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Abstract

Transformer language models (LMs) have been001
shown to represent concepts as directions in the002
latent space of hidden activations. However,003
for any human-interpretable concept, how can004
we find its direction in the latent space? We005
present a technique called linear relational con-006
cepts (LRC) for finding concept directions cor-007
responding to human-interpretable concepts by008
first modeling the relation between subject and009
object as a linear relational embedding (LRE)010
(Hernandez et al., 2023b). While the LRE work011
was mainly presented as an exercise in under-012
standing model representations, we find that in-013
verting the LRE and using earlier object layers014
results in a powerful technique to find concept015
directions that perform well as a classifier and016
causally influence model outputs.017

1 Introduction018

How do large language models (LLMs) represent019

concepts, and how can we identify those concepts020

in hidden activations? If we can identify human-021

interpretable concepts in model activations, we can022

analyze how concepts are created and change dur-023

ing inference. Identifying concept representations024

inside of models opens up the possibility of vi-025

sualizing the computation process of a model as026

sentences are processed, and can help to under-027

stand incorrect or undesirable responses from the028

model. Moreover, future work examining how con-029

cept directions arise in model weights and how030

models express relations between concepts may031

benefit from a robust method to find those concept032

directions as a first step.033

An intuitive approach when trying to locate a034

human-interpretable concept, like the concept of035

a city being in France, is to collect examples of036

sentences with cities that are in France and cities037

that are not, and train a probing classifier (Ettinger038

et al., 2016; Finlayson et al., 2021) on hidden lay-039

ers of the model, typically a simple linear classi-040
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Figure 1: We first model the relation between the subject
s and object o as a linear transformation called a linear
relation embedding (LRE), R(s). We then invert R(s)
using a low-rank pseudo-inverse, resulting in R−1(o).
Finally, we create an LRC v for each object o in the re-
lation by applying R−1(o) to the mean object activation
E[o]. Above, we train an LRE from the statement “San
Jose is in Costa Rica”, then invert that LRE and create
linear relational concepts (LRCs) representing “located
in England” and “located in China” from representations
of objects “York” and “Shanghai”, respectively.

fier. However, the learned classifier may be pick- 041

ing up features correlated with the concept being 042

probed while overlooking the feature direction that 043

causally influences model output (Hernandez et al., 044

2023b). 045

Furthermore, the hidden layer in modern trans- 046

former models has high dimensionality: even older 047

models such as GPT2-xl have 1600 dimensions in 048
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the hidden layer (Radford et al., 2019), and modern049

