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A B S T R A C T   

Understanding the growth and distribution of the prawns is critical for optimising the feed and harvest strategies. 
An inadequate understanding of prawn growth can lead to reduced financial gain, for example, crops are har
vested too early. The key to maintaining a good understanding of prawn growth is frequent sampling. However, 
the most commonly adopted sampling practice, the cast net approach, is unable to sample the prawns at a high 
frequency as it is expensive and laborious. An alternative approach is to sample prawns from feed trays that farm 
workers inspect each day. This will allow growth data collection at a high frequency (each day). But measuring 
prawns manually each day is a laborious task. In this article, we propose a new approach that utilises smart 
glasses, depth camera, computer vision and machine learning to detect prawn distribution and growth from feed 
trays. A smart headset was built to allow farmers to collect prawn data while performing daily feed tray checks. A 
computer vision + machine learning pipeline was developed and demonstrated to detect the growth trends of 
prawns in 4 prawn ponds over a growing season.   

1. Introduction 

In prawn farming, continual monitoring of the average weight and 
size distribution of prawns in a pond is essential to optimise husbandry 
and harvest strategies (Robertson, 2006). Interviews with seven 
Australian commercials found that the cast-net approach is the current 
best practice for monitoring the prawn growth. Literature suggests that 
the cast-net approach is the most commonly adopted sampling practice 
(Alam and Phillips, 2004; Seixas and Troutt, 2003; Preston et al., 2004). 

The cast-net approach typically requires a farmer to cast a large net 
to catch prawns, then hand pick a small number of prawns from the pond 
(Alam and Phillips, 2004; Seixas and Troutt, 2003; Preston et al., 2004). 
Captured animals are bulk weighed and individually counted to estimate 
the average weight. To measure the size distributions, the sample 
prawns will be removed from the pond and measured separately. Such 
lengthy operation leads to extended air-exposure, which can stress the 
animals, resulting in diseases and damage the pond yield (Hall and van 
Ham, 1998; Stoner, 2012; Whiteley and Taylor, 2015). This extremely 
labour-intensive task means that the prawn samples are often only 
collected from one specific location in the pond and at a low frequency 
(e.g. once per week). The estimation of the average weight is potentially 

biased due to the low sampling (net-casting) rate and inconsistency of 
the number of animals weighed. Erroneous weight estimates can mask 
sub-optimal growth and underlying pond issues leading to long delays 
(weeks) before issues are noticed through subsequent measurement. 
These delays can have a significant economic impact. Prawns are not 
often weighed individually due to the added time involved, and there
fore, size distribution data is not collected. 

Frequent data collection on the size of individual animals can pro
vide important information for evaluating growth rates and size distri
butions, which provide insights into productivity, conditions of the pond 
and potential yield. This information can help the farm manager predict 
and avoid unwanted situations and reduce feed waste (Robertson, 
2006). For example, by monitoring prawn growth rates, farmers can 
assess prawn nutrient intake and optimise feed schedules accordingly. 
This will enhance feed efficiency and minimise waste while keeping 
healthy prawn growth. Regular growth monitoring also enables farmers 
to optimise prawn harvest timing based on growth rates and market 
conditions, thereby maximising market prices while mitigating the risks 
of overstocking or under-stocking. 

High-frequency sampling is also the first step towards future preci
sion farm management. Obtaining high-resolution data is essential, as it 
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allows farms to gain a deeper understanding of current growth rates and 
opens up opportunities to develop AI models that can forecast growth 
and predict potential yield drops. However, developing such models is 
currently challenging due to the lack of real-world, high-resolution data. 
The work described in this study provides a practical solution to address 
this gap without causing financial strain, particularly for small farms in 
developing areas. By facilitating the collection of high-resolution real- 
world data, this approach paves the way for future research and 
development of AI models that could significantly improve the sus
tainability and efficiency of aquaculture practices. 

