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ABSTRACT

Offline goal-conditioned supervised learning (GCSL) can learn to achieve various
goals from purely offline datasets without reward information, enhancing control
over the policy. However, we argue that learning a composite policy switchable
among different goals seamlessly should be an essential task for obtaining a con-
trollable policy. This feature should be learnable if the dataset contains enough
data about such switches. Unfortunately, most existing datasets either partially
or entirely lack such switching demonstrations. Current GCSL approaches that
use hindsight information concentrate primarily on reachability at the state or re-
turn level. They might not work as expected when the goal is changed within an
episode. To this end, we present Goal-Masked Transformers (GMT), an efficient
GCSL algorithm based on transformers with goal masking. GMT makes use of
trajectory-level hindsight information, which is automatically gathered and can be
adjusted for various statistics of interest. Due to the autoregressive nature of GMT,
we can change the goal and control the policy at any time. We empirically eval-
uate GMT on MuJoCo continuous control benchmarks and Atari discrete control
games with image states to compare GMT against baselines. We illustrate that
GMT can infer the missing switching processes from the given dataset and thus
switch smoothly among different goals. As a result, GMT demonstrates its ability
to control policy and succeeds on all the tasks with low variance, while existing
GCSL works can hardly succeed in goal-switching1.

1 INTRODUCTION

Runners can control and adjust their pace in a marathon by switching comfortably between various
poses for different goals. Similarly, agents can also acquire such switching ability through rein-
forcement learning (RL) or imitation learning (IL). This process generally requires environments
that can start with arbitrary pose states, carefully tuned rewards, or massive offline demonstrations.
However, these critical things are notoriously challenging to obtain. In comparison, by knowing
the pace of each running stance, a human can easily switch between various poses to control speed
without learning such switching processes intentionally.

From another perspective, we try to formulate this problem as goal-conditioned supervised learning
(GCSL) (Ghosh et al., 2019) problem given a fixed amount of offline dataset: Considering pose or
pace as a goal, can agents learn a composite policy that can switch among these goals interchange-
ably over the dataset? We refer to this problem as the goal-switching problem. Since the distribution
of initial states shifts between the training and evaluation, this problem might face the covariate shift
issue. Instead of a fixed set of states in the training set, any state might be the start of the switched
goal during evaluation, resulting in agents not knowing how to achieve the goal. The goal-switching
has widespread adoption in practical applications. The control of robots to transfer to a different skill
while performing another skill is essential in robotics. In the game field, it can induce immersive
experiences by managing the performance and strategies of AI bots according to the game progress.

Recent works (Ghosh et al., 2019; Ding et al., 2019; Furuta et al., 2021; Eysenbach et al., 2022; Reed
et al., 2022) on GCSL mainly focus on learning how to achieve arbitrary goals. They tend to use
either state (Emmons et al., 2021) or return-to-go (Chen et al., 2021) as goals. Models that use states

1The code will be available as soon as possible.
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Figure 1: Overview of GMT architecture.

as goals can be called state-conditioned models. These models generate actions based on targeting
future states or slices of successful demonstration. There are also models conditioning on return-to-
go — the total rewards an agent can receive from the current step until the end of an episode. These
methods typically use the “relabeling” strategy to excavate a variety of goal signals by bootstrapping
any of the aforementioned goals from a fixed dataset. However, each method from above has some
fatal flaws that make them result in poor performance on the goal-switching problem. By setting
return-to-go as goals, switching can only happen by tweaking a normalized return-to-go, which
is neither intuitive nor efficient. State-conditioned methods can reach an arbitrary state in theory.
However, they tend to model the problem as a pure MDP, which leads to poor performance or failure
when demonstrations of transiting between two states are missing from the dataset. We argue that
the essence of the goal-switching problem is to enable the model to learn unseen transitions. Model-
based approaches may be one remedy, which allows for unseen transitions by planning across a
latent space (Jiang et al., 2022) or an explicitly learned world model (Micheli et al., 2022). These
methods require additional environmental model learning with higher learning complexity.

This paper presents Goal-Masked Transformers (GMT), an efficient GCSL algorithm that neither
necessitates explicit world model learning nor successful demonstrations to solve the goal-switching
problem. In particular, we employ a causal transformer (Radford et al., 2019) to autoregressively
describe trajectories with transitions consisting of goals, states, and actions. With such a setting,
the goal can be changed at any moment, releasing the full potential of the policy control. However,
since the goals are the same in each transition during training, the model tends to neglect the change
of goals, leading to a goal-switching failure during evaluation. In order to compel the model to put
more effort into goals, we introduce a masking mechanism with a probability of replacing the goal
information with a [mask] token. As a result, we observe the promising outcome that agents can
smoothly switch from one goal to another. Figure 1 presents an overview of GMT.