language models such as Llama2 have over 4000050

dimensions for the smallest model (7B) (Touvron051

et al., 2023). Naively training a probing classifier052

may require a high number of training samples.053

Our technique builds on work by Hernandez et al.054

(2023b), which models the relation between a sub-055

ject s and object o as an affine linear transformation,056

called a linear relational embedding (LRE). While057

the LRE work was mainly an investigation into how058

models represent relational knowledge, we find that059

inverting the LRE can generate concept directions060

that achieve surprisingly strong performance as a061

classifier while also causally impacting model out-062

puts, outperforming standard probing classifiers063

such as a linear support vector machine (SVM).064

We refer to the concept direction that our method065

creates as a linear relational concept (LRC). An066

LRC represents a concept as a direction in a latent067

space, while also functioning as a linear classifier.068

Figure 1 shows our method for generating an069

LRC. We first generate an LRE for a relation, map-070

ping subject activations to their corresponding ob-071

ject activations as a linear transformation. Then,072

we perform a low-rank pseudo-inverse of the LRE,073

mapping from object activations back to subject074

activations. Applying this inverted LRE to an ob-075

ject in the relation results in an LRC. LRCs beat076

traditional probing classifiers in both classification077

accuracy and causality, where causality is defined078

as being able to control the output of the model.079

For instance, we can force the model to output that080

“London is located in France” by subtracting the081

“Located in England” LRC from the activation of082

“London” and adding the “Located in France” LRC.083

In addition, since we use the LRE only as an084

intermediate step to obtain LRCs, we can relax085

the requirement that LREs must faithfully predict086

object output logits directly. This allows us to train087

the LRE using object activations before the final088

model layer, and use all object token activations089

rather than only using the first object token. This090

improves classification accuracy for both single-091

token and multi-token objects compared with the092

original LRE work, where only the final object093

layer can be used and only the first object token094

can be modeled.095

In this paper, we investigate the problem of lo-096

cating human-interpretable concepts within the hid-097

den layer of auto-regressive LLMs such as GPT098

(Radford et al., 2019) and Llama (Touvron et al.,099

2023). We evaluate our technique using the LRE 100

relations dataset (Hernandez et al., 2023b) in both 101

multi-class classification accuracy, and causality 102

(the ability of concepts to modify model output). 103

Our technique achieves high scores for both clas- 104

sification accuracy and causality across the four 105

concept types in the dataset. 106

Our contributions include: (1) Extending LREs 107

to handle multi-token objects, (2) Using non- 108

terminal model layers for the object activation, and 109

(3) Using inverted LREs as an intermediate step to 110

find concept directions (LRCs) in subject activa- 111

tions. 112

2 Background 113

Previous work on transformers has shown that fea- 114

tures are stored as directions within the latent space 115

of the model’s hidden activations, known as the lin- 116

ear representation hypothesis (Elhage et al., 2022). 117

Further work has shown that mid-level multi- 118

layer perceptron (MLP) layers in transformer 119

LLMs act as key-value stores of information (Geva 120

et al., 2021). These MLP layers enhance the final 121

token of the subject of the sentence (e.g. the token 122

“lin” in “Berlin is located in the country of”) with 123

this information in factual relations (Geva et al., 124

2023; Meng et al., 2022). 125

2.1 Linear Relational Embeddings 126

Linear relational embeddings (LREs) were first 127

presented by Paccanaro and Hinton (2001) to en- 128

code relational concepts as a linear transformation. 129

Hernandez et al. (2023b) showed that transformer 130

LMs appear to encode relational knowledge using 131

LREs. They model the processing performed by 132

a transformer LLM mapping from a subject s to 133

an object o within a textual context c as a linear 134

transformation o = F (s, c) = Ws + b, where 135

W ∈ RH×H , b ∈ RH . F is estimated by a first- 136

order Taylor approximation around s, while W and 137

b are calculated as the mean Jacobian and bias of n 138

samples si, ci from relation r, respectively: 139

W = E(si,ci)

[
∂F

∂s

∣∣∣∣
(si,ci)

]
140

b = E(si,ci)

[
F (s, c)− ∂F

∂s
s

∣∣∣∣
(si,ci)

]
141

A hyperparameter β is used to increase the slope 142

of the LRE and can be configured to improve the 143
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performance of the LRE in the case that the Jaco-144

