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Abstract—We apply entropically regularized
Wasserstein geometry to the setting of a discrete
metric space, where the cost functions are given
by different choices of graph metric, which capture
varying levels of connectivity information. We
find that despite the degeneracy of the Monge-
Kantorovich problem in the case of discrete
metric spaces, regularized transport leads to
geometric objects (e.g., geodesics and more generally
barycenters) which convincingly resemble what one
would expect from a Wasserstein-type geometry on
the space of probability distributions defined for
a network. We consider both synthesis (combining
measures with respect to the regularized Wasserstein
geometry) and analysis (decomposing signals
with respect to fixed reference measures) on real
geography data, demonstrating the utility of our
approach. Our code is available on GitHub1.

I. Introduction
At this point in the development of data-driven sci-

entific methods, the significance of network-structured
data hardly bears remarking upon. Graphs arise nat-
urally in models of social networks, discrete resource
distribution, and segregation patterns [17], and there is
growing interest in signal processing methods when the
underlying space lacks a continuous structure [18]. In the
past three decades, the topic of optimal transportation
has become increasingly popular due (at least in part)
to its myriad connections with a variety of mathematical
fields (e.g., analysis, probability, PDE)[19, 11, 3], and its
applications for problems in machine learning (ML) via,
for example, Wasserstein GANs [4] or the barycentric
coding model (BCM) [20]. While optimal transportation
has proven to be a font of ideas giving rise to analytic
techniques which have lead to developments in these
fields and many others, applications of these ideas to the
network setting have proven somewhat tricky, often re-
lying either on restrictive assumptions about the nature
of the networks in question [16], or requiring abstract
machinery leading to cumbersome numerical methods
[10] and hence with as-of-yet limited use.

A. Summary of Contributions
Here, we apply some work originally developed by [6]

together with a family of graph metrics which in some
sense encode connectivity to implement a version of the

1https://github.com/dcgentile/fixed-support-barycenters

barycentric coding model for probability measures, a
scheme for encoding probability measures as weighted
geometric averages of a given family of “reference” mea-
sures in the 2-Wasserstein geometry, and we find that we
are reliably able both to synthesize and analyze measures
using these tools in a way which resembles the spirit of
transport.

II. Geometry of Optimal Transport, Entropy
Regularization, Degeneracy on a Discrete

Metric Space
A. The Monge-Kantorovich Problem & The p-
Wasserstein Distance

Letting (Ω, d) be some metric space, c : Ω×Ω → R+ be
a cost function, and µ, ν ∈ P (Ω) be probability measures
on Ω , the Kantorovich problem is to find a coupling γ
of µ and ν (i.e., probability distributions on the product
space Ω × Ω having marginals given by µ and ν, the set
of which is denoted Π(µ, ν)) which solves

OT (µ, ν) := inf
{∫

Ω×Ω
c(x, y) dγ : γ ∈ Γ(µ, ν)

}
.

When c = dp, for some p ≥ 1 the pth root of the value of
the Kantorovich problem is known as the p-Wasserstein
metric and is denoted by Wp. The 2-Wasserstein metric,
in particular, induces a rich geometric structure in the
space of probability measures, and of particular interest
are geodesic curves and gradient flows in this geometry
[12]. In particular, it offers a method of comparing proba-
bility distributions in a way that respects the underlying
geometry of the base space. For example, if two probabil-
ity distributions have disjoint support, the L2 distance
between them will be invariant, no matter where the
(disjoint) supports lie; on the other hand, the Kullback-
Liebler divergence will be infinite, and yield essentially
no information at all. Because the 2-Wasserstein geome-
try preserves geometric information about the space on
which the distributions are supported, it is a natural tool
of interest for studying the dynamics of distributions on,
for example, a fixed geographical region.