Similar to previous GCSL works, we apply the “relabeling” strategy to increase the diversity and
coverage of goals. Additionally, there are various expressions of goals and numerous approaches to
achieving them. Thus, we propose a simple yet effective approach that automatically aggregates and
clusters the offline data into several goals in accordance with the statistics of interests.

In summary, our main contributions are as follows:

• We draw attention to the goal-switching problem and argue that doing so is an essential step
toward controllable policy. The goal-switching problem requires that agents should adapt to goal
changes within one episode. It is an exceedingly challenging generalization problem, especially
when training on limited datasets.

• We propose Goal-Masked Transformers (GMT), a family of goal-conditioned algorithms based
on causal transformers with a goal-masking mechanism and hindsight information to achieve
controllable policy. Through experiments, we demonstrate that GMT possesses goal-switching
capabilities that are not present in the current GCSL algorithms.

• We introduce an unsupervised approach to cluster trajectories into multiple goals from the datasets
without any goal information. Empirically, we find that this approach improves the stability and
efficiency of the switching process.
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2 METHOD

The purpose of Goal-Masked Transformers (GMT) is to train a controllable policy that can comfort-
ably switch among goals over the demonstration {(si0, ai0, si1, . . . )}Ni=0 where sit, a

i
t indicate state

and action at timestep t in the ith of N trajectories respectively. To enable goal-switching, we
design trajectories τi with transitions made up of goal, state, and action, i.e.,

τi = (gi0, s
i
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i
0, g

i
1, s

i
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i
1, ..., g

i
Ti−1, s

i
Ti−1, a

i
Ti−1) (1)

where git denotes goal at timestep t in the i-th trajectory and Ti indicates the length of the trajectory
τi. We define the goal as statistics of interests, for example, reward, speed, number of blocks that
break in a game, the dynamics of robots and strength of game bots. These statistics are generally not
provided in the demonstration but are implicitly included in the data. The statistics can be linked to
each trajectory by some kind of mapping function. Namely, we can mathematically formulate the
goal as follows.

g = f(si0, a
i
0, s

i
1, a

i
1, ..., s

i
Ti−1, a

i
Ti−1; e) (2)

where e indicates the statistics of an interest and g indicates the goal. Given the statistics of a specific
interest e, the function f can map the trajectory into the corresponding goal.

2.1 TRAINING DATASET

In order to demonstrate the ability of GMT in different areas, we consider two applications to eval-
uate GMT. We train our model on both tasks by utilizing offline trajectory data collected from RL
agents, either are trajectories rollouts during training or collected by using training checkpoints with
a certain level of skills to inference.

D4RL We conduct 4 MuJoCo (Todorov et al., 2012) locomotion environments with continuous
control from the D4RL (Fu et al., 2020) benchmark, including HalfCheetah, Hopper, Walker, and
Ant. The locomotion task is the fundamental task in the field of robotics and we can show the con-
trol of the movement speed (along the x-axis) by switching target poses. We combine the Medium
and Medium-Expert datasets provided in the D4RL benchmark as the training dataset for each lo-
comotion environment except for HalfCheetah. On the HalfCheetah task, we also add the Random
dataset where trajectories are totally generated by a random policy.

Atari We demonstrate that GMT can also be applied to games, such as video games. The RLUn-
plugged (Gulcehre et al., 2020) dataset provides trajectories of numerous Atari games (Bellemare
et al., 2013) collected from the training progress of a DQN (Mnih et al., 2013) agent. The dataset
covers various demonstrations, including agent behavior at all learning stages. We train GMT over
the Breakout dataset to show that GMT can switch between different levels of policies according
to the changes in goal. The method should be able to apply to any game in theory, but due to the
computational limitation, we only randomly select one game to show the idea.

The trajectories in both the public datasets contain states, actions, and rewards. However, we focus
on goals instead of directly utilizing the reward information. Commonly in practice, the reward
information is hard to obtain in sparse rewards settings or requires sophisticated designs of reward
functions. Therefore, we leave reward information and use the “relabeling” strategy to extract goal
information from the trajectories based on any statistics of interest to construct new trajectories with
transitions consisting of goals, states, and actions.