bian underestimates the steepness of W , resulting145

in the following equation for a LRE R:146

R(s) = βWs+ b (1)147

LREs are evaluated on faithfulness and causal-148

ity. Faithfulness checks if the LRE output matches149

the model output for the first predicted token when150

presented with a new subject. For instance, if an151

LRE trained on the relation “city in country” pre-152

dicts the token “France” as the most likely output153

given the subject activation of “Paris”, the LRE is154

faithful. However, this limits the LRE to modeling155

only a single token of object o at the final layer of156

the model. As a result, LREs cannot distinguish157

between words that start with the same token. For158

example, “Bill Gates” and “Bill of Rights” both159

begin with the token “Bill”, and thus cannot be160

distinguished by an LRE evaluated for faithfulness.161

To evaluate causality, the LRE is inverted using a162

low-rank pseudo-inverse of the weight matrix, indi-163

cated W †. Hernandez et al. (2023b) find that using164

a low-rank pseudo-inverse results in better perfor-165

mance than using a full-rank inverse. This inver-166

sion makes it possible to calculate ∆s that is added167

to the subject s to change the model output from168

the original object o to a new object o′. Causality is169

evaluated based on whether the model’s probability170

of outputting o′ is greater than the probability of171

outputting o after the edit:172

∆s = W †(o− o′) (2)173

As we explain in the next section, we build our174

method from this technique of inverting the LRE175

weight matrix to target the subject activations rather176

than object activations.177

3 Method178

Our method finds an LRC, represented as a concept179

direction vector, v, for a given human-interpretable180

concept in the hidden activations of a transformer181

LLM model at a layer l. Since we are interested in182

concepts as directions, we do not add a bias term183

and focus on learning only a single unit-length184

vector to represent the LRC.185

Formally, we consider an auto-regressive model186

G : X → Y with vocabulary V that maps a se-187

quence of tokens x = [x1, . . . , xT ] ∈ X , xi ∈ V188

to a probability distribution y ∈ Y ⊂ R|V | that189

predicts the next token of x. Internally, G has a190

hidden state size H , and has L layers. The hidden 191

activations of layer l of G at token i is represented 192

by h
(l)
i ∈ RH . 193

We follow the example of Meng et al. (2022) 194

and Hernandez et al. (2023b), and consider state- 195

ments of the form (s, r, o) consisting of a subject s, 196

relation r, and object o. The statement “Paris is lo- 197

cated in the country of France” would have subject 198

“Paris”, object “France”, and relation “located in 199

country”. Our definition of a concept corresponds 200

to a relation and object pair (r, o), which operates 201

on the activations of the subject s. So in our case, 202

we would learn an LRC for the concept “located 203

in country: France”, and would expect the LRC to 204

have high similarity with the subject activations of 205

“Paris”, but not “Berlin” or “Tokyo”. 206

We make the following changes to the original 207

LRE method by Hernandez et al. (2023b): (1) We 208

use the mean of all object token activations rather 209

than only the first object token activation to better 210

handle multi-token objects. (2) We relax the re- 211

quirement that only the final layer can be used for 212

object activations, since we find that classification 213

performance improves using earlier object layers. 214

Both (1) and (2) are possible because we do not 215

directly evaluate the LRE using faithfulness as in 216

the original LRE work, instead performing all eval- 217

uation on the LRC operating on the subject. (3) We 218

restrict training samples for the LRE to only con- 219

tain examples where the model answers the prompt 220

correctly. If the model does answer a prompt cor- 221

rectly, we assume that the conceptual knowledge 222

we hope to capture in the LRC is not present, and 223

that the sample will likely be noise. For instance, if 224

the model responds to the prompt “Paris is located 225

in the country of" with “Japan", we would discard 226

this prompt. 227

For a relation r, we have a set of possible objects 228

O, and each object o has a corresponding set of 229

subjects So. We first assemble prompts that elicit 230

each object o ∈ O for the relation r. For example, 231

for the relation “Located in country”, prompts fol- 232

low the template "{} is located in the 233

country of" where "{}" is replaced with the 234

subject and the model is expected to predict the 235

object. Some examples of prompts and their corre- 236

sponding objects are shown in Table 1. 237

When building an LRC for relation r and object 238

o, we assume a set of prompts each containing their 239

own subject s ∈ So, and we expect the model to 240

predict the corresponding object o. We use hidden 241
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Prompt (s, r) Object (o)

Paris is located in the country of France
Suzhou is located in the country of China
Manaus is located in the country of Brazil

Table 1: Sample prompts and corresponding object for
the relation “Located in country”.

