrium by
directly optimizing the behavioral strategies (or, policies) is a constrained two-sided PŁ optimization
problem where alternating gradient descent ascent is known to converge. Namely, we show that the
optimization landscape viewed in terms of policies is nonconvex in a rather benign way; the utility is
hidden concave. In particular, after appropriate regularization, each utility function satisfies a strong
gradient domination property, i.e., the proximal Polyak-Łojasiewicz condition.

Hidden concavity. Going into more detail, utilities in EFGs are concave in terms of sequence-
form strategies. We select an appropriate regularizer that enhances concavity to strong concavity.
Moreover, enforcing a positive lower bound on the probability of reaching every information set
yields a uniform Lipschitz constant for the bijection that maps sequence-form strategies to behavioral
policies. Taken together, these two observations imply a strong gradient-domination condition for
each player’s policy.

PŁ condition. For the sake of offering an intuitive exposition, we forego the nuances of constrained
optimization to explain how the PŁ condition is proven to hold. We say that an optimization problem
minx f(x) exhibits hidden strong convexity when there exists an invertible mapping u = c(x) and a
function H(u) that is µ-strongly convex in u and f(x) = H(c(x)). Strong convexity implies that
f(x)− f⋆ ≡ H(u)−H⋆ ≤ 1

2µ ∥∇uH(u)∥2. Now, a bounded Lipshcitz modulus Lc−1 > 0 of the

inverse transform, c−1(u) = x, leads to the PŁ inequality f(x)− f⋆ ≤ L2
c−1

2µ ∥∇f(x)∥
2 by merely

applying the chain rule of differentiation. Similar arguments work for the proximal-PŁ condition.

Convergence. Then, alternating gradient descent ascent on minx∈X maxy∈Y f(x, y),

xt+1 ← ProjX [xt − ηx∇xf(xt, yt)] ; yt+1 ← Proj Y [yt + ηy∇yf(xt+1, yt)] ,

is proven to converge to a saddle-point point using a typical Lyapunov function argument. We tune
the stepsizes ηx, ηy in such a way that one player learns faster than the other. Since the function is
PŁ, this means that after each update the optimizer is significantly approximated. Intuitively, after
enough iterations, the update scheme can be viewed as optimizing for Φ(x) := maxy∈Y f(x, y) as
xt+1 ≈ ProjX (xt − ηx∇xΦ(xt)). Crucially, our convergence analysis sets aside the usual regret
minimization arguments that are used to either prove average-iterate or best-iterate convergence (e.g.,
Anagnostides et al. (2022); Liu et al. (2024)).

1.3 Comparison to Related Work

We point out two particular results (Sokota et al., 2022; Liu et al., 2024) directly related to our
endeavor of policy gradient/optimization methods for imperfect-information EFGs. Although the
magnetic mirror descent method proposed in (Sokota et al., 2022) does not come with guarantees
in EFGs, it exhibits impressive empirical performance. (Liu et al., 2024) lays the foundation of our
approach as it introduces the bidilated regularizer although it does not offer a convergence guarantee
that is polynomial in the parameters of the game and 1/ϵ.

Our work follows arguments utilized in the context of policy gradient methods for Markov decision
processes (MDPs) and MGs. Namely, we use techniques from (Kalogiannis et al., 2025) that analyzed
alternating gradient descent in the constrained parameter case and arguments from (Mei et al., 2020;
Cen et al., 2022a) as the entropic bidilated regularizer is almost identical to discounted entropy.
Further, we use arguments from (Zhang et al., 2021) to show that the mapping from sequence-form
strategies to policies is Lipschitz continuous.
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Altern./Simult.
Updates

Provable
Convergence Regularization Feedback

(Liu et al., 2024) simultaneous yes, best-iterate* bidilated CFR, Q,Q
(Sokota et al., 2022) simultaneous no policy entropy Q

Ours alternating yes, last-iterate,
polynomial time bidilated ∇θV, Q

Table 1: Comparison of policy gradient/optimization methods.

CFR, Q,Q,∇θV stand for counterfactual value, action-value, traject. action-value, and policy gradient.
* Guarantees are pseudo-polynomial in the game-size.

2 Preliminaries

In this section we introduce the key ingredients required for our analysis. For IIEFGs, we high-
light how the utility is expressed as a concave function of the sequence-form strategies. We also
review the—Euclidean or entropic—bidilated regularizer whose strong convexity underpins our
gradient-domination arguments. With regards to RL theory, we recall the definition of the value and
and action-value functions and show that trajectory samples, or roll-outs, give unbiased Monte-Carlo
estimates of both the utility and the bidilated regularizer via the (REINFORCE) estimator (Williams,
1992; Sutton et al., 1999). Finally, we review the optimization notions of hidden concavity and
gradient dominance, used to prove convergence in of our algorithmic solutions.

2.1 Imperfect-Information Extensive-Form Games

We briefly go over the definition of an IIEFG and move on to the sequence-form strategies and the
corresponding regularizers.
Definition 1 (IIEFG). A two player zero-sum extensive-form game, Γ, is defined by the tuple
(T ,H,S,A,B, r). A special chance player, c, models uncontrollable randomness while,

• T is a rooted game tree of height D(T ),

• H := H1 ∪H2 ∪Hc is the set of T ’s nodes, referred to as histories. Each history, h, belongs to
exactly one of the setsH1,H2,Hc depending on the player responsible for taking action at h.

• S := S1 ∪S2 is a finite set of information sets (infosets). The infosets partition histories,Hi, of the
acting player i into sets of nodes that are indistinguishable. We will note S := max{|S1|, |S2|}.

• A := {As}s∈S1
,B := {Bs}s∈S2

are the action sets of player 1 and 2, respectively. Each infoset
s ∈ S has a corresponding set of actions As, and respectively Bs. Further, we will denote
As := |As|, A := maxsAs and Bs := |Bs|, Bmax := maxsBs.

• r : H → [0, 1] is a payoff function mapping leaves of T to a payoff for player 1; player 2 gets the
opposite payoff.

A perfect recall assumption is made, ensuring that players remember their past observations and
actions. This implies that nodes in the same infoset have the same past observation sequence. We
will use σ1(s), σ2(s) to denote the last parent infoset-action pair (s′, a′), s ∈ S1 and (s′, b′), s ∈ S2
encountered when descending from the game tree’s root to history h. σ1(·), σ2(·) are either unique
for non-root nodes or the null set for the root. We will overload notation σ1(h) to mean σ1(s) for the
infoset s where h belongs (resp. for σ2(h)).

Sequence-Form Strategies A player’s behavioral strategy is a probability distribution over actions
at each of their infosets. With Σ1 we denote player 1’s subsequences of play starting at the root. In
sequence-form, the strategy of player 1, µπ1

1 ∈ R|Σ1|, with |Σ1| := 1 +
∑
sAs is defined as:

µπ1
1 (s, a) := µπ1

1 (σ1(s))π1(a|s),∀s ∈ S1,∀a ∈ As; µπ1
1 (∅) = 1.

The sequence-form strategy and Σ2 of player 2 is defined in a symmetric fashion. Introduced in (Ro-
manovskii, 1962; Von Stengel, 1996; Koller et al., 1996), sequence-form strategies are generalizations
of simplices and express the sequential structure of an IIEFG. The set of sequence-form strategies,
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M1,M2 are convex polytopes as they are is defined only by linear equalities and non-negativity
constraints. The chance player’s contribution to the probability of reaching history h is given by
µc(h) and it is assumed to be strictly positive for reachable nodes. For player 1, the expected utility
is given by the bilinear form:

V π1,π2 := (µπ1
1 )⊤Rµπ2

2 ,

where R is the matrix representation of payoff function r. Forward, we will refer to behavioral
strategies as policies which will be denoted as π1, π2. The solution concept we are after is an
ϵ-approximate Nash equilibrium.

Definition 2 (ϵ-NE). A policy profile π⋆1 , π
⋆
2 is an ϵ-approximate Nash equilibrium of an IIEFG Γ, if,

for any policies π1 and π2 it holds true that,

V π
⋆
1 ,π2 − ϵ ≤ V π

⋆
1 ,π

⋆
2 ≤ V π1,π

⋆
2 + ϵ.

The bidilated regularizer. Introduced in (Liu et al., 2024), the unweighted bidilated regularizer is
defined using a strongly-convex regularizer ψ(·) multiplied by the total probability of reaching the
corresponding infoset. Since it depends on both players’ policies we writeR(π1, π2),R(π2, π2), s.t.:

R1(π1, π2) := Eh∼π

[∑
h

ψ(π1(·|h))

]
and R2(π1, π2) := Eh∼π

[∑
h

ψ(π2(·|h))

]
.

2.2 RL Fundamentals

Moving on, we define the value, action-value, and advantage functions in the context of IIEFGs.
Inspired by the occupancy measure of MGs, we define the history occupancy measure dπ for a given
policy profile π := (π1, π2) which simply is the reach probability of each history and comes in handy
as a shorthand notation in the description of the algorithms and their analysis. Moreover, we recall the
definitions of direct and softmax policy parametrization. Last but not least, we demonstrate how the
(REINFORCE) gradient estimator computes policy gradients for IIEFGs for both the unregularized
and regularized utility.

Value, action-value, and advantage functions. Without loss of generality, we assume that players
get a payoff only on a terminal history h. This way we can define the value function of an infoset s,
as the expected utility if the game were to start at a history h0 belonging to s,

V π(s) := Eh∼π
[
r(h)|h0 ∈ s

]
.

In a similar vein, we define the action-value function, or Q, as the expected utility if the game started
at at a history h0 belonging in s and after the player had taken action a0, (or, resp. b0),

Qπ1 (s, a) := Eh∼π
[
−r(h)|h0 ∈ s, a0 = a

]
and Qπ2 (s, b) := Eh∼π

[
r(h)|h0 ∈ s, b0 = b

]
.

Finally, the advantage function is defined for each player as the difference between an action-value and
the infoset’s value Aπ1 (s, a) := −V π(s)−Qπ1 (s, a) and Aπ2 (s, b) := V π(s)−Qπ1 (s, b). Similar to
the state occupancy measure of an MG, we can define the history occupancy measure dπ : H → [0, 1]
which is defined as, dπ(h) := Eh′∼π [1{h′ = h}] . Overloading notation, for an infoset s ∈ S
dπ(s) :=

∑
h∈s d

π(h).

Policies. Policies are precisely parametrized behavioral strategies. We will consider two
parametrizations of policies, (i) direct parametrization, and (ii) softmax parametrization. For di-
rectly parametrized policies, we denote the parameters as x, y which are x ∈×s∈S1

∆(As), y ∈
×s∈S2

∆(Bs). The parameters of softmax policies will be denoted χ, θ with χ ∈ RA, A =
∑
sAs

and θ ∈ RB , B =
∑
sBs.

Gradient estimation with REINFORCE. The ability to estimate a gradient of the value function
using trajectory samples, or roll-outs, has endowed the theory and practice of RL with the rich
toolbox of gradient-based optimization. In fact, the (REINFORCE) gradient estimator (Williams,
1992; Sutton et al., 1999) is also an unbiased estimator of the policy gradient in the IIEFG setting,
and thus provides a sound foundation for our analysis.
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Definition 3 (REINFORCE). Let ξ denote a trajectory of infoset and actions sampled by implementing
policies π1, π2, ξ := (s(1), a(k), . . . ). We define REINFORCE,

(
∇̂x, ∇̂y

)
, to be the stochastic

gradient estimators:

∇̂x = rξ

Kξ∑
k=1

∇x log πx
(
a(k)|s(k)

)
and ∇̂y = rξ

Kξ∑
k=1

∇x log πy
(
b(k)|s(k)

)
. (REINFORCE)

The addition of regularization, leads to the definition a regularized value function, Vτ ,

V πτ (s) := Eξ∼π
[∑

k r(h(k)) + τ
∑
h

[
ψ(π1(·|h(k))) + ψ(π2(·|h(k)))

] ∣∣h0 ∈ s] .
The regularized Q-value and advantage functions, Qπτ , A

π
τ , are defined accordingly (see Ap-

pendix B.2). Furthermore, (REINFORCE) can be minimally modified to estimate the policy gradient
of the regularized value function without importance sampling (discussed in detail in Appendix F.1).
Assumption 1. For an ε > 0, both players’ policies, for every infoset and action, satisfy

π1(a|s) ≥ ε, ∀s ∈ S1,∀a ∈ As π2(b|s) ≥ ε, ∀s ∈ S2,∀b ∈ Bs. (ε-trunc.)

Guaranteeing that (ε-trunc.) holds is straightforward for directly parametrized policies. The
players need to pick policies x, y, from the cartesian product of appropriately trun-
cated simplices, to be denoted X ε,Yε respectively. As for softmax parametrized poli-
cies, (ε-trunc.) is achieved when both players’ parameters are restricted to the poly-
topes XR,ΘR. To demonstrate, XR is defined in the following manner, XR :={
χ ∈ RA, A =

∑
sAs : χ

⊤
s 1 = 0, ∀s ∈ S1, |χs,i − χs,j | ≤ 2R, ∀i, j ∈ [As]

}
, and the definition

of ΘR follows suit. We highlight that the images of XR,ΨR under the softmax map are convex sets
(Lemma D.5) and we will denote the resulting truncated policy sets as ΠR1 ,Π

R
2 .

2.3 Hidden Concavity and Gradient Domination

In this subsection, we define the two key backbone concepts of hidden concavity and gradient
domination. Gradient domination of a weak or strong form has been extensively investigated in
the theory of RL and MARL (Bhandari and Russo, 2024; Agarwal et al., 2021; Mei et al., 2020;
Zhang et al., 2019; Daskalakis et al., 2020). Simply put, the nonconvex value function satisfies a
gradient-domination property and any stationary point is globally optimal. Thus, any guarantee of
convergence to a stationary point is elevated to a guarantee of convergence to global optimality.
Definition 4 (Hidden convexity). A nonconvex function f : X → R defined over the set X is
said to be hidden (strongly) convex if there exists (i) a bijective mapping c : X → U for some
convex set U; (ii) a function H : U → R that is strongly convex with modulus αH ≥ 0; such that
f(x) = H(c(x)),∀x ∈ X .

When the Lipschitz continuity modulus of the inverse transform, c−1, is uniformly bounded it implies
the gradient domination condition as shown in (Fatkhullin et al., 2023, Prop. 2) coupled with (Karimi
et al., 2016, App. G).
Definition 5 (pPŁ condition (Karimi et al., 2016)). Assume F : Rd → R defined as F (x) :=
f(x) + g(x). Let f : Rd → R be an ℓ-smooth function and g : Rd → R be convex. Define

Dg(x, ℓ) := −2ℓmin
z

{
⟨∇f(x), z − x⟩+ ℓ

2
B(z∥x) + g(z)− g(x)

}
.

for a choice of Bregman divergence B(·∥·). We say that F satisfies the pPŁ condition with modulus
α > 0 if, for every x,

1

2
Dg(x, ℓ) ≥ α [F (x)− F ⋆] ,

where F ⋆ = minx F (x). When g is the indicator function of a set X we write DX (x, ℓ).

3 Main Results

With the latter in hand, we are ready to state our main contributions, (i) the independent exploration
strategy, (ii) the gradient domination condition for utilities of EFGs (iii) and the global convergence
of three variants of policy gradient methods to an approximate Nash equilibrium.
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3.1 Efficient Exploration Scheme

We propose a novel approach to exploration. Each player is expected to reach every subsequence
with probability at least γ

|H| . The rule is simple:

Assumption 2 (Efficient Exploration). Both players follow the following exploration strategy:

• At the start of each game, the player flips a biased coin that shows “heads” with probability γ.
• If the coin shows “heads”, the player selects a sequence uniformly at random and then executes it.
• After this sequence, or if the coin shows “tails”, the player resumes play according to their policy.
Remark 1. It is noteworthy that using this exploration strategy, one can exercise direct control
over the modulus of gradient domination. Whereas, policy gradient literature (Agarwal et al., 2021;
Daskalakis et al., 2020; Mei et al., 2020; Zeng et al., 2022) needs to make an assumption on the
boundedness of the distribution mismatch coefficient.

3.2 Gradient Domination Property of the Utilities

In this subsection, we establish that the utility of an imperfect-information EFG under different policy
parametrizations is pPŁ with regards to the policy. This observation is central in proving convergence
of policy gradient methods to a Nash equilibrium. First, we state the weak gradient domination
property for the unregularized utilities of the game.
Lemma 3.1 (Utility Weak Gradient Domination). Let Γ be an imperfect-information EFG, following
Assumption 2, then it holds true that

V π1,π2 −min
π′
1

V π
′
1,π2 ≤ 1

2α
max
π′
1

⟨∇π1
V π1,π2 , π1 − π′

1⟩ ;

max
π′
2

V π1,π
′
2 − V π1,π2 ≤ 1

2α
max
π′
2

⟨∇π2
V π1,π2 , π′

2 − π2⟩ ,

for an α > 0 with α−1 = poly
(

1
γ , |H|, S,A,B

)
.

Now, by picking an appropriate regularization term to each player’s utility we can enhance the
weak gradient domination property to the much stronger pPŁ condition which ultimately guarantees
last-iterate convergence to an equilibrium of the regularized game.
Lemma 3.2 (Utility pPŁ; restated from Lemmata E.1 to E.3). Let an imperfect-information EFG,
Γ, perturbed by a pair of weighted bidilated regularizers (R1,R2) with a coefficient τ > 0. Also,
assume that each player follows Assumption 1 and Assumption 2. Then, each player’s utility satisfies
the pPŁ condition with a modulus α−1 = 1

τ × poly
(

1
ε ,

1
γ ,

1
minh µc(h)

, |H|, S,A,B, 2D(T )
)
.