The high-frequency sampling can potentially be integrated into the 
daily practice of pulling up feed trays by prawn farm technicians, which 
intended to understand feed consumption and adjust feed schedule. The 
tray typically captures a good number of prawns because the feed is 
added to the tray to attract the prawns. We aim to take advantage of this 
practice as this process is more frequent (once/twice daily) than the 
casting of a net (once every week or fortnight). This is where Smart 
Headset, Computer Vision (CV) and Machine Learning (ML) can 
contribute. A smart headset can be equipped with cameras and farmers 
can be equipped with these headsets to automatically capture the feed 
tray images (RGB and depth) hands-free without disturbing their daily 
operation/workflow. A smart glass (e.g. Google Glass) can be used by 
farmers to interact with the headset camera and also display results. The 
images of prawns from feed trays can be analysed using computer vision 
methods, and the resulting features can be converted into size estimates 
using machine learning algorithms. By providing automatic and 
frequent measurements of prawns, this approach offers valuable insights 
to farmers that would not be otherwise accessible. 

With an aim to provide frequent insight into how the prawns are 
growing over time, the project aims to develop a pondside smart headset 
and computer vision-based system to automatically measure prawn size 
from images acquired using the existing feed tray processes. More pre
cisely, we aim to (i) develop a hands-free smart glass-based field data 
(RGB and depth image) collection kit to acquire images of feed trays as 
they are raised, (ii) develop a set of computer vision and machine 
learning-based methods to estimate prawn size based on those field 
quality images, and (iii) conduct an analysis of how accurately the 
measured prawn sizes reveal pond status (e.g. size variation) based on 
field quality data. 

2. Materials and methods 

The overall pipeline of the automated prawn size estimation process 
is presented in Fig. 1. Farmers/technicians wear the smart headset and 

switch the camera on (using a smart glass interface) before pulling out 
the feed tray from the prawn pond. The images are stored and processed 
on a unit placed on the back of the headset. Prawns are detected on the 
tray based on a deep learning (CV + ML) method. A set of image pro
cessing methods are then applied to each prawn segment to obtain the 
centreline of each segment. The centreline in the corresponding depth 
image (both RGB and depth camera are aligned and synced) is extracted, 
smoothed (due to noise), and used for computing the prawn size. The 
prawn size and growth statistics are overlayed on the prawn segments by 
the smart glass for efficient decision-making. We also experimented with 
a prawn tracking method to refine the size estimates across frames of a 
video. Each of these steps is detailed in the following sections. 

2.1. Hands-free prawn data acquisition system 

Prawn farm operations are typically performed under great time 
pressure. For example, on a large commercial farm (e.g., 100 + Hect
ares), farmers would have to finish examining the feed tray of a pond in 
only one minute. A handsfree data collection system is essential as 
farmers usually have both hands occupied, for example, pulling a tray 
from the pond or holding a water quality sensing device. 

Unlike many previous works that rely on regular colour cameras 
(Thai et al., 2021; Zhang et al., 2022; Nguyen et al., 2020) and require 
tightly controlled lighting conditions (Kesvarakul et al., 2017; Mohebbi 
et al., 2009), 

we use a depth camera as it can provide the real-world coordinates of 
the prawns required to measure the length accurately. We investigated 
several alternatives to develop a system that consists of a Google Glass as 
the clientside viewfinder, a Raspberry Pi 4B as a streaming/recording 
server, an Intel RealSense D435i depth camera and a power bank for 
power supply. All hardware components are housed on a hard hat. 

To ensure practical daily use, the smart glasses should be carefully 
chosen for maximum comfort during extended periods of wear. Ergo
nomic design and lightweight construction are essential to minimise 
discomfort. Xi et al. (2023) outlined several factors to consider when 
introducing smart glasses to the aquaculture farming environment, 
including weight, computing power, and accessory compatibility (e.g., 
sunglass shades). Based on these considerations, we chose Google Glass 
due to its lightweight design and reported comfort during extended wear 
(Xi et al., 2023). 

This smart headset unit (Fig. 2) was used successfully in a field 
environment (see Section 2.3) to collect video recordings (both RGB and 
depth images, RGB-D) for processing, training, and testing with com
puter vision and machine learning methods. None of the wearers 

Fig. 1. Image capture, computer vision, and machine learning pipeline for measuring prawn size.  
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reported any discomforts while wearing the helmet. This suggests that 
the smart headset is comfortable to wear, even for extended periods of 
time, which is crucial for practical use in a real-world environment. The 
Google Glass can also be easily detached from the hard hat, making it 
convenient for cleaning or replacement. 

The software implementation contains two main components, i.e., a 
server app for the Raspberry Pi 4 and a client app for the Google Glass. 
The components are illustrated in Fig. 3. 