states from the final token index i of subject s. For242

example, if the subject "Berlin" tokenizes to243

"Ber" and "lin", i corresponds to the token244

index of "lin" as this is the final subject token.245

We first select n prompts for the relation r,246

balancing the prompts to have as even a distri-247

bution of prompts across O. Following Hernan-248

dez et al. (2023b), we train a LRE R(s) consist-249

ing of a weight matrix W and bias b using these250

prompts, however, in contrast with Hernandez et al.251

(2023b), we calculate the weight matrix W us-252

ing the Jacobian of the mean of all object tokens253

relative to the subject, not only the first object254

token. This change means we model F (s, c) as255

E[o] = F (s, c) = Ws+ b.256

This is identical to the original LRE formulation257

if the object consists of a single token.258

We ignore the β scaling factor from the original259

LRE definition. LRCs are normalized to have unit260

length, removing any scaling applied to the LRE.261

Our definition of an LRE, denoted R(s), is thus262

simplified from Equation 1 as follows:263

R(s) = Ws+ b (3)264

We then invert Equation 3 to map object activa-265

tions to subject activations. Following Hernandez266

et al. (2023b), we use a low-rank pseudo-inverse,267

denoted R† rather than the full matrix inverse R−1:268

R†(o) = W †(o− b) (4)269

To calculate the LRC vo for o, we take the mean270

of all samples of R†(o) for each prompt (s, r, o) in271

our training set:272

ṽo = E[W †(ho − b)] (5)273

Finally, we normalize the LRC direction to have274

unit length: vo = ṽo/∥ṽo∥2.275

4 Results276

We evaluate our method using the relations dataset277

from Hernandez et al. (2023b). The dataset con-278

tains 47 relation types, and over 10,000 instances279

in total. The dataset divides relation types into four 280

categories: factual knowledge, linguistic knowl- 281

edge, commonsense knowledge, and implicit bias. 282

A subset of data from a sample relation is shown 283

in Table 2. Statistics about the number of relations 284

and samples per category are shown in Table 3. 285

We evaluate against both Llama2-7b (Touvron 286

et al., 2023) and GPT-J (Wang and Komatsuzaki, 287

2021). We focus on Llama2-7b for our analysis 288

as it is a more advanced model than GPT-J, but 289

we include full results for GPT-J in Appendix A. 290

GPT-J is included as this model was used in the 291

original LRE paper. 292

We evaluate our performance using classification 293

accuracy and causality. For classification accuracy, 294

we treat each relation as a multi-class classification 295

problem, where the LRC with the largest dot prod- 296

uct with the test subject activation a is considered 297

to be the predicted object ŷ: 298

ŷ = argmax
o∈O

vo · a (6) 299

To evaluate causality, we randomly pick a coun- 300

terfactual object oc for each subject in a relation 301

and edit the subject token activations to predict the 302

new counterfactual object o′ instead of the original 303

object o. We subtract the original LRC from the 304

final subject token activation at all layers, and add 305

the new LRC. For instance, we may attempt to edit 306

the prompt “Paris is located in the country of” to 307

predict “Germany” instead of “France” by subtract- 308

ing the “located in country: France” concept and 309

adding the “located in country: Germany” concept. 310

LRCs are all normalized to unit length, so we 311

scale by a hyperparameter β ∈ [0, 1] multiplied by 312

the L2 norm of the subject activation before adding 313

or subtracting them. The causal edit at a layer l is 314

thus calculated as below: 315

∆s(l) = β∥h(l)i ∥2(vo′ − vo) (7) 316

The causality intervention is successful if the 317

probability of predicting the counterfactual object 318

o′ after the edit is higher than the probability of 319

predicting the original object o. For multi-token 320

predictions, we use the minimum probability across 321

all predicted tokens to avoid penalizing objects that 322

require more tokens to represent. Experimentally, 323

β = 0.05 works well for GPT-J and β = 0.075 324

works well for Llama2-7b. 325

We perform a multi-layer edit since single-layer 326

causality penalizes learning concepts in later layers 327
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relation: city in country

FS
{} is part of
{} is in the country of

ZS
{} is part of the country of
{} is located in the country of

subject object
Kuala Lumpur Malaysia
Johannesburg South Africa
Saint Petersburg Russia

Table 2: Sample relation data for the “city in country” re-
lation from the dataset, showing zero-shot (ZS) prompt
templates, few-shot (FS) prompt templates, and several
subject / object pairs. In templates, {} is replaced with a
subject. The different FS and ZS templates are provided
by the relations dataset.

Category Relations Samples

Commonsense 7 337
Bias 7 212

Factual 21 9462
Linguistic 4 660

Table 3: Statistics for the number of relations and sam-
ples of each category in the dataset after filtering out
one-to-one relations.

of the model. In single-layer causality, the model328

still attends to the unedited subject activations for329

layers before the edit, undermining the effect of330

edits at later layers. Instead, we perform the same331

edit at all layers of the subject, so the model does332

not attend to any unedited subject activations.333

For each relation, we split the dataset into a334

50%/50% train/test split by relation and object, en-335

suring at least one training example per object in336

the relation. We prepend four other examples from337

the same relation to each training prompt as few-338

shot examples. We train using few-shot prompts339

from the relations dataset, but evaluate using zero-340

shot prompts, following the procedure in the orig-341

inal LRE paper. An example few-shot prompt is342

shown in Figure 2. We repeat five times with dif-343

ferent random seeds for train/test splits, reporting344

mean and standard deviation. The shaded area in345

plots corresponds to this standard deviation.346

Some relations contain a one-to-one mapping347

between subject and object, so it is impossible to348

create a test split with unseen subject/object pairs.349

For example in the relation “capital city of coun-350

try”, a country has one capital city, and a city is351

Tokens Llama2-7b GPT-J

1 2393 2108
2 451 39
3 371 2
4 107 6

5+ 4 0

Table 4: Statistics for the average number of tokens
in objects for the test set for Llama2-7b and GPT-J
after filtering out one-to-one relations and samples the
model answers incorrectly. The majority of samples
are single-token, but Llama2-7b also answers correctly
a large number of multi-token object samples. GPT-J
performs worse than Llama2-7b especially on multi-
token objects.

