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Abstract
We investigate continued pretraining of LLMs
for language adaptation on a tight academic bud-
get: a setting in which only a few GPUs can be
used in parallel, for a heavily constrained dura-
tion. We focus on adapting Mistral-7B to German
or Arabic and evaluate several techniques to im-
prove efficiency and effectiveness in this setting.
Our German models adapted on this tight com-
pute budget underperform compared to the base
Mistral-7B, while our Arabic models outperform
several baselines, showing that for sufficiently
well-represented languages, continued pretraining
for specialization is not always helpful. Our main
findings focus on training precision and tokenizer
swapping. Our results show that pure bfloat16
training is a viable alternative to mixed-precision
training, while being much faster when only using
a few GPUs. Swapping the tokenizer for a spe-
cialized one yields more efficient tokenization and
is competitive with the original tokenizer, which
already contains some German tokens, but did not
significantly increase performance for German.
Code and model weights are available on GitHub.

1. Introduction
Large language models (LLMs) can be incredibly useful
tools – if they handle your language well. Unfortunately, for
people who speak languages that are not among the small
subset of high-resource languages, this is often not the case.
One remedy is to adapt an existing LLM to your desired
target language via continued pretraining (Chau et al., 2020;
Gururangan et al., 2020). This leverages the enormous
amount of compute spent on training the base LLM. Still, as
models have gotten bigger, even the compute required for
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continued pretraining can be too much for many academic
labs to handle, requiring the support of large governmental
or industrial compute grants.

In this work, we use the term “tight academic (compute)
budgets”, referring to constrained access to a limited num-
ber of GPUs (such as only two or four GPUs), constrained
GPU memory capacity (e.g., 40GB vs. 80GB Nvidia A100
GPUs), and constrained access durations.1 As academic
labs commonly do have access to server-grade rather than
consumer-grade GPUs, our definition does encompass the
availability of (a few) server-grade GPUs, such as Nvidia
A100s, in this setting. We investigate language adaptation
of LLMs on such a tight academic budget. We start with
the training recipe of the recent LLM adaptation project
LeoLM (Plüster et al., 2023) adapting Mistral-7B2 (Jiang
et al., 2023a) to German, and modify it for our tight aca-
demic compute budget setting. Selecting German as the
target language allows us to draw a rough lower bound on
the viability of language adaptation on a tight academic
budget since Mistral-7B has already seen German during
pretraining. For unseen languages, the benefits of language
adaptation will be more pronounced. We verify this in an
additional “hindsight study” targeting Arabic after our main
experiments in German. The focus of our study is not to
produce a new state-of-the-art language model in German
or Arabic. Rather, we investigate the viability of efficient
training techniques to inform future language adaptation
attempts on a tight compute budget.

We specifically focus on two dimensions of efficiency: tok-
enizer swapping and training precision. Firstly, we investi-
gate the necessity of the commonly used mixed-precision
training (Micikevicius et al., 2017) over training in pure
bfloat16 precision. In settings with only two or four
GPUs being used in parallel for adapting 7 billion param-
eter models, mixed-precision bfloat16 training will run
out of memory or is only possible if used with inefficient
memory-saving techniques like activation checkpointing.

1Typically, unless one is willing to exchange significant social
goodwill into compute by delaying the work of all other people in
the lab, multiple GPUs can be blocked for only a short number of
days (e.g., over weekends or holidays).

2In this work, Mistral-7B specifically refers to
mistralai/Mistral-7B-v0.1.
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This is avoided in pure bfloat16 training by eliminating
the need to store full-precision optimizer states and a model
weight copy, as required for mixed precision.

Secondly, we investigate swapping out Mistral-7B’s original
tokenizer with a specialized German tokenizer. Many recent
language adaptation studies choose to retain the base LLM’s
original tokenizer (e.g., Kuulmets et al., 2024; Huang et al.,
2023; Plüster et al., 2023). Others opt to extend the origi-
nal vocabulary rather than replacing it (Zhao et al., 2024b;
Fujii et al., 2024; Nguyen et al., 2023). A more specialized
tokenizer has better fertility on our training data, allowing
us to train on a greater total number of words (although
not tokens) for the same compute and offers a semantically
(more) sensible tokenization of text. Swapping instead of
extending the tokenizer, resulting in smaller embedding ma-
trices, further boosts training efficiency due to the faster
unembedding matrix multiplication and softmax operations
and a smaller memory footprint.

We summarize our results as follows:

• We recommend pure bfloat16 training with small
caveats (see Section 4.1) for its large training efficiency
gains, especially in tight academic compute budget
settings with fewer than eight parallel GPUs, chal-
lenging the commonly used mixed-precision bfloat16
paradigm for continued training with extensive analysis
and experiments.

• We find tokenizer swapping performs on par with keep-
ing the original tokenizer even on a small compute
budget, although it does not improve task performance
(see Section 4.2), while yielding more efficient tok-
enization.

• Continued pretraining of Mistral-7B on German de-
creased German task performance, whereas adapting
to Arabic led to significant gains. This demonstrates
that language adaptation is not always beneficial when
the target language is already well-represented (see
Section 4.3).

We further provide an introduction to mixed-precision LLM
training in Section 2. We provide more details on our
experimental setup in Section 3 and present the results
in Section 4. We discuss related work in Section 5 and
the limitations of this study in Section 6. We publish our
code and model checkpoints under https://github.com/
konstantinjdobler/tight-budget-llm-adaptation.

2. Background: Precision Types
One of our main research questions is whether mixed-
precision training is necessary for continued pretraining.

Sign Exponent Mantissa

S E E E E E E E E E M M M M M M Mfloat32

8 bits 23 bits
... M M M

S E E E E E E E E E M M M M M M Mbfloat16

8 bits 7 bits

Figure 1: Illustration of the memory layout of float32 and
bfloat16, based on García-Nava et al. (2022).

In this section, we provide a short introduction to mixed-
precision bfloat16 training. The educated reader is encour-
aged to skip ahead to Section 3.

Nowadays, the most common training setup is bfloat16
mixed-precision training.3 In mixed-precision training, the
forward and backward pass is computed in bfloat16 in-
stead of float32, as this increases computational efficiency.
However, bfloat16 has less precision than float32 due to
its memory layout with fewer mantissa bits (as illustrated in
Figure 1). Hence, a master copy of the model weights and
the optimizer states are stored in float32 and used during
the optimizer step to offset this reduced precision, at the
cost of increased memory usage.

In settings with constrained access to GPUs, such as our
tight academic budget setting, this additional memory cost
can force the use of smaller batch sizes and activation check-
pointing, which result in significantly lower training effi-
ciency. For example, in our experiments with two 80GB
GPUs, pure bfloat16 was 39% faster than mixed-precision
bfloat16 training. With access to only a single 80GB GPU,
mixed precision proved impossible due to out-of-memory
errors. Therefore, we extensively analyze the viability of
pure bfloat16 training for language adaptation in the tight
academic compute budget setting.

The Numerics of bfloat16. Let us take a closer look at
how floating point numbers are encoded. The formula for
the actual value of a floating point number n is:

n = s× 2e−127 + s× 2e−127 × 2−m

where s is the sign (−1 or 1), e is the number encoded by the
exponent bits, and m is the number encoded by the mantissa
bits. An intuitive model of this is that we have base numbers
represented by the first term s× 2e−127 that are powers of
two over the entire representable range of the datatype (e.g.,
2,−2, ... 64,−64, ...) and “fractional” numbers represented
by the second term s × 2e−127 × 2−m that add a fraction
of that power of two until the next power of two is reached.
Note that we always have the same amount of fractions
between any two powers of two. For bfloat16, we always

3Recently, the fp8 type supported by Nvidia H100 GPUs has
also gained popularity, but we leave this for future work. The
problems we illustrate for bfloat16 are expected to be exacerbated
for fp8.
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Figure 2: Histogram of absolute individual parameter
weight values of Mistral-7B, separately highlighting RMS-
Norm and non-RMSNorm weights.

have 128 = 27 fractions, since we have 7 mantissa bits.
Therefore, bfloat16 will have very low precision for very
large numbers. We have to cover the space between 256
and 512 with the same number of fractions as for the space
between 2 and 4. This means that we can only represent 128
floating point numbers between 256 and 512, which only
covers every second integer. All other numbers get rounded
to the nearest representable one. The maximum ϵ so that
x+ ϵ still results in x grows as x grows, or – in other words
– if x is larger, the minimum representable change of x is
also larger.

Large weights lead to problems when training in pure
bfloat16. When we have some small update u that we
want to add/subtract from a weight W , because of the
(im-)precision of bfloat16, this update has no effect when
u < W/128 (128 = 27 for the 7 mantissa bits). This is be-
cause u is not large enough to push W to the next fractional
value that is representable in bfloat16. So how big of a
problem is this in practice? Usually, our network’s weights
are not that big. If an individual parameter’s value is 0.05,
then the smallest possible update that does not disappear
due to bfloat16 numerics is 0.05/128 ≈ 0.00039. As a
side note: the same effect exists for training in float32,
but only when u < W/223 for 23 mantissa bits in float32.
Arguably, this is not a problem in practice.

Case study: Mistral-7B. In Figure 2, we plot the absolute
values of Mistral-7B’s weights. We see that most weight
values are relatively small, which is good, as even very
small update values will not disappear in pure bfloat16
training. However, when considering the average values
of RMSNorm weights and other weights separately, we
observe that the RMSNorm weight values are much larger
than other weights. This means that small updates to their
weights during training in pure bfloat16 are more likely to
disappear. We evaluate and discuss this in Section 4.1.

3. Experimental Setup
We now describe the experimental setup of our main experi-
ments and hindsight study.

Hyperparameters Ours (Main) LeoLM

Training steps 7,680 15,360
Warmup steps 76 153
Batch size 256 512
Context length 4,096 8,192
Total training tokens 8 billion 64 billion
Optimizer AdamW AdamW
Learning rate 4× 10−5 2× 10−5

Learning rate decay Cosine to 2× 10−6 Cosine to 2× 10−6

Adam β (0.9, 0.95) (0.9, 0.95)
Weight decay 0.05 0.05

Table 1: Hyperparameters for our main language adaptation
experiments, with a comparison to the hyperparameters used
by LeoLM (Plüster et al., 2023). The learning rate schedule
is modified in our hindsight study, see Section 3.2.