The server app records the video stream and saving the data to a local 
directory. The client app is responsible for displaying the video stream 
on Google Glass. The server app is also responsible for sending the data 
to the server app for processing and training. The server app is also 
responsible for saving the data to a local directory. The client app is also 
responsible for displaying the data on Google Glass. 

2.1.1. Software for Raspberry Pi (server) 
To make the system field-ready, we have to ensure that the system 

can set itself up without any human intervention. The common practice 
requires the user to use a separate computer to remotely control the 
Raspberry Pi, referred to as the headless mode. However, this is not a 
good practice for the field environment as farmers are not computer 
engineers and do not have the required equipment in the field. Our so
lution is configuring the Raspberry Pi as a server using Nginx (web
server), Flask (python-based web framework) and Gunicorn (web server 
gateway interface, WSGI), which starts the serverside camera controller 
app automatically whenever the Pi is turned on. 

The server-side app, called RS4Pi (RealSense for Raspberry Pi), uses 
Flask to handle Glass requests and manage camera setup/stream/record 
activities, which are implemented using Python, OpenCV and pyr
ealsense2 library. It also offers basic Pi storage management, such as 
checking storage usage and removing old recordings. In order to receive 
commands from Google Glass, we modified the Raspberry Pi network 
service that turns the Raspberry Pi into a hotspot automatically when the 
system starts. We then configured Glass to connect to this Wi-Fi network 
automatically. This way, Google Glass can reach the RS4Pi app and 
control the camera. 

2.1.2. Depth camera control from Google Glass (client) 
An Android app was developed to allow the user to access the live 

stream of the RS camera, start/stop recording and check the storage 
status of the Raspberry Pi (see Fig. 4). 

2.2. Headset assembly (hardware) 

The hardware, including a power bank, was mounted on a safety hat 
(see Fig. 5.).With this system, a farmer only needs to put on the Google 
Glass and the hardhat before leaving the office to do tray checks. 

2.3. Prawn dataset 

One of the key outputs of the project was an annotated data set of 
prawn images and measurements. The headset was deployed at CSIRO’s 
Bribie Island aquaculture field station from mid-November to the end of 
December 2021. Field technicians wore the smart headset whilst con
ducting feed tray checks at the ponds. We collected field data from four 
ponds for a period of seven weeks, approximately twice per week. In 
total, we collected a total of 91 recordings that are stored in Robot 
Operating System (ROS) Bag format. Each recorded ROS bag includes a 
colour stream (BGR8, 1280 × 720, 15FPS), a depth stream (Z16, 
1280 × 720, 15FPS) and two motion streams, including an accelerom
eter (60FPS) and gyroscope (200FPS). We also handmeasured the 
lengths of five to six randomly sampled prawns from each tray in the first 

Fig. 2. A technician is wearing smart glasses and is using the smart headset to 
collect prawn data. 

Fig. 3. The three main components of the data collection system.  
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four weeks of data collection. A total of 4454 prawns from 735 randomly 
selected RGB images were manually annotated with polygons (Fig. 6) 
using VGG Image Annotator (Dutta and Zisserman, 2019; Dutta et al., 
2016). This dataset was later used to train, validate and test the method 
of using CV + ML to compute prawn size. This dataset is the first of its 
kind and can be used for future research in both the aquaculture and 
computer vision/machine learning domains. It is publicly available via 
the CSIRO Data Access Portal (Xi et al., 2022). 

2.4. Computer vision-based automatic prawn size estimation 

This section describes the computer vision pipeline and how it was 
used to estimate the prawn size. 

2.4.1. Prawn detection 
Once videos of the feed trays (with prawns on them) are collected, 

we need a model that can detect the prawns shown on the tray. We are 
interested in the length and shape of the prawn; hence, it is necessary to 
get the segmented prawn regions for further image processing. More 
precisely, we are interested in detecting all the prawns separately (for 
size measurement), and hence we need instance segmentation (Hafiz 
and Bhat, 2020) rather than semantic segmentation (Guo et al., 2018). 
There are a number of commonly used instance segmentation models, 
such as Mask R-CNN (He et al., 2017), Cascade Mask R-CNN (Cai and 
Vasconcelos, 2019), and HTC (Hybrid Task Cascade) (Chen et al., 
2019a) with various backbones, including ResNet (He et al., 2015), 
ResNeXt (Xie et al., 2016), SwinT (Liu et al., 2021) and DetectoRS (Qiao 
et al., 2021). 