The superlative form of bad is worst
The superlative form of bright is brightest
The superlative form of angry is

Figure 2: Sample few-shot (FS) prompt for the rela-
tion “adjective superlative”, subject “angry”, and object
“angriest” from the dataset.

the capital of only one country. Since our concepts 352

require a unique r and o pair, we cannot evaluate 353

these relations and exclude them from evaluation. 354

We also exclude any samples the model answers 355

incorrectly, and we exclude any relations with less 356

than five test samples as few test samples makes 357

it hard to evaluate performance robustly. Table 4 358

shows the average test set size by number of object 359

tokens for Llama2-7b and GPT-J after this filtering. 360

When training LRCs using our method, we use 361

20 training samples per LRE for the main bench- 362

mark, and 5 training samples for sweep plots. We 363

use rank 192 for pseudo-inverse. Calculations are 364

performed using a single Nvidia A100 GPU with 365

16-bit quantization. We use subject layer 17 and 366

object layer 21 for Llama2-7b, and subject layer 14 367

and object layer 20 for GPT-J. 368

4.1 Comparisons 369

We compare our method against training a 0-bias 370

linear support vector machine (SVM) classifier on 371

the hidden activation data, as well as estimating 372

a concept direction by simply averaging together 373

the hidden activations for a given object. For both 374

SVM and averaging, we normalize the learned vec- 375

tors to unit length. 376

We also compare our method to an LRC trained 377
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Llama2-7b
Method Accuracy Causality

LRC 0.81 ± 0.01 0.78 ± 0.02

LRC (ft, lfinal) 0.74 ± 0.02 0.78 ± 0.02

SVM 0.73 ± 0.02 0.69 ± 0.01

Input averaging 0.70 ± 0.01 0.55 ± 0.03

GPT-J
Method Accuracy Causality

LRC 0.81 ± 0.02 0.84 ± 0.01

LRC (ft, lfinal) 0.78 ± 0.02 0.86 ± 0.01

SVM 0.75 ± 0.02 0.76 ± 0.01

Input averaging 0.73 ± 0.03 0.56 ± 0.02

Table 5: Classification accuracy and causality results on
the relations dataset for Llama2-7b and GPT-J. LRC is
our method. “ft” refers to using only the first token of
the object to calculate a LRE. LRC (ft, lfinal) is included
as an ablation to best estimate the results of inverting
the original LRE technique at the final layer. Results
include mean and standard deviation after five random
seeds.

using the final layer for the object token, as in the378

original LRE paper where the final layer is always379

used for objects.380

4.2 Classification accuracy and causality381

For classification accuracy and causality, we cal-382

culate a score per relation, and then average the383

scores across relations. Some relations have more384

test samples than others, which would otherwise385

bias the results towards relations with more test386

samples and not reflect performance across the full387

range of relation types in the dataset. Results are388

shown in Table 5.389

Our method performs the best on both classifica-390

tion accuracy and causality. Classification accuracy391

improves by a large margin by using layer 21 in-392

stead of the final layer (layer 31 for Llama2-7b),393

showing the importance of allowing the LRE to use394

a non-terminal layer. We also include a full compar-395

ison of classification accuracy by relation between396

our method and SVM for Llama2 in Figure 3.397

4.3 Multi-token vs single-token objects398

One of the main limitations of the original LRE399

work is not being able to handle multi-token ob-400

jects, so we expect the improvement of our method401

over traditional LREs to be most prominent for402

multi-token objects.403

Figure 3: Classification accuracy by relation for LRC
(ours) compared to SVM on Llama2-7b. Our method
outperforms SVM on most, but not all, relations.

To investigate the impact of the choice of object 404

layer on single-token and multi-token performance, 405

we evaluate our method on each layer from layer 406

18 to the final layer 31 for Llama2-7b keeping layer 407

17 as the subject layer. We only use Llama2-7b 408

since GPT-J has very few multi-token prompts that 409

it can answer correctly. Multi-token results by ob- 410

ject layer are shown in Figure 4, and single-token 411

results are shown in Figure 5. 412

Both single-token and multi-token performance 413

improves by using earlier object layers, but the 414

difference is especially pronounced for multi-token 415

objects. 416

4.4 Impact of the rank of the LRE inverse 417

One surprising result from Hernandez et al. (2023b) 418

is that using a low-rank inverse of the LRE results 419

in better performance than a full-rank inverse. We 420
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Figure 4: Classification accuracy and causality by object
layer for multi-token objects on Llama2-7b.

Figure 5: Classification accuracy and causality by object
layer for single-token objects on Llama2-7b.

investigate the relationship between the rank of421

the LRE inverse and performance on the relations422

dataset for our method, with results in Figure 6.423

Figure 6: Classification accuracy and causality on the
relations dataset by LRE inversion rank on Llama2-7b.