3.1. Main Experiments

We build on the training recipe from LeoLM, which adapts
Mistral-7B to German via full fine-tuning of all parameters.
We report our hyperparameters in Table 1. In particular,
we use a context length of 4,096 rather than 8,192 tokens
to reduce the required GPU memory, as we cannot shard
the model across a large number of GPUs. Additionally,
we only train for half the number of optimizer steps and
use a total batch size of 256 instead of 512 to fit our tight
academic compute budget setting. These are our main ad-
justments to reduce the amount of total compute necessary
to complete the training. As a result, our training recipe
trains for 8 billion tokens compared to LeoLM’s 64 billion
tokens, which amounts to 12.5%.

The LeoLM recipe is intended to produce a bilingual model
by mixing in English data during continued pretraining and
using a lower learning rate, which has been shown to reduce
catastrophic forgetting but decreases adaptation to the target
domain (Ibrahim et al., 2024). In our work, we instead
choose to focus solely on the target language. This allows us
to use a higher learning rate, which has also been shown to
help adaptation (Ibrahim et al., 2024). After initial probing
experiments4, we double the learning rate to 4× 10−5.

We use the data from the German split of OS-
CAR23.01 (Abadji et al., 2022) and filter out all documents
with quality warnings.5 As noted, we do not mix in addi-
tional English data or code. For tokenizer swapping, we
train a sentencepiece (Kudo & Richardson, 2018) BPE to-
kenizer with byte-fallback on a subset of our training data
with a vocabulary size of 32,768 tokens for optimized Nvidia
Tensor Core usage. Importantly for training sentencepiece

4We observe very large gradient norm spikes early on when
training with 6× 10−5, 2× 10−4, and 3× 10−4.

5We remove samples with any of the following quality warn-
ings: adult, noisy, header, footer, tiny, short_sentences.
The quality warnings are provided by the OSCAR corpus.
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tokenizers on web-crawled data, we use a character cover-
age of slightly less than 100% to prevent very infrequent
characters from being added to the vocabulary (Dobler &
de Melo, 2023).

For downstream task evaluation, we rely on a suite
of German benchmarks by Plüster (2023), which were
also used for LeoLM. We use their fork of the
lm-eval-harness (Gao et al., 2023) to evaluate our check-
points. The individual datasets used are translated ver-
sions of MMLU (Hendrycks et al., 2021), TruthfulQA (Lin
et al., 2021), ARC (Clark et al., 2018a), HellaSwag (Zellers
et al., 2019), as well as PAWS-X (Yang et al., 2019) and
LAMBADA-OpenAI (Paperno et al., 2016; Radford et al.,
2019).

We perform the computation of this work in a real-world
tight academic compute budget setting. We use either two
or four Nvidia A100 80GB, A100 40GB, H100 80GB,
or A6000 48GB GPUs for parallel training with PyTorch
FSDP (Zhao et al., 2023). Depending on the number of
available GPUs and training precision, we adjust efficiency
settings, such as micro-batch size, activation checkpointing,
or different ZeRO (Rajbhandari et al., 2019) stages of Py-
Torch FSDP as needed to fit the available GPU memory. We
use the FlashAttention self-attention and RMSNorm CUDA
kernels (Dao, 2023).

3.2. Hindsight Study

We conduct an additional hindsight study using pure
bfloat16 and tokenizer swapping based on the findings
from our main experiments for further analysis. We addi-
tionally make the following changes to our original training
recipe: (i) We use training data from CulturaX (Nguyen
et al., 2024) instead of OSCAR23.01, as CulturaX has ad-
vanced cleaning and deduplication steps already applied. (ii)
We additionally target Arabic alongside German to evalu-
ate language adaptation when the target language has not
had a significant share during the base model’s pretrain-
ing. (iii) We integrate (continued) training improvements by
using an infinite learning rate schedule following Ibrahim
et al. (2024) and adjusted attention masks to prevent cross-
document attention. We use the same hyperparameters as
the main experiments except for the modified learning rate
schedule, which uses a cosine decay for 60% of steps after
warmup, followed by a phase of a constant learning rate at
1.65× 10−5.

To explicitly study the effects of pure bfloat16 during
the low learning rate annealing phases of a learning rate
schedule, we additionally train a version for both Arabic
and German where we employ mixed-precision bfloat16
just during the annealing phase (the last 14% of training) by
continuing from the pure bfloat16 checkpoint before the
start of the annealing phase. For German, we use the same

Precision GPUs Best Config GPU Hours Speedup

mixed 1 OOM OOM –
pure 1 (1, no, N/A, N/A, paged) 228.3 ∞
mixed 2 (4, yes, full, sync, paged) 317.0 –
pure 2 (1, no, grad_op, no_sync, no_paged) 227.7 39.2%

mixed 4 (8, yes, full, sync, no_paged) 295.7 –
pure 4 (1, no, grad_op, no_sync, no_paged) 225.8 31.0%

mixed 8 (8, yes, full, sync, paged) 298.0 –
pure 8 (1, no, grad_op, no_sync, no_paged) 229.6 29.8%

Table 2: Benchmark of total compute budget expended for
each run configuration in H100 80GB GPU hours. We
searched for the best (micro-batch size, activation
checkpointing, FSDP sharding, gradient syncing,
paged AdamW) tuple for each combination of precision and
number of GPUs. OOM: Out-of-memory. More details are
provided in Appendix E.

tokenizer as in the main experiments. For Arabic, we train a
new tokenizer following the same recipe on a subset of our
Arabic data from CulturaX.

For the Arabic downstream tasks, we evaluate on the
OALL (Elfilali et al., 2024) benchmark suite using
lighteval (Fourrier et al., 2023). The individual bench-
marks are ACVA (Huang et al., 2023), AlGhafa (Al-
mazrouei et al., 2023), and translated Arabic benchmarks
from AlGhafa-T based on: MMLU (Koto et al., 2024;
Hendrycks et al., 2021), EXAMS (Hardalov et al., 2020),
ARC-Challenge (Clark et al., 2018b), ARC-Easy (Clark
et al., 2018b), BOOLQ (Clark et al., 2019), COPA (Roem-
mele et al., 2011), HellaSwag (Zellers et al., 2019), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
RACE (Lai et al., 2017), SciTail (Welbl et al., 2017), TOXI-
GEN (Hartvigsen et al., 2022). We report a macro average
as in OALL (Elfilali et al., 2024) counting the benchmarks
in AlGhafa-T individually. We provide further details in
Appendix D.

4. Results & Analysis
Now we present and discuss the results of our experiments.
We analyze pure vs. mixed-precision bfloat16 in Sec-
tion 4.1, tokenizer swapping in Section 4.2, and the in-
fluence of the target language in Section 4.3.

4.1. Analysis: Pure bfloat16 vs. Mixed Precision

We first investigate whether pure bfloat16 training is a
viable alternative to mixed-precision training for continued
pretraining for language adaptation of LLMs.

Training efficiency gains. First, we establish the training
efficiency gains of pure bfloat16 training over using mixed
precision. Especially in settings with a tight academic com-
pute budget, not having to store the full-precision master
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copy of the model weights required for mixed-precision
training can yield significantly faster training. We com-
pare the training efficiency of pure and mixed-precision
bfloat16 in Table 2. Since our actual training runs used
a mix of different hardware depending on availability, we
run a comparable benchmark inspired by Hagemann et al.
(2023) using Nvidia H100 80GB GPUs. In general, mixed-
precision bfloat16 training requires much more aggres-
sive memory saving techniques to fit Mistral-7B into GPU
memory6, such as using a micro-batch size of 1, full FSDP
sharding (ZeRO Stage 3), or activation checkpointing.

For a single 80GB GPU, mixed-precision bfloat16 train-
ing was impossible even when applying all memory saving
techniques due to running out-of-memory (OOM). When
using only two parallel 80GB GPUs, it became necessary to
use a paged AdamW implementation (Dettmers et al., 2023)
or to sync gradients at every step during gradient accumula-
tion7. Otherwise, mixed-precision bfloat16 training was
impossible due to OOM. In this setting using two 80GB
GPUs, pure bfloat16 was 39.2% faster than using mixed
precision. In our setting with four parallel 80GB GPUs,
pure bfloat16 was 31.0% faster than using mixed preci-
sion. We note that a large part of this speedup is mainly
enabled by not having to apply activation checkpointing to
fit the model during training and delaying the syncing of
gradients during gradient accumulation. When comparing
pure bfloat16 using the same training configuration as the
most efficient mixed-precision run, pure bfloat16 was only
11.4% faster.8

We also benchmark using eight parallel GPUs for refer-
ence, although this is arguably stretching a tight academic
compute budget. Here, pure bfloat16 is also 29.8% faster
than mixed-precision training. Although we do not have
access to sufficient compute resources to benchmark this in
our setup, with sufficiently many parallel devices, mixed-
precision training does not require activation checkpointing
to efficiently train large-scale models, eliminating one of the
main benefits of pure bfloat16. This highlights the benefits
of pure bfloat16 especially in settings with limited total
GPU memory due to a lower number of parallel devices. In
such settings, mixed-precision training is either impossible
or requires computationally expensive memory-saving tech-
niques, which pure bfloat16 does not require to the same
extent.

6By this, we refer to all states necessary during training: model
weights, gradients, optimizer states, and activations

7Using torch_model.no_sync() during gradient accumula-
tion is a common optimization to reduce communication overhead
but results in larger maximum memory usage when coupled with
FSDP since the gradients will not be sharded for that period.

8See the full benchmark results in Appendix E.

