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Abstract

Using natural language as a vehicle-to-vehicle (V2V) communication protocol
offers the potential for autonomous vehicles to drive cooperatively not only
with each other but also with human drivers. Simple and effective messages
for sharing critical observations or negotiating plans to achieve coordination
could improve traffic safety and efficiency compared to methods without
communication. In this work, we propose a suite of traffic tasks in vehicle-
to-vehicle autonomous driving where vehicles in a traffic scenario need to
communicate in natural language to facilitate coordination in order to avoid
an imminent collision and/or support efficient traffic flow, which we model
as a general-sum partially observable stochastic game. To this end, this
paper introduces a novel method, LLM+Debrief, to learn a message
generation and control policy for autonomous vehicles through multi-agent
discussion. To evaluate our method, we developed a gym-like simulation
environment that contains a range of accident-prone driving scenarios that
could be alleviated by communication. Our experimental results demonstrate
that our method is more effective at generating meaningful and human-
understandable natural language messages to facilitate cooperation and
coordination than untrained LLMs. Our anonymous code is available in
supplementary materials.

1 Introduction

State-of-the-art autonomous driving policies are commonly designed from the perspective of
a single agent’s sensors. Therefore, to enhance safety, it is essential to account for multi-agent
interactions. Among the strategies employed is incorporating motion prediction or intention
inference of other traffic participants in decision-making. Some models independently forecast
the future movements of these traffic participants (Wu et al., 2023), whereas others account
for mutual interactions among autonomous vehicles and other traffic agents (Seff et al.,
2023). However, the challenge lies in the substantial uncertainty in predicting other drivers’
intentions, often resulting in excessively cautious driving strategies (Rhinehart et al., 2021).
Given its cooperative nature, the safe driving problem could be largely simplified by enabling
vehicles to communicate their intentions and observations with each other. The concepts of
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication have recently
emerged as a promising approach for multi-vehicle cooperation, garnering considerable
research interest (Wang et al., 2020; Cui et al., 2022; Xu et al., 2022a;b). While the focus
of V2V communication has predominantly been on cooperative perception rather than
cooperative control, it often employs modalities (latent representations, LiDAR points,
locations of objects, etc.,) that are not intuitively nor easily understood by humans, thus
requiring that all the participating vehicles be autonomous and share the same protocol.
Natural language, as a refined and highly adaptable form of human communication, offers
the potential for human drivers to also participate in this cooperation. If vehicles could
“speak” in human language, it would pave the way for developing technologies that facilitate
communication between autonomous vehicles and human drivers, enhancing cooperation and
understanding in mixed-autonomy traffic environments. Even in fully autonomous settings,
a natural language interface could offer flexibility for agents to explain their decisions, talk
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Ego vehicle
OK. I will stop for you.

Red-Light Violator
I have to run the 
red-light as my 
brake is broken! 

Collision!

Networked vehicle
Slow down everyone!

Networked vehicle
I see a vehicle 
running red light!

Car 2
Ok, although stopping for you may cost 
my time, but since you would be stuck 
there indefinitely, I will stop for you.

Car 1
Red car, could you stop so that I can 
borrow the opposite lane to avoid a major 
congestion?

Truck
My engine is broken so I have to stop. Be 
careful, opposite lane has oncoming 
vehicles.

Figure 1: Left: A red-light violation scenario where there is a car running the red light. Right:
An overtake scenario where a truck is broken and stopped on a two-lane two-way road.

to other autonomous vehicles with proper translation, quickly adapt to different traffic
regulations, and negotiate plans.
As a concrete example of the power of using language in V2V communication, consider the
following scenario, as illustrated in Figure 1. A truck has broken down and stopped on a
two-way road divided by a yellow dashed line. The vehicles trailing the truck cannot see
whether the lane going in the opposite direction is free from oncoming cars, which could allow
them to use that lane to safely move around the truck to circumvent the growing traffic jam.
If the truck is capable of communication, it could relay a message such as, “The opposite
lane is clear, you may safely perform a lane change to pass me.” Alternatively, in busier times,
the queued vehicles could initiate a dialogue with oncoming traffic, proposing, “Can we take
turns using the lane to avoid major congestion?” Through simple but effective communication
about their intentions or observations, a mixture of human-driven and autonomous vehicles
could significantly enhance traffic flow and overall efficiency.
In this work, we first introduce the problem of talking vehicles. In this problem setting,
a scenario in autonomous driving is formulated as a multi-agent partially observable and
general-sum game wherein each traffic participant is pursuing a cooperative goal modulated
by individual preferences1. When conflicts arise, or unexpected events occur, vehicles have
the opportunity to generate and broadcast messages that contain observations of abnormal
events or negotiations to cooperatively reach their goals. The vehicles can then make decisions
according to the received messages.
Enabling vehicles to “talk” with intentions and convey helpful information presents significant
challenges. There are studies like Dolphins (Ma et al., 2023) and LINGO-1 (Wayve, 2023) that
have trained Visual-Language-Action models to both make driving decisions and articulate
their reasoning to humans. However, training such models requires extensive data. At the
time of writing this paper, only a limited number of datasets exist that provide language
commentary data for single-agent driving scenarios (Kim et al., 2018; 2019; Qian et al., 2023;
Sima et al., 2023). To the best of our knowledge, datasets featuring natural language data
for inter-vehicle communication are not yet available.
On the other hand, multi-agent “selfplay” learning in a high-fidelity simulator requires no
real-world data and allows for closed-loop learning and evaluation. With recent advances
in large language models (LLMs), there has been a surge of interest in applying LLMs to
multi-agent games (Bakhtin et al., 2022; Xu et al., 2023a; Light et al., 2023). However,
the synergy between LLMs and multi-agent games remains unexplored in the context of
autonomous driving. Existing efforts in autonomous driving mainly focus on leveraging
LLMs for decision-making in a single-agent setting (Mao et al., 2023a; Shao et al., 2023; Ma
et al., 2023).
Thus, we propose a novel method, LLM+Debrief, as an initial attempt to use LLMs to help
solve the cooperative driving problem in a V2V communication framework. This method