Using a low-rank LRE inverse improves per-424

formance dramatically, with performance peaking425

around rank 200 for Llama2-7b. Llama2-7b has426

a 4096 dimension hidden space, so a rank 200 in-427

verse is discarding over 95% of the weight matrix.428

The generalization power of using an inverted LRE429

to find concept directions likely comes from this430

low-rank inverse, where the important components431

of the relation are captured in the largest singular432

values the LRE weight matrix.433

LRE train sample Accuracy Causality

Same object 0.31 ± 0.04 0.31 ± 0.02

Different object 0.69 ± 0.01 0.70 ± 0.02

Table 6: Results for training a LRC derived from a LRE
trained with a single training sample for the relations
dataset, where that sample either represents the same
object as the LRC (Same object) or a different object in
the same relation (Different object) for Llama2-7b.

4.5 Choosing samples to train the LRE 434

We use the LRE only as an intermediate step in 435

deriving a LRC, so it possible to train a LRE for 436

each LRC, optimized for the specific relation and 437

object (r, o) of that LRC. A natural instinct is to 438

only choose training samples that contain the LRC 439

object. For instance, to train a LRC for “Located 440

in country: France”, we could pick LRE training 441

samples consisting only of cities in France. 442

We investigate this idea using only a single train- 443

ing sample to train the LRE, since many objects 444

in the dataset have only a single training sample 445

and we want to ensure results are not simply a re- 446

flection of the number of samples available to train 447

the LRE. We compare training the LRE and LRC 448

using a sample which represents the same object 449

vs training the LRE with a sample from a different 450

object in the same relation. Results are shown in 451

Table 6. 452

Unintuitively, training the LRE using a sample 453

with the same object as the LRC results in dramati- 454

cally worse performance. We do not yet understand 455

why this is, but suspect that choosing samples from 456

different objects may have a regularizing effect on 457

the resulting LRC. More investigation will be nec- 458

essary to understand this phenomena in-depth, but 459

for our purposes we find that it is essential that 460

the training samples for the LRE contain different 461

objects from the same relation. 462

4.6 Causality vs accuracy trade-off 463

While we use multi-layer causality to avoid penal- 464

izing training at later model layers, we still find a 465

trade-off between causality and classification accu- 466

racy depending on the subject layer of LRC. Earlier 467

layers allow the LRC to find maximally causal inter- 468

ventions, but classification accuracy suffers since 469

model MLP layers have not yet had a chance to 470

enhance the subject token with relevant informa- 471

tion. Figure 7 shows classification accuracy and 472

causality results on the relations dataset for train- 473
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ing the LRC using subject layer 10 through 21 on474

Llama2-7b.

Figure 7: Classification accuracy and causality on the
relations dataset by subject layer on Llama2-7b with
object layer 22.