NLL at % of training

bfloat16 Tokenizer 0% 10% 30% 50% 70 % 90% 100%

mixed German 5.84 1.96 1.76 1.67 1.60 1.56 1.55
pure German 5.84 1.99 1.76 1.67 1.61 1.59 1.59

mixed original 2.56 1.96 1.79 1.70 1.62 1.58 1.57
pure original 2.56 1.98 1.79 1.69 1.62 1.60 1.60

Table 3: Word-normalized negative log-likelihood (NLL)
of a held-out test set throughout continued pretraining of
Mistral-7B on German text.

bfloat16 Layer type Avg. parameter change

mixed RMSNorm 0.0048
pure RMSNorm 0.000004

mixed not RMSNorm 0.0015
pure not RMSNorm 0.0012

Table 4: Average change of parameter values at the end of
training compared to their starting values depending on layer
type (RMSNorm or others) and pure or mixed-precision
bfloat16 training.

Loss and downstream task results. Comparing the loss
over the course of continued pretraining of pure bfloat16
and mixed-precision bfloat16 training in Table 3, we see
that pure and mixed-precision bfloat16 training are very
close. However, at the very beginning (after 10% of training
steps) and towards the end (from 90% of training steps),
we find that mixed precision achieves a slightly lower loss.
This is very likely an artifact of our cosine training sched-
ule with linear warmup: at the very beginning and end, the
learning rate is very small and results in small weight up-
dates, which are problematic in pure bfloat16 training as
we will discuss below. We also compare the downstream
task performance of pure bfloat16 and mixed-precision
bfloat16 training in Table 5. Interestingly, pure bfloat16
outperforms mixed-precision bfloat16 in our downstream
task evaluations both in German and English. Note that
pure bfloat16 training effectively acts as a regularizer that
zeroes out updates in the optimizer step that are smaller than
some ϵ dependent on the magnitude of the to-be-updated
weight according to the formula outlined in Section 2. We
analyze this below.

The effects of pure bfloat16 numerics. As shown in
Figure 2, the parameter values of RMSNorm layers in
Mistral-7B are particularly large, which results in a larger ϵ
below which updates are squashed to zero in pure bfloat16
training. We further investigate this in Table 4, reporting
the average change in parameter values at the end of train-
ing compared to their starting value for pure and mixed-
precision bfloat16 training. We report the RMSNorm lay-
ers and other layers separately. As expected according to
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German translations (Plüster, 2023) German test splits

Tokenizer bfloat16 MMLU HellaSwag TruthfulQA ARC LAMBADA PAWS-X Avg.

Main experiments (see Section 3.1)

German mixed 33.6 60.0 37.5 43.0 40.3 62.3 46.1
German pure 35.9 59.7 39.4 44.1 40.6 63.6 47.2

original mixed 32.6 59.5 43.0 40.8 38.8 63.5 46.4
original pure 37.2 59.4 39.2 41.6 39.3 63.9 46.8

Improved hindsight runs (see Section 3.2)

German pure 43.5 63.4 39.8 47.9 37.9 62.5 49.1
German pure++† 43.6 63.5 39.5 46.7 37.9 62.5 48.9

Table 5: Effectiveness of models based on Mistral-7B on German downstream tasks. The best result in each section is
bolded and the overall best result of the main experiments is additionally underlined. †: for pure++ bfloat16, mixed
precision was used just for the final annealing phase of the learning rate schedule.

bfloat16 numerics, the RMSNorm layers receive almost
no updates in pure bfloat16 training due to their larger
weight values. We see that pure bfloat16 also reduces the
average parameter change for other layers, but this effect is
much less pronounced.

It is not clear that the regularizing effect of pure bfloat16
training is a desired behavior, even though it results in better
downstream task performance in our experiments. However,
given the large training efficiency boost possible through
pure bfloat16 training when on a tight academic com-
pute budget, we believe that this potentially undesired side-
effect is a worthwhile tradeoff to consider. We stress that
we perform a data-matched comparison between pure and
mixed-precision bfloat16. A compute-matched compari-
son, where pure bfloat16 will train for significantly more
steps, would be even more favorable for pure bfloat16
training. Additionally, we can enable mixed precision or
float32 just for the parameters with large values (in the
case of Mistral-7B these are the RMSNorms) to offset the
majority of bfloat16 regularization impact.

In terms of loss, we do observe slightly better performance
of mixed precision at the very end and beginning of training
due to the linear warmup and cosine decay of the learning
rate. As the final annealing phase has been shown to be
important for model performance (Ibrahim et al., 2024), we
further study this in our hindsight runs, which are trained
in pure bfloat16. We employ an “infinite” learning rate
schedule (Ibrahim et al., 2024; Zhai et al., 2022) with a
prolonged constant learning rate before the final annealing
down to a smaller value. We use the same checkpoint before
the beginning of the annealing phase and continue training
with either pure or mixed-precision bfloat16. Using mixed
precision during the annealing phase is denoted as pure++
in Table 5 and Table 7. Interestingly, we do not see any

conclusive advantage of using mixed precision during the
annealing phase. We conclude that fully pure bfloat16
continued training is indeed viable even during the low
learning rate annealing phases of a learning rate schedule.

4.2. Analysis: Tokenizer Swapping

The next research question we investigate in this work are
the benefits of tokenizer swapping for language adaption of
pretrained LLMs. This question deserves special attention
in the tight academic budget setting, as there is less compute
spent on re-learning the new embeddings.

On comparing loss between different tokenizers. Com-
paring the loss (negative log-likelihood) across different
tokenizers is not straightforward. Different tokenizers pro-
duce different numbers of tokens for the same text. The
conventionally reported loss is the summed negative log-
likelihood normalized by the number of tokens – a direct
advantage for worse tokenizers that produce more tokens
for the same text.

Instead, we choose to normalize by a tokenizer-independent
quantity: the number of (white-space split) words. This
choice is arbitrary in some respects as it is just a constant
for all methods. Instead, we could also normalize by the
number of characters or bytes (see Gao, 2021; Forsythe,
2023; Gao et al., 2020). Choosing words as the normalizing
factor has the advantage of yielding a similar value range
to the familiar token normalization. The word-normalized
negative log-likelihood is computed over the same chunks
of text for each model. We report the token-normalized
log-likelihood in Appendix C.

Embedding re-initialization. When swapping tokenizers
for language adaptation, it has been shown that a good re-
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initialization of the new embedding matrix is crucial (Minix-
hofer et al., 2022; Ostendorff & Rehm, 2023; Dobler &
de Melo, 2023; Downey et al., 2023). We evaluate var-
ious embedding initialization methods and find that FO-
CUS (Dobler & de Melo, 2023) performs best for German.
For Arabic in our hindsight study, all methods showed sub-
optimal performance, so we use FOCUS coupled with an
additional short gradient descent training phase of the em-
beddings with the rest of the model frozen for 100 steps
(roughly 1.5% of total training steps). Full details are pro-
vided in Appendix B.

Results of tokenizer swapping. In Table 3, we report
the word-normalized negative log-likelihood of a held-out
test set throughout training. We see that directly after re-
initializing the new embeddings, tokenizer swapping per-
forms worse than keeping the original tokenizer. This is
expected, as no gradient descent training has yet been per-
formed on the newly initialized embedding matrix. Tok-
enizer swapping quickly catches up at the next evaluation
interval and obtains a slight advantage during further train-
ing. The initial gap could be improved by a short and com-
putationally cheap initial training phase during which only
the new embeddings are trained (de Vries & Nissim, 2021).

We report downstream task results on a suite of German
benchmarks in Table 5. We do not see a clear trend of better
performance with or without tokenizer swapping. Note that
for inference on downstream tasks in the target language,
however, tokenizer swapping will be computationally more
efficient, as the new tokenizer will produce fewer tokens
for the same text (Yamaguchi et al., 2024).9 In Table 6, we
also report the average performance on English downstream
tasks. As expected, we find that replacing the original tok-
enizer with an exclusively German tokenizer leads to dimin-
ished results on English. Thus, whenever performance in
the source language is important, the new tokenizer should
perhaps retain a larger share of the original tokens.

The base model’s tokenizer already contains some German
tokens10, as well as many English tokens also used in Ger-
man. Our experiments hence provide a rough lower bound
on the effectiveness of tokenizer swapping. We expect much
larger benefits for unseen and low-resource languages. Even
though downstream tasks on German do not improve signif-
icantly with a specialized tokenizer, our results demonstrate
the viability of re-learning an embedding matrix after tok-
enizer swapping even when on a tight academic compute
budget. In contrast, Zhao et al. (2024b) find that vocabulary
extension (instead of full tokenizer swapping) actually un-

9This can lead to significant computational savings: In our
evaluation on Arabic, Mistral-7B took over 5 times as long as a
model with our custom Arabic tokenizer due to poorer tokenizer
fertility.

10Such as _Jahrhunderts or meisterschaft.

Compute Budget Tokenizer German Avg. English Avg.

small (ours) + mixed bfloat16 German 46.1 44.6
small (ours) + pure bfloat16 German 47.2 44.9
small (ours) + mixed bfloat16 original 46.4 46.6
small (ours) + pure bfloat16 original 46.8 47.1

8x larger (LeoLM) original 51.8 56.9
no further training (Mistral-7B) original 51.2 62.4

Table 6: Effectiveness of models based on Mistral-7B on
benchmark suites in English and German. The English
benchmarks used are MMLU, HellaSwag, TruthfulQA, and
ARC.

ACVA AlGhafa MMLU-AR AlGhafa-T Macro Avg.

Arabic Mistral-7B (w/ tokenizer swapping & pure bfloat16, see Section 3.2)

pure 73.2 62.5 37.9 52.4 53.6
pure++† 70.7 63.3 37.7 52.8 53.8

Baselines

Mistral-7B 63.0 57.7 33.9 46.3 47.4
AceGPT-7B 71.0 52.6 27.0 44.6 45.8
Llama 2-7B 66.3 45.6 27.4 41.3 42.4

Table 7: Results on Arabic downstream task suites. The av-
erage is a macro-average that includes the individual bench-
marks in AlGhafa-T. †: For pure++ bfloat16, mixed pre-
cision was used just for the final annealing phase of the
learning rate schedule.

derperforms compared to keeping the original vocabulary
for tight compute budget continued pretraining on Chinese.
However, we note that our experiments for tokenizer swap-
ping are compute-matched but not data-matched: since the
new tokenizer encodes the training data more efficiently,
more total text was seen during continued pretraining for the
same number of tokens. Our experiments do not suggest that
this increased efficiency translates to better performance.