A key observation in both conditions is that the modulus is a polynomial of the exploration parameter
1/γ. This stresses the importance of efficient exploration and our corresponding contribution of the
scheme in Assumption 2. Also,

3.3 Convergence of Alternating Regularized Policy Gradient

Having established the required background and notation, we are ready to present our main results.
In Theorem 3.1 we show the convergence of simple alternating regularized policy gradient to an
approximate NE in the last iterate. Moving to Theorem 3.2, we prove a similar result for softmax-
parametrized policies. Finally, we analyze alternating regularized natural policy gradient through a
mirror-descent lens, demonstrate its relationship to multiplicative weight updates of the policies, and
prove its convergence to an approximate NE in the last iterate (Theorem 3.3).

Throughout, ηx, ηy denote the stepsizes and ∇̂τ· denotes the (REINFORCE) gradient estimate of the
utility w.r.t. to a player’s parameters accounting only for their own regularization term.

3.3.1 Direct Policy Parametrization

The first result we present is the a simple policy gradient scheme with alternating updates and a
Euclidean regularizer. The parameter updates of alternating regularized policy gradient takes the
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following form,
xt+1 =Proj

X ε

[
xt − ηx∇̂τx(xt, yt)

]
yt+1 =Proj

Yε

[
yt + ηy∇̂τy(xt+1, yt)

]
.

(Alt-RegPG)

where ProjX ε ,ProjYε denote the Euclidean projection of the parameters to the truncated simplices
dictated by (ε-trunc.). We state our first convergence theorem which settles question (♥) and defer
its formal statement to the Appendix H.1.
Theorem 3.1 (Informal; restated from Thm. H.1). With direct policy parametrization and the
Euclidean bidilated regularizer, alternating policy-gradient algorithm attains a last-iterate ϵ-Nash
equilibrium in

T = poly
(

1
ϵ ,

1
ε ,

1
γ , |H|, |S1|, |S2|, A,B, 2

D(T )
)

iterations,

using batches of poly
(

1
ϵ ,

1
ε ,

1
γ , |H|, |S1|, |S2|, A,B, 2

D(T )
)

trajectory samples at each step.

Remark 2. We note that the exponential dependence on D(T ) is still polynomial in the game size as
the height has itself logarithmic dependence in size of the game.

3.3.2 Softmax Policy Parametrization

We move on to convergence under softmax parametrization and entropic regularization. This choice
of parametrization is an important step towards getting provable guarantees for policy gradient
methods in imperfect-information EFGs using function approximation (e.g. neural networks). The
projection to XR,ΘR guarantees that (ε-trunc.) is satisfied,

χt+1 =Proj
XR

[
χt − ηx∇̂τχ(χt, θt)

]
;

θt+1 =Proj
ΘR

[
θt + ηy∇̂τθ (χt+1, θt)

]
.

(Alt-EntRegPG)

Theorem 3.2 (Informal; restated from Thm. H.2). Alternating policy-gradient algorithm with softmax
policy parametrization and the entropic bidilated regularizer, converges in expectation in the last-
iterate to an ϵ-Nash equilibrium after a number of iterations T , that is

T = poly
(

1
ϵ ,

1
ε ,

1
γ , |H|, |S1|, |S2|, A,B, 2

D(T )
)

iterations,

using batches of poly
(

1
ϵ ,

1
ε ,

1
γ , |H|, |S1|, |S2|, A,B, 2

D(T )
)

trajectory samples at each step.

3.3.3 Natural Policy Gradient

Finally, we consider the natural policy gradient algorithm (Kakade, 2001) which is an adaptation of
natural gradient (Amari, 1998). This algorithm is of particular interest due to its intimate connection
to the TRPO, PPO (Schulman et al., 2015, 2017) policy optimization algorithms. Natural policy
gradient uses a Fisher information matrix induced by the policy as a preconditioner for policy gradient
updates:

Fχ(χ, θ) :=
∑
s

dχ,θ(s)
∑
a

πχ(a|s)∇ log πχ(a|s) [∇ log πχ(a|s)]⊤

We cast natural policy gradient steps as mirror descent steps with a Mahalanobis norm induced by
the Fisher information matrix (for a more nuanced discussion on this connection see (Raskutti and
Mukherjee, 2015)).The update scheme can be equivalently written as:

χt+1 =argmin
χ∈XR

∥∥∥χt − ηxF†
χ(χt, θt)∇χV (χt, θt)− χ

∥∥∥2
Fχ(χt,θt)

θt+1 =argmin
θ∈θR

∥∥∥θt + ηyF
†
θ(χt+1, θt)∇θV (χt+1, θt)− θ

∥∥∥2
Fθ(χt+1,θt)

(Alt-RegNPG)
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More importantly, we note that in policy space, the update scheme of natural policy gradient takes a
very simple form which, as expected, reads, for player 1 (⊙ is element-wise multiplication):

π1,t+1(·|s) ∝ π1,t(·|s)1−ηxτ ⊙ exp (ηxQ
πt
τ (s, ·)) ;

π1,t+1(·|s) ≈ argmin
π∈ΠR1

KL
(
π(·|s)

∥∥π1,t+1(·|s)
)
.

To see why the second approximate equality holds, we note that the Mahalanobis distance over
the parameters induced by the Fisher information matrix of the softmax policy, is a second-order
approximation of policy KL divergence. The derivation and an extensive discussion are deferred to
Appendices H.3 and I.
Theorem 3.3 (Informal; restated from Thm. H.3). For an appropriate tuning of ηx, ηy > 0, the
last-iterate of alternating regularized natural policy gradient (Alt-RegNPG) converges in expectation
to an ϵ-approximate Nash equilibrium in a number of iterations T that is:

T = poly
(

1
ϵ ,

1
ε ,

1
γ , |H|, |S1|, |S2|, A,B, 2

D(T )
)
.

4 Empirical Validation

To corroborate our theoretical results, we tested Alt-RegNPG on four different imperfect information
EFGs (Kuhn Poker, Leduc Poker, 2 × 2 Abrupt Dark Hex and Liar’s Dice). Inspired by MMD
(Sokota et al., 2022), we implement two variants of Alt-RegNPG where the (i) the regularization
strength diminishes across time along the stepsizes and (ii) the regularizer is the discounted KL

divergence from a moving reference policy. We observe that the exploitability (i.e. maxπ′
1
V π

′
1,π2 −

minπ′
2
V π1,π

′
2 ) diminishes across time for our method, and it compares well with CFR and MMD.

Figure 1: Three variants of Alt-RegNPG compared against CFR and MMD.

5 Discussion

We conclude our main text with a further comparison between MGs and imperfect information
IIEFGs to further promote the connection between the two areas. Finally, we state our conclusions
and suggestions for future work.

5.1 Further comparison of Markov and Imperfect Information Extensive-Form Games

Imperfect-information IIEFGs and MGs both model multi-stage strategic interaction. They differ
sharply in what each player can observe while they maintain marked similarities in the way strategies
are represented (behavioral strategies and policies), the hidden concave representation of utilities
(concavity w.r.t. sequence-form strategies and occupancy measures), and regularization choices
for optimization. The table and discussion below summarize this comparison along the axes of
observability, strategy space, utility convex reformulation, regularization and optimization landscape.
Clearly, an infoset (information set) in an imperfect-information EFG is to a behavioral strategy what
a state is to a policy in an MG. However, imperfect information (or partial observability) leads to
a discrepancy between the expected return of an infoset in an EFG and the expected return state

9



Game
State

Observable
State

Control
Variables

Utility
Concave In

IIEFG History h ∈ T Infoset s ∈ S Behavioral
Strategy π(·|s)

Sequence-form
Strategy µπ

each a node of
game tree graph T

each a disjoint set of
multiple histories h

distribution over
actions at infoset s

independent of
opponents’ strategies

MG State s
Markovian

Policy π(·|s)
State-action
Occupancy
measure λπ

fully observable by all players
potentially recurring in the finite or infinite

horizon of the game

distribution over
actions at state s

depends on
opponents’ policies

Table 2: Imperfect-information extensive-form games (IIEFG) vs. Markov games (MG).

in an MG as highlighted in (Nayyar et al., 2013; Sokota et al., 2023). Interestingly, the concave
reparametrization of EFG utilities exhibits a structure more favorable than the corresponding one
in MGs. In particular, the utility is concave in sequence-form strategies of IIEFGs and the latter
depend solely on a player’s own behavioral strategy. This comes in stark contrast to the state-action
occupancy measure of MGs which are conditioned on opponents’ strategies.

Finally, similarities of the regularization techniques in IIEFGs and MGs are cornerstone to our work.
The EFG entropic bidilated regularizer (Liu et al., 2024), R, and the very commonly used MDP
discounted entropy (Williams and Peng, 1991; Haarnoja et al., 2018; Mei et al., 2020; Cen et al.,
2022a,b), E , are virtually identical. We note that, in IIEFGs a regularizer is mostly used in context of
directly optimizing in the sequence-form space. They induce a distance generating function of mirror
descent instantiations. Some more recent works have used it to make the game strongly-monotone
and guarantee convergence of gradient descent methods (Liu et al., 2022b). Liu et al. (2024), in
the context of policy optimization, define the bidilated regularizer whose policy gradients can be
estimated without importance sampling. Illustratively, the two regualaizers read side-by-side (γ is a
discount factor of MDPs):

R(π) := Eξ∼π
[∑

s(k)∈ξ ψ(π(·|s(k)))
]

E(π) := Eξ∼π
[∑H

k γ
k−1ψ(π(·|s(k)))

]
.

5.2 Conclusion

We studied three different policy gradient methods for imperfect-information perfect-recall zero-
sum IIEFGs under a unifying optimization principle. We managed to provide the first global
last-iterate convergence guarantees of policy gradient methods to an ϵ-approximate Nash equilibrium.
Furthermore, our analysis requires a number of iterations and samples that is polynomial in 1/ϵ
and the parameters of the game. To do so, we demonstrated that utilities as functions of behavioral
strategies (policies) exhibit gradient domination properties even though they are nonconvex; and
provided a practical decentralized exploration scheme that implicitly controls the moduli of gradient
domination. We departed from the usual route of regret analysis in IIEFGs and opted for more
conventional convergence analysis arguments using a Lyapunov function. We hope to motivate
further exchange between theoretical MARL research and the theory of IIEFGs as we strongly believe
in the potential this communication fosters.

Future directions. Our main objective was proving polynomial time convergence of policy gra-
dient in IIEFGs, our analysis is at places loose. We firmly believe that the convergence rates and
constant dependencies can be improved, e.g., by using the machinery of treeplex norms (Fan et al.,
2024), relatively-smooth optimization (Lu et al., 2018; Fatkhullin and He, 2024), and other policy
optimization arguments (Zhan et al., 2023; Cen et al., 2022b). To be particular, we would like to
see guarantees that do not call for mini-batching and possibly use variance reduction techniques.
Moreover, fundamental questions about the limit points of policy gradient methods in IIEFGs (similar
to those of (Giannou et al., 2022) for MGs) are open. More broadly, do forms of benign nonconvexity
(like hidden convexity) refine the results of (Cai et al., 2024b; Angelopoulos et al., 2025)?
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A Further Related Work

In this section we attempt discussing related work. Arguably, since our work lies in the intersection
of several already broad themes, we encourage the reader to follow references in the cited works.

Relevant MARL for MG works In MDP and MG literature, policy optimization seems to come in
two flavors—an online learning (Hazan et al., 2016; Lattimore and Szepesvári, 2020) approach and a
stochastic optimization one. In the current work, we opt for the second approach.

The approach of (Zeng et al., 2022) which considers zero-sum Markov games is particularly similar
to ours. Yet, we highlight that they make a rather strong assumption; they assume that the probability
of playing each action in the support of the regularized Nash equilibrium is lower-bounded by a
constant independent of the regularization coefficient τ . In turn, we contribute the two-sided pPŁ
condition for IIEFGs and, importantly, circumvent such an assumption by exercising direct control
over the minimum probability of playing any action by projecting the parameters of the softmax
parameters onto a convex polytope.

Theory of Policy Gradient Methods The policy gradient method was introduced for Markov
decision processes in (Williams, 1992; Sutton et al., 1999). Ever since provable guarantees have been
yielded by a number of works for different variations of the algorithm:

• (Agarwal et al., 2021) prove the convergence of directly parametrized policy gradient. They
use the convergence result of gradient descent for smooth nonconvex function along a
gradient domination lemma to demonstrate a O(1/ϵ2) convergence rate to optimality. Later,
(Zhang et al., 2020, 2021) use the hidden concave structure of the problem to improve the
convergence rate to O(1/ϵ).

• (Mei et al., 2020) provide the first non-asymptotic convergence rate result for the policy
gradient method using discounted entropy regularization (the analogue of bidilated entropy
regularization). The proof of convergence uses a novel nonuniform PŁ condition.

• (Cen et al., 2022a) analyze natural policy gradient (NPG) with discounted entropy regular-
ization. Natural policy gradient can be seen as a form of preconditioned gradient descent.
Natural policy gradient effectively boils down to policy multiplicative weight updates using
the Q-functions as feedback. The analysis of convergence uses a linear dynamical system.

Regularized Markov Decision Processes Regularization in RL seems to have a very broad
development. It was theoretically analyzed by (Haarnoja et al., 2018; Nachum et al., 2017; Geist
et al., 2019). Regularization helps with both the optimization landscape (Mei et al., 2020) as well as
learning policies from offline data (Neu et al., 2017).

RL & Regularization in IIEFGs Applying RL in IIEFGs, in the sense of using policy gradients
and action-value functions is not a new endeavor. It has been extensively studied from both theoretical
and practical viewpoints (Munos et al., 2020; Sokota et al., 2022; Rudolph et al., 2025). Yet, a
provable convergence guarantee for policy gradient methods like ours was missing. Furthermore,
using regularization has also been investigated in (Perolat et al., 2021; Liu et al., 2022b, 2024) to get
favorable convergence guarantees to equilibria, to guarantee uniqueness of equilibria and continuity
of best-response maps Sokota et al. (2023).

Markov Games MGs have been extensively studied through the lens of policy gradient and policy
optimization methods. For the zero-sum setting there have been numerous algorithmic approaches
using multiple techniques (Brafman and Tennenholtz, 2002; Perolat et al., 2015; Alacaoglu et al.,
2022a; Wei et al., 2021; Zhang et al., 2022).
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B Further Preliminaries on IIEFGs

B.1 The Behavioral and Sequence-Form Strategies

In this subsection, we investigate the continuity of the sequence-form map and that of its inverse.

Lemma B.1. Under Assumption 2, the transforms c−1
1 :M1 → Xγ , c−1

2 :M2 → Yγ are Lipschitz
continuous. I.e., for any µ1, µ

′
1, it holds true that,

∥∥c−1
1 (µ1)− c−1

1 (µ′
1)
∥∥ ≤ 2|H|

√
A

γ
∥µ1 − µ′

1∥

and for any µ2, µ
′
2,

∥∥c−1
2 (µ2)− c−1

2 (µ′
2)
∥∥ ≤ 2|H|

√
B

γ
∥µ2 − µ′

2∥ .

Proof. We will first observe the difference in c−1
1 in the (s, a)-th entry of the the vector-valued

mapping:
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As a reminder, for all s ∈ S1 it holds that µ1(s) ≥ γ
|H| by Assumption 2. Proceeding towards the

desired inequality,∥∥c−1
1 (µ1)− c−1

1 (µ′
1)
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We need to upper bound the second term by some quantity proportional to ∥µ1 − µ′
1∥. We first note

that by the triangular inequality,∣∣∣∣∣ ∑
a∈As

µ′
1(a|s)− µ1(a|s)

∣∣∣∣∣ ≤ ∑
a∈As

|µ′
1(a|s)− µ1(a|s)|

≤
√
A ∥µ′

1(·|s)− µ1(·|s)∥ .
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where the last inequality is due to the fact that ∥x∥1 ≤
√
d ∥x∥ ,∀x ∈ Rd. As such, we can note that,

∑
s∈S1

(∑
a∈As

µ′
1(a|s)− µ1(a|s)

)2

≤
∑
s∈S1

(√
A ∥µ′

1(·|s)− µ1(·|s)∥
)2

= A
∑
s∈S1

∑
a∈As

(µ′
1(s, a)− µ1(s, a))

2

= A ∥µ′
1 − µ1∥

2
.

Plugging this inequality into (1) yields the desired bound.

Lemma B.2. The sequence-form strategy µ1 = c1(π1) is a (
√
|Σ1|D(T ))-Lipschitz and

(
√
|Σ1|D(T ))-smooth function of the behavioral strategy π1. That is,

∥c1(π1)− c1(π′
1)∥2 ≤

√
|Σ1|D(T ) ∥π1 − π′

1∥2 ,

∥Jc1(π1)− Jc1(π
′
1)∥op ≤

√
|Σ1|D(T ) ∥π1 − π′

1∥2 ,

for any π1, π′
1, where Jc1(·) denotes the Jacobian of the sequence-form map.

Proof. For the continuity of µ1 we observe that each entry of the Jacobian, Jc1(π1), is in [0, 1] as a
product of variables in [0, 1]. Further, the number of non-zero elements of each row of Jc1 is bounded
by the height of the tree, D(T ). We can then write,

max
π1

∥Jc1(π1)∥
2
op ≤ max

π1

∥Jc1(π1)∥
2
F ≤ |Σ1|D(T ).

Now, for the continuity of the Jacobian, Jc1(·), we make some observations on the Hessian tensor.
In particular, for the matrix corresponding to a single entry of µ1, with index i, it is the case that
all entries are in [0, 1] and are at most D(T )2 in number. Then, we consider ∥∇2c(π1)∥op :=

sup∥u∥2=∥v∥2=1

√∑
i

(∑
j

∑
k[∇2c(π1)]ijkujvk

)2
where j, k index entries of π1. In this case, by

bounding each
(∑

j

∑
k[∇2c(π1)]ijkujvk

)
by an upper bound on its Frobenius norm, we conclude

that,

∥∇2c(π1)∥2op ≤ |Σ1|D(T )2.