We trained the models using MMDetection (Chen et al., 2019b), 
which is a PyTorch-based toolbox that offers a faster training speed. The 
backbones used in the models were pre-trained on the ImageNet 1 K 
dataset (Deng et al., 2009; Russakovsky et al., 2015). All models were 
then trained on the Bribie2021 training dataset with a 2 x learning 
schedule (24 epochs). The models were then benchmarked against the 
Bribie2021 validation dataset. The best-performing model will be used 
to generate prawn segmentations, which will be used in subsequent 
steps to generate centrelines and calculate the physical length of the 
prawns. 

Fig. 4. The screenshots of the Android app for controlling the RS camera.  

Fig. 5. A close look at the helmet.  

Fig. 6. Image annotation done using VGG Image Annotator.  
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2.4.2. Prawn skeletonisation 
The next step is to figure out where the “spine” or centreline of each 

prawn is, i.e. a vector in 2 dimensions describing the prawn’s curving 
long axis. The main technique used to produce these centrelines is a type 
of image processing operation called “skeletonising” or “image thin
ning”. The Python scikit-image library (Van der Walt et al., 2014) offers 
three main skeletonising approaches: “Zhang84” (Zhang and Suen, 
1984), “Lee94” (Lee et al., 1994) and “thin/topological skeleton”. We 
used the Zhang84 method (skimage.morphology.skeletonize) as it is the 
preferred method for skeletons with few branches (as expected for 
prawns). As the scikit-image skeletonising algorithms only work with 
black and white (BW) images, we first converted each RGB image to a 
BW image using OpenCV. If an image contains multiple detected 
prawns, we also produce multiple BW images where each image only has 
one prawn mask. This eliminates the situation where multiple prawns 
overlap, which will be incorrectly treated as a single animal (skeleton). 
This also allows us to easily link the computed centreline to a bounding 
box and a tracker ID produced by a tracking algorithm. The output of the 
skeletonising algorithm (the centreline) is represented as a sequence of 
adjacent pixels on the image. 

While the centreline calculation worked well with most detected 
prawns, we discovered two main issues.  

• One issue is that the centreline sometimes splits into two branches 
around the tail (Fig. 7a), which leads to a slight overestimation of the 
length of the prawn. This is inevitable as prawns’ tails naturally split 
at the end. Future work could investigate using image processing or 
machine learning algorithms to rectify the tail splits to produce a 
smoother line without branches. 

• A second issue is an under-estimation bias introduced by the skel
etonising algorithm: the centreline does not always have one end at 
the tip of the head and the other end at the tip of the tail (Fig. 7b). 
Based on manual examination of a small set of samples, we observed 
that the bias is minimal, perhaps resulting in under-estimation of the 
prawn length by < 5 %. 

2.4.3. Prawn length estimation from depth camera 
An important part of the project is calculating the length of the 

prawn by utilising depth information. The Intel RealSense D435i depth 
camera uses two infra-red cameras to generate the depth map. By 
aligning the depth image to the colour image, we could de-project the 2D 
pixels that form the centreline into 3-dimensional space. This allowed us 
to calculate the physical distance between any pair of pixels directly. 
Applying the calculation on the prawn centreline gives us the actual 

length of the prawn. 
The biggest source of error in these calculations is the quality of the 

depth map. All the data collected in this project are from an uncontrolled 
outdoor environment. Unlike an indoor environment where lighting can 
be easily controlled, the field environment, including weather condi
tions and human operations, is entirely unpredictable. This means some 
depth maps can be extremely noisy. For example, water left on the tray 
can cause strong reflections on a sunny day, which tends to result in poor 
depth maps. 

The first step we took to mitigate this issue was applying multiple 
filters before calculating the prawn length. We first down-sampled the 
pixels that a centreline contains, then excluded invalid pixels (those with 
no depth value). We then applied another filter to remove pixels from a 
distorted depth map, for example, where a pixel coordinate was incon
sistent compared to the rest of the pixels. After applying all the filters, 
we calculated the proportion of the total downsampled pixels that are 
valid and rejected a centreline as a measurement of a prawn if this 
proportion falls below 95 %. The 95 % threshold is an extremely strict 
rule, which could be tuned down with further fine-tuned depth-map 
post-processing algorithms, such as temporal filtering, edge preserving 
and spatial hole-filling. 