It is an unfortunate fact, however, that the Kan-
torovich problem leads to a degenerate geometry when
the underlying metric space is discrete. The geometry
so induced is one in which there are no non-trivial
geodesic curves; in fact, one can show that for a simple



graph on 2 vertices connected by a single edge, the
p-Wasserstein geometry, as characterized by couplings
of probability distributions, is isometric to the metric
space ([0, 1], |x − y|1/p), from which it follows that every
geodesic curve is p-Hölder continuous, with p ≥ 1 and
hence constant (outside the special case where p = 1) —
in other words, for such a geometry, a curve is a geodesic
in P (Ω) if and only if its image is a singleton. While
this problem can be tamed by approaching from a frame
of reference beginning with the celebrated Benamou-
Brenier formula, and suitable choices and assumptions
will lead to the analagous results one might hope to
see [13], the computational tools required for working
in this regime are totally distinct from the popular
methods we will describe below, and are much harder
to implement[10].
B. Entropic Regularization of the Monge-Kantorovich
Problem

The Kantorovich problem is a linear program, and
when the distributions have finite support, standard
convex optimization techniques may be employed to
identify optimal couplings. Although polynomial in time,
algorithms for solving such linear programs have poor
scaling, roughly cubic in the support of the mea-
sures; however, a convex regularization of the problem,
obtained by simultaneously computing the Kullback-
Liebler divergence of a given coupling and the product
coupling, converts this linear program into a strongly
convex one. Consequently, a host of new tools become
available from the realm of (strongly) convex analysis,
and this results in a dramatic speed-up, shaving off an
entire order of magnitude in compute time [9]. If we fix

ε > 0 and suppose that µ =
N∑

i=1
αiδxi , ν =

M∑
j=1

βjδyj

and take C to be a matrix whose entries are given by
Cij = d2(xi, yj), one writes for the entropy-regularized
transport problem,

OTε(µ, ν) := inf {⟨γ, C⟩ + εH(γ)}

where ⟨·, ·⟩ is the Frobenius inner product on matrices
and H(γ) := −

∑
i,j

γij(log γij −1). In the limit of ε → 0+,

we recover the optimal transport cost associated with
the measures µ and ν [5]. In figure 1, we illustrate the
effect of entropic regularization on the optimal coupling.
Without regularization, the plan is simply a permutation
matrix, assigning one point in the first distribution to
another in the second; with regularization, diffusion is
introduced from the entropic term.
C. Wasserstein Barycenters of Measures

Now, given p reference measures {µi}p
i=1 ⊂ P (Ω)

and a point in the p-simplex λ⃗ ∈ ∆p, a barycenter in
the 2-Wasserstein metric is a minimizer of the variance
functional

Jλ⃗(ν) =
p∑

i=1

λi

2 W 2
2 (ν, µi).
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Fig. 1. Left: in red, 100 samples drawn from a random variable
X ∼ N (µ̄X , ΣX), with µ̄X = [−1, −1], ΣX = 0.25 ∗ I, and in
blue 100 samples drawn from a random variable Y ∼ N (µ̄Y , ΣY ),
with µ̄Y = [1, 1], ΣY = 0.05 ∗ I. Middle: optimal transport
plan for transport red samples to blue samples. Right: entropic
optimal transport plan taking red samples to blue samples, with
regularizing parameter ε = 0.05.
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Fig. 2. Left: McCann Interpolation of Gaussian measures. Right:
L2 Interpolation of Gaussian measures

The theory of 2-Wasserstein barycenters was first ex-
plicated in [1], wherein the authors demonstrate exis-
tence and uniqueness for the case of distributions are
supported on Ω = Rd, and it supplies us with a notion
of geometric mean with respect to the 2-Wasserstein
geometry. In that paper, the authors also show that
Wasserstein barycenters coincide exactly with the Mc-
Cann interpolation of measures [14], i.e., for λ = (t, 1−t),
we recover the unit speed geodesic between the two
reference measures in the 2-Wasserstein geometry. Thus
Wasserstein barycenters give us a notion of measure
interpolation which respects the underlying geometry of
the domain, as illustrated in figure 2 — with the 2-
Wasserstein geometry, there is a “continuous” movement
of mass from one position to the other, where as in
the L2 geometry the mass is “teleported” between its
initial and terminal configurations. The computation of
2-Wasserstein barycenters is in general an NP-hard prob-
lem [2], but once again entropic regularization has made
the computation of regularized barycenters feasible, par-
ticularly the realization that they may be computed via
Bregman projections [5, 6].