Lemma B.3. The sequence-form strategy µ1 = c1(πχ) is a (
√
|Σ1|D(T ))-Lipschitz and

(
√
|Σ1|D(T ))-smooth function of the parameters of softmax policy πχ, χ. That is,

∥c1(πχ)− c1(πχ′)∥2 ≤
1
2

√
|Σ1|D(T ) ∥χ− χ′∥2 ,

∥Jc1(πχ)− Jc1(πχ′)∥op ≤ 16
√
|Σ1|D(T ) ∥χ− χ′∥2 ,

for any χ, χ′.

Proof. We know that the softmax map is 1
2 -Lipschitz continuous and it has a 8-Lipschitz Jacobian

Lemma D.2. Treating c1(πχ) as a composition of the sequence-form map and the softmax map, we
can conclude that,

∥c1(πχ)− c1(πχ′)∥2 ≤
√

Σ1D(T )
2

∥χ− χ′∥ ,

and

∥Jc1(πχ)− Jc1(πχ′)∥op ≤
(√
|Σ1|D(T )

(
1
2

)2
+
(√
|Σ1|D(T )

)
8
)
∥χ− χ′∥2 ,

≤ 16
√
|Σ1|D(T ) ∥χ− χ′∥2 .
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B.2 Value, Action-Value, and Advantage Functions

On notation. In this subsection, we will use the following shorthand notations,

• σ1(h), σ2(h) returns the last history before h where player 1 (player 2, resp.) took an action,
• h ∈ s signifies that history h belongs in the infoset s,
• h′ ⪰T h, h′ ⪰T (h, a) signifies that h′ is a successor/child node of h, (h, a);
• h ∈ ξ, (h, a) ∈ ξ signifies that h, h, a belongs in the game trajectory ξ from the root to a

terminal node.

Occupancy measure For a policy pair π := (π1, π2), we define dπ : S → [0, 1] to be a finite
measure over all the infosets—summing over all infosets s ∈ S yields the depth of the game tree
D(T )—where for any infoset s ∈ S,

dπ(s) :=
∑
h∈s

µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h)).

The value function of each infoset is defined as,

V π1 (s) :=Eξ∼π

∑
h′∈ξ

r1(h
′)1{h′ ⪰T s}

∣∣∣ ∃h ∈ s : h ∈ ξ


=
1∑

h∈s µc(h)µ
π1
1 (σ1(h))µ

π2
2 (σ2(h))

∑
h′:∃h∈s,h′⪰T h

µc(h
′)µπ1

1 (σ1(h
′))µπ2

2 (σ2(h
′))r1(h

′).

Also, the action-value function reads:

Qπ1 (s, a) :=Eξ∼π

 ∑
h′∈ξ,h′⪰T (h,a)

r(h′)
∣∣∣∃h ∈ s : (h, a) ∈ ξ



=
1∑

ξ P
π(ξ)1{∃h ∈ s : (h, a) ∈ ξ}

∑
ξ

Pπ(ξ)1{∃h ∈ s : (h, a) ∈ ξ}

 ∑
h′∈ξ,

h′⪰T (h,a)

r(h′)

 .
We define the advantage function to be:

Aπ1 (s, a) := Qπ1 (s, a)− V π1 (s).

Finally, let a policy pair π1, π2 and π := (π1, π2). Let π1 be parametrized by some vector θ. We
compute the policy gradient for θ,

∂V π1
∂θs,a

=
∂

∂θs,a

∑
ξ

r1(ξ)Pπ(ξ)

=
∑
ξ

r1(ξ)Pπ(ξ)
∂ logPπ(ξ)
∂θs,a

=
∑
ξ

∑
a′

r1(ξ)Pπ(ξ)
∂ log π1(a

′|s)
∂θs,a

1{∃h ∈ s : (h, a′) ∈ ξ}

=
∑
ξ

∑
a′

(
r1(ξ)Pπ(ξ)

1{∃h ∈ s : (h, a′) ∈ ξ}
π1(a′|s)

)
π1(a

′|s)∂ log π1(a
′|s)

∂θs,a

=
∑
ξ

∑
a′


 ∑

h′∈ξ,
h′⪰T (h,a)

r(h′) +
∑
h′∈ξ,

h′≺T (h,a)

r(h′)

Pπ(ξ)
1{∃h ∈ s : (h, a′) ∈ ξ}

π1(a′|s)

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a
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=
∑
ξ

∑
a′


 ∑

h′∈ξ,
h′≺T (h,a)

r(h′)

Pπ(ξ)
1{∃h ∈ s : (h, a′) ∈ ξ}

π1(a′|s)

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

+ dπ(s)
∑
a′

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

Qπ(s, a′)

= dπ(s)
∑
a′

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

Qπ(s, a′). (2)

Where we have used the following fact,

∑
ξ

∑
a′


 ∑

h′∈ξ,
h′≺T (h,a)

r(h′)

 1{∃h ∈ s : (h, a′) ∈ ξ}
π1(a′|s)

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

=
∑
a′

∑
ξ


 ∑

h′∈ξ,
h′≺T (h,a)

r(h′)

 1{∃h ∈ s : (h, a′) ∈ ξ}
π1(a′|s)


︸ ︷︷ ︸

=:C(s)

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

=
∑
a′

C(s)π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

= C(s)
∑
a′

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

= C(s)
∂

∂θs,a

∑
a′

π1(a
′|s)

= C(s)
∂

∂θs,a
1 = 0.

Further, for direct policy parametrization, we get,

∂V π1
∂π1(s, a)

= dπ(s)Qπ(s, a).

For the softmax policy parametrization, (2) yields,

∂V π1
∂θs,a

= dπ(s)
∑
a′

π1(a
′|s)∂ log π1(a

′|s)
∂θs,a

Qπ(s, a′)

= dπ(s)
∑
a′

π1(a
′|s) [1{a′ = a} − π1(a′|s)]Qπ(s, a′)

= dπ(s)π1(a|s) [Qπ(s, a)− V π(s)]
= dπ(s)π1(a|s)Aπ(s, a).

B.3 Continuity of the Utility

We briefly consider the Lipschitz continuity of the utility w.r.t. direct and softmax policy parametriza-
tions.
Lemma B.4. The utility of an IIEFG function as a function of direct-parametrized policies is
(maxi∈{1,2}

√
|Σi|D(T ))-smooth.

Proof. Let u := Rµπ2
2 . It is a vector in R|Σ1| with entries in [−1, 1]. As such,

V π1,π2 = ⟨µπ1
1 , u⟩ ,
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from which we write,∥∥∥∇π1
V π1,π2 −∇π1

V π
′
1,π2

∥∥∥ =
∥∥∥∇π1

⟨µπ1
1 , u⟩ − ∇π1

⟨µπ
′
1

1 u⟩
∥∥∥

≤ ∥u∥
√
|Σ1|D(T ) ∥π1 − π′

1∥
≤ |Σ1|D(T ) ∥π1 − π′

1∥ .
Where, we used Lemma B.2 in the first inequality.

Lemma B.5. The utility function as a function of softmax-parametrized policies is
16(maxi∈{1,2}

√
|Σi|D(T ))-smooth.

Proof. We treat the utility function as a composition of the utility as a function of the policy and the
softmax map (i.e., Lemma B.4 along with Lemma D.2).

B.4 Properties of the Bidilated Regularizer

Introduced in (Liu et al., 2024), the bidilated regularizer offers an alternative to the commonly used
dilated regularizer (Hoda et al., 2010). It can be seamlessly used along Q feedback by dropping the
need of importance sampling which would be necessary for the dilated regularizer when the gradient
is estimated through trajectory roll-outs. The purpose of this refined regularizer was introducing
a distance generating function in the sequence-form space that would not necessitate importance
sampling.

B.4.1 Strong Convexity Modulus

Lemma B.6. For a choice of strongly convex function ψ, and a weighting scheme {w1,s}s∈S1 ,
{w2,s}s∈S2 and let αdil > 0 be the modulus of the weighted dilated regularizer. Then, the corre-
sponding bidiliated regularizer is strongly convex,

αbi :=
γ

|H|
min
h
µc(h).

Proof. These calculations were used in the proof of (Liu et al., 2024, Lemma D.1); we repeat them for
completeness. For an appropriate choice of weights {w1,s}s∈S1

, {w2,s}s∈S2
, the weighted bidilated

regularizer is defined as,

Rψ1 (µ
π1
1 , µπ2

2 ) :=
∑
s

µπ1
1 (σ1(s))

(∑
h∈s

µc(h)µ
π2
2 (σ2(h))

)
w1,sψ(π1(·|s))

Rψ2 (µ
π1
1 , µπ2

2 ) :=
∑
s

µπ2
2 (σ2(s))

(∑
h∈s

µc(h)µ
π2
2 (σ1(h))

)
w2,sψ(π2(·|s)).

We can slightly refine (Liu et al., 2024, Lemma C.1) in order to compute an explicit lower bound
on the convexity modulus of different weighted bidilated regularizer depending on the choice of ψ.
From the fact that R1(µ

π1
1 , µπ2

2 ) is linear in µπ2
2 and the definition of the Bregman divergence, we

conclude that,〈
∇(R1 +R2)(µ

π1
1 , µπ2

2 )−∇(R1 +R2)(µ
π′
1

1 , µ
π′
2

2 ), (µπ1
1 , µπ2

2 )− (µ
π′
1

1 , µ
π′
2

2 )
〉

≥ BRψ
1

(
µ
π′
1

1

∥∥µπ1
1 ;µπ2

2

)
+BRψ

1

(
µπ1
1

∥∥µπ′
1

1 ;µπ2
2

)
+BRψ

2

(
µπ2
2

∥∥µπ′
2

2 ;µπ1
1

)
+BRψ

2

(
µ
π′
2

2

∥∥µπ2
2 ;µ

π′
1

1

)
.

By (Liu et al., 2022c, Lemma D.2) we know that,

BRψ
1

(
µ
π′
1

1

∥∥µπ1
1 ;µπ2

2

)
≥ γ

|H|
min
h
µc(h)B

dil
ψ (µ

π′
1

1 ∥µ
π1
1 ).

As such, for the strong convexity modulus of the weighted Rψ1 relative to the choice of norm
appropriate for ψ, we write,

αbi :=
γ

|H|
min
h
µc(h)αdil.
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By (Farina et al., 2019, Corollary 1), we know that there exists a weighting scheme, such that the
Euclidean dilated regularizer is 1-strongly convex w.r.t. the ℓ2-norm. The procedure assigns weights
to nodes in a bottom-up fashion.

• At each leaf node s, the weights are set to

w1,s = 1.

• For an internal node s, let sa, sa′ , . . . denote its child nodes under actions a, a′, . . . . For
each action a, compute

W1,sa =
∑

s′⪰T (s,a)

w1,s′ .

• The node’s weights are then set to

w1,s = 2max
a

W1,sa .

Corollary B.1 (Euclidean Regularizer). There exists a choice of weights, with
maxs w1,s,maxs w2,s = Θ(2D(T )), and under the assumption that mins µ2(s) ≥ γ, the
bidilated Euclidean regularizer has a strong convexity modulus w.r.t. the ℓ2-norm, αbi,

αeucl
bi :=

γ

|H|
min
h
µc(h).

(Kroer et al., 2020, Theorem 2) states that a recursion defines weights with maxs w1,s,maxs w2,s =

Θ(2D(T )) such that the entropic dilated regularizer is strongly convex w.r.t. the ℓ2-norm.
Corollary B.2 (Entropic Regularizer). There exists a choice of weights, and under the assumption
that mins µ2(s) ≥ γ, the bidilated entropic regularizer has a strong convexity modulus w.r.t. the
ℓ2-norm, αbi,

αent
bi :=

γ

|H|
min
h
µc(h).

B.4.2 Lipschitz Moduli

Here, we establish the Lipschitz continuity of the regularizers and that of their gradients.

Euclidean regularizer
Lemma B.7. The weighted Euclidean bidilated regularizer is ℓ-smooth with

ℓ := Θ

(
2D(T ) max

i∈{1,2}
|Σi|D(T )S

)
.

Proof. We write the bidilated regularizer as

Reucl
1 (π1, π2) := ⟨f(π1, π2), g(π1)⟩ .

For a fixed π2, we have

∇π1
Reucl

1 (π1, π2) = Jf (π1, π2)
⊤g(π1) + Jg(π1)

⊤f(π1, π2),

where, f(π1, π2), g(π1) ∈ R|H| with f(π1, π2) =
∑
h∈s µc(h)µ

π2
2 (σ2(h))µ

π1
1 (σ1(h)) and

gs(π1) = w1,s ∥π1(·|s)∥2. We write:∥∥∇π1
Reucl

1 (π1, π2)−∇π1
Reucl

1 (π′
1, π2)

∥∥
≤ ∥(Jf (π1)− Jf (π

′
1))∥ ∥g(π′

1)∥+ ∥Jf (π′
1)∥ ∥g(π1)− g(π′

1)∥
+ ∥Jg(π1)− Jg(π

′
1)∥ ∥f(π1)∥+ ∥Jg(π′

1)∥ ∥f(π1)− f(π′
1)∥

≤
(
ℓf max

π′
1

∥g(π′
1)∥+ 2LfLg + ℓgmax

π1

∥f(π1)∥
)
∥π1 − π′

1∥

≤
(
ℓf
√
S + 2LfLg + ℓg

√
S
)
∥π1 − π′

1∥
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• For g, we see that Lg :=
√
Smaxs w1,s and ℓg := 2

√
Smaxs w1,s by the properties of the

weighted ℓ2-norm and the fact that π1(·|s) lies in the simplex, i.e., ∥π1(·|s)∥2 ≤ 1. Also,
the weight w1,s only scales the local quadratic term.

• For f , similar to Lemma B.2 and Lemma B.4, Lf ≤ maxi∈{1,2} |Σi|
√
D(T )S and ℓf ≤

maxi∈{1,2} |Σi|D(T )
√
S. Also, it holds that maxπ1,π2 ∥f(π1)∥ ≤

√
S.

Concluding,∥∥∇π1
Reucl

1 (π1, π2)−∇π1
Reucl

1 (π′
1, π2)

∥∥ ≤ 64max
s
w1,s max

i∈{1,2}
|Σi|D(T )

√
S ∥π1 − π′

1∥ .

Symmetrically,∥∥∇π2Reucl
2 (π1, π2)−∇π2Reucl

2 (π1, π
′
2)
∥∥ ≤ 64max

s
w2,s max

i∈{1,2}
|Σi|D(T )

√
S ∥π2 − π′

2∥ .

Now, we need to bound the Lipschitz modulus of∇π1
Reucl

2 (π1, π2). Similarly, we write,

Reucl
2 (π1, π2) := ⟨f(π1, π2), g(π2)⟩ .

We see that the the vector f(π1, π2) (occupancy measure of player 2) has entries that are products of
entries of µ1, µ2, µc. Hence, Lf = maxi∈{1,2} |Σi|

√
D(T )S and ℓf = maxi∈{1,2} |Σi|D(T )

√
S.∥∥∇π1

Reucl
2 (π1, π2)−∇π1

Reucl
2 (π′

1, π2)
∥∥ ≤ ∥Jf (π1, π2)− Jf (π

′
1, π2)∥ ∥g(π2)∥

≤ max
i∈{1,2}

|Σi|D(T )
√
S ∥π1 − π′

1∥ ∥g(π2)∥

≤ max
s
w2,s max

i∈{1,2}
|Σi|D(T )S ∥π1 − π′

1∥ .

Entropic regularizer
Lemma B.8. The weighted entropic bidilated regularizer is ℓ-smooth with

ℓ := Θ

(
2D(T ) max

i∈{1,2}
|Σi|D(T )S logA

)
.

Proof. We writeR2 as the inner product of f(πχ) := dπχ,πθ and g := [πθ(b|s) log πθ(b|s)]s,b. For
notational convenience, we suppress dependence of f, g on πθ.

R2(πχ) := ⟨f(πχ, πθ), g(πθ)⟩ .

We now bound the Lipschitz modulus of the gradient using the chain rule:

∥∇χR2(πχ, πθ)−∇χR2(πχ′ , πθ)∥ ≤
∥∥Jπ(χ)⊤Jf (πχ)− Jπ(χ

′)⊤Jf (πχ′)
∥∥ ∥g(πθ)∥

≤
(∥∥Jπ(χ)⊤Jf (πχ)− Jπ(χ)

⊤Jf (πχ′)
∥∥+ ∥∥Jπ(χ)⊤Jf (πχ′)− Jπ(χ

′)⊤Jf (πχ′)
∥∥) ∥g(πθ)∥

≤ (∥Jπ(χ)∥ ∥Jf (πχ)− Jf (πχ′)∥+ ∥Jf (πχ′)∥ ∥Jπ(χ)− Jπ(χ
′)∥) ∥g(πθ)∥

≤
((

1
2

)2
max
i∈{1,2}

|Σi|D(T )
√
S + 8 max

i∈{1,2}
|Σi|

√
D(T )S

)√
Smax

s
w2,s ∥χ− χ′∥ .

For the Lipschitz modulus of∇χR1(πχ, πθ), we re-purpose the lengthy calculations found in the
proof of (Mei et al., 2020, Lemma 14), we consider χ = χ0 + αu for some u, χ ∈ RA, α ∈ R,∥∥∥∥dg(χ+ αu)

dα

∥∥∥∥
∞
≤ max

s
w1,s logA ∥u∥2 ;

hence, (since ∥x∥2 ≤
√
S1 ∥x∥∞),∥∥∥∥dg(χ+ αu)

dα

∥∥∥∥
2

≤ max
s
w1,s logA

√
S ∥u∥2 ,
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or, Lg = maxs w1,s logA
√
S. Similarly,∥∥∥∥d2g(χ+ αu)

dα2

∥∥∥∥
∞
≤ 3max

s
w1,s(1 + logA) ∥u∥2 ;

and, as such, ∥∥∥∥d2g(χ+ αu)

dα2

∥∥∥∥
2

≤ 3max
s
w1,s(1 + logA)

√
S ∥u∥2 ,

or, ℓg = 3maxs w1,s(1 + logA)
√
S. Hence, ∇χR1 is ℓ-smooth with

ℓ ≤ max
s
w1,s logA

√
S

(√
SD(T )

(
1
2

)2
+ 8
√
S max
i∈{1,2}

√
|Σi|D(T )

)
+

+
√
S3max

s
w1,s(1 + logA)

√
S + 2 max

i∈{1,2}
|Σi|
√
D(T )S 1

2 max
s
w1,s logA

√
S

≤ 242D(T ) max
i∈{1,2}

|Σi|
√
D(T )S logA.
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C Efficient Exploration

Throughout our proofs, we have kept our complexity results parametric w.r.t. 1/γ. A naive exploration
rule that would dictate that the player merely picks behavioral strategies over the ε-truncated simplex
will give a γ = O(εD(T )). We propose a different approach to exploration. In particular, every player
is expected to reach every prefix subsequence with a probability γ

|Σi| where |Σi| := 1 +
∑
s∈S1

|As|
denotes the set of all possible “prefix” sequences of player i. The rule is simple,

• at the beginning of each game, the player throws a biased coin which lands on “heads” with
probability γ. If so happens, the player executes a sequence of actions with probability 1

|Σi| .
Afterwards, the player continues to play according to their own behavioral strategy.