With all the filters in place, we were able to calculate the lengths of 
the prawns along a less bumpy reconstructed 3D centreline. However, 
noise still remained. To further improve the accuracy, we applied a set of 
smoothing techniques. The main focus here was smoothing in the z- 
dimension (depth), which directly affects the length estimation. There 
are two sources of noise in the z-dimension: outliers and missing values 
(i.e. pixels with no depth information). We first detected extreme out
liers in the z-dimension and replaced them with missing values. We then 
obtained the number of missing segments (a missing segment represents 
a continuous sequence of missing values) along the centreline. Each of 
these missing segments was interpolated based on depth values before 
and after the segment. We also noticed that the computed centrelines 
could exhibit small zigzags, which are caused by the segmentation and 
skeletonising algorithm. These lead to a minor overestimation of the 
prawn length. To deal with this situation, we applied 2nd order poly
nomial fitting to both the x and y coordinates of the centreline pixels. 
After this process, we obtained a smooth centreline in the three- 
dimensional space. We computed the length based on the summation 
of Euclidiean distance between successive points along the centreline 
based on the smoothed. 

2.4.4. 3-dimensional coordinates 
The entire process of centreline calculation from field quality images 

Fig. 7. Examples of inaccurate centreline calculations.  
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is illustrated in Fig. 8. 

2.5. Prawn tracking 

In an attempt to further enhance the accuracy of calculated prawn 
lengths, we sought to track individual prawns over multiple frames. Our 
intention was to estimate the length of each prawn multiple times and 
then use statistical methods to remove outlier estimates. The tracking 
algorithm we used for this purpose is called SORT (A Simple Online and 
Realtime Tracking algorithm) (Bewley et al., 2016). SORT uses IoU 
(Intersection over Union) as its primary metric and applies a Kalman 
filter (Welch and Bishop, 1995) to associate a bounding box detected in a 
captured image (frame) with a bounding box detected on the 
previously-captured frame. In other words, the algorithm associates 
images of prawns by examining the overlaps between bounding boxes 
across frames. The performance of the SORT (max age = 10,min hits = 0, 
iou threshold = 0.2) was not satisfactory in our case. This was caused by 
two major problems:  

• The first issue is that neither the camera (headset) nor the prawns are 
stationary. Prawns are fast-moving animals when they jump. In some 
video sequences, a prawn was lying on the mesh in one frame and 
jumping (curved up) on the other side of the tray in the next frame. In 
such scenarios, there is too little overlap between the bounding boxes 
across frames. As a result, images of the same prawn were treated as 
images of different animals, i.e., the prawn was not successfully 
tracked. Adding to this issue, the camera itself is also moving as it is 
mounted on the head of a human. This can cause tracking to fail even 
if the prawn is motionless on the tray.  

• The second problem is the size of the prawn. Small prawns occupy a 
smaller number of pixels in the frame and subsequently have a 
smaller bounding box. The IoU metric between small bounding boxes 
can change dramatically across frames compared to larger bounding 
boxes. 

There are several possible ways to obtain a more robust tracking 
algorithm. For example, we could use the camera’s built-in IMUs (In
ertial Measurement Unit) to offset camera motion and explore more 
sophisticated tracking algorithms such as DeepSort (Wojke et al., 2017). 
DeepSort is a tracking model that utilises a deep neural network to 
generate features of the prawns and use the similarities between features 
to associate prawns across frames. However, one potential challenge is 
that prawns all look very similar to the human eye. It is unknown if there 
are sufficient differences/similarities in the features to make such an 
algorithm work. We are interested in investigating this issue in the 

future. 

3. Results and discussion 

3.1. Prawn detection 

Table 1 shows a brief summary of the top-performing models for 
prawn segmentation. We used COCO detection evaluation metrics 
(COCO, 2017) to benchmark the models, specifically, the mean Preci
sion (mAP) and mean Average Recall (mAR). In general, precision 
measures the accuracy of the predictions. i.e. the percentage of correct 
predictions. Recall refers to the percentage of total relevant results 
correctly predicted by the model. The precision and recall are calculated 
using the following equations. TP refers to True Positive (score ≥ 0.50), 
FP refers to False Positive, and FN is False Negative. 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2) 

In COCO, AP and AR are averaged over multiple Intersection over 
Union (IoU) from 0.50 to 0.95 with a step size of 0.05, whereas APIoU=.50 

is computed at a single IoU of 0.50. The details of COCO evaluation 
metrics and implementations can be found in COCO (2017). 