4.3. Analysis: Target Language

From the results in Table 6, we have to conclude that the
resulting models from our main experiments do not show
good downstream task performance. Strikingly, the base
Mistral-7B model achieves better downstream task results
than our adapted German variants, even on German bench-
marks. Mistral-7B has already seen German during pretrain-
ing and its tokenizer contains German tokens, which allows
us to roughly lower bound language adaptation effective-
ness, but for most other languages it would be a pessimistic
estimate. Therefore, we further adapt Mistral-7B to Arabic
alongside German in an additional hindsight study. Also,
the models trained in our hindsight study were trained using
higher quality data from CulturaX rather than OSCAR23.01
and used several other improved training techniques (see
Section 3.2).
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German downstream results. The German hindsight
study model using the custom German tokenizer has an
average improved downstream task performance of two
percentage points over the best model from the main exper-
iments using the exact same computational budget. This
demonstrates the importance of data quality and our training
improvements such as preventing cross-document attention
contamination via an adjusted attention mask. However, the
model still performs worse than the base Mistral-7B and its
adapted German LeoLM version on German downstream
tasks.

Arabic downstream results. In contrast, the Arabic hind-
sight study models perform significantly better than the base
Mistral-7B model on Arabic benchmarks (reported in Ta-
ble 7). Interestingly, even though the goal of our study is
analysis rather than achieving state-of-the-art, our Arabic
models also outperforms AceGPT-7B (Huang et al., 2023),
which is a continued pretraining of Llama 2 on Arabic for
3.75× more tokens than our models but without tokenizer
swapping. Note that the training recipes for our German
and Arabic hindsight study models were exactly the same
– highlighting that language adaptation is especially useful
for underrepresented languages.

When is language adaptation on a tight academic com-
pute budget viable? Although the training data of Mistral-
7B is not open, due to its multilingual performance and the
existence of German tokens in its tokenizer, we can conclude
that it was pretrained multilingually and that German had
a significant share. Intuitively, specializing such a model
on a single language might boost performance, e.g., by
removing curse of multilinguality (Conneau et al., 2020)
capacity bottlenecks. Our experiments with German as a tar-
get language show that continued pretraining to focus model
capacity just on the target language is not always beneficial.
This is likely because German was already well-represented.
Recent language adaptation attempts for lesser-resourced
or less well-represented languages than German, e.g., Pol-
ish (Ruciński, 2024) or Chinese (Zhao et al., 2024b), do
report improvements in the target language compared to
the base model with similar computational budgets. Le-
oLM used eight times as much compute as our study and
obtains a minor increase in German task performance of 0.6
percentage points.

Our results on Arabic highlight that target languages that
were not dominant or unseen during pretraining can indeed
benefit from language adaptation on a tight academic com-
pute budget. In our setup, we focus only on monolingual
performance in the target language and do not include En-
glish or code in the training data. Recent work has shown
that the inclusion of such data can boost performance even in
the target language (Muennighoff et al., 2023; Csaki et al.,

2023). However, it is not clear if such benefits will also
materialize on a tight academic compute budget.

5. Related Work
Language adaptation of pretrained LLMs. Adapting
strong pretrained LLMs such as Llama (Touvron et al.,
2023a;b) or Mistral-7B (Jiang et al., 2023b) to other lan-
guages has recently had a surge in popularity (e.g., Plüster
et al., 2023; Pires et al., 2023; Cui et al., 2023; Nguyen
et al., 2023; Alves et al., 2024). However, these studies
use significantly more compute than our setting and many
either do not specialize the tokenizer or do not use strong
embedding initialization methods. Csaki et al. (2024) adapt
pretrained LLMs to a variety of languages and find that
specializing tokenizers through vocabulary expansion im-
proves fertility but not downstream task results. Recent
work has shown that mixing in English during continued
pretraining helps downstream task performance in the target
languages (Csaki et al., 2023; Zhao et al., 2024b), whereas
Ibrahim et al. (2024) find that skewing the data mix towards
the target language helps adaptation at the cost of more for-
getting. Muennighoff et al. (2023) show in data-constrained
experiments on English that individual samples can be re-
peated up to four times and mixing in code data can improve
downstream task performance.

Efficient low-precision training. The necessity of
bfloat16 mixed precision requiring the storage of float32
optimizer states and a master copy of the model weights (Mi-
cikevicius et al., 2017; Kalamkar et al., 2019) has been
studied in the literature. Rae et al. (2021) observed de-
graded performance and stale layers for pure bfloat16
training of Transformer language models from scratch but
achieved better results when applying stochastic rounding to
the weight updates and casting optimizer states to float32.
Lewandowski & Kosson (2023) propose a variant of mixed
precision bfloat16 where – instead of keeping a float32
master copy of the weights – only a difference to a float16
representation is stored alongside an optimization procedure
optimized for memory pressure. Motivated by LoRA (Hu
et al., 2021), Zhao et al. (2024a) perform the weight update
in a low-rank approximation space, significantly reducing
memory cost. Zamirai et al. (2020) train Transformer mod-
els from scratch in pure bfloat16 and find that stochastic
rounding of the weight updates was necessary to recover
the performance of using float32 optimizer states and mas-
ter copy of the weights. Despite this, the most popular
choice for training language models in many popular li-
braries remains mixed-precision bfloat16 (Lewandowski
& Kosson, 2023). We show that for continued pretrain-
ing, pure bfloat16 training is viable without any further
modifications such as stochastic rounding.

8
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6. Conclusion
Based on our results, we draw the following final conclu-
sions.

Pure bfloat16. Training in pure bfloat16 (rather than
using mixed precision) is viable for continued pretraining
and enables significantly faster training when only a few
parallel devices are available. Pure bfloat16 training does
come with certain caveats: We find that for Mistral-7B,
the RMSNorm weights (which are larger than most other
weights) are not updated in pure bfloat16 training due to
the numerics of bfloat16. However, this has no clear draw-
backs in terms of loss and downstream task performance.

Tokenizer swapping. Tokenizer swapping coupled with
a good embedding initialization is viable and performs at
least on par with keeping the original vocabulary but did not
significantly improve downstream task results for German.
We note that Mistral-7B’s tokenizer already contains some
German tokens. For Arabic, which was an unseen script
in the original tokenizer, our adapted model with tokenizer
swapping fares significantly better than the base model with-
out language adaptation. Our results demonstrate that
re-learning the embeddings for a new tokenizer is viable
even when on a tight compute budget.

Tight compute budgets for language adaptation. Adapt-
ing Mistral-7B to German on a tight compute budget per-
formed worse than the base Mistral-7B for German down-
stream tasks, irrespective of tokenizer swapping and train-
ing precision. Adapting to Arabic however significantly
increased Arabic downstream task performance. This high-
lights that language adaptation is not always beneficial
but can be, especially if the target language was not well-
represented. We believe that our findings regarding pure
bfloat16 training and tokenizer swapping can help inform
future language adaptation efforts towards more efficiency.

Limitations
We limit our study to a single LLM (Mistral-7B). This is
motivated by both the checkpoint’s popularity and the pop-
ularity of its parameter-size class (seven billion parame-
ters). However, it is not certain that model-specific findings,
such as RMSNorm updates being flushed to zero in pure
bfloat16 training, will transfer to other models. Our gen-
eral findings on weight updates in pure bfloat16 to large
values are expected to generalize. Also, while we add Ara-
bic as a second language in our hindsight study, we consider
only German and Arabic in our experiments. Although less
significant for our findings on pure bfloat16, the efficacy
of tokenizer swapping will likely vary depending on the
target language.

Additionally, a large part of the training efficiency gains
of pure bfloat16 training compared to mixed-precision
training materialize mainly when the training is constrained
by GPU memory. For models smaller than Mistral-7B that
might not require sharded training, these benefits will be
less pronounced.

We note that we analyze the viability of pure bfloat16 only
for continued pretraining, where the weights effectively start
with an initialization (reasonably) close to their optimized
value. We cannot draw the same conclusion for pretraining
from scratch, as the training dynamics in the initial phase of
pretraining from randomly initialized weights might have a
much larger dependence on using high-precision optimizer
states and a master copy of the model weights to reduce
numerical errors.

We consider only full-parameter training and do not evaluate
the use of techniques such as LoRA (Hu et al., 2021) due to
the low-rank limitation they impose on the weight update.
Whether LoRA(-like) methods are sufficient for language
adaptation should be evaluated seperately.
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Embedding initialization method Loss on test set

FOCUS (Dobler & de Melo, 2023) 5.8
WECHSEL (Minixhofer et al., 2022) 8.7
Heuristics (Downey et al., 2023) 7.3
N (orig_embs_mean, orig_embs_std) 11.9
Random-Assign 19.3
N (0, 0.02) 26.4

Table 8: Effectiveness of different embedding initializa-
tion methods directly after initialization (no training per-
formed), measured by the cross-entropy loss on a test set.
Since we are comparing across the same tokenizer, word-
normalization is not necessary.

A. Further Training Details
We publish our training code at https://github.com/
konstantinjdobler/tight-budget-llm-adaptation.
We use PyTorch FSDP for sharded training, and we rely
on the lightning package for the implementation of
distributed and mixed-precision training. We employ
document packing and concatenate samples separated
by an [EOS] token until the block size is filled. In our
hindsight runs, we instead prepend a [BOS] token and
adjust the attention mask so that cross-document attention
is prevented. We enable TF32 computation for float32 via
torch.set_float32_matmul_precision("high").