D. The Barycentric Coding Model in Wasserstein Space

Finally, the the barycentric coding model for measures
in the Wasserstein space presents the problem of identi-
fying a suitable “barycentric basis set” of measures such



that the set
Bary({µi}p

i=1) =
{

ν : ν solves inf
{

Jλ⃗

}
for some λ⃗ ∈ ∆p

}
adequately represents a dataset comprised of measures.
For the BCM, there are two essential operations which
are necessary: the so-called “synthesis” and “analysis”
problems. For the former, we mean the problem of com-
puting the barycenter ν∗ of a given family of reference
measures {µi}p

i=1 for a given weight vector λ⃗ ∈ ∆p, and
for the latter we mean finding, for a given family of
reference measures and a target measures ν, a weight
vector λ⃗∗ such that ν is the barycenter of the µi with
weights λ⃗∗. One can think of this as a starting point for a
kind of principal component analysis in the Wasserstein
space — although there is no nice linear structure on the
space to exploit, Wasserstein barycenters give a method
for encoding a family of measures as the “barycentric
combinations” of a finite family of measures. The prob-
lem of identifying suitable basis measures is also of
interest, but not the primary concern of this work.

III. Shortest Path and Diffusion Distances
Since the essence of Wasserstein geometry follows from

the metric structure of the underlying space, we should
take care to specify what the precise metrics of interest
are on our networks. For the remainder, let X = (V, E)
be a graph with vertex set V and edge set E ⊂ V × V ,
and let ω : E → R+ be a weighting of the edges. The
shortest path metric on X will be defined to be

d(u, v) := inf
{∑

k

ωik,ik+1

}
where the infimum is taken over all uv walks. If |V | <
+∞, then the shortest path between any two nodes can
be computed in O(|V |2) via Dijkstra’s algorithm [15]. An
alternative metric on the nodes is given by the so-called
diffusion distances, a family of metrics parameterized by
t > 0, and which intuitively measures the likelihood that
a random walker on the network traverses from u to v
in time t [8, 7]. Fix t > 0, let Q be the natural Markov
transition matrix induced by the structure of the graph,
that is,

Qij =
{

deg(i)−1 if (i, j) ∈ E

0 otherwise
(1)

and let π be the steady state distribution, i.e., the
eigenvector of Q with unit eigenvalue, and let p(y, t|x)
be the probability of a random walker landing on node
y t steps after landing on node x. Then the (squared)
diffusion distance between nodes u, v ∈ V at time t is
given by

d2
t (u, v) =

∑
w

(p(w, t|u) − p(w, t|v))2

π(w) .

As we see in figure 3, as t → ∞, the diffusion distance
between a given node and its neighbors decreases in a
way reminiscient of heat dispersion on the graph.
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Fig. 3. Color intensity represents the cost of moving from to
one fixed node (Maine). Upper left: squared shortest path metric;
Upper right: squared diffusion metric at t = 8; Lower left: squared
diffusion metric at t = 32; Lower right: squared diffusion metric at
t = 1024

IV. Methodology & Numerical Results

Following [6], we use gradient descent to compute
barycenters of measures defined on a fixed-support, with
the cost matrix realized by 1) the shortest path metric
induced by the connectivity of the graph and 2) the
diffusion distances between the nodes for various values
of t. In other words, fixing a graph, a family of refence
measures {µi}p

i=1, and a prescribed set of barycentric
coordinates λ⃗ = (λ1, . . . , λp), we compute the measure
ν∗ which minimizes Jλ⃗. With ν∗ in hand, we then
attempt to recover the prescribed coordinates λ⃗. The
network is defined by the 48 contiguous states of the
U.S.2, and demonstrates irregular connectivity (i.e., the
degree of the vertices is not constant). Correctness is
assured in our computations because the algorithm laid
out in [6] simultaneously computes an approximation of
the regularized barycenter and the optimal barycentric
coordinates for barycentric representation over the dic-
tionary set, and we can check directly that the recovered
coordinates of the output barycenter match the input
coordinates.