• In the case that the coin lands on “tails”, the player simply plays according to their behavioral
strategy.

We observe that in sequence-form, this means that µ1(σ(s)) ≥ γ
|Σ1| +

γ
|Σ1|

∑
s′∈Σ1

1{s′ ⪰T s}
(in words, the amount of “probability flow” reaching the corresponding sequence σ(s) for s, is at
least as much as γ

|Σ1| plus the flow that passes through σ(s) to visit its children). In other words, the
sequence-form strategies are truncated by a set of linear constraints and as long as γ ≤ 1

|Σ1| , there set
of feasible sequence-form strategies is non-empty. We now observe that the mapping, from µ to the
part component of the behavioral policy the agent can in fact control, is

π(a|s) =
µ(s, a)− γ

|Σ1|
∑
s′∈Σ1

1{s′ ⪰T (s, a)}
µ(σ(s))− γ

|Σ1|
∑
s′∈Σ1

1{s′ ⪰T s}
.

The “probability flow” passing through the edge (s, a) breaks down to a controllable part due
to the policy π(a|s) and an uncontrollable one due to the exploration scheme. In particular, the
uncontrollable “probability flow” is precisely γ

|Σ1| ×
∑
s′∈Σ1

1{s′ ⪰T (s, a)}—i.e., proportional to
the number of nodes of the subtree rooted at the next node after (s, a) where player 1 acts. As such,
the Lipschitz continuity of mapping µ 7→ π, is Lipschitz continuous with a modulus,

|Σ1|
√
A

γ
,

by following the same line of arguments as the ones in Lemma B.1.

In short, we are only adding an additional linear constraint on the feasibility set of µπ1
1 (and µπ2

2 ,
respectively). Granted that that this new feasibility set is always non-empty, this γ-truncated treeplex
remains a convex polytope. Finally we note that for any player i, |Σi| ≤ |H|.
Proposition 1. Let Γ be an n-player imperfect-information EFG Γ with perfect recall. Also, assume
that players follow the exploration scheme of Assumption 2. Then, an ϵ-NE on the exploration-
induced γ-truncated treeplices, is an

(
ϵ+ 2[1− (1− γ)n]

)
-NE of the original game.

Proof. Let π⋆ be a joint policy profile, V π
⋆
i will be the utility of player under no exploration under

joint policy π⋆ and V π
⋆

γ,i the utility of player i under the exploration scheme. When the exploration
scheme is followed, there is still a probability (1 − γ)n that no player follows it for a particular
episode. Hence, for any π⋆,∣∣∣V π⋆i − V π

⋆

γ,i

∣∣∣ ≤ (1− (1− γ)n)(ri,max − ri,min)

≤ (1− (1− γ)n),
where, ri,max, ri,min signify the maximum and minimum value of payoff ri for player i. With the

same line of reasoning,
∣∣∣maxπ′

i
V
π′
i,π

⋆
−i

i −maxπ′
i
V
π′
i,π

⋆
−i

γ,i

∣∣∣ ≤ 1− (1− γ)n. Now, assume {π⋆i }i∈[n]

to be an ϵ-NE. Fixing a player i, we want to compute the difference in the optimality gap on the
γ-truncated treeplex versus the entire treeplex. Now, by definition of the ϵ-NE,

max
π′
i

V
π′
i,π

⋆
−i

γ,i − V π
⋆

γ,i ≤ ϵ ⇒ max
π′
i

V
π′
i,π

⋆
−i

i − V π
⋆

i ≤ ϵ+ 2[1− (1− γ)n].

When n = 2, ϵ+ 2[1− (1− γ)2] = ϵ+ 4γ − 2γ2 = O(ϵ+ γ).
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D Regarding the Policy Parametrization

D.1 Definitions

Direct policy parametrization. Both players parameterize their policies (or behavioral strategies),
π1 : S1 → A and π2 : S2 → B, using a concatenation of |S1| and |S2| probability vectors over the
(potentially truncated) probability simplex ∆(As),∆(Bs) for all s in S1 and S2 respectively. The
parameter space of player 1 is denoted by X :=

∏
s∈S1

∆(As), while the parameter space of player
2 by Y :=

∏
s∈S2

∆(Bs).

Softmax policy parametrization. Softmax parametrized policies have a well-known definition.
The parameters of the corresponding policies are denoted χ, θ with χ ∈ RA, A =

∑
sAs and

θ ∈ RB , B =
∑
sBs. For each infoset s, the policy is

πχ(a|s) =
exp(χs,a)∑
a′ exp(χs,a′)

or πθ(b|s) =
exp(θs,b)∑
b′ exp(θs,b′)

.

Now, since we want to have control over the minimum eigenvalue of the Jacobian of softmax(·), we
restrict the parameter space to the following convex polytopes,

XR :=
{
χ ∈ RA, A =

∑
s

As : χ
⊤
s 1 = 0, ∀s ∈ S1, |χs,i − χs,j | ≤ 2R, ∀i, j ∈ [As]

}
;

ΘR :=
{
θ ∈ RB , B =

∑
s

Bs : θ
⊤
s 1 = 0,∀s ∈ S2, |θs,i − θs,j | ≤ 2R, ∀i, j ∈ [Bs]

}
.

D.2 Properties under Parameter Constraints

Lemma D.1. Let J := Jsoftmax(θ) ∈ Rd×d be the Jacobian of the softmax map. Its matrix form is:

J = diag (softmax(θ))− softmax(θ)softmax(θ)⊤.

Further, the vector 1 is an eigenvector of J with a corresponding eigenvalue of 0. The rest of the
eigenvalues are

λi ∈
[
min
i∈[d]

softmaxi(θ),max
i∈[d]

softmaxi(θ)

]
.

Proof. For brevity, define σ := softmax(θ), and let diag(v) be the d × d diagonal matrix “whose
diagonal entries are given by v ∈ Rd,

J = diag(σ)− σσ⊤.

First, we observe that the all-ones vector 1 ∈ Rd is an eigenvector of J with a corresponding
eigenvalue of 0,

J = diag(σ)1− σσ⊤1

= σ − σ(σ⊤)1

= σ − σ = 0.

By Weyl’s inequality for two Hermitian matrices, A,B, we know that their eigenvalues indexed in a
descending order λ1(A) ≥ · · · ≥ λd(A) satisfy,

λi+j−d(A+B) ≤ λi(A) + λj(B) ≤ λi+j−1(A+B).

λi(diag(σ)) = σ↓
i while λd(−σσ⊤) = −∥σ∥22 ∈

[
−1,− 1

d

]
. Hence,

• λ+min(J) ≥ mini∈[d] σi(θ) — by taking i = d and j = d− 1;

• σ↓
2 ≤ λmax(J) ≤ maxi∈[d] σi(θ) — by taking i = 2, j = 1 for the LHS and i = 1, j = 1

for the RHS.
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Lemma D.2 ((Zhang et al., 2021, Lemma 5.3)). The softmax map is 8-smooth.

Lemma D.3. The softmax map, softmax : Rd → Rd, has an 3√
2
d3/2-smooth gradient.

Proof. Again we use σ := softmax(θ) for brevity. We compute the second order derivatives:

∂2

∂θj∂θk
σi =

∂

∂θk
[σi(δij − σj)]

= σi(δik − σk)(δij − σj)− σiσj(δjk − σk).

Every term is a function of θ and it is true in general that∣∣f(θ) g(θ)h(θ) − f(θ′) g(θ′)h(θ′)
∣∣ ≤

|f(θ)− f(θ′)| |g(θ)| |h(θ)| + |g(θ)− g(θ′)| |f(θ′)| |h(θ)| + |h(θ)− h(θ′)| |f(θ′)| |g(θ′)|.

As such, we can write, ∣∣∣∣ ∂2

∂θj∂θk
σi(θ)−

∂2

∂θj∂θk
σi(θ

′)

∣∣∣∣ ≤ 3 ∥θ − θ′∥2

Lemma D.4. Assume θ ∈ Rd with θ ∈ ΘR := {θ ∈ Rd : θ⊤1 = 0 and |θi− θj | ≤ 2R, ∀i, j ∈ [d]}.
Then, the following bounds hold true,

• mini∈[d] softmaxi(θ) ≥ 1
1+(d−1)e2R

;

• maxi∈[d] softmaxi(θ) ≥ 1
1+(d−1)e−2R .

Proof.

Minimum probability lower bound. W.l.o.g. we minimize the first coordinate. We write,

eθ1∑
i e
θi

=
1

1 +
∑
i>1 e

θi−θ1
.

By observing that,

eθi−θ1 ≤ max
j
eθj−θ1

We can lower bound the value as,

eθ1∑
i e
θi
≥ 1

1 + (d− 1)maxj{eθj−θ1}

It suffices to maximize the quantity maxj ̸=1,θ∈ΘR{θj − θ1} as the RHS quantity is non-increasing in
maxj ̸=1,θ∈ΘR{θj − θ1}. I.e., the largest difference between two coordinates of a vector in the sphere
is 2R. The minimum is achieved when θj − θ1 = 2R and θj = θk,∀j, k ≥ 2.

Maximum probability lower bound. Similarly, w.l.o.g, it suffices to maximize softmax1(θ) for
θ ∈ ΘR.

eθ1∑
i e
θi

=
eθ1

eθ1 +
∑
i ̸=1 e

θi

≤ eθ1

eθ1 + (d− 1)e
∑
i θi/(d−1)
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where the inequality follows from the convexity of ex. For any θ ∈ ΘR the point (θ) =
(θ1, . . .

θi
d−1 , . . . ) is also in ΘR due to the convexity of the set (it is a linear polytope). We can

simply optimize the objective,

max
a,b

1

1 + (d− 1)eb−a

s.t. |a− b| ≤ 2R.

Due to the objective function’s monotonicity in b− a, the program can be simplified even more into,

min
a,b

b− a

s.t. |a− b| ≤ 2R.

Finally, it is clear that the last objective is minimized for a− b = −2R. Letting ε ≤ (d− 1)−2.

In this vein, if we want to bound the minimum probability of the softmax parametrized policy
by ε > 0 for some R > 0, we need to set R ≤ 1/2 log

(
1−ε
ε(d−1)

)
. Then, it is also the case that

maxθ∈ΘR,i softmaxi(θ) ≥ 1−ε
1−ε+ε(d−1)2 ≥ 1− ε− ε(d− 1)2.

Proposition 2. Let p be a probability vector in ∆d−1 and define θ(p) to be the set of θ such that
softmax(θ) = p. For any two θ, θ′ ∈ θ(p), there exists a c ∈ R such that θ = θ′ + c1.

Proof. By assumption, softmax(θ) = softmax(θ′) = p. For every entry i,

pi =
eθi∑
i e
θi

=
eθ

′
i∑

i e
θ′i
.

Letting Z :=
∑d
i e

θi , Z ′ :=
∑d
i , we observe,

eθi

eθ
′
i

=
Z ′

Z
=⇒

θi = θ′i + log
Z ′

Z
, ∀i ∈ {1, . . . , d}.

Hence, any two θ, θ′ that map to the same probability vector are translations of each other in the
direction of 1.

Proposition 3. Let p ∈ ∆d−1 be a probability vector and the set, θ(p) , of vectors θ ∈ Rd such that
softmax(θ) = p. For the vector θ⋆ := argminθ∈Θ(p) ∥θ∥

2 it holds true that,

1⊤θ = 0.

Proof. The set θ(p) takes the form θ(p) := {(θi = log pi + c) | c ∈ R} = {θ0 + c1 | c ∈ R} for
an appropriate choice of θ0. Picking an arbitrary θ0 ∈ θ(p) to use as a reference, we can write the
problem of minimizing ∥θ∥2 as,

min
θ∈θ(p)

∥θ∥2 ≡ min
c∈R
∥θ0 + c1∥22 ≡ min

c∈R
∥θ0∥2 + ⟨θ0, c1⟩+ ∥c1∥2 .

By the first-order optimality conditions, c = − 1
dθ

⊤
0 1. Plugging back this for θ⋆, we see θ⋆ =

θ0 − 1
d1(θ

⊤
0 1). We see that, 1⊤θ⋆ = 1⊤θ0 − d

dθ
⊤
0 1 = 0.

Lemma D.5. Assume a fixed 0 < R < ∞ and define the set ΘR to be ΘR := {θ ∈ Rd : θ⊤1 =
0 and |θi − θj | ≤ 2R, ∀i, j ∈ [d]}. Then, softmax(ΘR) is a convex set.
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Proof. For any p ∈ ∆d−1 for which e−2R ≤ pi
pj
≤ e2R, ∀i, j ∈ [d], there exists θ ∈ ΘR such that

softmax(θ) = p. To see this, we apply the logarithm on the inequalities,

−2R ≤ log pi − log pj ≤ 2R. (3)

A vector χ with entries χi := log pi clearly implements p. By (3) we see that subtracting κ =
maxj log pj+mink log pk

2 from all entries yields a softmax-equivalent vector χ′
i := log pi − κ with

−R ≤ χ′
i ≤ R. Conversely, for any θ ∈ ΘR, e−2R ≤ softmaxi(θ)

softmaxj(θ)
≤ e2R.

Now, the set defined by the inequalities p ∈ ∆d−1, e−2R ≤ pi
pj
≤ e2R, is clearly a linear polytope

and as such, convex.

E Gradient Domination

In this section we prove the gradient domination properties of the utilities of the game with different
policy parametrizations. Further, for clarity, in place of V x,yτ we will use Vτ (x, y); and in place of
V
πχ,πθ
τ we will use Vτ (χ, θ).

E.1 Direct Policy Parametrization pPŁ

Lemma E.1. The utility of the game regularized with the weighted bidilated Euclidean regular-
izer with a weighting scheme defined in Appendix B.4.1, satisfies the pPŁ condition for directly
parametrized policies,

τ minh µc(h)γ
3

101|H|3
[Vτ (x, y)− Vτ (x⋆, y)] ≤

1

2
DX (x, ℓ; y);

τ minh µc(h)γ
3

101|H|3
[Vτ (x, y

⋆)− Vτ (x, y)] ≤
1

2
DY(y, ℓ;x).

Proof. We write the utility function of the regularized game,

Heucl
τ (µ1, µ2) := ⟨µ1,Rµ2⟩ − τReucl

1 (µ1, µ2) + τReucl
2 (µ1, µ2).

For player 1, we know that the function Heucl
τ is strongly convex with an appropriate weighting

scheme {w1,s}, (correspondingly {w2,s} for player 2),

Heucl
τ (µ′

1, µ2) ≥ Heucl
τ (µ1, µ2) +

〈
∇µ1H

eucl
τ (µ1, µ2), µ

′
1 − µ1

〉
+
ταeucl

bi

2
∥µ1 − µ2∥22

Strong convexity implies the KŁ condition for µ1. In turn, using the bound on the Lipschitz continuity
modulus of the map µ1 7→ x,

Heucl
τ (µ1, µ2)−min

µ⋆1
H⋆,eucl
τ (µ1

⋆, µ2) ≤
1

2ταeucl
bi

(
γ
|H|

)2 ∥sx∥22 . (4)

Now, we know that αeucl
bi = γminh µc(h)

|H| (Corollary B.1). The conclusion follows from Lemma G.2.

E.2 Softmax Policy Parametrization pPŁ

Lemma E.2. The utility of the game with softmax-parametrized policies satisfies the two-sided
pPŁ condition,

τ minh µc(h)γ
3

101|H|3(1 + (A− 1)e2R)2
[Vτ (χ, θ)− Vτ (χ⋆, θ)] ≤

1

2
DXR(χ, ℓ; θ)

τ minh µc(h)γ
3

101|H|3(1 + (B − 1)e2R)2
[Vτ (χ, θ

⋆)− Vτ (χ, θ)] ≤
1

2
DΘR(θ, ℓ;χ),

where ℓ is the smoothness constant of the softmax-parametrized utility function.
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Proof. The main challenge in proving this lemma is the fact that the softmax mapping is not a
bijection; this is manifested with a rank-deficient Jacobian of the mapping.

Concretely, from (4), we know that the KŁ-condition holds for the policies. What remains to show is
that the KŁ-condition also holds for the parameters χ (and θ).

For some R > 0, let XR := softmax(XR) be the convex set of softmax-parametrized policies where
XR :=

{
θ ∈ RA, A =

∑
sAs : χ⊤

s 1 = 0,∀s ∈ S1, |χs,i − χs,j | ≤ 2R, ∀i, j ∈ [As]
}

. By
overloading notation, let V (πχ, πθ) be the loss function of the minimizing player as a function of
policies πχ, πθ and V (χ, θ) the utility as a function of parameters χ, θ.