475

Causality is highest with earlier layers, while476

classification accuracy follows the opposite trend,477

increasing up to layer 19. We suspect this trade-478

off is a limitation of using a single pair of subject479

and object layers. It may be possible to combine480

LRCs learned at different layers to improve both481

classification accuracy and causality.482

5 Related work483

Previous work on understanding neural networks484

focuses on individual neurons (Bills et al., 2023;485

Yosinski et al., 2015). However, individual neurons486

have been found to activate in response to multiple487

concepts, making a clean understanding difficult488

(Goh et al., 2021). Indeed, transformers can repre-489

sent more concepts than they have neurons in their490

hidden layers (Elhage et al., 2022).491

A source of inspiration of our work is knowledge492

editing in LMs, specifically ROME (Meng et al.,493

2022) and REMEDI (Hernandez et al., 2023a). In494

ROME, factual knowledge is shown to reside in the495

mid-layer MLPs of language models, and can be496

edited by updating a mid-layer MLP to insert any497

fact desired.498

In REMEDI, model outputs are edited by adding499

a vector to the subject of a sentence during forward500

inference. This is similar to our work in that this501

vector can be said to contain the concept that is de-502

sired to be elicited. However, the goal of REMEDI503

is to edit model outputs rather than identify concept504

directions and building a classifier as in our work.505

We also take inspiration from probing classi-506

fiers (Belinkov, 2022; Ettinger et al., 2016). Prob-507

ing classifiers are linear classifiers which operate508

on hidden activations inside of neural networks.509

TCAV (Kim et al., 2018) can be said to be a prob- 510

ing classifier for vision models, where a classifier 511

is learned at multiple layers in the model. Most 512

similar to our work, Li et al. (2021) build a prob- 513

ing classifier for textual games from LM hidden 514

activations, and show that these hidden activations 515

encode a basic world model. However, this work 516

focuses on encoder-decoder models, and does not 517

attempt to classify arbitrary human-interpretable 518

concepts beyond the text game. 519

Closest to this paper is work on LREs in LLMs 520

(Hernandez et al., 2023b), which is the source of 521

our evaluation dataset and is the first step in our 522

method. This work also attempts to estimate rela- 523

tions, and learns a linear mapping from the subject 524

token activation to the first output token of the ob- 525

ject. However, as LREs only map to the first object 526

token, they struggle with multi-token objects. For 527

instance, an LRE evaluated for faithfulness cannot 528

distinguish between “Bill Gates” and “Bill Clin- 529

ton” as they both begin with the same token. In 530

addition, the original LRE work is presented as an 531

exploration of how LLMs encode relations rather 532

than attempting to build a classifier or find concept 533

directions. 534

6 Conclusion 535

Identifying and classifying a broad set of human- 536

interpretable concepts in language model activa- 537

tions is a vital step towards understanding how 538

language models operate. In this work, we have 539

shown a technique for identifying and classifying 540

concepts in model hidden activations called linear 541

relational concepts (LRCs). We show that LRCs 542

outperform standard linear classifiers like SVMs 543

on both classification accuracy and causality. 544

While our technique performs well, there is vari- 545

ance in performance depending on the training 546

samples chosen. We expect further improvements 547

can be achieved by optimizing the LRE training 548

samples chosen for each LRC. In addition, it may 549

be possible to combine LRCs learned at multiple 550

layers to achieve even better results to get around 551

the causality / accuracy trade-off depending on the 552

layer chosen to train the LRC. 553

In the future, concept identification techniques 554

such as LRC may make it possible to investigate the 555

relations between concepts within model weights, 556

and extract knowledge and even world models di- 557

rectly from pretrained language models. 558
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Limitations559

Our method requires learning a new LRC for ev-560

ery (r, o) pair, so cannot generalize to new objects561

without a training sample of that (r, o). Our eval-562

uation also assumes that each subject maps only563

to a single object in the same relation, and would564

need modifications to handle subjects with multiple565

objects in the same relation, such as a movie that566

can have multiple genres, but we do not investigate567

that in this work.568

Our method assumes that each human-569

interpretable concept corresponds to a direction570

in the hidden space of the model, and we assume571

that if the model outputs the correct answer to a572

prompt then the model has a representation of573

this concept in its activations. However, it is also574

possible for the model to guess the correct answer575

without having any underlying representation,576

which will cause our method to not perform well.577

For instance, for the prompt “Sam Eastwood’s578

father is named”, the model will output the correct579

answer “Clint Eastwood”. However, did the model580

have an underlying representation of this fact in581

its hidden activations, or is it simply guessing582

the most famous person with the last name583

“Eastwood”, which is Clint Eastwood? Indeed,584

GPT-J will output “Clint Eastwood” as the father585

of almost any made up person with the last name586

“Eastwood”. Our method would likely perform587

much better if these cases where the model can588

guess the correct answer were filtered out, but589

differentiating between the model guessing and590

knowing the correct answer is challenging.591

Recent work suggests that sometimes the knowl-592

edge that maps subjects to objects is not present593

in MLP layers applied to the subject token, but in-594

stead is contained directly in attention values and595

only is added to the residual stream of the output596

tokens instead of the subject (Geva et al., 2023).597

For knowledge of this sort, our method will fail598

since we assume all knowledge can be found in the599

subject token residual stream rather than needing600

to look at the output token.601

Finally, our method works only for relational602

concepts of the form (s, r, o). Other types of con-603

cepts which do not easily fit into this format would604

require an adaptation or a different technique.605

Ethics statement606

By exploring internal model activations before the607

model generates outputs, LRCs may help locate608

biases and inaccurate information inside model 609

weights. However, LRCs do not provide a way 610

to robustly correct these biases and errors. This 611

may be a direction for future research. 612
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A Appendix707

A.1 Extended results708

Full results broken down by each relation tested is709

shown in Figure 8 for GPT-J. This plot compares710

the results for our method (LRC) against the results711

for support vector machines (SVM).712

Results for the effect of the rank of the LRE713

weight matrix inverse on performance of the LRC714

method for GPT-J is shown in Figure 9.715

Figure 8: Classification accuracy broken down by rela-
tion for LRC (ours) compared to SVM on GPT-J. Our
method outperforms SVM on most, but not all, relations.