For pure bfloat16 training, the Mistral-7B implementation
from HuggingFace implements some small parts of the for-
ward pass in float32, which we do not modify. Specifically,
these are the input variance calculations in the RMSNorm
layers and the final softmax in the language modeling head.
All weights and optimizer states are still in bfloat16 for
pure bfloat16.

For the “infinite” learning rate schedules in our hindsight
study, we follow Ibrahim et al. (2024) and use a 1% warmup
up to a maximum learning rate of 3× 10−5, then a cosine
decay for 60% of steps to 1.65× 10−5, followed by a con-
stant learning rate for 25% of steps, and finally annealing
down to 2× 10−6 for the last 14% of steps.

We use Docker images to conduct our training in a fully-
reproducible environment, which are published alongside
lockfiles with the pinned package versions that we used.

B. Embedding Re-initialization
When swapping tokenizers for language adaptation, it has
been shown that harnessing the compute spent on the
original embedding matrix via a good re-initialization of
the new embedding matrix is crucial (Minixhofer et al.,
2022; Ostendorff & Rehm, 2023; Dobler & de Melo,
2023; Downey et al., 2023). We evaluate FOCUS (Dobler

& de Melo, 2023) and WECHSEL (Minixhofer et al.,
2022), two initialization methods based on mappings to
the old embedding space. Furthermore, we evaluate a
heuristics-based approach (Downey et al., 2023), initializ-
ing from N (original_embs_mean, original_embs_std) or
N (0, 0.02), and simply copying the old embeddings, effec-
tively randomly assigning old embeddings to new tokens.11

We evaluate all the mentioned methods directly after initial-
ization without any further training and report the results
in Table 8. We find that out of these methods, FOCUS pro-
vided the best results directly after initialization. Therefore,
we utilize FOCUS for all experiments with tokenizer swap-
ping. Note that these results might differ for different target
languages and the gap between these methods is reduced by
continued pretraining.

For Arabic in our hindsight study, all methods showed sub-
optimal performance, so we use FOCUS coupled with an
additional short gradient descent training phase of the em-
beddings with the rest of the model frozen for 100 steps
(roughly 1.5% of total training steps). Specifically, FO-
CUS likely underperformed because we deliberately did not
add English tokens to the new tokenizer, leading to a very
small – and “low-quality” overlap with the original vocab-
ulary, which FOCUS relies on. This could be ameliorated
by including more tokens from the original vocabulary or
employing a bilingual dictionary.

Very recently – after our experiments had finished – Minix-
hofer et al. (2024) proposed ZeTT, which utilizes a trained
hypernetwork to predict embeddings for a new tokenizer.
We briefly discuss this method since it yielded very promis-
ing initial results. We found that ZeTT achieves a lower
initial loss than FOCUS for German and Arabic. For Arabic
specifically, it is the only method that performed signifi-
cantly better than random. ZeTT requires a hypernetwork
trained specifically for the base model, which is not compu-
tationally sensible as a one-time effort for the embedding
initialization. However, the authors do provide such a hyper-
network for Mistral-7B and select other popular base models.
The computational cost of predicting the new embeddings
using the hypernetwork is negligible. If such a hypernet-
work is available, using ZeTT could further improve the
performance of tokenizer swapping over our current results
using FOCUS.

C. Token-normalized Loss
Alongside the word-normalized negative log-likelihood re-
ported in Table 3 in the main body of the paper, we report
the token-normalized negative log-likelihood (the conven-
tional cross-entropy loss) in Figure 3. Note that this is not a

11Since our new tokenizer has a larger vocabulary than the
original one, we initialize the remaining tokens from N (0, 0.02).
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Figure 3: Token-normalized negative log-likelihood (con-
ventional cross-entropy loss) of a held-out test set through-
out continued pretraining of Mistral-7B on German text.
We compare pure and mixed-precision bfloat16 training.
Additionally, we compare swapping the original tokenizer
of Mistral-7B with a specialized German tokenizer.

fair comparison and we only provide this for completeness,
as Mistral-7B’s original tokenizer will produce more tokens
for the same text, which directly results in a lower loss as
the loss is divided by the number of tokens.

D. Full Downstream Task Results
We report the full downstream task results for all models on
German (in Table 9) and on English (in Table 10).

For German benchmark evaluation, we use the benchmark
suite provided by Plüster (2023), which was also used for
LeoLM. We use their fork of the lm-eval-harness (Gao
et al., 2023) to evaluate our checkpoints. The individual
datasets used are translated versions of MMLU (Hendrycks
et al., 2021), TruthfulQA (Lin et al., 2021), ARC (Clark
et al., 2018a), HellaSwag (Zellers et al., 2019), as well
as PAWS-X (Yang et al., 2019) and LAMBADA-OpenAI
(Paperno et al., 2016; Radford et al., 2019).

For the Arabic benchmarks based on OALL (Elfilali et al.,
2024), we used ACVA (Huang et al., 2023), AlGhafa (Al-
mazrouei et al., 2023), and the following translated
benchmarks from AlGhafa-T: MMLU (Koto et al., 2024;
Hendrycks et al., 2021), EXAMS (Hardalov et al., 2020),
ARC-Challenge (Clark et al., 2018b), ARC-Easy (Clark
et al., 2018b), BOOLQ (Clark et al., 2019), COPA (Roem-
mele et al., 2011), HellaSwag (Zellers et al., 2019), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
RACE (Lai et al., 2017), SciTail (Welbl et al., 2017), TOX-
IGEN (Hartvigsen et al., 2022). We report the full results
of Arabic models for all benchmarks in Table 11. The Ara-
bic benchmarks were evaluated using lighteval (Fourrier
et al., 2023) in a 5-shot setting.

E. Performance Benchmarking
We ran a performance benchmark inspired by Hagemann
et al. (2023) to determine the best possible combination
of micro-batch size, activation checkpointing, FSDP ZeRO
sharding, syncing during gradient accumulation (not sync-
ing is faster but incurs a memory overhead), and utiliz-
ing a paged variant of AdamW for each combination of
number of GPUs and precision type. We evaluate the
full Cartesian product of micro-batch sizes {1,2,4,8}, ac-
tivation checkpointing {yes, no}, FSDP ZeRO shard-
ing {full, grad_op}, gradient accumulation syncing
{sync, no_sync}, and AdamW implementation {paged,
no_paged}. For training on a single GPU, mixed-precision
training is impossible even with all memory saving tech-
niques maximized. For pure bfloat16 on a single GPU,
we instead manually search for the best configuration. We
do not consider FSDP CPU offloading, as this did not yield
acceptable compute efficiency. We report the full results
of this benchmark in Table 12. For the purposes of this
paper, we actually run the full benchmark to compare pure
and mixed-precision bfloat16 using the same configura-
tion, even if a better configuration is also available for pure
bfloat16. We do make one small optimization and exclude
trials where a more memory-friendly configuration previ-
ously went OOM. To save compute, one could additionally
prune benchmark trials through educated guesses of sub-
optimal configurations (e.g., when using eight devices, we
do not need to benchmark heavy memory optimizations)
or employ a binary instead of linear search. For all bench-
marked configurations, we run 11 steps and exclude the first
one from the reported average since it is disproportionately
affected by initial one-time costs. Due to the way we extract
step timings from our original training script, timings are
rounded to the nearest second for step times over a minute
instead of considering two decimal places.
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MMLU HellaSwag TruthfulQA ARC LAMBADA PAWS-X Avg.

German tokenizer + mixed-precision bfloat16 33.6 60.0 37.5 43.0 40.3 62.3 46.1
German tokenizer + pure bfloat16 35.9 59.7 39.4 44.1 40.6 63.6 47.2
original tokenizer + mixed-precision bfloat16 32.6 59.5 43.0 40.8 38.8 63.5 46.4
original tokenizer + pure bfloat16 37.2 59.4 39.2 41.6 39.3 63.9 46.8

Mistral-7B (original) 52.2 58.7 48.5 47.2 40.1 60.3 51.2
LeoLM 48.0 66.3 40.8 48.5 43.6 63.7 51.8

Table 9: Results on German downstream tasks.

MMLU HellaSwag TruthfulQA ARC Avg.

German tokenizer + mixed-precision bfloat16 33.3 65.5 39.3 40.4 44.6
German tokenizer + pure bfloat16 32.8 66.1 40.4 40.4 44.9
original tokenizer + mixed-precision bfloat16 34.5 67.6 43.8 40.6 46.6
original tokenizer + pure bfloat16 36.8 68.7 39.5 43.4 47.1

Mistral-7B (original) 63.5 83.3 42.6 60.3 62.4
LeoLM 55.1 77.8 42.9 51.9 56.9

Table 10: Results on English downstream tasks.

ACVA AlGhafa MMLU-AR openbook-qa-ext-ar race-ar arabic-exams hellaswag-okapi-ar piqa-ar arc-easy-ar boolq-ar arc-challenge-okapi-ar xstory-cloze copa-ext-ar sciq-ar toxigen-ar Avg.

Arabic Mistral-7B (w/ tokenizer swapping & pure bfloat16, see Section 3.2)

Arabic pure 73.2 62.5 37.9 53.7 44.2 36.7 26.0 57.8 62.7 74.3 49.7 66.2 62.2 66.7 42.2 54.4
Arabic pure++ 70.7 63.3 37.7 54.3 44.3 37.1 25.9 58.5 62.3 75.4 49.5 66.6 64.4 56.7 52.5 54.6

Baselines

Mistral-7B 63.0 57.7 33.9 41.4 39.1 31.7 25.7 57.0 44.8 64.7 36.3 52.3 57.8 72.4 38.7 47.8
AceGPT-7B 71.0 52.6 27.0 39.8 30.7 25.9 26.3 53.0 47.0 65.4 35.8 62.9 60.0 64.7 41.7 46.9
Llama 2-7B 66.3 45.6 27.4 33.3 28.9 24.8 25.0 51.3 27.8 65.3 25.9 50.2 56.7 58.7 56.7 42.9

Table 11: Results on Arabic downstream tasks.
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Table 12: Performance benchmarking results grouped by (precision, # GPUs), sorted by Total H100 80GB GPU Hours.
We abbreviate mb := micro-batch size, ckpt := activation checkpointing, and sharding := FSDP ZeRO stage
sharding. FSDP grad_op shards only gradients and optimizer states, whereas full additionally shards the model weights.