Now, we note that the subgradient s ∈ ∂πχ (V (πχ, πθ) + IXR(πχ)) that minimizes ∥s∥ is such that
s⊤1 = 0. So when picking a norm-minimizing s, it suffices to look at the set of subgradients that are
perpendicular to 1. Further, the chain rule applied on V (πχ, πθ) + IXR(πχ) yields,

∂χ (V (πχ, πθ) + IXR(πχ)) ⊆ J(χ) (∇πV (πχ, πθ) + ∂πIXR(πχ)) . (5)

Moreover, we note that by the symmetry of J(χ),

∥J(χ)s∥2 = s⊤J(χ)⊤J(χ)s

≥ λ+min(J(χ)
⊤J(χ)) ∥s∥2

≥
(
λ+min(J(χ))

)2 ∥s∥2 . (6)

From inclusion (5) we infer that:

min
w∈∂χ(V (πχ,πθ)+IXR (πχ))

∥w∥ ≥ min
v∈J(χ)(∇πV (πχ,πθ)+∂πIXR (πχ))

∥v∥ .

Lemma D.4 provides the bound λ+min(J(χ)) ≥ 1
1+(B−1)e2R

and the conclusion is proven.

E.3 Mahalanobis-pPŁ

Lemma E.3. The utility of the game with softmax-parametrized policies satisfies the two-sided
Mahalanobis pPŁ condition,

τ minh µc(h)γ
3

101λmax(M−1)|H|3(1 + (A− 1)e2R)2
[Vτ (χ, θ)− Vτ (χ⋆, θ)] ≤

1

2
DXR(χ, ℓ; θ)

τ minh µc(h)γ
3

101λmax(M−1)|H|3(1 + (B − 1)e2R)2
[Vτ (χ, θ

⋆)− Vτ (χ, θ)] ≤
1

2
DΘR(θ, ℓ;χ).

Proof. We invoke (6) and the fact that ∥w∥2M−1 ≥ λ+min

(
M−1

)
∥w∥2 for any ⟨w, v⟩ = 0, ∀v ∈

ker
(
M−1

)
. Also, we use Equation (ε-trunc.) and Assumption 2 to bound λ+min(M

−1). In detail, we
know that,

|H|3(1 + (A− 1)e2R)2

τ minh µc(h)γ3
min

w∈∂χ(V (πχ,πθ)+IXR (πχ))
∥w∥2 ≥ V (χ, θ)− V (χ⋆, θ).

When M := F(χ, θ), it is true that γ
2 minh µc(h)

|H|2 ε ≤ λmax (F(χ, θ)) ≤ 1.

The spectrum of the Fisher Information Matrix With the same arguments used in Lemma D.1,
we can conclude that,

• λmin(F(χ, θ)) = 0;

• λ+min(F(χ, θ)s) ≥ d(s)mina πχ(a|s);
• dχ,θ(s)mins,a πχ(a|s) ≤ λmax(F(χ, θ)s) ≤ dχ,θ(s)maxa πχ(a|s) + 1.
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Hence,

• λ+min (F(χ, θ)) ≥ mins,a d
χ,θ(s)πχ(a|s);

• γ2 minh µc(h)
|H|2 ε ≤ λmax (F(χ, θ)) ≤ 1.

Moreover, dχ,θ(s) ≥ γ2 minh µc(h)
|H|2 by Assumption 2.

E.4 Weak Gradient Domination

We now conclude this section with a proof of the weak gradient domination condition.
Lemma E.4 (Utility Weak Gradient Domination). Let Γ be an IIEFG satisfying satisfying Assump-
tion 2. Then, it holds true that,

V π1,π2 −min
π′
1

V π
′
1,π2 ≤ 1

2αx
max
π′
1

⟨∇π1V
π1,π2 , π1 − π′

1⟩ ;

max
π′
2

V π1,π
′
2 − V π1,π2 ≤ 1

2αy
max
π′
2

⟨∇π2
V π1,π2 , π′

2 − π2⟩ ,

for αx = γ
√
2|H|

3
2A

and αy = γ
√
2|H|

3
2B

.

Proof. We use (Fatkhullin et al., 2023, Prop. 2) by using the fact that the diameter of the treeplex is
at most

√
2|H||A| and the fact that the Lipschitz of µπ1

1 → π1 is |H|
√
A

γ . Then, we use the fact that
max∥y−x∥≤1,y∈X ⟨∇f(x), x− y⟩ = minv∈∂x(f+IX (x)) ∥v∥.

F Gradient Estimators

In this section, we demonstrate that the well-known stochastic gradient estimator, REINFORCE, can
be used yield an unbiased estimate of bounded variance of the gradients of the non-regularized and
regularized imperfect-information game.

F.1 A Policy Gradient Theorem

We define a trajectory ξ to be a sequence of consecutive history-action pairs, ξ =((
h(1), a

(1)
i(1)

)
,
(
h(2), a

(2)
i(2)

)
, . . .

)
. The length of trajectory ξ is noted as Kξ and it is bounded by

the game-tree’s height, D(T ). We define K to be the set of all trajectories and note that it is finite.
After a policy profile, (π1, π2), is fixed, the probability of each trajectory ξ ∈ K taking place is the
product of the probability of each consecutive action,

Pπ1,π2(ξ) :=

Kξ∏
k=1

πi(k)
(
a
(k)
i(k)|h

(k)
)
.

where i(k) denotes the player that takes an action at timestep k.
Lemma F.1. Under the assumption of (ε-trunc.), it holds true that the gradient estimator
(REINFORCE) is unbiased,

Eξ∼π1,π2

[
∇̂x
]
= ∇xV (π1, π2), and Eξ∼π1,π2

[
∇̂y
]
= ∇yV (π1, π2);

and also, its variance is bounded:

Eξ∼π1,π2

[∥∥∥∇̂x −∇xV (π1, π2)
∥∥∥2] ≤ A2D(T )2

ε
;

Eξ∼π1,π2

[∥∥∥∇̂y −∇yV (π1, π2)
∥∥∥2] ≤ B2D(T )2

ε
.

where A,B denote the maximum available number of action in any infoset for player 1 and 2
respectively.
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Proof. We first show that the gradient estimator is unbiased. Indeed,

∇xV (π1, π2) = ∇x

∑
ξ∈K

rξ Pπ1,π1(ξ)


=
∑
ξ∈K

rξ∇x Pπ1,π1(ξ)

=
∑
ξ∈K

rξ Pξ∇x logPπ1,π1(ξ)

=
∑
ξ∈K

rξ Pπ1,π1(ξ)

Kξ∑
k=1

(
∇x log πi(k)

(
a
(k)
i(k)|h

(k)
))

= Eξ∼π1,π2

rξ Kξ∑
k=1

∇x log πi(k)
(
a
(k)
i(k)|h

(k)
)

= Eξ∼π1,π2

rξ Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

)
= Eξ∼π1,π2

[
∇̂x
]

The proof for ∇̂y uses an identical argument. We will now proceed to show that the variance of the
(REINFORCE) gradient estimator is bounded:

Eξ
[∥∥∥∇̂x − E

[
∇̂x
]∥∥∥2] ≤ Eξ

[∥∥∥∇̂x∥∥∥2]

= Eξ


∥∥∥∥∥∥rξ

Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

)∥∥∥∥∥∥
2


≤ Eξ


∥∥∥∥∥∥
Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

)∥∥∥∥∥∥
2


≤ Eξ

Kξ

Kξ∑
k=1

∥∥∥∇x log π1(a(k)|s(k))∥∥∥2


≤ D(T )Eξ

Kξ∑
k=1

∥∥∥∇x log π1(a(k)|s(k))∥∥∥2


= D(T )Eξ

Kξ∑
k=1

∑
s,a

1{s = s(k), a = a(k)} 1

π2
1(a|s(k))


= D(T )Eξ

Kξ∑
k=1

∑
s,a

1{s = s(k)} 1

π1(a|s(k))


≤ A

ε
D(T )Eξ

Kξ∑
k=1

∑
s,a

1{s = s(k)}


=
A

ε
D(T )

∑
ξ∈K

Pπ1,π1(ξ)

Kξ∑
k=1

∑
s,a

1{s = s(k)}
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≤ A2D(T )2

ε
.

Lemma F.2. The variance of (REINFORCE) for softmax-parametrized policies is bounded as
σ2
θ , σ

2
χ ≤ 2D(T )2.

Proof. We see that ∇θ log πθ(a|s) = es,a − πθ(·|s). From then on, ∥∇θ log πθ(a|s)∥ ≤
√
2 with

probability 1. Then, the proof follows arguments similar to the previous one.

Policy gradient of the bidilated regularizer We define the policy gradient estimator of the bidilated
regularizer, ∇̂xR1, as:

∇̂xR1 :=

Kξ∑
k

ψ
(
π1
(
s(k)

)) Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

)
+

Kξ∑
k

∇xψ
(
π1
(
s(k)

))
.

We will demonstrate that this gradient estimator is, in fact, both unbiased and enjoys a variance that
is bounded. We start with a preliminary proposition about an alternative expression of the regularizer.
Proposition 4. For a policy profile π1, π2, the bidilated regularizer,R1 can be alternatively defined
as:

R1(π1, π2) =
∑
ξ∈K

Pπ1,π2(ξ)

Kξ∑
k

ψ
(
π1
(
s(k)

)) .

Proof.

R1(π1, π2) =
∑
s∈S1

µπ1
1 (σ(s))

(∑
h∈s

µc(h)µ
π2
2 (σ(h))

)
ψ(π1(s))

=
∑
s∈S1

Pπ1,π2(s)ψ(π1(s))

=
∑
s∈S1

Eξ

Kξ∑
k

1{s = s(k)}ψ(π1(s))


= Eξ

∑
s∈S1

Kξ∑
k

1{s = s(k)}ψ(π1(s))


= Eξ

Kξ∑
k

∑
s∈S1

1{s = s(k)}ψ(π1(s))


= Eξ

Kξ∑
k

ψ
(
π1
(
s(k)

))
=
∑
ξ∈K

Pπ1,π2(ξ)

Kξ∑
k

ψ
(
π1
(
s(k)

)) .

With the latter expression, proving the desired properties is easier.

∇xR1(π1, π2)

= ∇x
∑
ξ∈K

Pπ1,π2(ξ)

Kξ∑
k

ψ
(
π1
(
s(k)

))
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=
∑
ξ∈K

(∇x Pπ1,π2(ξ))

Kξ∑
k

ψ
(
π1
(
s(k)

))+
∑
ξ∈K

Pπ1,π2(ξ)

∇x Kξ∑
k

ψ
(
π1
(
s(k)

))
=
∑
ξ∈K

(Pπ1,π2(ξ)∇x logPπ1,π2(ξ))

Kξ∑
k

ψ
(
π1
(
s(k)

))
︸ ︷︷ ︸

ϖ1

+
∑
ξ∈K

Pπ1,π2(ξ)

Kξ∑
k

∇xψ
(
π1
(
s(k)

))
︸ ︷︷ ︸

ϖ2

For ϖ1, let us denote rξ =
∑Kξ
k ψ

(
π1
(
s(k)

))
,

ϖ1 = rξ
∑
ξ∈K

Pπ1,π2(ξ)∇x logPπ1,π2(ξ)

=
∑
ξ∈K

rξ Pξ∇x logPξ

=
∑
ξ∈K

rξ Pξ
Kξ∑
k=1

(
∇x log πi(k)

(
a
(k)
i(k)|h

(k)
))

= Eξ∼π1,π2

rξ Kξ∑
k=1

∇x log πi(k)
(
a
(k)
i(k)|h

(k)
)

= Eξ∼π1,π2

rξ Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

) .
For ϖ2, we write,

ϖ2 =
∑
ξ∈K

Pπ1,π2(ξ)

Kξ∑
k

∇xψ
(
π1
(
s(k)

))

= Eξ

Kξ∑
k

∇xψ
(
π1
(
s(k)

))
We will use similar arguments for the variance in the case of the (REINFORCE) gradient estimator.

E
[∥∥∥∇̂xR1 − E

[
∇̂xR1

]∥∥∥2]
≤ E

[∥∥∥∇̂xR1

∥∥∥2]

≤ E

2
∥∥∥∥∥∥
Kξ∑

k

ψ
(
π1
(
s(k)

)) Kξ∑
k=1

∇x log π1
(
a(k)|s(k)

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
ϑ1

+2

∥∥∥∥∥∥
Kξ∑
k

∇xψ
(
π1
(
s(k)

))∥∥∥∥∥∥
2

︸ ︷︷ ︸
ϑ2


For ϑ1, similar to Lemma F.1, we see that

E[ϑ1] ≤
A2ψ2

maxD(T )2

ε
.
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Whereas, for ϑ2,

E[ϑ2] ≤ E

Kξ

Kξ∑
k

∥∥∥∇xψ(π1(s(k)))∥∥∥2


≤ E

Kξ

Kξ∑
k

L2
ψ


≤ D(T )2L2

ψ.

Finally, we note that when Assumption 2 is followed, then (REINFORCE) is also an unbiased
estimator of bounded variance (same bounds as previously) of the perturbed version of the game. The
reasoning is the same (when a player is exploring the gradient of the probability of an action is zero)
and as such we omit it.
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G Optimization Lemmata

Definition 6 (Stationarity Proxies). Assume a function F : f + IX (·) such that f : X → R is
ℓ-smooth relative to ∥·∥M and IX (·) is the indicator function of the set X . We define the following
stationarity proxies,

• gradient of the Mahalanobis proximal mapping (MPM),

∆ρ(x) := ρ2
∥∥∥x− proxF/ρ(x)

∥∥∥2
Mt

with proxF/ρ(·) := argminx′{F (x′) + ρ
2 ∥ · − x

′∥2M}.

• Mahalanobis gradient mapping (MGM),

∆+
ρ (x) := ρ2

∥∥x− x+∥∥2
Mt

,

where x+ := argminx∈X
∥∥x− ρM−1∇f(x)

∥∥2
M

,

• Mahalanobis forward-backward mapping (MFBM),

D(x, ρ) := −2ρmin
x′
{⟨∇f(x), x′ − x⟩+ ρ

2 ∥x− x
′∥2M + IX (x′)− IX (x)},

Lemma G.1. The following properties hold true for the proximal point and the Mahalanobis Moreau
envelope,

• ∇Fρ(x) = 1
ρ (x− x̂)

• dist(0, ∂F (x̂)) ≤ ∥∇Fρ(x)∥M−1

• F (x̂) ≤ Fρ(x̂) ≤ F (x)

Proof. The first and last items follow easily from the definition and standard arguments (Davis and
Drusvyatskiy, 2018). The middle one uses the optimality condition of x̂ := proxρF (x),

0 ∈ ∂
(
F (x̂) +

1

ρ
M(x̂− x)

)
,

from which we conclude,

1

ρ
M (x− x̂) ∈ ∂F (x̂).

Finally, we conclude that minsx̂∈∂F (x̂) ∥sx̂∥
2
M−1 ≤ 1

ρ2 ∥x− x̂∥
2
M .

Definition 7 (pPŁ, KŁ). Let f : X → R be an L-Lipschitz continuous function with ℓ-Lipschitz
continuous gradient. Then,

• Proximal Polyak-Łojasiewicz (pPŁ): f is said to satisfy the proximal Polyak-Łojasiewicz
condition if ∃α > 0 s.t.

1

2
DX (x, ℓ) ≥ α [f(x)− f(x⋆)]

• Kurdyka-Łojasiewicz (KŁ): f is said to satisfy if ∃α s.t.

min
sx∈∂(f+IX )(x)

∥sx∥2 ≥ 2α [f(x)− f(x⋆)] , ∀x ∈ X .

The definitions for the Mahalanobis analogues of pPŁ and KŁ follow straightforward extension.

Lemma G.2. Let f be an ℓ-smooth function relative to ∥·∥2M defined over the convex set X . If f
satisfies the (Mahalanobis) KŁ condition with modulus αkl, it also satisfies the (Mahalanobis) pPŁ
condition with a modulus of αppl =

αkl

202 .
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Proof. First, we define F (x) := f(x)+IX (x), with IX (·) being the indicator function. We highlight
that since IX (·) is convex and f is ℓ-smooth (relative to ∥·∥2M), then F is ℓ-weakly convex (relative
to ∥·∥2M). This means that the proximal point of the function F/ρ is well defined for any ρ > ℓ.

Now, assume a point x ∈ X and x̂ := proxF/ρ(x). By assumption, for any x̂ ∈ X , it holds true that,

1

2
∥sx̂∥2 ≥ α [f(x̂)− f⋆]

where sx̂ ∈ ∂F (x̂). The latter implies that for the gradient of the Mahalanobis-Moreau envelope of
F , it holds that,

1

2

∥∥∇F1/ρ(x)
∥∥2
M−1 ≥ α[f(x̂)− f⋆]

= α+ α[f(x̂)− f(x)]

≥ α[f(x)− f⋆]− α
(

1

2ρ
D(x, ρ) + ℓ+ ρ

2
∥x− x̂∥2M

)
(7)

where (7) follows from the fact that F is an ℓ-weakly convex function, and for every v ∈ ∂F (x). To
see this, we write that due to weak convexity (relative to ∥·∥2M),

F (x̂) ≥ F (x) + ⟨v, x̂− x⟩ − ℓ

2
∥x− x̂∥2M

= F (x) + ⟨v, x̂− x⟩+ ρ

2
∥x− x̂∥2M −

ℓ+ ρ

2
∥x− x̂∥2M

≥ F (x) + min
y∈Y

{
⟨∇f(x), y − x⟩+ ρ

2
∥x− y∥2M

}
− ℓ+ ρ

2
∥x− x̂∥2M

= F (x)− 1

2ρ
D(x, ρ)− ℓ+ ρ

2
∥x− x̂∥2M

Collecting the terms,(
1

2
+ α

ℓ+ ρ

2ρ2

)
∥∇Fρ(x)∥2M−1 +

α

2ρ
D(x, ρ) ≥ α [f(x)− f⋆] .

A direct generalization of (Karimi et al., 2016, Lemma 1), implies that for the MFBM and a choice of
ρ1, ρ2 > 0 such thatρ1 > ρ2, then D(x, ρ1) ≥ D(x, ρ1). As such, we write,(

1

2
+ α

ℓ+ ρ

2ρ2

)∥∥∇F1/ρ(x)
∥∥2
M−1 +

α

2ρ
D(x, 2ρ) ≥ α [f(x)− f⋆] .