Now, let ν̂ be the barycenter with coordinates λ̂ be
a step along our sequence of iterates in the gradient
descent scehem. In minimizing the “barycentric loss”
of the coordinates λ̂ during the process of coordinate
recovery (that is, the difference between ν̂ and the target
barycenter ν∗, a choice of loss function must be made.
Suitable choices are the L1 and L2 norms, the Kullback-
Liebler divergence, and the total variation between the
measures — here we choose the L2 norm for the loss.

In figures 4, 5, and 6, we solve both the analysis and
synthesis problems for some chosen measures on the
network. In figures 4 and 5, we have two measures which
are concentrated in disparate geographical regions, and

2https://hub.arcgis.com/datasets/usdot::states/

https://hub.arcgis.com/datasets/usdot::states/


using this Wasserstein-like interpolation, transport mass
from one locale to the other. Interpreting this geodesic
as having barycentric coordinates (t, 1− t), we check our
ability to recover the coordinates for t = 1/3, 2/3 and
find that we do so with modest error. In figure 6 we
append an additional reference measure, concentrated
away from either of the other two, and synthesize a
barycenter as an uneven Wasserstein-like interpolation of
the three. As with the geodesic, the algorithm accurately
recovers the input coordinates.

We observe natural-looking barycenters arising, par-
ticularly for the case p = 2, corresponding to geodesic
curves in the space of probability measures, and that the
barycentric coordinates of these synthesized measures
are accurately recovered, with degeneracy occurring in
the limit as ε → 0+. In figures 4 and 5 we see that
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Recovered Coordinate 0.6599
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Fig. 4. Wasserstein-like interpolation of measures on graph, with
cost given by squared shortest-path distance, ε = 0.125; Upper
left, right: reference measures, lower right: computed geodesic with
weights (1/3, 2/3); lower right: computed geodesic with weights
(2/3, 1/3)
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Actual Coordinate 0.33: 
Recovered Coordinate: 0.3200

Actual Coordinate 0.66: 
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Fig. 5. Wasserstein-like interpolation of measures on graph, with
cost given by squared diffusion distance, t = 16, ε = 0.125; Upper
left, right: reference measures, lower right: computed geodesic with
weights (1/3, 2/3); lower right: computed geodesic with weights
(2/3, 1/3)

the geodesics induced by this Wasserstein-like geometry
inherit the diffusivity of the ground metric. It is inter-
esting that strictly speaking there is no direct access to
edge/connectivity information in these metrics, yet we
still obtain a motion that has a “continuous” appearance.

Reference Measure Reference Measure

Reference Measure
Barycentric Coordinates (0.50, 0.30, 0.20)

 Recovered: (0.5010, 0.3004, 0.1986)
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Fig. 6. Wasserstein-like barycenter of measures on graph, with cost
given by squared diffusion distance, t = 16, ε = 0.125; Upper left,
upper right, lower left: reference measures, lower right: computed
barycenter with weights 0.5, 0.3, 0.2), and recovered coordinates
(0.5010, 0.3004, 0.1986)

V. Discussion
Our experiments demonstrate that despite the degen-

eracy of the Wasserstein geometry in the graph setting,
a measure interpolation that respects the geometry and
connectivity of a graph can still be achieved via a com-
bination of entropy-regularized optimal transportation
and choice of suitable ground cost, and indeed that
the BCM may be deployed both for measure synthesis
and decomposition in this setting. This is a promising
baseline for the development of transport-based signal
processing tools on networks. As a matter of future work,
it is of interest to develop an algorithm that can learn an
optimal set of dictionary atoms for measure representa-
tion in the barycentric coding model. It would also be of
interest to investigate any possible relationship between
barycenters obtained via regularization of Kantorovich
problem and those that respect the formal Riemannian
structure on the probability simplex induced by the
Benamou-Brenier approach to network transportation,
where the Wasserstein-like geometry so developed de-
pends directly on the graph structure rather than on
metric information encoding the connectivity.
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