A straightforward strategy to relabel the trajectory with goals is to manually group statistics of in-
terest by hand. However, we observe that too few classes may lead to a high variance policy as
extremely dissimilar demonstrations are grouped. Whereas having too many classes can hinder per-
formance because the model struggles to distinguish similar trajectories. There might eventually be
relatively few demonstrations that are rarely learnable. Thus, we require a novel relabeling approach
that can automate this process in an efficient and effective way.

Here we propose an unsupervised manner to aggregate and label trajectories for the aforementioned
offline datasets. We first perform a k-means clustering (Lloyd, 1982) along the statistics of interest
(e.g. we are interested in the speed of locomotion on the x-axis in MuJoCo) with a range of k, and
then calculate the silhouette score (Rousseeuw, 1987) of each cluster. As there are now goodness
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measurements of clustering with different k, we sample a k based on the normalized silhouette score
from the top 85th percentile.

We uniformly sample 2000 trajectories to train models for each Atari game. For MuJoCo tasks, the
specific numbers of trajectories in the dataset are listed in Appendix A.2.1. Moreover, we do not
require any extra dataset balancing or filtering since the major purpose of this research is to show
that our model can switch between multiple goals rather than the magnitude of the rewards that
agents will ultimately receive.

2.2 ARCHITECTURE

GMT accepts input in the form of a transition consisting of a goal, state, and action token. The
tokenization scheme used for GMT is described in Appendix A.1.1. To generate the final model
input, we apply three parameterized embedding functions f(·; θeg), f(·; θes), f(·; θea). The embedding
functions carry out various operations depending on the modality of the token to enable efficient
learning from the multi-modal input sequence. A learned vector embedding space is used to store
tokens associated with discrete- or continuous-valued observations or actions for any timestep. A
single Convolutional Neural Network (CNN) is used to embed tokens from images at any timestep.
Learnable position encodings are added for all tokens based on their global token position within
their corresponding trajectories.

Under these circumstances, we try to formulate this problem as a sequence modeling problem. Due
to the nature of the given sequence, we use an ordinary causal transformer or decoder-only trans-
former (Vaswani et al., 2017) as our main architecture. We feed 3K tokens worth of the most recent
K timesteps (goal, state, action for each timestep) into GMT, where K represents the context length
of GMT. In general, a longer context length allows the model to trace back longer in history but may
require a more competent model and can be harder to train. A LayerNorm (Ba et al., 2016) is added
before feeding the tokens to GMT.

Loss Given goals g≤t, states s≤t and actions a<t, GMT predicts the action at as ât and calculate
the difference between ât and at. For discrete (goals and actions for Atari games) and continuous
values (actions for MuJoCo tasks), GMT respectively uses cross entropy and mean square error
(MSE) as the loss. When only the supervisory signal of the action is there, the relationship between
goals, states, and actions is frequently neglected. This situation is particularly evident in the case of
goals because goals share the same value along the trajectory. In order to improve the situation, we
add an auxiliary goal loss to force the model to focus on goal information. Therefore, the total loss
L is a weighted sum of the action loss La and goal loss Lg , namely, L = La + αLg where α is the
scalar weight to balance two terms. We set α = 1 at our all experiments. It is worth noting that there
is no loss for the first goal as it is always given to the model.

2.3 GOAL MASKING

Surprisingly, the naive goal prediction task hardly contributes to policy learning. The model only
requires the goal information to predict the goal label at the early stage of the trajectory. When
reaching several goals, the model can actually predict the goal label from the states and actions as
the state information may differ significantly across different goals. The model tends to ignore the
goal label in the later phase of the training data and only learns the relationship between states and
actions. The goal prediction task, therefore, becomes a goal memorization task.

Thus, instead of always using the actual label when predicting the goal, we have a probability of p
to replace the true goal with a trainable token, [mask]. We expect the model to learn and enforce
the relationship between goals, states, and actions instead of only memorizing the previous goals.
We propose token masking that replaces each goal token with a [mask] token with a probability of
p, but only performs within a context length2. All the masking operations are dynamic, meaning the
mask is re-sampled for each training iteration. We conduct experiments to compare different p (See

2We also propose trajectory masking that replaces goal tokens in a single trajectory τ with a probability
of p. However, we find that this method still struggles with the goal-switching problem and cannot obtain a
controllable policy. We analyze the reasons in Section 2.3
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Table 1: Success rate of GMT and other baselines on different MuJoCo task
HalfCheetah Hopper Walker Ant