We can pick ρ = 4ℓ which then yields,(
1

2
+

12α

ℓ

)∥∥∇F1/(4ℓ)(x)
∥∥2
M−1 +

α

8ℓ
D(x, 4ℓ) ≥ α [f(x)− f⋆] .

Observing that α ≤ ℓ in general, we re-write:

25

2

∥∥∇F1/(4ℓ)(x)
∥∥2
M−1 +

1

8
D(x, 4ℓ) ≥ α [f(x)− f⋆] .

Now, from (Fatkhullin and He, 2024, Lemmata 4.1 & 4.2), we know that,

16D(x, 4ℓ) ≥
∥∥∇F1/ρ(x̂)

∥∥2
M−1

which we plugin in the former inequality to finally conclude that,

1

2
D(x, 4ℓ) ≥ µ

101
[f(x)− f⋆].

Remark 3. The latter lemma provides a bound that is significantly tighter than the one implied
by the analysis found (Karimi et al., 2016, Appendix G) which connects the moduli of the KŁand
pPŁconditions.
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G.1 A Variation of the Descent Lemma

The following lemma is a consequence of the three-point identity of the Mahalanobis norm and the
smoothness of f .
Lemma G.3 ((J Reddi et al., 2016, Lemma 1)). Let f : X → R be an ℓ-smooth function relative to
∥·∥Mt

and a point x ∈ X ⊆ Rd. Also, define the vector v ∈ Rd and y ∈ X to be

y := Proj
X ,Mt

(
x− ηMt

−1v
)
.

Then, the following inequality holds true:

f(y) ≤ f(z) + ⟨∇f(x)− v, y − z⟩

+

(
ℓ

2
− 1

2η

)
∥y − x∥Mt

2 +

(
ℓ

2
+

1

2η

)
∥z − x∥2Mt

− 1

2
∥y − z∥2Mt

.

Lemma G.4. Let X ⊆ Rd be a closed convex set, and let f : X → R be an ℓ-smooth function
relative to ∥·∥Mt

for some ℓ > 0. Suppose η > 0 with η ≤ 1
5ℓ . For any x ∈ X and any vector

v ∈ Rd, define x+ = ProjX ,Mt
(x− ηv) . Then the following inequality holds:

f(x+) ≤ f(x)− η

6
DX (x, 1/η) +

η

2
∥∇f(x)− v∥2M−1

t
.

Proof. First, we define x+ := ProjX ,Mt

(
x− 1

ρM
−1
t ∇f(x)

)
.

• Invoking ℓ-smoothness relative to ∥·∥Mt
of f for x, x+ and assuming ρ > 0 with ρ ≥ ℓ,

f(x+) ≤ f(x) + ⟨∇f(x), x+ − x⟩+
ℓ

2
∥x+ − x∥2Mt

≤ f(x) + ⟨∇f(x), x+ − x⟩+
ρ

2
∥x+ − x∥2Mt

= f(x)−
(
⟨∇f(x), x− x+⟩ −

ρ

2
∥x+ − x∥2Mt

)
= f(x)− 1

2ρ
DMt

(x, ρ). (8)

• Invoking Lemma G.3 with x = x, y = x+, z = x, v = ∇f(x)

f(x+) ≤ f(x) +
(
ℓ

2
− 1

ρ

)
∥x+ − x∥2Mt

. (9)

• Again, invoking Lemma G.3 but with x = x, y = x+, z = x+, v,

f(x+) ≤ f(x+) + ⟨∇f(x)− v, x+ − x+⟩

+

(
ℓ

2
− 1

2η

)
∥x+ − x∥2Mt

+

(
ℓ

2
+

1

2η

)
∥x+ − x∥2Mt

− 1

2η
∥x+ − x+∥2Mt

.

(10)

Combining the previous inequalities as 1/3×(8) and 2/3×(9), and letting 1/ρ = η ≤ 1
ℓ

yields,

f(x+) ≤ f(x)−
1

6η
DX (x, 1/η) +

(
ℓ

3
− 2

3η

)
∥x+ − x∥2Mt

Adding (10),

f(x+) ≤ f(x)−
η

6
DX (x, 1/η) +

(
ℓ

3
− 2

3η

)
∥x+ − x∥2Mt
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+ ⟨∇f(x)− v, x+ − x+⟩

+

(
ℓ

2
− 1

2η

)
∥x+ − x∥2Mt

+

(
ℓ

2
+

1

2η

)
∥x+ − x∥2Mt

− 1

2η
∥x+ − x+∥2Mt

≤ f(x)− η

6
DX (x, 1/η) +

(
5ℓ

6
− 1

6η

)
∥x+ − x∥2Mt

+
ρ

2
∥∇f(x)− v∥2Mt

−1 +
1

2ρ
∥x+ − x+∥2Mt

+

(
ℓ

2
− 1

2η

)
∥x+ − x∥2Mt

− 1

2η
∥x+ − x+∥2Mt

(11)

= f(x)− η

6
DX (x, 1/η) +

(
5ℓ

6
− 1

6η

)
∥x+ − x∥2Mt

+
η

2
∥∇f(x)− v∥2Mt

−1

+

(
ℓ

2
− 1

2η

)
∥x+ − x∥2Mt

≤ f(x)− η

6
DX (x, 1/η) +

η

2
∥∇f(x)− v∥2Mt

−1 (12)

• (11) follows from the application of Young’s inequality on〈
∇f(x)− v, x+ − x+

〉
=
〈
Mt

−1/2∇f(x)− v,Mt
1/2x+ − x+

〉
;

• (12) follows by dropping the non-positive terms; non-positivity follows from the choice of
the step-size, η ≤ 1

5ℓ .

G.2 Min-Max Optimization

Lemma G.5. Let f : X × Y be an ℓ-smooth function, ρ > 0, two points y, y′ ∈ Y , and a point
x ∈ X . Then, the following inequality holds:

|DX (x, ρ; y)−DX (x, ρ; y′)| ≤ 3λmax(M
−1
t )ℓ2 ∥y − y′∥2 .

Proof. We define x, x′ ∈ X to be:

x := Proj
X ,Mt

(
x− 1

ρ
M−1

t ∇xf(x, y)
)
;

x′ := Proj
X ,Mt

(
x− 1

ρ
M−1

t ∇xf(x, y′)
)
.

By the definition of DX (x, ρ; y′) we write:{
1
2ρDX (x, ρ; y) = ⟨∇f(x, y), x− x⟩ − ρ

2 ∥x− x∥
2
Mt

;
1
2ρDX (x, ρ; y′) = ⟨∇f(x, y′), x− x′⟩ − ρ

2 ∥x− x
′∥2Mt

.

Considering the difference DX (x, ρ; y)−DX (x, ρ; y′) we see that:

1

2ρ
|DX (x, ρ; y)−DX (x, ρ; y′)|

=
∣∣∣⟨∇xf(x, y)−∇xf(x, y′), x′ − x⟩ − ρ

2

(
∥x− x∥2Mt

− ∥x− x′∥2Mt

)∣∣∣
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≤ |⟨∇xf(x, y)−∇xf(x, y′), x′ − x⟩|+
ρ

2

∣∣∣(∥x− x∥2Mt
− ∥x− x′∥2Mt

)∣∣∣
≤ |⟨∇xf(x, y)−∇xf(x, y′), x′ − x⟩|+

ρ

2
∥x− x′∥2Mt

≤ ∥∇xf(x, y)−∇xf(x, y′)∥M−1
t
∥x′ − x∥Mt

+
ρ

2
∥x− x′∥2Mt

≤ 1

ρ
∥∇xf(x, y)−∇xf(x, y′)∥

2
M−1
t

+
1

2ρ
∥∇xf(x, y)−∇xf(x, y′)∥

2
M−1
t

≤ λmax(M
−1
t )

ρ ∥∇xf(x, y)−∇xf(x, y′)∥
2
+

λmax(M
−1
t )

2ρ ∥∇xf(x, y)−∇xf(x, y′)∥
2

≤ 3λmax(M
−1
t )ℓ2

2ρ ∥y − y′∥2 .

We note that:

• The first inequality follows from the triangle inequality.

• In the second inequality, we applied the reverse triangle inequality.

• The third uses the Cauchy-Schwarz inequality.

• Finally, the second to last uses Lemma G.9 while, the last one, invokes the ℓ-Lipschitz
continuity of the gradient.

Lemma G.6. Let f : X × Y be an ℓ-smooth function such that for any x ∈ X , f(x, ·) satisfies the
proximal-PŁ condition with modulus α > 0. Then, the function Φ(x) := argmaxy∈Y f(x, y) is
ℓ⋆-smooth, with

ℓ⋆ := ℓ

(
1 +

ℓ

α

)
.

Proof. We effectively need to show Lipschitz continuity of the maximizers y⋆(·) := argmaxx and
the proof will follow from Danskin’s lemma and f ’s own ℓ-smoothness. So, we write by the quadratic
growth condition,

α

2
∥y⋆(x′)− y⋆(x)∥2 ≤ f(x, y⋆(x))− f(x, y⋆(x′)). (13)

We denoteDY(·, ρ;x) := −2ρ argminz∈Y{⟨−∇f(x, y), z − y⟩+
ρ
2 ∥y − z∥

2} and by the proximal-
PŁ condition, we write,

f(x, y⋆(x))− f(x, y⋆(x′)) ≤ 1

2α
DY(y, ℓ;x). (14)

Now, we aim to bound DY(y, ℓ;x) by ∥y⋆(x)− y⋆(x′)∥2. We observe that,

DY(y
⋆(x), ℓ;x) = 0.

Hence,

DY(y
⋆(x′), ℓ;x) = DY(y

⋆(x′), ℓ;x)−DY(y
⋆(x), ℓ;x)

≤ 2ℓ2 ∥x− x∥2 (15)

where the last line follows from a slight sharpening of the proof of Lemma G.5 (for the function
h(y, x) = −f(x, y) and M = I). Finally, piecing inequalities (13), (14), and (15) together,

∥y⋆(x)− y⋆(x′)∥ ≤ ℓ

α
∥x− x′∥ . (16)

What is left to do is to observe the following, due to Danskin’s theorem and ℓ-smoothness of f ,

∥∇xΦ(x)−∇xΦ(x′)∥ = ∥∇xf(x, y⋆(x))−∇xf(x′, y⋆(x′))∥
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≤ ℓ ∥(x, y⋆(x))− (x′, y⋆(x′))∥

≤ ℓ ∥x− x′∥+ ℓ2

α
∥x− x′∥ .

The latter inequality follows from (16) and completes the proof.

Lemma G.7 ((Kalogiannis et al., 2025, Lemma D.3)). Let f : X × Y be an ℓ-smooth function.
Additionally, assume that f(·, y) is αx-pPŁ for all y ∈ Y and f(x, ·) is αy-pPŁ for all x ∈ X . Then,
it holds true that:

Φ⋆ := min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

.
Lemma G.8 ((Kalogiannis et al., 2025, Lemma D.4)). Let f : X × Y be an ℓ-smooth function.
Additionally, assume that f(·, y) is αx-pPŁ for all y ∈ Y and f(x, ·) is αy-pPŁ for all x ∈ X . Then,
the function Φ(x) := maxy∈Y f(x, y) is αx-pPŁ.

G.3 Regarding the Mahalanobis Distance

Throughout, we will refer to a positive-semidefinite matrix M ∈ Rd×d and its Moore-Penrose pseudo-
inverse M† ∈ Rd×d. Although in general a PSD matrix cannot define a distance, restricting x, y ∈ Rd
such that (x − y) ∈ ker(M)⊥, then ∥x− y∥2M := (x− y)⊤M(x− y) satisfies all properties of a
metric. As we shall see, this seemingly arbitrary assumption is satisfied for every pair of consecutive
updates of natural policy gradient steps. The matrix rank-deficient matrix we are interested in is
policy gradient Fisher information matrix, and for softmax policy parametrization, it is rank deficient
in the direction 1 ∈ Rd. Further, the gradient ∇f(x) as

Proposition 5. Assume that θ0 = 0. Also, let v⊤t 1 = 0, ∀t ∈ {1, 2, 3, . . . }. Then, setting
θt+1 = θt − ηM†vt guarantees that,

(θt+1 − θt)⊤1 and θ⊤t 1 = 0, ∀t.

Proof. Since, θt+1 = θt− ηM†vt, we see that θ⊤t+11 = (θt− ηM†vt)
⊤1 = 0 and (θt+1− θt)⊤1 =

0.

Proposition 6. Let Θ ⊆ Rd be a convex compact set. Assume that θ0 = 0. Also, let v⊤t 1 = 0, ∀t ∈
{1, 2, 3, . . . }. Then, the following minimization problem has a unique solution,

min
θ∈Θ,s.t.(θ−θt)⊤1=0

∥∥(θt − ηM†vt
)
− θ
∥∥2
M
.

Further, it is equivalent to the minimization problem,

min
θ∈Θ,s.t.(θ−θt)⊤1=0

{
⟨vt, θ − θt⟩+

1

2η
∥θ − θt∥2M

}
.

Proof. It is clear that, for θ, χ ∈ Θ, θ⊤1 = χ⊤1 = 0 the function ∥θ∥2M , ∥θ − χ∥2M is strongly
convex in θ. Hence, both problems attain a unique minimum.

For the first problem, the first-order optimality conditions for the write,〈
θ+ −

(
θ − ηM†vt

)
, θ − θ+

〉
≥ 0, ∀θ ∈ Θ, θ⊤1 = 0.

Noting that, (θ+ −
(
θt − ηM†vt

)
)⊤1 = 0 and (θ − θ)⊤1 = 0,〈

Mθ+ −Mθ + ηvt,M
†(θ − θ+)

〉
≥ 0, ∀θ ∈ Θ, θ⊤1 = 0

But, since the matrix M is PSD and the last inequality is a condition on the sign of the inner-product,
it can be written equivalently as,〈

Mθ+ −Mθ + ηvt, (θ − θ+)
〉
≥ 0, ∀θ ∈ Θ, θ⊤1 = 0.

The final inequality, is exactly the first-order optimality condition for the second minimization
problem.
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G.4 Alternating Mirror Descent using a Changing Mahalanobis DGF

G.4.1 Supporting Lemmata

Lemma G.9. Let v1, v2 be vectors in Rd and X ⊆ Rd be a compact convex set and a scalar η > 0.
Also, let points x+1 , x

+
2 ∈ X such that:

x+1 := Proj
X ,Mt

(
x− ηMt

−1v1
)
;

x+2 := Proj
X ,Mt

(
x− ηMt

−1v2
)
.

Then, it holds true that: ∥∥x+1 − x+2 ∥∥Mt
≤ η ∥v1 − v2∥Mt

−1 .

.

Smoothness Relative to the Mahalanobis Distance
Proposition 7. Let f be a function ℓ-smooth relative to the ℓ2-distance. Then, it is ℓ

λmin(Mt)
-smooth

relative to the Mahalanobis distance induced by a positive definite matrix Mt.

Proof. We will merely demonstrate that if f is ℓ-smooth (relative to ℓ2-distance) it is also the case
that:

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ ℓ

2λmin(Mt)
∥x− y∥2Mt

For one direction we use vector norm equivalence to write:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − ℓ

2
∥x− y∥2

≥ f(x) + ⟨∇f(x), y − x⟩ − ℓ

2λmin(Mt)
∥x− y∥2Mt

.

Correspondingly for the opposite direction:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ ℓ

2
∥x− y∥2

≤ f(x) + ⟨∇f(x), y − x⟩+ ℓ

2λmin(Mt)
∥x− y∥2Mt

.

G.4.2 Convergence of Alternating Descent-Ascent

Through, we consider this section, we consider the iteration following scheme,

xt+1 = argmin
x∈X

{
⟨∇f(xt, yt), x− xt⟩+

1

2ηx
∥x− xt∥2Mx,t

}
;

yt+1 = argmin
y∈Y

{
⟨−∇f(xt+1, yt), y − yt⟩+

1

2ηy
∥y − yt∥2My,t

}
.

(Alt-GDA)

We make a standard assumption on the gradient estimators and their second moments.
Assumption 3 (Unbiased Gradient Estimators and Bounded Second Moments). For all iterations t,
the gradient estimators ĝx(xt, yt) and ĝy(xt, yt) satisfy

E [ĝx(xt, yt)] = gx(xt, yt),

E [ĝy(xt, yt)] = gy(xt, yt),

and
E
[
∥ĝx(xt, yt)∥2

]
≤ σ2

x,

E
[
∥ĝy(xt, yt)∥2

]
≤ σ2

y.

In turn, ∥gx(xt, yt)−∇xf(xt, yt)∥ ≤ δx, ∥gy(xt, yt)−∇yf(xt, yt)∥ ≤ δy .
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Theorem G.1. Let f : X × Y → R an ℓ-smooth function and bounded in the interval ∆f . Further,
assume X ,Y to be two convex sets with Euclidean diameters, diam(X ),diam(Y). Moreover, assume
that f satisfies a two-sided pPŁ condition with moduli αx for all y ∈ Y and αy for any x ∈ X .
Additionally, let (ĝx, ĝy) be an inexact stochastic gradient oracle satisfying Assumption 3.

• When M· t = I, after T iterations of (Alt-GDA) with a choice of stepsizes ηx =
α2
y

960ℓ3 and
ηy = 1

5ℓ , it holds true that:

EΦ(xT )− Φ⋆ + 1
10 (EΦ(xT )− Ef(xT , yT ))

≤ exp

(
−
αxα

2
y

960ℓ3
T

)
∆f +

c1σ
2
x

αx
+
c1δ

2
x

αx
+
c2ℓ

2σ2
y

αxα2
y

+
c2ℓ

2δ2y
αxα2

y

,

where, ∆f := maxx∈X ,y∈Y f(x, y)−minx∈X ,y∈Y f(x, y) and c1, c2 ∈ O(1).