In our case, we are particularly interested in mAP (IoU = 0.5). Thus, 
HTC with DetectoRS101 as the backbone, which had the best perfor
mance on the test dataset, was used in the final prawn length calculation 
pipeline. A 5-fold validation on the chosen model is shown in Table 2. 

Unlike Mask RCNN and Cascade RCNN, HTC (Hybrid Task Cascade) 
brings improved performance by interweaving the detection and seg
mentation tasks for joint multi-stage processing and using a fully con
volutional branch to provide spatial context (see Fig. 9), which helps 
distinguish foreground from cluttered background (Chen et al., 2019a). 

Fig. 8. Steps to deal with noise in field quality images and compute length.  

Table 1 
A summary of benchmarking results for various detectors.  

Detector mAP mAPIoU=.50 mAR 

ResNet50 + Mask RCNN  .556  .883  .619 
ResNet101 + Mask RCNN  .552  .881  .613 
ResNeXt101 + Mask RCNN  .574  .889  .639 
ResNeXt101 + Cascade RCNN  .575  .885  .639 
Swin-Small + Mask RCNN  .545  .887  .611 
Swin-Tiny + Mask RCNN  .543  .892  .618 
Detector ResNet101 + HTC  0.569  .898  0.632  
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Overall, this framework can learn more discriminative features pro
gressively while integrating complementary features together in each 
stage. 

The backbone, DetectoRS, introduces the Recursive Feature Pyramid 
(RFP) and Switchable Atrous Convolution (SAC) (Fig. 10). RFP in
corporates extra feedback connections from Feature Pyramid Networks 
(FPN) into the bottom-up backbone layers, while the SAC, which con
volves the features with different atrous rates and gathers the results 
using switch functions. By combining RFP and SAC, DetectoRS gains 
significantly improved performance compared to traditional ResNet. 

The CV pipeline was then used to process 63 tray check recordings 
over 23 days. In total, 13,661 prawn instances were detected by the 
prawn detector across 4067 frames. 

3.2. Prawn growth prediction 

A key research objective was to find out how effective the length 
measurements are from CV and ML methods when applied to images 
collected under operational field conditions. Field quality images are 
normally noisy in nature. Among the images used for validation of CV 

methods, about two-thirds of the images were discarded because of the 
poor depth images. 

A scatter plot showing the relationship between field length mea
surements and the ones computed by the CV-ML method is presented in  
Fig. 11. Because of the small sample size (from each feed tray), it’s 
possible to have some outliers as evident from sample measurements 
around DOC (day of culture) 110 and 140 where the length is very small. 
Otherwise, the trend line (in red) shows growth over time. Also, the 
variation in measurement over time is clearly visible in the plot that’s 
unlikely to be visible in the cast netting process. 

We also obtained summary statistics of prawn lengths over time (first 

Table 2 
Five-fold validation on HTC + DetectoRS101.  

Fold mAP mAPIoU=.50 mAR 

1  .569  .898  .632 
2  .555  .873  .620 
3  .581  .926  .648 
4  .573  .898  .659 
5  .590  .920  .659 
Mean  .574  .903  0.639 
SD  .012  .019  0.013  

Fig. 9. An illustration of the architecture of HTC (Chen et al., 2019a). M refers to mask (segmentation), and B refers to bounding box (detection).  

Fig. 10. An illustration of the Recursive Feature Pyramid and Switchable Atrous Convolution used in DetectoRS (Qiao et al., 2021).  

Fig. 11. Scatter plot showing the relationship between field measurements and 
the length measured by CV-ML method. The red line indicates the trendline 
obtained by fitting the first order polynomial between x and y coordinates. 
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four weeks), and the results are presented in Fig. 12. The top row rep
resents the time series box plot on a different day of culture (DOC). Each 
box plot represents the summary statistics of prawn length for that day. 
The first column represents the length estimated using the cast net 
method. The second column represents the summary statistics of the 
samples collected from the feed tray during the video recordings (five to 
six of them), and the third and fourth are the summary statistics ob
tained using the computer vision method (the third column without 
tracking and the fourth column with tracking). Following are the key 
findings from these graphs:  

1. Prawns in samples collected with a cast net (column one) are larger 
than prawns in samples collected by raising a feed tray (column 2). 
We need to find a way to bridge this gap. 