1 → 0 2 → 0 2 → 1 0 → 1 1 → 0 0 → 1 1 → 0 0 → 1 1 → 0

GMT(token masking) 15/15 15/15 15/15 15/15 15/15 14/15 14/15 14/15 13/15
GMT(traj. masking) 3/15 0/15 0/15 15/15 1/15 14/15 3/15 14/15 2/15
GMT(no masking) 0/15 0/15 0/15 15/15 0/15 14/15 0/15 14/15 0/15

RvS(Emmons et al., 2021) 0/15 15/15 7/15 0/15 0/15 3/15 14/15 2/15 1/15
Prompt DT (Xu et al., 2022) 6/15 2/15 4/15 1/15 3/15 1/15 0/15 2/15 3/15

Decision Transformer (Chen et al., 2021) 5/15 14/15 3/15 9/15 5/15 8/15 4/15 1/15 1/15

Section 3.2.1) and eventually find that token masking with p = 0.5 works the best. We set it as the
default for our method.

3 EXPERIMENTS

We use a unified architecture for both Atari games and MuJoCo tasks (See Appendix A.1.2 for
the implementation details and A.1.3 for deployments). In this section, we mainly demonstrate the
results of MuJoCo tasks and analyze how GMT works through a series of ablation studies. We leave
the analysis of Atari games in the Appendix (see A.2.2).

3.1 RESULTS

In this section, we use both step-based graphs and task success rates to evaluate the ability of GMT.
Notice that higher variance may not necessarily indicate destructive behaviors in step-based illus-
trations. We focus on trajectory-level alignments, meaning different trajectories with the same goal
can eventually reach similar final results through different paths. Thus, all the following step-based
plots are specifically used to demonstrate consistent differences between various goals. The success
rate is summarized as tables for each task.

We also summarize the success rate of each MuJoCo task for different models in 1. We define each
task as a success if the model can successfully achieve the first goal and consequently switch to a
new goal, where the difference in statistics of interests is within 10%.

3.1.1 MUJOCO
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Figure 2: GMT with non-switching (a-d) and switching (e-h) tasks. Numbers in brackets in the
switching task represent the timestep that goal switching happened. The number of lines represents
the number of goals for each task, which is obtained by our automatic clustering method. We also
experiment with the effect of generating more goals, see A.2.7 for detailed results.
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We use four MuJoCo environments (HalfCheetah, Hopper, Walker, and Ant) as our major testbed to
evaluate GMT. In all environments, our statistic of interest is the speed on the x-axis (which is also
the reward of the environments at each step on the default setting).

All figures in this section (unless otherwise mentioned) use concrete lines to represent the mean
and the same color with higher transparency around lines to indicate the standard deviation of the
statistics. All the mean and variance are obtained by running over the model 15 times with 15
fixed random seeds. We show that GMT is capable of learning to imitate different trajectories with
sufficient data in Table 3. We also demonstrate step rewards received across different goal labels
and tasks in Figure 2.

As depicted in Figure 3, we use t-SNE (Hinton & Roweis, 2002) to visualize the distribution of
states for trajectories with different goals. We only demonstrate the results of HalfCheetah here,
full results including other environments can be interpreted similarly and can be found in Appendix
A.2.4. From the figure, some states’ overlap can be observed as many of these states may start from
similar points or cross similar middle states when reaching desired goals. To mathematically model
the problem, the naive goal prediction task becomes to model the probability of Pθ(gt|sκ, aκ, gκ),
where we use the footnote κ to represent indices in the context of our model. However, when states
are distinct enough, which is very common in the later simulation of the MuJoCo task, the goal
prediction task tends to degenerate to Pθ(gt|sκ, aκ) as previous goals are no longer necessary. This
also explains why trajectory masking does not work well.
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Figure 3: Left: The graph represents the state distribution of HalfCheetah for the non-switching task.
Legends on the top left corner indicate the goal label. We can observe some overlaps between states
on the distributions, which is reasonable as there are overlaps between states in the environments
when reaching different goals from a similar set of starting points. Right: We visualize the trace
of the goal-switching task in terms of the state distribution. The brighter the color, the later the
timestep. It demonstrates how states are initially distributed around goal 0 and gradually diffuse to
the region of goal 1.