Precision # GPUs (mb, ckpt, sharding) Max. CUDA RAM Step time Est. total GPU Hours

mixed-precision bfloat16 1 OOM OOM N/A N/A

pure bfloat16 1 (1, no, N/A, N/A, paged) 55.85 GB 107s 228.27 hours

mixed-precision bfloat16 2 (4, yes, full, sync, paged) 48.96 GB 74.30s ± 0.90s 317.01 hours
mixed-precision bfloat16 2 (4, yes, full, no_sync, paged) 63.46 GB 75.60s ± 1.50s 322.56 hours
mixed-precision bfloat16 2 (4, yes, grad_op, sync, paged) 75.13 GB 77.60s ± 0.92s 331.09 hours
mixed-precision bfloat16 2 (2, yes, grad_op, sync, paged) 67.41 GB 81.70s ± 0.46s 348.59 hours
mixed-precision bfloat16 2 (2, yes, full, sync, no_paged) 74.16 GB 81.90s ± 0.30s 349.44 hours
mixed-precision bfloat16 2 (2, yes, full, sync, paged) 41.23 GB 83.60s ± 1.80s 356.69 hours
mixed-precision bfloat16 2 (2, yes, full, no_sync, paged) 55.73 GB 84.00s ± 0.00s 358.40 hours
mixed-precision bfloat16 2 (1, yes, full, no_sync, paged) 51.88 GB 94.10s ± 0.30s 401.49 hours
mixed-precision bfloat16 2 (1, yes, grad_op, sync, paged) 63.55 GB 96.10s ± 0.30s 410.03 hours
mixed-precision bfloat16 2 (1, yes, full, sync, no_paged) 73.62 GB 97.40s ± 0.49s 415.57 hours
mixed-precision bfloat16 2 (1, yes, full, sync, paged) 37.38 GB 98.90s ± 0.70s 421.97 hours
mixed-precision bfloat16 2 (1, no, full, sync, paged) 78.11 GB 120.90s ± 5.63s 515.84 hours
mixed-precision bfloat16 2 (8, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, yes, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, yes, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (1, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 2 (4, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (2, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 2 (8, no, full, sync, no_paged) OOM N/A N/A

pure bfloat16 2 (1, no, grad_op, no_sync, no_paged) 77.61 GB 53.36s ± 0.13s 227.67 hours
pure bfloat16 2 (1, no, grad_op, no_sync, paged) 63.12 GB 54.26s ± 0.45s 231.53 hours
pure bfloat16 2 (2, no, full, sync, paged) 68.59 GB 54.91s ± 0.25s 234.29 hours
pure bfloat16 2 (1, no, full, no_sync, no_paged) 64.31 GB 57.84s ± 0.23s 246.80 hours
pure bfloat16 2 (1, no, grad_op, sync, no_paged) 70.36 GB 58.18s ± 0.22s 248.25 hours
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Precision # GPUs (mb, ckpt, sharding) Max. CUDA RAM Step time Total GPU Hours

pure bfloat16 2 (1, no, full, no_sync, paged) 49.81 GB 59.56s ± 0.84s 254.14 hours
pure bfloat16 2 (1, no, full, sync, paged) 42.56 GB 59.58s ± 0.25s 254.23 hours
pure bfloat16 2 (1, no, full, sync, no_paged) 57.06 GB 59.62s ± 0.16s 254.37 hours
pure bfloat16 2 (8, yes, grad_op, no_sync, no_paged) 72.7 GB 60.00s ± 0.00s 256.00 hours
pure bfloat16 2 (1, no, grad_op, sync, paged) 55.87 GB 60.09s ± 0.65s 256.38 hours
pure bfloat16 2 (4, yes, grad_op, no_sync, no_paged) 62.21 GB 61.00s ± 0.00s 260.27 hours
pure bfloat16 2 (2, no, full, no_sync, paged) 75.84 GB 61.00s ± 0.45s 260.27 hours
pure bfloat16 2 (8, yes, grad_op, sync, no_paged) 65.45 GB 61.10s ± 0.30s 260.69 hours
pure bfloat16 2 (8, yes, grad_op, no_sync, paged) 58.21 GB 61.10s ± 0.30s 260.69 hours
pure bfloat16 2 (8, yes, full, no_sync, no_paged) 59.61 GB 61.10s ± 0.30s 260.69 hours
pure bfloat16 2 (8, yes, full, sync, no_paged) 52.37 GB 61.50s ± 0.50s 262.40 hours
pure bfloat16 2 (8, yes, full, sync, paged) 37.87 GB 61.60s ± 0.49s 262.83 hours
pure bfloat16 2 (4, yes, grad_op, no_sync, paged) 47.72 GB 62.30s ± 0.64s 265.81 hours
pure bfloat16 2 (4, yes, grad_op, sync, no_paged) 54.97 GB 63.00s ± 0.00s 268.80 hours
pure bfloat16 2 (8, yes, grad_op, sync, paged) 50.96 GB 63.00s ± 0.77s 268.80 hours
pure bfloat16 2 (2, yes, grad_op, no_sync, no_paged) 56.97 GB 63.10s ± 0.30s 269.23 hours
pure bfloat16 2 (8, yes, full, no_sync, paged) 45.12 GB 63.10s ± 0.70s 269.23 hours
pure bfloat16 2 (4, yes, full, no_sync, no_paged) 49.13 GB 63.30s ± 0.46s 270.08 hours
pure bfloat16 2 (4, yes, full, sync, paged) 27.38 GB 63.60s ± 0.49s 271.36 hours
pure bfloat16 2 (4, yes, full, sync, no_paged) 41.88 GB 63.70s ± 0.46s 271.79 hours
pure bfloat16 2 (4, yes, grad_op, sync, paged) 40.47 GB 64.70s ± 1.00s 276.05 hours
pure bfloat16 2 (4, yes, full, no_sync, paged) 34.63 GB 65.20s ± 0.98s 278.19 hours
pure bfloat16 2 (2, yes, grad_op, no_sync, paged) 42.48 GB 65.30s ± 0.90s 278.61 hours
pure bfloat16 2 (2, yes, grad_op, sync, paged) 35.23 GB 67.20s ± 0.40s 286.72 hours
pure bfloat16 2 (2, yes, grad_op, sync, no_paged) 49.72 GB 67.30s ± 0.46s 287.15 hours
pure bfloat16 2 (1, yes, grad_op, no_sync, no_paged) 54.35 GB 67.50s ± 0.50s 288.00 hours
pure bfloat16 2 (2, yes, full, no_sync, paged) 29.39 GB 67.90s ± 0.30s 289.71 hours
pure bfloat16 2 (2, yes, full, no_sync, no_paged) 43.88 GB 68.00s ± 0.00s 290.13 hours
pure bfloat16 2 (2, yes, full, sync, no_paged) 37.92 GB 68.00s ± 0.00s 290.13 hours
pure bfloat16 2 (2, yes, full, sync, paged) 22.14 GB 68.00s ± 0.00s 290.13 hours
pure bfloat16 2 (1, yes, grad_op, no_sync, paged) 39.85 GB 69.50s ± 1.20s 296.53 hours
pure bfloat16 2 (1, yes, full, no_sync, paged) 26.77 GB 73.70s ± 0.46s 314.45 hours
pure bfloat16 2 (1, yes, full, no_sync, no_paged) 41.26 GB 74.00s ± 0.00s 315.73 hours
pure bfloat16 2 (1, yes, grad_op, sync, no_paged) 47.1 GB 74.00s ± 0.00s 315.73 hours
pure bfloat16 2 (1, yes, grad_op, sync, paged) 32.6 GB 74.30s ± 0.46s 317.01 hours
pure bfloat16 2 (1, yes, full, sync, no_paged) 37.38 GB 75.00s ± 0.00s 320.00 hours
pure bfloat16 2 (1, yes, full, sync, paged) 19.52 GB 75.20s ± 0.40s 320.85 hours
pure bfloat16 2 (2, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 2 (2, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 2 (4, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (8, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 2 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (2, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (4, no, full, sync, paged) OOM N/A N/A
pure bfloat16 2 (4, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 2 (4, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 2 (8, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 2 (8, no, full, sync, paged) OOM N/A N/A
pure bfloat16 2 (2, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 2 (4, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 2 (8, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 2 (8, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 2 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (8, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (8, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 2 (2, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 2 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 2 (4, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 2 (4, no, full, sync, no_paged) OOM N/A N/A

mixed-precision bfloat16 4 (8, yes, full, sync, no_paged) 64.41 GB 34.65s ± 0.23s 295.68 hours
mixed-precision bfloat16 4 (8, yes, full, sync, paged) 49.91 GB 35.79s ± 0.92s 305.37 hours
mixed-precision bfloat16 4 (4, yes, full, sync, paged) 34.46 GB 37.24s ± 0.23s 317.78 hours
mixed-precision bfloat16 4 (4, yes, full, no_sync, no_paged) 70.7 GB 37.24s ± 0.24s 317.81 hours
mixed-precision bfloat16 4 (4, yes, full, sync, no_paged) 48.96 GB 37.25s ± 0.28s 317.89 hours
mixed-precision bfloat16 4 (4, yes, grad_op, sync, paged) 60.64 GB 37.71s ± 0.31s 321.82 hours
mixed-precision bfloat16 4 (4, yes, full, no_sync, paged) 56.21 GB 38.24s ± 1.36s 326.31 hours
mixed-precision bfloat16 4 (1, no, full, sync, paged) 63.61 GB 40.56s ± 0.23s 346.14 hours
mixed-precision bfloat16 4 (2, yes, full, no_sync, no_paged) 62.98 GB 41.10s ± 0.14s 350.72 hours
mixed-precision bfloat16 4 (2, yes, grad_op, sync, paged) 52.91 GB 41.14s ± 0.11s 351.09 hours
mixed-precision bfloat16 4 (2, yes, grad_op, sync, no_paged) 67.41 GB 41.15s ± 0.13s 351.13 hours
mixed-precision bfloat16 4 (2, yes, grad_op, no_sync, paged) 74.65 GB 41.80s ± 1.00s 356.67 hours
mixed-precision bfloat16 4 (2, yes, full, sync, no_paged) 41.23 GB 41.94s ± 0.13s 357.91 hours
mixed-precision bfloat16 4 (2, yes, full, no_sync, paged) 48.48 GB 41.97s ± 0.41s 358.15 hours
mixed-precision bfloat16 4 (2, yes, full, sync, paged) 26.74 GB 42.10s ± 0.12s 359.28 hours
mixed-precision bfloat16 4 (1, yes, grad_op, no_sync, paged) 70.8 GB 45.67s ± 1.26s 389.73 hours
mixed-precision bfloat16 4 (1, yes, full, no_sync, paged) 44.63 GB 48.62s ± 0.19s 414.86 hours
mixed-precision bfloat16 4 (1, yes, full, no_sync, no_paged) 59.13 GB 48.69s ± 0.16s 415.45 hours