2. The trendline for each length measurement method shows an up
ward trend indicating that prawns are growing over time. While the 
rate of growth is not exactly the same, the CV method trendlines 
(column three) are similar to trendlines based on feed tray samples 
(column two).  

3. The trendline based on tracking-based CV methods (column 4) is 
closer to that measured directly from feed tray samples than the 
trendline from CV methods without tracking. This demonstrates that 
tracking was effective to some extent.  

4. The boxplots for each day show the variation of length within single 
samples of prawns. For the day and captured by all methods. The box 
plots in the cast net method show an upwards trend of median only. 
However, high sampling methods (columns two, three, and four) 
show significant size variation over time. This is aligned with the 
observation from the project. 

3.3. Prawn distribution 

This section describes the distribution of prawns in the dataset over 
time. Fig. 13 shows the distribution of prawns at different DOCs (Day of 
Culture). The median line in each subplot is presented using a black 
dotted line. As DOC increases, the median line moves to the right of the 
plots implying prawn size increases over time. Note that the distribu
tions between successive DOCs may look a bit inconsistent because of 
samples that were pulled by the feed tray. It’s not unlikely given the 
small sample size. However, if we look at the global trend (median line), 
the growth is visible. Also, the variability between samples is very 
evident from the plots, and it’s only possible because of high-frequency 
sampling. 

3.4. Workflow improvements 

Efficiency is a critical aspect of any workflow. Introducing wearable 
computing devices (such as the smart helmet) generally lead to signifi
cantly improved task efficiency. For example, out previous work has 
demonstrated that smart glasses can significantly improve pond water 
quality measurement tasks (Xi et al., 2023). 

Our novel approach to measuring prawns offers significant advan
tages in this regard compared to the conventional cast-net approach (see  
Fig. 14). The conventional approach involves several manual steps, 
including casting a net, manipulating it to catch prawns, hand-picking a 
subset of prawns for measurement, and bringing them to a measurement 
location. While it is challenging to quantify the efficiency gains of the 
two approaches in terms of time and effort, it is obvious that these 
additional steps increase the time and effort required for monitoring 
prawn growth, making it particularly challenging for large commercial 
farms. 

In contrast, our approach using smart helmets seamlessly integrates 
with an existing farm operation task, such as conducting normal feed 
tray checks. This eliminates the need for additional tasks and reduces the 
time and effort required for monitoring prawn growth. Moreover, the 
use of the smart helmet ensures consistent measurements. 

Our approach offers significant cost savings compared to the con
ventional approach, which requires tremendous resources. Advances in 
wearable computing devices have resulted in a significant reduction in 
the cost of smart helmets. Alternative smart glasses such as Rokid Air 
Glasses and Nreal are now available at a price point under $500, making 
the entire smart helmet cheaper than an average smartphone. In 
contrast, increasing the number of farm technicians or installing addi
tional camera rigs is a more expensive alternative to using mobile 
cameras that simply cannot scale up due to their hefty cost (each mea
surement point would need at least 4 camera rigs, and each rig would 
require a power supply and data storage, among other things). 

Moreover, as all recording and analysis are performed locally, our 
approach ensures that farm data, particularly growth data (considered 
as trade secrets), is securely stored. The use of wearable technology 
eliminates the need to share data with third-party providers, protecting 
farmers’ data privacy and providing them with complete control over 
their data. 

3.5. Limitations 

As a proof-of-concept, the proposed smart helmet solution has 
showed promising results. The prototype still requires further 

Fig. 12. Length of sampled/detected prawns and their variations over time. Top row: time series box plot; Bottom row: linear trend line fitted to median lengths on 
each day. 
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Fig. 13. Length distribution across DOC. Note how the median length (black dotted line) is shifting towards the right as DOC becomes higher.  