3.1.2 ALTERNATIVE ARCHITECTURES

Here we would like to discuss other model architectures and auxiliary tasks for achieving goal
switching without demonstration. We initially try to use RvS(states as goals) (Emmons et al., 2021)
to achieve arbitrary goal reachability. Referring to Emmons et al. (2021), we use two layer multi-
layer perceptron (MLP) with a hidden size of 1024 for this experiment. We also try to use a causal
transformer as the backbone, which is the same architecture as ours but replaces the goal label.
In this case, the state goal is tokenized following the tokenization scheme for other continuous
values. However, we do not find our architecture to provide an apparent performance boost but
are only less sensitive to the hyperparameters. Thus, we only report the original results that use
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MLP. During training, we sample an arbitrary state from the training dataset at timestep T = t, and
sample another state that is in the same trajectory at timestep T > t. We keep doing this process
to train the model until convergence. To aid better strategy learning, we also add some auxiliary
tasks. Inspired by Schwarzer et al. (2021), we find that predicting the distance between the state
and goal and trajectory labeling prediction works the best. However, by carefully tuning the model,
we find that the state-conditioned model can hardly distinguish similar states. It can have decent
performance in some tasks but poorly react to the switch task overall. As illustrated in Figure 4, the
model can learn different trajectories with a slightly higher variance compared to our model. It also
demonstrates how the model performs in goal switching setup. As illustrated, many goal-switching
are unsuccessful, showing that this architecture is not capable of this task.
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Figure 4: States as goals (a-d) non-switching task (e-h) switching task

We also consider other transformer-based architectures as (Prompt-DT) (Xu et al., 2022) and De-
cision Transformer Chen et al. (2021). However, Prompt-DT requires sampling a few states from
the ‘successful’ demonstration as prompts to guide the model, which is impossible as the successful
demonstration of goal switching is absent from the dataset. Similarly, Decision Transformer requires
tweaking directly on the normalized reward, which is also difficult. Hence, a few adjustments are
made to their original architectures to suit our task. When composing prompts for Prompt-DT, we
replace the old prompt that is toward the old goal and sample states from the new goal label once
we switched. For the Decision Transformer, we replace the return-to-goal with the new target at
the switch point but subtract the already received return along the way. As illustrated, prompt-DT
suffers from all tasks. Whereas Decision Transformer has some good performance when switching
to better goals, it does not show competitive performance against GMT. Eventually, we find that if
the demonstration of the prompt is changed in the middle of the evaluation for the purpose of goal
switching, the model starts to confuse and failed in most of the tests.

3.2 ABLATION

3.2.1 MASKING RATIO
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(a) masking ratio 0.3
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(b) masking ratio 0.7

Figure 5: Ablation study of masking ratio in HalfCheetah
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Goal masking plays a pivotal role in GMT. In this section, we investigate whether the result is sen-
sitive to the masking ratio. We observe that the masking ratio has no effect on non-switching tasks,
which is reasonable. By both increasing or decreasing the masking ratio (as shown in Figure 5), we
can observe that various trajectories are no longer switchable to other trajectories or significantly
increase in variance. For example, switching from goal label 2 to 1 actually fails when the masking
ratio reduces to 0.3. Also, the models cannot switch to trajectories that are labeled with 0 when the
masking ratio increase to 0.7. Other tasks demonstrate very similar trends, and we show their results
in Appendix A.2.5.

3.2.2 CONTEXT LENGTH
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(a) context length 50
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(b) context length 150

Figure 6: Ablation study of context length in HalfCheetah

Previous studies (Chen et al., 2021; Xu et al., 2022) found that transformer-based RL algorithms
are sensitive to context length. Thus, we demonstrate how context length affects the performance
of GMT. As a result, we find that context length only has a limited effect on non-switching tasks.
However, too short a context length can cause switching failure, and too long a context length
can significantly increase the switch delay and cause higher variance. Other tasks demonstrate
remarkably similar trends, and we show their results in Appendix A.2.6.

3.2.3 SMOOTHNESS OF TRANSITIONS

Loading [MathJax]/extensions/MathMenu.js

(a) Switch between models or switch with short context

(b) Switch through GMT

Figure 7: Two sequences of frames that renders how HalfCheetah’s pose change under different
model setup. Every frame on each figure is sampled from every three consecutive frames of the
environments. We use two red rectangles to highlight four keyframes where the change happened.
As illustrated, goal (pose) switching in (a) is not smooth, showing some strange poses that can hardly
be observed at any other time. Whereas, the pose in (b) does not obviously seem to be affected by
the goal switching, demonstrating smoother transition and better control.