19



Language Adaptation on a Tight Academic Compute Budget

Precision # GPUs (mb, ckpt, sharding) Max. CUDA RAM Step time Total GPU Hours

mixed-precision bfloat16 4 (1, yes, grad_op, sync, no_paged) 63.55 GB 48.84s ± 0.17s 416.81 hours
mixed-precision bfloat16 4 (1, yes, full, sync, no_paged) 37.38 GB 50.41s ± 0.21s 430.19 hours
mixed-precision bfloat16 4 (1, yes, full, sync, paged) 22.88 GB 50.85s ± 0.35s 433.93 hours
mixed-precision bfloat16 4 (1, yes, grad_op, sync, paged) 49.06 GB 52.88s ± 0.71s 451.23 hours
mixed-precision bfloat16 4 (1, no, full, sync, no_paged) 78.1 GB 81.20s ± 1.08s 692.91 hours
mixed-precision bfloat16 4 (2, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, yes, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (1, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (8, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 4 (2, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 4 (4, no, grad_op, sync, no_paged) OOM N/A N/A

pure bfloat16 4 (1, no, grad_op, no_sync, no_paged) 66.73 GB 26.46s ± 0.12s 225.77 hours
pure bfloat16 4 (1, no, grad_op, no_sync, paged) 59.49 GB 26.57s ± 0.14s 226.69 hours
pure bfloat16 4 (2, no, full, sync, no_paged) 68.59 GB 27.19s ± 0.11s 231.98 hours
pure bfloat16 4 (2, no, grad_op, sync, paged) 74.86 GB 27.65s ± 0.16s 235.93 hours
pure bfloat16 4 (2, no, full, sync, paged) 61.34 GB 28.24s ± 0.34s 241.01 hours
pure bfloat16 4 (2, no, full, no_sync, paged) 72.21 GB 28.57s ± 1.53s 243.83 hours
pure bfloat16 4 (1, no, full, no_sync, no_paged) 53.43 GB 29.91s ± 0.24s 255.27 hours
pure bfloat16 4 (1, no, full, no_sync, paged) 46.18 GB 29.94s ± 0.25s 255.49 hours
pure bfloat16 4 (1, no, grad_op, sync, no_paged) 55.86 GB 29.99s ± 0.24s 255.94 hours
pure bfloat16 4 (1, no, grad_op, sync, paged) 48.61 GB 30.10s ± 0.21s 256.84 hours
pure bfloat16 4 (8, yes, grad_op, no_sync, no_paged) 61.82 GB 30.36s ± 0.19s 259.10 hours
pure bfloat16 4 (4, yes, grad_op, no_sync, paged) 44.09 GB 30.79s ± 0.10s 262.74 hours
pure bfloat16 4 (4, yes, grad_op, no_sync, no_paged) 51.34 GB 30.81s ± 0.10s 262.95 hours
pure bfloat16 4 (1, no, full, sync, no_paged) 42.56 GB 30.85s ± 0.18s 263.29 hours
pure bfloat16 4 (1, no, full, sync, paged) 35.31 GB 31.02s ± 0.23s 264.69 hours
pure bfloat16 4 (8, yes, grad_op, sync, no_paged) 50.95 GB 31.10s ± 0.20s 265.39 hours
pure bfloat16 4 (8, yes, full, no_sync, paged) 41.49 GB 31.20s ± 0.23s 266.21 hours
pure bfloat16 4 (8, yes, full, no_sync, no_paged) 48.74 GB 31.20s ± 0.20s 266.22 hours
pure bfloat16 4 (8, yes, grad_op, sync, paged) 43.71 GB 31.20s ± 0.24s 266.23 hours
pure bfloat16 4 (8, yes, full, sync, no_paged) 37.87 GB 31.26s ± 0.21s 266.74 hours
pure bfloat16 4 (8, yes, full, sync, paged) 30.62 GB 31.32s ± 0.26s 267.27 hours
pure bfloat16 4 (8, yes, grad_op, no_sync, paged) 54.58 GB 31.42s ± 0.53s 268.14 hours
pure bfloat16 4 (2, yes, grad_op, no_sync, no_paged) 46.1 GB 32.02s ± 0.09s 273.22 hours
pure bfloat16 4 (2, yes, grad_op, no_sync, paged) 38.85 GB 32.11s ± 0.07s 274.05 hours
pure bfloat16 4 (4, yes, grad_op, sync, paged) 33.22 GB 32.38s ± 0.24s 276.31 hours
pure bfloat16 4 (4, yes, grad_op, sync, no_paged) 40.47 GB 32.39s ± 0.27s 276.38 hours
pure bfloat16 4 (4, yes, full, sync, no_paged) 27.38 GB 32.58s ± 0.25s 277.99 hours
pure bfloat16 4 (4, yes, full, no_sync, paged) 31.01 GB 32.58s ± 0.24s 278.00 hours
pure bfloat16 4 (4, yes, full, no_sync, no_paged) 38.25 GB 32.62s ± 0.27s 278.32 hours
pure bfloat16 4 (4, yes, full, sync, paged) 20.13 GB 32.62s ± 0.25s 278.36 hours
pure bfloat16 4 (1, yes, grad_op, no_sync, no_paged) 43.48 GB 34.20s ± 0.13s 291.88 hours
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pure bfloat16 4 (1, yes, grad_op, no_sync, paged) 36.23 GB 34.36s ± 0.24s 293.17 hours
pure bfloat16 4 (2, yes, grad_op, sync, no_paged) 35.23 GB 34.85s ± 0.14s 297.39 hours
pure bfloat16 4 (2, yes, grad_op, sync, paged) 27.98 GB 34.85s ± 0.13s 297.42 hours
pure bfloat16 4 (2, yes, full, no_sync, no_paged) 33.01 GB 35.11s ± 0.12s 299.56 hours
pure bfloat16 4 (2, yes, full, no_sync, paged) 25.76 GB 35.18s ± 0.13s 300.25 hours
pure bfloat16 4 (2, yes, full, sync, no_paged) 22.14 GB 35.25s ± 0.14s 300.78 hours
pure bfloat16 4 (2, yes, full, sync, paged) 14.89 GB 35.30s ± 0.13s 301.21 hours
pure bfloat16 4 (1, yes, full, no_sync, no_paged) 30.39 GB 38.52s ± 0.16s 328.66 hours
pure bfloat16 4 (1, yes, full, no_sync, paged) 23.14 GB 38.57s ± 0.27s 329.15 hours
pure bfloat16 4 (1, yes, grad_op, sync, no_paged) 32.6 GB 38.88s ± 0.18s 331.79 hours
pure bfloat16 4 (1, yes, grad_op, sync, paged) 25.36 GB 38.92s ± 0.18s 332.13 hours
pure bfloat16 4 (1, yes, full, sync, no_paged) 19.52 GB 39.52s ± 0.19s 337.26 hours
pure bfloat16 4 (1, yes, full, sync, paged) 12.27 GB 39.97s ± 0.38s 341.11 hours
pure bfloat16 4 (4, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 4 (2, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 4 (2, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (4, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (4, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 4 (8, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 4 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (2, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 4 (8, no, full, sync, paged) OOM N/A N/A
pure bfloat16 4 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (4, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 4 (4, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 4 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (8, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 4 (4, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 4 (8, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 4 (8, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 4 (4, no, full, sync, paged) OOM N/A N/A
pure bfloat16 4 (8, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 4 (8, no, grad_op, sync, paged) OOM N/A N/A