Fig. 14. Comparison of steps involved when measuring prawns using conventional castnet approach (left) and our smart helmet (right).  
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development and refinement to address several limitations. 
One such limitation is the requirement of digital infrastructure. As 

described in Section 2.3, the current software streams and stores a 
number of data streams (e.g., depth and RGB streams), which requires a 
significant amount of storage space (approx. 130 MB/s). This can be 
resolved by performing real-time processing of the data streams, which 
would reduce the amount of data that needs to be stored. For example, 
the Raspberry Pi can be upgraded with a much more powerful NVIDIA 
Jetson computer, which has dedicated GPUs for inferencing (Mittal, 
2019; Bokovoy et al., 2019). The computer vision model can then be 
converted to TensorRT (Jeong et al., 2022) and deployed on the Jetson, 
which would allow for real-time processing of the data streams. 

Another limitation lies in the lack of full waterproof capabilities in 
the current prototype. This is due to the Raspberry Pi not being housed 
in a watertight enclosure. To address this limitation, future iterations 
could optimise the hardware design by incorporating ruggedized, 
waterproof casings such as the Shell Shock Raspberry Pi case. 

Another limitation to our experiment is the potential influence of 
prawns’ circadian cycle on their activity and presence on the feed tray. 
In our experiments, we collected data only during mornings, three times 
per week. However, our proposed procedure is designed to be performed 
whenever the feed-tray is checked. In the context of Australian com
mercial farms, this is anticipated to occur at least 16 times per day per 
pond, as farm staff typically check trays more than four times per day at 
four or more points for each pond. By analysing all the data collected 
during a day, rather than relying on data from a single tray check, the 
potential randomness introduced by the prawns’ circadian cycle is ex
pected to be reduced significantly, thereby improving the accuracy of 
the algorithms. We intend to conduct further experiments to investigate 
this issue. 

4. Conclusion 

In this paper, we present an approach that measures prawn size 
automatically during feed tray inspection using a smart headset, Google 
Glass, computer vision and machine learning methods. The smart 
headset with the combination of Google Glass does not add any extra 
work for farmers but is capable of capturing images (both colour and 
depth). The deep learning-based computer vision method then detects 
the prawns, and the corresponding depth camera segment is used to 
estimate the length of the prawns. The distribution of prawn length and 
growth trend over the growing season, as computed by our approach 
matches closely with the field measurements. In future, we aim to 
address the limitations of the current prototype and further develop the 
approach for phenotype measurement in livestock and crops. 
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Xie, S., Girshick, R., Dolĺar, P., Tu, Z., He, K., 2016. Aggregated residual transformations 
for deep neural networks. 〈https://arxiv.org/abs/1611.05431〉, 〈https://doi.org/10. 
48550/ARXIV.1611.05431〉. 

Zhang, L., Zhou, X., Li, B., Zhang, H., Duan, Q., 2022. Automatic shrimp counting 
method using local images and lightweight yolov4. Biosyst. Eng. 220, 39–54. 

Zhang, T.Y., Suen, C.Y., 1984. A fast parallel algorithm for thinning digital patterns. 
Commun. ACM 27, 236–239. https://doi.org/10.1145/357994.358023. 

M. Xi et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref14
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref14
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref14
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref15
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref15
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref16
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref16
https://arxiv.org/abs/1703.07402
https://doi.org/10.48550/ARXIV.1703.07402
https://doi.org/10.48550/ARXIV.1703.07402
https://doi.org/10.25919/02ve-8m73
https://doi.org/10.1145/3544549.3573856
https://doi.org/10.1145/3544549.3573856
https://arxiv.org/abs/1611.05431
https://doi.org/10.48550/ARXIV.1611.05431
https://doi.org/10.48550/ARXIV.1611.05431
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref18
http://refhub.elsevier.com/S0144-8609(23)00026-2/sbref18
https://doi.org/10.1145/357994.358023

	Smart headset, computer vision and machine learning for efficient prawn farm management
	1 Introduction
	2 Materials and methods
	2.1 Hands-free prawn data acquisition system
	2.1.1 Software for Raspberry Pi (server)
	2.1.2 Depth camera control from Google Glass (client)

	2.2 Headset assembly (hardware)
	2.3 Prawn dataset
	2.4 Computer vision-based automatic prawn size estimation
	2.4.1 Prawn detection
	2.4.2 Prawn skeletonisation
	2.4.3 Prawn length estimation from depth camera
	2.4.4 3-dimensional coordinates

	2.5 Prawn tracking

	3 Results and discussion
	3.1 Prawn detection
	3.2 Prawn growth prediction
	3.3 Prawn distribution
	3.4 Workflow improvements
	3.5 Limitations

	4 Conclusion
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	References