One intuitive idea is whether we could complete goal-switching tasks by switching between different
models. Specifically, we train multiple models for different goals, and then simply switch between
different models when goal switching is initiated. We find that the model can switch between dif-
ferent goals but in a different way. Figure 7 illustrates that the models actually restart the process by
acting arbitrarily until the model collapses to the state that the model has seen in the training dataset
(likely the starting state), which indicates that the model is actually doing things like resetting the
environment and then attempting to reach the target state by starting from scratch. Similar trajecto-
ries can be also found in GMT with very short context length (i.e. context length K = 1). However,
GMT performs much smoother transitions between distinct goals, indicating that GMT has barely
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been affected by the distribution shifting. We believe that either the distribution shifting or a lack of
historical context is to blame.

4 RELATED WORK

Goal-conditioned tasks are introduced to reach the desired goal and improve policy control. There
has been a lot of research (Andrychowicz et al., 2017; Plappert et al., 2018; Chane-Sane et al.,
2021; Chen et al., 2021; Furuta et al., 2021; Ma et al., 2022) on how goal-conditioned approaches
can be more effectively generalized to achieve multiple goals or even unseen goals. This work
argues that goal-switching can enable better generalizability, especially in the supervised learning
setting. Through our method, models can handle unseen transitions, where both goal and state
may be observed, but the combination is never seen. Goal-switching can be learned in theory via
goal-conditioned reinforcement learning (GCRL) (Liu et al., 2022) by carefully tuning rewards, or
goal-conditioned supervised learning (GCSL) (Ding et al., 2019) by feeding sufficient demonstra-
tions. However, in practice, these methods are resource intensive. On the other hand, our proposed
approach can infer the switching process between arbitrary goals from an imperfect dataset.

Goal-conditioned tasks can also be formulated as a sequence modeling problem (Chen et al., 2021;
Xu et al., 2022; Reed et al., 2022; Furuta et al., 2021). Such sequence models are becoming popular
in the RL community recently. New research is being done in a variety of areas, including multi-
agents (Wen et al., 2022), planning (Jiang et al., 2022), online learning (Zheng et al., 2022), and
offline learning (Chen et al., 2021). We follow recent work (Chen et al., 2021; Furuta et al., 2021)
that models the full trajectory of RL using GPT-2-style Transformers, treating it as a sequence
modeling problem. Depending on the application circumstance, there are various approaches to
modeling trajectories. Our formulation enables sequence modeling to achieve a controllable policy
by controlling each step’s goal without any reward information. The Categorical Decision Trans-
former (CDT) proposed in Furuta et al. (2021) is the most similar to our architecture. However,
CDT only reformulates the goal learning from a regression problem (as in Decision Transformer) to
a classification problem, which is substantially different than what we are trying to achieve.

5 CONCLUSION

We present a crucial problem towards controllable policy: the goal-switching problem. This problem
is challenging for training on fixed datasets, which typically do not cover all the switching processes
encountered during deployment. We argue that the existing GCSL methods are not designed to solve
such an out-of-distribution (OOD) problem. This paper proposes goal-masked transformers (GMT),
a simple but effective GCSL method based on causal transformers. More specifically, we introduce a
masking mechanism that forces the model to learn generatively about the connection between goal,
state, and action. Additionally, we propose an unsupervised manner to relabel goals from the dataset
based on the statics of interest, which would reduce the volatility while switching between goals.
We empirically show that GMT can achieve goal-switching with different modal inputs and analyze
the impact of various factors on performance.

GMT is a goal-conditioned supervised learning algorithm, which still suffers from the problems of
supervised learning, such as heavily relying on the dataset’s quality. Switching between goals can be
done smoothly if the dataset quality is good, but the switching process may have a higher variance
if the dataset quality is terrible. Meanwhile, a high-quality dataset allows GMT to learn better and
more complex policies. GMT is not limited to the GCSL paradigm and can be easily extended to
offline RL or GCRL in conjunction with existing works.

Furthermore, GMT does not learn the goal-switching controller that determines when to change the
goal. We emphasize that the problem GMT is trying to solve is the ability to learn goal-switching
from imperfect datasets. This dramatically enhances the controllability of the policy and enriches
human-computer interaction (HCI). At the same time, GMT makes it straightforward to use text
tokens as goal tokens, significantly improving the potential of HCI by fusing them with natural
language. We leave these as future works.
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A APPENDIX

A.1 MODEL

A.1.1 TOKENIZATION

The trajectories may include data from multiple modalities. We transform all data into a flat se-
quence of tokens in order to enable the processing of this multi-modal data. For GMT, we apply the
following tokenization scheme to produce better results.