Results illustrating the effect of object layer 716

choice our method for GPT-J is shown in Figure 10, 717

with subject layer 15. We do not break down the 718

effect of this object layer choice by single-token vs 719

multi-token objects since GPT-J answers very few 720

multi-token object prompts correctly. 721

Results illustrating the effect of the subject layer 722

choice on LRC performance are shown in Figure 723

11 with object layer 20. As with Llama2-7b, we 724

find a trade-off between causality and classifica- 725

tion accuracy, where earlier layers result in better 726

causality performance at the expense of classifica- 727

tion accuracy. 728

A.2 Statistical significance 729

We calculate statistical significance between our 730

method (LRC) and SVM for classification accuracy 731
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Figure 9: Classification accuracy and causality on the re-
lations dataset by LRE inversion rank on GPT-J. Shaded
area indicates standard deviation after five seeds.

Figure 10: Classification accuracy and causality on the
relations dataset by LRE object layer on GPT-J with sub-
ject layer 15. Shaded area indicates standard deviation
after five seeds.

and causality. We find that LRCs performance732

improvement over SVM is statistically significant.733

We use a two-proportion Z-test to calculate sig-734

nificance. Since we run five random seeds with735

different train / test splits, we calculate significance736

for each random split separately to avoid double-737

counting samples which may occur in different738

splits. This should make our significance estimate739

more conservative than if we sum the results across740

all splits.741

In order to simplify the significance calculation,742

the scores are not reweighted by relation as is done743

in the results in the paper, so if a relation has many744

more samples than another relation, we do not745

reweight to account for that in this calculation. As746

a result, the LRC and SVM scores per iteration are747

slightly different than appears earlier in the paper.748

P-value calculations for Llama2-7b are shown in749

Figure 7, and for GPT-J in Figure 8.750

For Llama2-7b, our method is statistically sig-751

nificantly better than SVM for both classification752

accuracy and causality. However, for GPT-J, the753

classification accuracy difference is not statistically754

Classification accuracy (Llama2-7b)

Seed Test samples LRC SVM P-val

42 3324 0.842 0.811 9e-4
43 3326 0.845 0.804 1e-5
44 3319 0.839 0.808 9e-4
45 3354 0.838 0.816 0.016
46 3335 0.843 0.803 2e-5

Causality (Llama2-7b)

Seed Test samples LRC SVM P-val

42 1527 0.762 0.652 3e-11
43 1533 0.733 0.606 7e-14
44 1517 0.740 0.633 2e-10
45 1497 0.764 0.607 3e-20
46 1497 0.723 0.627 2e-8

Table 7: Statistical significance calculation for classi-
fication accuracy comparison for our method (LRC)
compared with SVM using Llama2-7b. All compar-
isons are at subject layer 17. We use object layer 21 for
LRC. All P-values from each seed for both classification
accuracy and causality are well below the 0.05 thresh-
old for statistical significance. In order to simplify the
significance calculation, these scores are not reweighted
by relation as is done in the results in the paper, so if a
relation has many more samples than another relation,
we do not reweight to account for that in this calcula-
tion.
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Classification accuracy (GPT-J)

Seed Test samples LRC SVM P-val

42 2181 0.825 0.793 0.007
43 2129 0.803 0.800 0.818
44 2176 0.784 0.816 0.008
45 2173 0.789 0.791 0.882
46 2236 0.812 0.789 0.0517

Causality (GPT-J)

Seed Test samples LRC SVM P-val

42 1049 0.699 0.546 6e-13
43 1054 0.733 0.602 1e-10
44 1088 0.716 0.581 4e-11
45 1014 0.735 0.570 7e-15
46 1097 0.718 0.560 1e-14

Table 8: Statistical significance calculation for classi-
fication accuracy comparison for our method (LRC)
compared with SVM using GPT-J. All comparisons are
at subject layer 14. We use object layer 20 for LRC. The
classification accuracy results for LRC are not statisti-
cally significant compared with SVM, but the causality
results are significantly significant. In order to sim-
plify the significance calculation, these scores are not
reweighted by relation as is done in the results in the pa-
per, so if a relation has many more samples than another
relation, we do not reweight to account for that in this
calculation.

Figure 11: Classification accuracy and causality on the
relations dataset by LRE subject layer on GPT-J. Shaded
area indicates standard deviation after five seeds.

significant between our method and SVM, but our 755

method does outperform SVM on causality with 756

statistical significance. 757
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