• For a general positive definite choice of M· t (Mahalanobis metric), after T iterations of

(Alt-GDA) with a choice of stepsizes ηx =
α2
y

960ℓ3λ2
max

and ηy = 1
5ℓλmax

, it holds true that:

EΦ(xT )− Φ⋆ + 1
10 (EΦ(xT )− Ef(xT , yT ))

≤ exp

(
−

αxα
2
y

960λ2maxℓ
3
T

)
∆f +

c1σ
2
x

αx
+
c1δ

2
x

αx
+
c2ℓ

2λmaxσ
2
y

αxα2
y

+
c2ℓ

2λmaxδ
2
y

αxα2
y

,

where, ∆f := maxx∈X ,y∈Y f(x, y) − minx∈X ,y∈Y f(x, y), λmax := maxt λmax(M
−1
·,t )

and c1, c2 ∈ O(1).

Proof. To prove convergence we will use the Lyapunov function L(x, y) := U(x, y) + cW (x, y)
with U(x, y) := E [Φ(x)− Φ⋆], W (x, y) := E [Φ(x)− f(x, y)] and c > 0. Intuitively, U(x, y)
measures x’s success in achieving the unique minmax value Φ⋆, while W (x, y) measures y’s success
in achieving to be a best-response to its corresponding x. We begin with some preliminary work to
ultimately setup a recursion on L.

Descent on Φ In order to guarantee descent, by Lemma G.6, Proposition 7, and Lemma G.4, it
suffices to pick ηx ≤ 1

5ℓλmax(Mx,t)
. Then, we can write,

EΦ(xt+1) ≤ EΦ(xt)−
ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ 2ηxσ
2
x + 2ηxδ

2
x.

Equivalently, subtracting Φ⋆ from both sides yields,

EΦ(xt+1)− Φ⋆ ≤ EΦ(xt)− Φ⋆ − ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ 2ηxσ
2
x + 2ηxδ

2
x.

Further, a simple re-arrangement reads,

EΦ(xt+1)− EΦ(xt) ≤ −
ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ 2ηxσ
2
x + 2ηxδ

2
x.

Ascent on f(x, ·) Requiring that ηy ≤ 1
5ℓλmax(My,t)

, (Proposition 7 and Lemma G.4), we write:

Ef(xt+1, yt+1) ≥ Ef(xt+1, yt) +
ηy
6
EDY(yt, 1/ηy;xt+1)− ηyδ2 − ηyσ2

y

Invoking Lemma G.8, multiplying by −1, and adding Φ(xt+1) will yield,

E [Φ(xt+1)− f(xt+1, yt+1)] ≤
(
1− αyηy

6

)
E [Φ(xt+1)− f(xt+1, yt)] + ηyδ

2 + ηyσ
2
y

=
(
1− αyηy

6

)
E [Φ(xt)− f(xt, yt) + f(xt, yt)− f(xt+1, yt) + Φ(xt+1)− Φ(xt)]

+ ηyδ
2 + ηyσ

2
y.

As a reminder, Φ is a pPL function relative to the Mahalanobis distance induced by Mt by Lemma G.8.
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Upper bound on the descent of f(·, y) From the smoothnes of f :

Ef(xt+1, yt) ≥ Ef(xt, yt)−
3ηx
2

E
∥∥G1/ηx(xt)

∥∥2
M−1
x,t
− 9ηxσ

2
x

2
− 7ηxδ

2
x

2

≥ Ef(xt, yt)−
3ηx
2

EDX (xt, 1/ηx; yt)−
9ηxσ

2
x

2
− 7ηxδ

2
x

2

Re-arranging to isolate f(xt, yt)− f(xt+1, yt),

Ef(xt, yt)− Ef(xt+1, yt) ≤
3ηx
2

EDX (xt, 1/ηx; yt) +
9ηxσ

2
x

2
+

7ηxδ
2
x

2
.

Putting the pieces together for Φ(xt)− f(xt, yt), we get:

E [Φ(xt+1)− f(xt+1, yt+1)]

≤
(
1− αyηy

6

)
E [Φ(xt)− f(xt, yt)]

+
(
1− αyηy

6

)
E
[
−ηx

6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

]
+
(
1− αyηy

6

)
E
[
3ηx
2

EDX (xt, 1/ηx; yt)

]
+ ηyδ

2
y + ηyσ

2
y + ηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)

Decrease in the Lyapunov function We consider the Lyapunov function L(x, y) := U(x, y) +
cW (x, y) with U(x, y) := E [Φ(x)− Φ⋆], W (x, y) := E [Φ(x)− f(x, y)] and shorthand notation
Ut = U(xt, yt),Wt =W (xt, yt). Here Ut measures primal suboptimality via the PL condition on
Φ, while Wt captures the dual gap Φ(xt)− f(xt, yt).

Ut+1 + cWt+1

≤ Ut −
ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ c
(
1− αyηy

6

)
EWt

+ c
(
1− αyηy

6

)
E
[
−ηx

6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

]
+ c

(
1− αyηy

6

) 3ηx
2

E [DX (xt, 1/ηx; yt)]

+ cηyδ
2
y + cηyσ

2
y + cηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x

≤ Ut −
ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ c
(
1− αyηy

6

)
EWt

+ c
(
1− αyηy

6

)
E
[
−ηx

6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

]
+ c

(
1− αyηy

6

) 3ηx
2

E
[
|DX (xt, 1/ηx; yt)−DΦ

X (xt, 1/ηx)|+DΦ
X (xt, 1/ηx)

]
(17)

+ cηyδ
2
y + cηyσ

2
y + cηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x

≤ Ut −
ηx
6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

+ c
(
1− αyηy

6

)
EWt

+ c
(
1− αyηy

6

)
E
[
−ηx

6
EDΦ

X (xt, 1/ηx) + ηxE ∥∇xΦ(xt)−∇xf(xt, yt)∥2M−1
x,t

]
+ c

(
1− αyηy

6

) 3ηx
2

E
[
3λmax(M

−1
x,t)ℓ

2 ∥yt − y⋆(xt)∥2 +DΦ
X (xt, 1/ηx)

]
(18)

+ cηyδ
2
y + cηyσ

2
y + cηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x
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≤ Ut −
ηx
6
EDΦ

X (xt, 1/ηx) + ηxλmax(M
−1
x,t)ℓ

2E ∥y⋆(xt)− yt∥2

+ c
(
1− αyηy

6

)
EWt

+ c
(
1− αyηy

6

)
E
[
−ηx

6
DΦ

X (xt, 1/ηx) + ηxλmax(M
−1
x,t)ℓ

2 ∥y⋆(xt)− yt∥2
]

+ c
(
1− αyηy

6

) 3ηx
2

E
[
3λmax(M

−1
x,t)ℓ

2 ∥yt − y⋆(xt)∥2 +DΦ
X (xt, 1/ηx)

]
+ cηyδ

2
y + cηyσ

2
y + cηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x

• (17) uses the fact that a ≤ |a − b| + b for a = DX (xt, 1/ηx; yt), b = DΦ
X (xt, 1/ηx).

This decomposition isolates the term |DX −DΦ
X |, which can then be controlled using the

Mahalanobis continuity lemma in y.

• (18) uses Lemma G.5 and Danskin’s theorem; this yields a bound |DX − DΦ
X | ≤

3λmax(M
−1
x,t)ℓ

2∥yt − y⋆(xt)∥2.

Ut+1 + cWt+1 ≤ Ut −
ηx
6
EDΦ

X (xt, 1/ηx) +
2ηxλmax(M

−1
x,t)ℓ

2

αqg
Wt

+ c
(
1− αyηy

6

)
EWt

+ c
(
1− αyηy

6

)
E

[
−ηx

6
EDΦ

X (xt, 1/ηx) +
2ηxλmax(M

−1
x,t)ℓ

2

αqg
Wt

]

+ c
(
1− αyηy

6

) 3ηx
2

E

[
6λmax(M

−1
x,t)ℓ

2

αqg
Wt

]
+ cηyδ

2
y + cηyσ

2
y + cηx

(
1− αy ηy

6

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x

≤ ϖ1Ut + cϖ2Wt

+ cηyδ
2
y + cηyσ

2
y + cηx

(
1− αy ηy

3

) (
13
2 σ

2
x +

11
2 δ

2
x

)
+ 2ηxσ

2
x + 2ηxδ

2
x

We then collect the coefficients in front of Ut and Wt in the previous inequality into ϖ1 and
ϖ2, respectively, so that the Lyapunov recursion can be written compactly as Ut+1 + cWt+1 ≤
ϖ1Ut + cϖ2Wt + noise. I.e.,

ϖ1 :=1− αxηx
(
1

3
− c

(
1− αyηy

6

) 1

3
+ c

(
1− αyηy

6

)
3

)
;

ϖ2 :=1 +
2ηxλmax(M

−1
x,t)ℓ

2

cαqg
− αyηy

6
+
(
1− αyηy

6

) 11ηxλmax(M
−1
x,t)ℓ

2

αqg
.

For ϖ1, letting c = 1/10

ϖ1 =1− αxηx
(
1

3
− 1

10

(
1− αyηy

6

) 1

3
+

1

10

(
1− αyηy

6

)
3

)
=1− αxηx 1

3 − αxηx
8
30

(
1− αyηy

6

)
≤ 1− αxηx

3
.

For ϖ2, we distinguish two cases relevant to our algorithms, Mt = I and a general choice of Mt.

• For Mt = I, it holds that λmax

(
M−1

·,t
)
= 1, and αqg = αy . So we write

ϖ2 =1 +
20ηxℓ

2

αy
− αyηy

6
+
(
1− αyηy

6

) 11ηxℓ
2

αy

= 1− ηxℓ
2

αy

(
−20 +

α2
yηy

6ηxℓ2
− 11

(
1− αyηy

6

))
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≤ 1− ηxℓ
2

αy
(−20 + 32− 11)

Let
α2
yηy
ηxℓ2

= 192. Then, choosing ηy = 1
5ℓ yields ηx =

α2
y

960ℓ3 .

• For a general choice of Mt, let λmax := max{λmax(M
−1
x,t), λmax(M

−1
y,t)} and αy ←

min{αqg, αy},

ϖ2 = 1 +
20ηxλmaxℓ

2

αy
− αyηy

6
+

(
1− αyηy

6

)
11ηxλmaxℓ

2

αy

= 1− λmaxηxℓ
2

αy

(
−20 + αy

2ηy
6λmaxηxℓ2

− 11

(
1− αy ηy

6

))
.

Similarly, we need to set
αy

2ηy
λmaxηxℓ2

= 192.

This in turn yields ηy = 1
5λmaxℓ

and ηx =
αy

2

960ℓ3λ2
max

.

Remark 4. In fact, Mt is allowed to be positive semidefinite as long as the gradient throuhgout the
iterations is in the kernel of Mt.

H Convergence Analysis

H.1 Direct Policy Parametrization

Theorem H.1. With direct policy parametrization and the Euclidean bidilated regularizer, alternating
policy-gradient algorithm attains a last-iterate ϵ-Nash equilibrium in

T =
1

ϵ12
poly

(
1
γ , |H|, A,B, 2

D(T ), 1
minh µc(h)

, |S1|, |S2|
)

iterations,

using batches of poly
(

1
ϵ ,

1
γ , |H|, A,B, 2

D(T ), 1
minh µc(h)

, |S1|, |S2|
)

trajectory samples at each step.

Proof. The proof follows as an application of Theorem G.1. In a central role lies Lemma E.1, which
provides a two-sided pPŁ condition for the regularized game under direct policy parametrization,
while in a supportive one the smoothness lemmata of the value function and the Euclidean bidilated
regularizer when the policy is directly parametrized.

First, we relate equilibria of the regularized, truncated, exploration-perturbed game to equilibria of
the original game. An ϵ-NE of the regularized game is an ϵ′-NE of the unregularized game where

ϵ′ = O
(
ϵ+ τS2D(T ) + εSmax{A,B}+ γ

)
.

The term contains the optimization error ϵ, the regularization error (controlled by τ ), the truncation
error (controlled by ε through the minimum action probability), and the exploration-induced error
(controlled by γ). To make each contribution O(ϵ) we choose

• γ = Θ(ϵ),

• τ = Θ
(

ϵ
maxi∈{1,2} |Si|2D(T )

)
,

• ε = Θ
(

ϵ
maxi∈{1,2} |Si|max{A,B}

)
.
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We now instantiate Theorem G.1. By Lemma E.1 the utility of the regularized game satisfies the
two-sided pPŁ condition with moduli

αx, αy = Θ

(
τ minh∈H µc(h) γ

3

|H|3

)
.

Combining the smoothness of the value function with that of the Euclidean bidilated regularizer
(Lemmata B.4 and B.7 ) yields an overall smoothness constant

ℓ = Θ
(

max
i∈{1,2}

√
|Σi|D(T ) + τ 2D(T ) max

i∈{1,2}
|Σi|D(T ) max{|S1|, |S2|}

)
= O

(
D(T ) max

i∈{1,2}
|Σi|

)
,

The stochastic gradients used by Alt-RegPG are given by the REINFORCE estimator together with
the gradient estimators for the bidilated regularizer; by Lemma F.1 and the analysis of Appendix F.1
they are unbiased and have bounded per-trajectory variance

E
∥∥∇̂(1)

x −∇xV
∥∥2 ≤ A2D(T )2

ε
, E

∥∥∇̂(1)
y −∇yV

∥∥2 ≤ B2D(T )2

ε
.

If each update averages a mini-batch of M i.i.d. trajectories, ∇̂x = 1
M

∑M
m=1 ∇̂

(m)
x and ∇̂y =

1
M

∑M
m=1 ∇̂

(m)
y , then the averaged estimators have variances

Var(∇̂x) ≤
σ2
x

M
, Var(∇̂y) ≤

σ2
y

M
,

with per-trajectory bounds σ2
x ≤ A2D(T )2/ε and σ2

y ≤ B2D(T )2/ε. Substituting these into
Theorem G.1, the stochastic error terms are controlled (up to absolute constants) by σ2

x/(Mαx) and
ℓ σ2

y/(Mαxα
2
y). Requiring each to be at most ϵ leads to the condition

M ≥ max

{
σ2
x

ϵαx
,
ℓ σ2

y

ϵαxα2
y

}
= max

{
A2D(T )2

ϵ ε αx
,
ℓ B2D(T )2

ϵ ε αxα2
y

}
.

Using the explicit forms of αx, αy from Lemma E.1 and the per-trajectory variance bounds from
Lemma F.1, this can be summarized as choosing

M = Θ

(
max

{
1

ϵ ε τ γ3
,

ℓ

ϵ ε τ3γ9

})
.

Writing S := max{|S1|, |S2|} and using the tunings γ = Θ(ϵ), τ = Θ
(
ϵ/(S2D(T ))

)
, and ε =

Θ
(
ϵ/(SA)

)
from above, together with

ℓ = Θ
(
D(T ) max

{√
max
i∈{1,2}

|Σi|, ϵ max
i∈{1,2}

|Σi|

})
,

αx = αy = Θ
(τγ3 minh µc(h)

|H|3
)
= Θ

( minh µc(h)

S2D(T )|H|3
ϵ4
)
,

a direct substitution yields the explicit bounds

M ≥ Θ

(
2D(T )D(T )2 S2A3 |H|3

minh µc(h) ϵ6

)
,

M ≥ Θ

(
23D(T )D(T )3 S4AB2 |H|9 max

{√
maxi∈{1,2} |Σi|, ϵ maxi∈{1,2} |Σi|

}(
minh µc(h)

)3
ϵ14

)
.

For small ϵ the second constraint dominates, so it is sufficient to choose

M = Θ

(
23D(T )D(T )3 S4AB2 |H|9 max

{√
maxi∈{1,2} |Σi|, ϵ maxi∈{1,2} |Σi|

}(
minh µc(h)

)3
ϵ14

)
,
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which spells out the precise dependence of the mini-batch size on ϵ, A, B, D(T ), |S1|, |S2|, |H|, and
minh µc(h).

Under these conditions, Theorem G.1 prescribes the concrete stepsizes

ηy =
1

5ℓ
, and ηx =

α2
y

960 ℓ3
=
τ2γ6(minh∈H µc(h))

2

960 · 1012 |H|6 ℓ3
,

owing to the symmetric pPŁ moduli αx = αy from Lemma E.1. The resulting duality-gap decay is

exp
(
−αxα

2
y

960ℓ3T
)

, so driving the deterministic term below ϵ requires

T =
960 ℓ3

αxα2
y

log
∆f

ϵ
=

960 · 1013 |H|9 ℓ3

τ3γ9 (minh∈H µc(h))
3 log

∆f

ϵ
,

where ∆f is the payoff range appearing in Theorem G.1. Substituting the smoothness estimate from
Corollary B.1 and Lemma B.7,

ℓ = Θ
(
D(T ) max

{√
max
i∈{1,2}

|Σi|, ϵ max
i∈{1,2}

|Σi|

})
yields the following dependencies on the game parameters:

• ηy = Θ

(
1

D(T ) max{
√

maxi∈{1,2} |Σi|,ϵ maxi∈{1,2} |Σi|}

)
;

• ηx = Θ

(
ϵ8(minh∈H µc(h))

2

22D(T ) S2 |H|6D(T )3 max{
√

maxi∈{1,2} |Σi|,ϵ maxi∈{1,2} |Σi|}3
)
;

• T = Θ

(
23D(T ) S3 |H|9D(T )3 max{

√
maxi∈{1,2} |Σi|,ϵ maxi∈{1,2} |Σi|}3

(minh∈H µc(h))
3 ϵ12

log
∆f
ϵ

)
.

Finally, substituting the choices of γ, τ, ε from above into the expression for T yields

T = Θ

(
23D(T ) S3 |H|9D(T )3 max

{√
maxi∈{1,2} |Σi|, ϵ maxi∈{1,2} |Σi|

}3
(minh∈H µc(h))

3
ϵ12

log
∆f

ϵ

)
,

as claimed in the statement of the theorem.