• Continuous values (e.g. joint positions of locomotion tasks) are normalized to a standard normal
distribution. The mean and variance that are used for normalization are calculated separately on
each dataset.

• Discrete values (e.g. Atari button presses) are used as integer tokens directly without further
processing.

• Images (e.g. Atari raw observations) are normalized between [0, 1] for each pixel (e.g., divided
by 255 for Atari games). Inspired by Multi-Game Decision Transformers (MGDT) (Lee et al.,
2022), we experiment with splitting images into small patches, but find it drastically reduces the
performance due to the much shorter receptive fields of the model and therefore we abandon the
change.

Data is transformed into tokens, which are sorted in the order of goal, state, and action. Each agent
episode is comprised of multiple agent timesteps in time order.

A.1.2 IMPLEMENTATION DETAILS

Table 2: Hyper-parameters

Env. Hidden size Blocks Heads Context length

MuJoCo 128 4 2 100
Atari 768 4 12 50

We use a unified architecture for both Atari games and MuJoCo tasks, the hyper-parameters are
listed in Table 2. Blocks represent the number of multi-head self-attention (Vaswani et al., 2017)
blocks we have for the model. During training, we only calculate the action loss and goal loss.
Regardless of the goal embedding provided to the model (either true token or [mask] token), we
calculate the loss towards the true label as described in Section 2.2. Training takes approximately an
hour on a single NVIDIA A100 GPU for each MuJoCo task and approximately two days for each
Atari game on eight NVIDIA A100 GPUs.

A.1.3 DEPLOYMENT

During deployment, we first select a goal label as described in the previous section. The first obser-
vation is then produced by the environment and tokenized before being added to the sequence. GMT
autoregressively samples the action vector one token at a time. This action is sent to the environment
which steps and yields a new observation. The above procedure repeats. Each transition is made up
of a goal, state, and action. All past observations and actions are constantly visible to GMT in its
context window of K tokens. The goal can be changed at any time during deployment, simply by
feeding the model with the desired goal token.

Motivated by MGDT, we introduce an inference-time probability-based method, called expert action
inference, to sample actions in Atari games. Rather than always selecting the action with the highest
logits (by using argmax), we sample the action with the top q quantile. Then, we sample actions
based on the normalized logits of selected actions. In practice, we find q = 0.6 to work the best. As
otherwise mentioned, we use this action sampling strategy by default in Atari games.
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It is important to note that all the methods introduced in this section are only applied in the inference
procedure of GMT. During training, the goals in each trajectory remain the same and cannot be
altered while training. Expert action inference is likewise only used during evaluation for Atari.

A.2 EXPERIMENTS

A.2.1 MUJOCO

Table 3: Mujoco dataset statistics v.s. evaluation performance without any switching for each dataset
label. gl stands for goal label.

HalfCheetah Hopper Walker Ant

gl = 0 gl = 1 gl = 2 gl = 0 gl = 1 gl = 0 gl = 1 gl = 0 gl = 1

Dataset −286± 79 4775± 79 10670± 230 1430± 124 3594± 35 2006± 218 4921± 31 987± 342 5141± 58
Evaluation −0.31± 0.60 4940± 146 10747± 119 1626± 285 3394± 678 2551± 729 4911± 30 4067± 363 5203± 91
Traj. Num 500.00 363.00 500.00 300.00 300.00 158.00 300.00 195.0 300.00

Table 3 illustrates that our model can learn the representation of trajectories with different labels.
However, there are two exceptions which are gl = 0 for HalfCheetah and gl = 0 for Ant. We realize
that there is a noticeable gap between the mean value for these tasks. By further investigating, we
find that this may be caused by differences in reward calculations between the environment that
perform data collection and evaluations. We decide to live with this difference and use this mean as
the new standard to determine whether or not the switch task is successful.

A.2.2 ATARI

We select one Atari game (Breakout) to demonstrate that GMT can also be applied to video games
with image inputs and complex policies. For each Atari game, the chosen statistics of interest is the
reward. We perform various data augmentations for Atari games during training, including random
crop and random rotation.