mixed-precision bfloat16 8 (8, yes, full, sync, paged) 42.66 GB 17.46s ± 0.20s 298.00 hours
mixed-precision bfloat16 8 (8, yes, full, sync, no_paged) 49.91 GB 17.48s ± 0.23s 298.33 hours
mixed-precision bfloat16 8 (4, yes, grad_op, sync, no_paged) 60.63 GB 18.53s ± 0.22s 316.25 hours
mixed-precision bfloat16 8 (4, yes, full, no_sync, no_paged) 59.83 GB 18.66s ± 0.20s 318.50 hours
mixed-precision bfloat16 8 (4, yes, full, no_sync, paged) 52.58 GB 18.69s ± 0.25s 319.03 hours
mixed-precision bfloat16 8 (4, yes, full, sync, no_paged) 34.46 GB 18.75s ± 0.23s 319.97 hours
mixed-precision bfloat16 8 (4, yes, full, sync, paged) 27.21 GB 18.86s ± 0.34s 321.89 hours
mixed-precision bfloat16 8 (4, yes, grad_op, sync, paged) 53.39 GB 19.17s ± 0.30s 327.13 hours
mixed-precision bfloat16 8 (1, no, full, sync, no_paged) 63.6 GB 20.06s ± 0.11s 342.34 hours
mixed-precision bfloat16 8 (2, yes, grad_op, no_sync, paged) 71.03 GB 20.18s ± 3.06s 344.46 hours
mixed-precision bfloat16 8 (1, no, full, sync, paged) 56.35 GB 20.57s ± 0.21s 350.99 hours
mixed-precision bfloat16 8 (2, yes, grad_op, sync, no_paged) 52.91 GB 20.83s ± 0.26s 355.48 hours
mixed-precision bfloat16 8 (2, yes, full, no_sync, no_paged) 52.1 GB 21.01s ± 0.28s 358.62 hours
mixed-precision bfloat16 8 (2, yes, full, sync, no_paged) 26.74 GB 21.23s ± 0.25s 362.39 hours
mixed-precision bfloat16 8 (2, yes, full, sync, paged) 19.49 GB 21.36s ± 0.36s 364.63 hours
mixed-precision bfloat16 8 (2, yes, grad_op, sync, paged) 45.66 GB 21.49s ± 0.32s 366.73 hours
mixed-precision bfloat16 8 (1, yes, grad_op, no_sync, no_paged) 74.43 GB 21.52s ± 0.14s 367.34 hours
mixed-precision bfloat16 8 (2, yes, full, no_sync, paged) 44.86 GB 21.72s ± 0.38s 370.65 hours
mixed-precision bfloat16 8 (1, yes, grad_op, no_sync, paged) 67.18 GB 21.73s ± 0.05s 370.82 hours
mixed-precision bfloat16 8 (1, yes, grad_op, sync, no_paged) 49.06 GB 24.77s ± 0.11s 422.83 hours
mixed-precision bfloat16 8 (1, yes, full, no_sync, no_paged) 48.25 GB 25.01s ± 0.09s 426.91 hours
mixed-precision bfloat16 8 (1, yes, full, no_sync, paged) 41.01 GB 25.66s ± 0.23s 437.90 hours
mixed-precision bfloat16 8 (1, yes, full, sync, no_paged) 22.88 GB 25.75s ± 0.10s 439.40 hours
mixed-precision bfloat16 8 (1, yes, grad_op, sync, paged) 41.81 GB 26.16s ± 0.36s 446.38 hours
mixed-precision bfloat16 8 (1, yes, full, sync, paged) 15.64 GB 26.18s ± 0.17s 446.82 hours
mixed-precision bfloat16 8 (4, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, yes, grad_op, no_sync, paged) OOM N/A N/A
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mixed-precision bfloat16 8 (8, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, grad_op, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, full, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, full, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, grad_op, sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (1, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, full, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, yes, grad_op, no_sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (8, yes, grad_op, sync, no_paged) OOM N/A N/A
mixed-precision bfloat16 8 (4, no, full, no_sync, paged) OOM N/A N/A
mixed-precision bfloat16 8 (2, no, grad_op, sync, no_paged) OOM N/A N/A

pure bfloat16 8 (1, no, grad_op, no_sync, no_paged) 61.29 GB 13.45s ± 0.07s 229.55 hours
pure bfloat16 8 (1, no, grad_op, no_sync, paged) 57.67 GB 13.55s ± 0.12s 231.25 hours
pure bfloat16 8 (2, no, grad_op, sync, no_paged) 74.85 GB 13.65s ± 0.24s 232.87 hours
pure bfloat16 8 (2, no, full, sync, no_paged) 61.33 GB 13.78s ± 0.10s 235.26 hours
pure bfloat16 8 (2, no, full, sync, paged) 57.71 GB 13.80s ± 0.10s 235.55 hours
pure bfloat16 8 (2, no, full, no_sync, no_paged) 74.01 GB 14.19s ± 0.19s 242.21 hours
pure bfloat16 8 (2, no, grad_op, sync, paged) 71.23 GB 14.35s ± 0.31s 244.92 hours
pure bfloat16 8 (2, no, full, no_sync, paged) 70.39 GB 14.58s ± 0.31s 248.81 hours
pure bfloat16 8 (1, no, grad_op, sync, no_paged) 48.61 GB 15.28s ± 0.08s 260.78 hours
pure bfloat16 8 (8, yes, grad_op, no_sync, paged) 52.76 GB 15.30s ± 0.13s 261.15 hours
pure bfloat16 8 (8, yes, grad_op, no_sync, no_paged) 56.39 GB 15.33s ± 0.17s 261.70 hours
pure bfloat16 8 (1, no, grad_op, sync, paged) 44.99 GB 15.38s ± 0.15s 262.47 hours
pure bfloat16 8 (1, no, full, no_sync, no_paged) 47.99 GB 15.46s ± 0.08s 263.87 hours
pure bfloat16 8 (1, no, full, no_sync, paged) 44.37 GB 15.59s ± 0.14s 266.04 hours
pure bfloat16 8 (4, yes, grad_op, no_sync, no_paged) 45.9 GB 15.59s ± 0.16s 266.15 hours
pure bfloat16 8 (4, yes, grad_op, no_sync, paged) 42.28 GB 15.60s ± 0.17s 266.22 hours
pure bfloat16 8 (8, yes, grad_op, sync, paged) 40.08 GB 15.72s ± 0.22s 268.25 hours
pure bfloat16 8 (8, yes, full, no_sync, no_paged) 43.3 GB 15.74s ± 0.16s 268.65 hours
pure bfloat16 8 (8, yes, grad_op, sync, no_paged) 43.7 GB 15.74s ± 0.30s 268.70 hours
pure bfloat16 8 (8, yes, full, no_sync, paged) 39.68 GB 15.77s ± 0.22s 269.16 hours
pure bfloat16 8 (8, yes, full, sync, no_paged) 30.62 GB 15.79s ± 0.24s 269.57 hours
pure bfloat16 8 (8, yes, full, sync, paged) 26.99 GB 15.81s ± 0.25s 269.81 hours
pure bfloat16 8 (1, no, full, sync, no_paged) 35.3 GB 15.82s ± 0.09s 269.94 hours
pure bfloat16 8 (1, no, full, sync, paged) 31.68 GB 15.90s ± 0.13s 271.38 hours
pure bfloat16 8 (2, yes, grad_op, no_sync, no_paged) 40.66 GB 16.13s ± 0.10s 275.29 hours
pure bfloat16 8 (2, yes, grad_op, no_sync, paged) 37.04 GB 16.13s ± 0.12s 275.32 hours
pure bfloat16 8 (4, yes, grad_op, sync, no_paged) 33.22 GB 16.33s ± 0.20s 278.72 hours
pure bfloat16 8 (4, yes, full, no_sync, no_paged) 32.82 GB 16.40s ± 0.21s 279.93 hours
pure bfloat16 8 (4, yes, grad_op, sync, paged) 29.6 GB 16.41s ± 0.38s 280.15 hours
pure bfloat16 8 (4, yes, full, sync, no_paged) 20.13 GB 16.44s ± 0.28s 280.56 hours
pure bfloat16 8 (4, yes, full, no_sync, paged) 29.19 GB 16.46s ± 0.23s 280.93 hours
pure bfloat16 8 (4, yes, full, sync, paged) 16.51 GB 16.49s ± 0.28s 281.46 hours
pure bfloat16 8 (1, yes, grad_op, no_sync, paged) 34.42 GB 17.33s ± 0.05s 295.71 hours
pure bfloat16 8 (1, yes, grad_op, no_sync, no_paged) 38.04 GB 17.34s ± 0.09s 295.88 hours
pure bfloat16 8 (2, yes, grad_op, sync, no_paged) 27.98 GB 17.65s ± 0.26s 301.28 hours
pure bfloat16 8 (2, yes, grad_op, sync, paged) 24.35 GB 17.80s ± 0.37s 303.87 hours
pure bfloat16 8 (2, yes, full, no_sync, no_paged) 27.58 GB 17.88s ± 0.28s 305.22 hours
pure bfloat16 8 (2, yes, full, no_sync, paged) 23.95 GB 17.92s ± 0.34s 305.78 hours
pure bfloat16 8 (2, yes, full, sync, no_paged) 14.89 GB 17.93s ± 0.25s 306.01 hours
pure bfloat16 8 (2, yes, full, sync, paged) 11.27 GB 18.07s ± 0.39s 308.43 hours
pure bfloat16 8 (1, yes, full, no_sync, no_paged) 24.95 GB 19.74s ± 0.12s 336.86 hours
pure bfloat16 8 (1, yes, full, no_sync, paged) 21.33 GB 19.84s ± 0.18s 338.55 hours
pure bfloat16 8 (1, yes, grad_op, sync, paged) 21.73 GB 20.22s ± 0.21s 345.12 hours
pure bfloat16 8 (1, yes, grad_op, sync, no_paged) 25.36 GB 20.28s ± 0.27s 346.16 hours
pure bfloat16 8 (1, yes, full, sync, no_paged) 12.27 GB 20.30s ± 0.11s 346.49 hours
pure bfloat16 8 (1, yes, full, sync, paged) 10.48 GB 20.74s ± 0.18s 353.98 hours
pure bfloat16 8 (8, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 8 (2, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 8 (4, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 8 (4, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 8 (4, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 8 (8, no, full, sync, no_paged) OOM N/A N/A
pure bfloat16 8 (8, no, full, no_sync, no_paged) OOM N/A N/A
pure bfloat16 8 (4, no, full, no_sync, paged) OOM N/A N/A
pure bfloat16 8 (4, no, grad_op, no_sync, paged) OOM N/A N/A
pure bfloat16 8 (4, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 8 (8, no, grad_op, no_sync, paged) OOM N/A N/A
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pure bfloat16 8 (8, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 8 (8, no, grad_op, sync, paged) OOM N/A N/A
pure bfloat16 8 (8, no, full, sync, paged) OOM N/A N/A
pure bfloat16 8 (4, no, full, sync, paged) OOM N/A N/A
pure bfloat16 8 (4, no, grad_op, sync, no_paged) OOM N/A N/A
pure bfloat16 8 (8, no, grad_op, no_sync, no_paged) OOM N/A N/A
pure bfloat16 8 (2, no, grad_op, no_sync, no_paged) OOM N/A N/A
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