H.2 Softmax Policy Parametrization

Theorem H.2. Alternating policy-gradient algorithm with softmax policy parametrization and the
entropic bidilated regularizer converges in expectation in the last-iterate to an ϵ-Nash equilibrium
after a number of iterations T given by

T =
1

ϵ18
poly

(
|H|, A, B, 2D(T ), 1

minh∈H µc(h)
, |S1|, |S2|

)
,

using batches of poly
(

1
ϵ ,

1
γ , |H|, A,B, 2

D(T ), 1
minh µc(h)

, |S1|, |S2|
)

trajectory samples at each step.

Proof. The theorem follows as a corollary of Theorem G.1. By Lemma E.2, the regularized game
under softmax parametrization satisfies the two-sided pPŁ condition with moduli

αx = Θ

(
τ minh∈H µc(h) γ

3

|H|3
(
1 + (A− 1)e2R

)2
)
, αy = Θ

(
τ minh∈H µc(h) γ

3

|H|3
(
1 + (B − 1)e2R

)2
)
,

up to absolute constants. An ϵ-NE for the regularized game is also an ϵ′-NE for the unregularized
game where

ϵ′ = O
(
ϵ+ γ + τS2D(T ) max{logA, logB}+ εS(max{A,B})2

)
.

Then, we need to tune:
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• γ = Θ(ϵ);

• τ = Θ
(

ϵ
maxi∈{1,2} |Si|2D(T ) max{logA,logB}

)
;

• ε = Θ
(

ϵ
maxi∈{1,2} |Si|(max{A,B})2

)
.

We recall the smoothness parameter of the softmax-parametrized regularized utility function is

ℓsoftmax = Θ
(
16 max

i∈{1,2}

√
|Σi|D(T ) + τ 2D(T ) max

i∈{1,2}
|Σi|D(T )S max{logA, logB}

)
= O

(
D(T ) max

i∈{1,2}
|Σi|

)
,

by combining the Lipschitz bounds on the utility and the weighted entropic bidilated regularizer
(Lemma B.8). Then, from Theorem G.1 we tune,

ηy = Θ

(
1

ℓ

)
, ηx = Θ

(
α2
y

ℓ3

)
, T = Θ

(
ℓ3

αxα2
y

log
1

ε

)
,

where we set ℓ := ℓsoftmax, and αx, αy are the softmax pPŁ moduli of the two players. Invoking
Lemma E.2 for player 2 yields

αy = Θ

(
τ minh∈H µc(h) γ

3

|H|3
(
1 + (B − 1)e2R

)2
)
,

and therefore, prior to relating R to the truncation level ε,

ηx = Θ

(
τ2 (minh∈H µc(h))

2
γ6

|H|6
(
1 + (B − 1)e2R

)4
ℓ3

)
.

Finally, using the explicit relationship between R and the minimum action probability (so that(
1 + (B − 1)e2R

)4
can be expressed as a polynomial in 1/ε) and simplifying constants leads to the

following convenient. And, subsequently,

• ηy = Θ

(
1

D(T ) max{
√

maxi∈{1,2} |Σi|,ϵ maxi∈{1,2} |Σi|}

)
,

• ηx = Θ

(
ϵ12(minh∈H µc(h))

2

22D(T ) S6 |H|6D(T )3 max{
√

maxi∈{1,2} |Σi|,ϵ maxi∈{1,2} |Σi|}3
(
max{logA,logB}

)2 (
max{A,B}

)8) .
Finally, plugging the explicit expressions for αx, αy from above into the generic bound T =

Θ

(
|H|9 ℓ3

(
1+(A−1)e2R

)2 (
1+(B−1)e2R

)4
τ3(minh∈H µc(h))

3γ9 log 1
ε

)
yields the precise parameter dependence

T = Θ

(
|H|9 ℓ3

(
1 + (A− 1)e2R

)2 (
1 + (B − 1)e2R

)4
τ3 (minh∈H µc(h))

3
γ9

log
1

ε

)
.

Using the relationship between R and the minimum action probability to upper-bound
(
1 + (A−

1)e2R
)

and
(
1 + (B − 1)e2R

)
by polynomials in 1/ε and then substituting the tunings of γ, τ, ε we

obtain an explicit dependence on the game parameters. Writing S := max{|S1|, |S2|} and using the
smoothness estimate ℓsoftmax together with the truncation relation ε, a straightforward calculation
yields

T = Θ

(
23D(T ) S9 |H|9D(T )3

(
maxi∈{1,2} |Σi|

)3 (
max{A,B}

)12 (
max{logA, logB}

)3
(minh∈H µc(h))

3
ϵ18

log
S
(
max{A,B}

)2
ϵ

)
.

As in the direct-parametrization case, we now quantify the effect of stochastic gradients. For
softmax-parametrized policies, Lemma F.2 shows that the REINFORCE estimator (combined with
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the estimator for the entropic bidilated regularizer) is unbiased and has bounded variance per-trajector
with σ2

χ, σ
2
θ ≤ Θ

(
D(T )2 + τ2D(T )

)
= O

(
D(T )2

)
. We will control the stochastic error using

mini-batches.

Substituting these into Theorem G.1 with the softmax pPŁ moduli from Lemma E.2,

αx = Θ

(
τ minh∈H µc(h) γ

3

|H|3
(
1 + (A− 1)e2R

)2
)
, αy = Θ

(
τ minh∈H µc(h) γ

3

|H|3
(
1 + (B − 1)e2R

)2
)
,

the stochastic error terms are controlled by

σ2
x

Mαx
≤ Θ

(
D(T )2 |H|3

(
1 + (A− 1)e2R

)2
M τ minh∈H µc(h) γ3

)
,

ℓ σ2
y

Mαxα2
y

≤ Θ

(
D(T )2 ℓ |H|9

(
1 + (A− 1)e2R

)2 (
1 + (B − 1)e2R

)4
M τ3

(
minh∈H µc(h)

)3
γ9

)
.

Requiring each to be at most ϵ gives the condition

M ≥ Θ

(
max

{
D(T )2 |H|3

(
1 + (A− 1)e2R

)2
ϵ τ minh∈H µc(h) γ3

,
D(T )2 ℓ |H|9

(
1 + (A− 1)e2R

)2 (
1 + (B − 1)e2R

)4
ϵ τ3

(
minh∈H µc(h)

)3
γ9

})
.

The second term dominates for small ϵ, so it suffices to enforce

M ≥ Θ

(
D(T )2 ℓ |H|9

(
1 + (A− 1)e2R

)2 (
1 + (B − 1)e2R

)4
ϵ τ3

(
minh∈H µc(h)

)3
γ9

)
.

To relate the dependence on R to the truncation level, we use Lemma D.4, which implies that if the
minimum action probability under the softmax parametrization is at least ε, then 1+(A−1)e2R ≤ 1

ε ,

and 1 + (B − 1)e2R ≤ 1
ε , so(

1 + (A− 1)e2R
)2 (

1 + (B − 1)e2R
)4 ≤ 1

ε6
.

Combining this with ℓ-smoothness from above yields the bound

M ≥ Θ

(
D(T )2 ℓ |H|9

ϵ τ3 (minh∈H µc(h))3 γ9 ε6

)
.

Finally, we denote S := max{|S1|, |S2|} and substitute the terms γ, τ, ε, together with the definition
of ℓsoftmax, a direct calculation shows that it is sufficient to choose

M = Θ

(
23D(T )D(T )3 |H|9 S9 maxi∈{1,2} |Σi|

(
max{A,B}

)12 (
max{logA, logB}

)3(
minh∈H µc(h)

)3
ϵ19

)
.

H.3 Natural Policy Gradient

H.3.1 The Fisher Information Matrix

F(χ) = Es∼dχ,θEa∼πχ(·|s)
[
∇ logχ πχ(a|s)[∇χ log πχ(a|s)]⊤

]
The matrix F(χ) is a blog diagonal matrix with its (s, s)-block being the matrix:

Fs(χ) = dχ,θ(s)
(
diag(πχ(s))− πχ(s)πχ(s)⊤

)
.

Its pseudo-inverse, F†, is again a block-diagonal matrix, with an (s, s)-block,

F†
s(χ) =

1

dχ,θ(s)

(
diag(πχ(s))− πχ(s)πχ(s)⊤

)†
.

Interestingly, the matrix Z := F†Jsoftmax(χ) is a block-diagonal matrix with entries
1

dχ,θ(s)
I|As|×|As| on diagonal (s, s)-block.
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The spectrum of the Fisher Information Matrix With the same arguments used in Lemma D.1,
we can conclude that,

• λmin(F(χ, θ)) = 0;

• λ+min(Fs(χ, θ)) ≥ dχ,θ(s)mina πχ(a|s);

• γ2 minh µc(h)
|H|2 ε ≤ λmax (Fs(χ, θ)) ≤ 1.

Hence,

• λ+min (F(χ, θ)) ≥ mins,a d
χ,θ(s)πχ(a|s);

• mins
1√

|H||As|
≤ λmax (F(χ, θ)) ≤ 1.

While, dχ,θ(s) ≥ γ2 minh µc(h)
|H|2 by Assumption 2.

Theorem H.3. Alternating natural policy-gradient algorithm with softmax policy parametrization
and the entropic bidilated regularizer converges in expectation in the last-iterate to an ϵ-Nash
equilibrium after a number of iterations T , that is

T =
1

ϵ36
poly

(
1
γ , |H|, A, B, 2

D(T ), 1
minh∈H µc(h)

, |S1|, |S2|
)
,

.

Proof. This theorem is again an application of Theorem G.1, now in its Mahalanobis form. For
natural policy gradient, the updates are mirror-descent steps with a Mahalanobis metric induced by the
Fisher information matrices, so we run Alt-GDA with Mx,t = Fχ(χt, θt) and My,t = Fθ(χt, θt).

By Lemma E.3, for a general positive-semidefinite metric matrix M the game satisfies a two-sided
Mahalanobis pPŁ condition with moduli

α̃x = Θ

(
τ minh∈H µc(h) γ

3

λmax(M−1) |H|3
(
1 + (A− 1)e2R

)2
)
,

α̃y = Θ

(
τ minh∈H µc(h) γ

3

λmax(M−1) |H|3
(
1 + (B − 1)e2R

)2
)
.

When we specialize M to the Fisher information matrices, the spectrum bounds in the previous
subsection together with Assumption 2 and the truncation assumption imply

λ+min

(
Fχ(χ, θ)

)
≳
γ2 minh∈H µc(h) ε

|H|2
, λ+min

(
Fθ(χ, θ)

)
≳
γ2 minh∈H µc(h) ε

|H|2
,

and hence, over the image of the Fisher matrices,

λmax

(
F−1
χ (χ, θ)

)
, λmax

(
F−1
θ (χ, θ)

)
= O

(
|H|2

γ2 minh∈H µc(h) ε

)
.

Substituting these bounds for λmax(M
−1) into the expressions above yields Mahalanobis pPŁ moduli

α̃x = Θ

(
τ(minh∈H µc(h))

2 γ5 ε

|H|5
(
1 + (A− 1)e2R

)2
)
, α̃y = Θ

(
τ(minh∈H µc(h))

2 γ5 ε

|H|5
(
1 + (B − 1)e2R

)2
)
.

The Mahalanobis version of Theorem G.1 prescribes stepsizes (up to constants)

ηy = Θ

(
1

ℓ λmax

)
, ηx = Θ

(
α̃2
y

ℓ3λ2max

)
, T = Θ

(
ℓ3λ2max

α̃xα̃2
y

log
1

ε

)
,

where ℓ is the Euclidean smoothness constant of the objective and λmax := maxt λmax(M
−1
·,t ). We

use the Euclidean smoothness constant ℓ := ℓsoftmax as in the softmax-parametrized policy-gradient
case; writing Σ := maxi∈{1,2} |Σi| and S := max{|S1|, |S2|},

ℓ = Θ
(
16
√
ΣD(T ) + τ 2D(T )ΣD(T )S max{logA, logB}

)
= O

(
D(T ) Σ

)
,
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where the final inequality uses the tuning of τ and ϵ < 1. By the Smoothness Relative to the
Mahalanobis Distance (as used in the proof of Theorem G.1), we have

λmax = O

(
|H|2

γ2 minh∈H µc(h) ε

)
,

and hence the stepsizes can be expressed as

ηy = Θ

(
ϵ3 minh∈H µc(h)

|H|2D(T ) ΣS (max{A,B})2

)
,

ηx = Θ

(
ϵ24
(
minh∈H µc(h)

)6
22D(T ) |H|14D(T )3 Σ3 S10 (max{A,B})16 (max{logA, logB})2

)
.

As in the softmax-parametrized policy-gradient case, we relate equilibria of the truncated, regularized,
exploration-perturbed game to equilibria of the original game. An ϵ-NE of the perturbed game is an
ϵ′-NE of the unregularized game with

ϵ′ = O
(
ϵ+ γ + τ max

i∈{1,2}
|Si|2D(T ) max{logA, logB}+ ε max

i∈{1,2}
|Si|(max{A,B})2

)
,

so, as before, we choose

• γ = Θ(ϵ);

• τ = Θ
(

ϵ
maxi∈{1,2} |Si|2D(T ) max{logA,logB}

)
;

• ε = Θ
(

ϵ
maxi∈{1,2} |Si|(max{A,B})2

)
.

Combining these tunings with the expressions for α̃x, α̃y, the smoothness ℓsoftmax, the bound on
λmax, and the generic iteration bound T = Θ

(
ℓ3softmaxλ

2
max/(α̃xα̃

2
y) log(1/ε)

)
and using Lemma D.4

to relate R to the truncation level ε yields

T = Θ

(
23D(T )D(T )3 |H|19 S14 Σ3 (max{A,B})22 (max{logA, logB})3

ϵ33
(
minh∈H µc(h)

)8 log
S(max{A,B})2

ϵ

)
.

I Proximity of Projections

In this section, we consider that the update rules:

θ ← θ0 + ηF†(θ0)∇θV (θ);

θF ← argmin
θ∈ΘR

(θ − θ)⊤F(θ0)(θ − θ); (19)

θkl ← argmin
θ∈ΘR

DKL(softmax(θ)∥softmax(θ), (20)

and demonstrate that (19) and (20) are sufficiently close. For brevity we consider only the maximizer’s
updates and drop the minimizer’s variables from the notation. I.e., our goal is to bound ∥θkl − θF∥.
We begin by defining the two objective functions that each projection optimizes,

LF(θ) := (θ − θ)⊤F(θ0)(θ − θ);
Lkl(θ) := lse(θ)− lse(θ)−∇lse(θ)⊤(θ − θ),

where lse(θ) := log
∑
eθi . Then, we write,

θF = argmin
θ∈ΘR

LF(θ);

θkl = argmin
θ∈ΘR

Lkl(θ).
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Further, for the gradient of Lkl we write,

∇Lkl(θ) = ∇2lse(θ)(θ − θ)
= F(θ)(θ − θ).

Now, from stationarity of the optimal, for a v in the normal cone of ΘR at θkl,

0 = ∇Lkl(θkl) + v

= F(θkl)(θkl − θ) + v

= F(θ0)(θkl − θ) + [F(θkl)− F(θ0)](θkl − θ) + v

Therefore, we can bound the stationarity of θkl for the objective of LF(·):∥∥F(θ0)(θkl − θ) + v
∥∥ =

∥∥[F(θ0)− F(θkl)](θkl − θ)
∥∥

≤ ∥F(θ0)− F(θkl)∥op
∥∥θkl − θ∥∥

≤ LF

2
∥θ0 − θkl∥

∥∥θkl − θ∥∥
≤ LF

2

(∥∥θ − θ0∥∥+ ∥∥θ − θkl∥∥) ∥∥θkl − θ∥∥
≤ LF

2

(
η2
√
SB + η2

√
SB

1√
α

)
η2
√
SB

1√
α

= O

(
LFSBη

2

α

)
.

where we use:

• LF is the Lipschitz continuity modulus of the operator norm of F(·),
• Proposition 8,

• α = minθ∈ΘR′ λ
+
min(F(θ)), and

• the fact that when τ is tuned as dictated in Theorem H.3:∥∥θ − θ0∥∥ ≤ η ∥∥F(θ)†∇V τ (θ)∥∥
≤ 2η

√
SB.

Proposition 8. Consider the update rules (19) and (20). It is the case that:

∥θF − θkl∥ ≤
1√
α

∥∥θ0 − θ∥∥ ,
where α = minθ∈ΘR′ λ

+
min(F(θ)) and R′ = R+ η

√
SB.

Proof. We begin by stating a useful fact.

Fact 1. Let lse be the function lse(θ) := log
∑
i e
θi . Then, softmax(θ) = ∇lse(θ). Further, Lkl(·)

is strictly convex on Θ⊥ := {θ ∈ Rd | θ⊤1 = 0} and its Bregman divergence is:

Blse(θ
′∥θ) := lse(θ′)− lse(θ)−∇lse(θ)⊤(θ′ − θ).

Further, it is the case that:

Blse(θ
′∥θ) = DKL(softmax(θ)∥softmax(θ′)).

The arguments for this fact can be found in (Gao and Pavel, 2017). By standard calculations we can
see that:

Blse(θ
′∥θ) ≥ α

2
∥θ − θ′∥2 , for θ, θ′ ∈ Θ⊥,
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with α := λ+min(F(θ)). From Fact 1 we can conclude that,

Blse(θ∥θ) ≥
α

2

∥∥θkl − θ∥∥2 ,
where we let ΘR′ for R′ = R+ η

√
SB. From 1

2 -smoothness of Lkl(·) we write,

Lkl(θ0) ≤ Lkl(θ) +∇Lkl(θ)
⊤(θ0 − θ) +

1

4

∥∥θ0 − θ∥∥2
=
L

2

∥∥θ0 − θ∥∥2 .
Since θkl = argminθ∈ΘR Lkl(θ), it follows that

1

4

∥∥θ0 − θ∥∥2 ≥ α

2

∥∥θkl − θ∥∥2 ,
which concludes the claim.
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