We cluster the Breakout into 11 goals. Figure 10 shows the trajectories sampled from each goal
label in the Breakout game. We can observe several patterns across different trajectory labels. For
example, goals 0 and 10 tend to focus on breaking the middle part, however, 2 and 5 tend to break
evenly without too much preference. Additionally, the agent tends to break more blocks on the top
as the value of the goal label increase. This is a reasonable behavior as breaking those blocks on the
top tends to give higher rewards. It is possible to reduce this variance by clustering trajectory using
the normalized score which only considers the sign of the score as in previous work (Mnih et al.,
2015). However, this change is not adopted because the normalized reward in this scenario depends
on how many blocks the agent breaks, which is not the statistic of interest for this experiment.

As there are too many combinations for switching, we illustrate a few here (specifically between 2,
5, and 10) to evaluate the ability of GMT. As demonstrated in Figure 8 we expect the total reward of
the trajectory sits around 23× 0.3 + 74× 0.7 = 57.5 when switching from 2 to 10 at timestep 300,
and sits around 74 × 0.3 + 23 × 0.7 = 38.3 when starting with 10 and end with 2 under the same
procedure. We use 0.3 and 0.7 as each part generally takes 30% and 70% of the entire trajectories,
respectively. By using a similar method, we can also calculate the expected return when switching
between 2 and 5. They are 35.1 and 25.9, for goal 2 → 5 and 5 → 2, respectively. We observe
that switches are successful across all the illustrated examples, and the final episodic reward is close
to our expectations. We also found that the expectation calculation tends to overestimate the total
reward that an agent can receive when switching from a better performance goal to the worse one
(e.g. 10 → 2 as we demonstrated). Unlike the MuJoCo task, this is a reasonable phenomenon in
Breakout as the block closer to the top has high marks, which can only be hit at the later game.
Thus, switching to a better strategy in the later game tends to receive more rewards. This can also
be observed from the left line plot, in which the gradient of the lines is much high in later games.
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Figure 8: Left: The rewards trends within an episode that the agent gets for different goal labels
with or without switching. We use dash lines to represent cases without switching as references.
All switches are happened at timestep 300 by gradually replacing the old goal with the new goal to
provide agents with some context before and after the switch. For better illustration, all lines are
smoothed by using an exponential running average with smoothed parameter β = 0.97. Right: We
try to emphasize the total reward before and after the reward is changed in this figure. Bars with
multiple colors represent the total reward received in different stages, whereas bars with only one
color (blue) mean that goals are consistent across the episode without changes.

(a) Switch every 100 steps (b) Switch every 200 steps (c) Switch every 333 steps

Figure 9: GMT switch more than once within an episode

A.2.3 MORE SWITCH WITHIN ONE EPISODE

It is clear that our modal is capable of switching more than once within an episode as shown in
9. When GMT switches every 100 steps, 15/15 complete the first switch. However, only 3/15 still
on the track at the end (success all 9 switches). When GMT switches every 200 steps, 13/15 can
finally made it (success all 4 switches). When GMT switches every 300 steps, all attempts succeed
(success all 4 switches). Apparently, the more frequent the switch, the higher variance and failure
rate as the switch happens before the finish of another switch. This is because all middle transitions
are ‘guessed’ by our model. Keep staying and operating in such state space will eventually lead
to unrecoverable error. However, our model still have decent performance when the interval is
reasonable.
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Figure 10: Breakout trajectory samples. From top to down are goals labeled from 0 to 10.
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A.2.4 STATE DISTRIBUTIONS FOR MORE ENVIRONMENTS
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(b) Goal switching from 1 to 2

Figure 11: State distribution in HalfCheetah
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(b) Goal switching from 0 to 1

Figure 12: State distribution in Walker
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Figure 13: State distribution in Hopper
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Figure 14: State distribution in Ant
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A.2.5 MASKING RATIO FOR MORE ENVIRONMENTS
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Figure 15: Ablation study of masking ratio with 0.3 on three different tasks with switching
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Figure 16: Ablation study of masking ratio with 0.7 on three different tasks with switching

A.2.6 CONTEXT LENGTH FOR MORE ENVIRONMENTS
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(a) context length 50
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(b) context length 150

Figure 17: Ablation study of context length in Hopper
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(b) context length 150

Figure 18: Ablation study of context length in Ant
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(b) context length 150

Figure 19: Ablation study of context length in Walker

A.2.7 FINER-GRAINED GOAL CLUSTERING
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Figure 20: Walker with 6 goal labels
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Figure 21: HalfCheetah with 6 goal labels

Both Figure 20 and 21 shows that too many class labels will eventually result in goals that are
unable to distinguish between each other. Many of the trajectories overlap with each other in both
environments.
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