1Specifically, we assume all cars seek a smooth traffic flow. Meanwhile, each car prefers to reach
its destination as quickly as possible.
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optimizes the in-context knowledge of a language model as the message generation policy
through a turn-based post-episode discussion and leverages LLMs to analyze the dialogue
history among neighboring vehicles to generate general driving commands and messages to
send. Finally, an atomic controller executes the control according to the updated instructions.
To test our method and provide a research test bed for the community, we build a simulation
framework containing an array of interesting multi-agent driving scenarios that support
communications in natural languages. Our experimental results show an improvement in
driving safety and efficiency of our method compared to the methods without communication.
In summary, this paper makes the following contributions:

1. We introduce the task of socially interactive driving using natural language, aiming
to revolutionize how autonomous vehicles communicate and interact in a traffic
environment.

2. We develop a novel method enabling autonomous vehicles to dynamically generate
critical observation messages and collaboratively decide driving plans, enhancing
safety and efficiency in traffic navigation.

3. We present a simulation framework designed to realistically model vehicle-to-vehicle
communication through natural language, featuring diverse scenarios that capture a
range of traffic conditions and interactive challenges.

4. We evaluate our methodology within this simulation framework, and find that
compared to alternative approaches, our method is able to generate meaningful
messages and improve traffic safety as well as efficiency.

We will open-source our code upon the publication of this paper. An example code repository
is provided in the supplementary materials.

2 Related Work

Vehicle-to-vehicle Communication. Vehicle-to-Vehicle (V2V) or Vehicle-to-everything
(V2X) communication offers the potential to effectively facilitate multi-vehicle cooperation,
improving the safety and reliability of autonomous vehicles in urban driving scenarios.
Existing research predominantly concentrates on cooperative perception data sets (Yu et al.,
2022; Xu et al., 2022b; Li et al., 2022) and tasks like cooperative detection and prediction
(Wang et al., 2020; Chen et al., 2019; Xu et al., 2022a), leveraging sensor data from cameras,
LiDAR, and other resources. The message aggregation strategies include early fusion (Qiu
et al., 2022), late fusion, and intermediate fusion (Wang et al., 2020). Considering the
limited V2V bandwidth, efforts were made to reduce the message size (Hu et al., 2022). Aoki
et al. (2020) developed a reinforcement learning method for selecting what information to
be transmitted in cooperative perception. Although Cui et al. (2022) developed end-to-end
driving policies and derived the critical information from expert supervision, the cooperation
is still completed at the perception level. In contrast, our work focuses on the message
in the natural language space to enhance both cooperative perception and formulation
of cooperative driving strategies. Real-world communication often suffers from caveats
in the communication mechanisms, including packet loss, latencies (Lei et al., 2022), and
localization errors. Although some works consider adversarial attacks (Tu et al., 2021) in
V2V communication, we assume all vehicles are cooperative in this work.

Multi-Agent Social Interactions with LLMs. Large Language Models (LLMs) show
promising communication and reasoning capabilities, suggesting their potential in multi-agent
interaction scenarios. For instance, Generative Agents (Park et al., 2023) represents an
early attempt at employing LLM agents for free-form chatting, demonstrating the believable
behaviors of LLM agents in spreading information. However, this study did not evaluate the
LLMs’ capabilities in planning or solving multi-agent tasks. Cicero (Bakhtin et al., 2022),
on the other hand, finetunes a language model to imitate human behaviors from a dataset
to generate truthful messages in the game of Diplomacy, which is mixed-motive and requires
communication in natural language. They train reinforcement learning policies to analyze
the dialogue select actions and generate deceptive messages through value filtering. Recent
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works on communication games Werewolf (Xu et al., 2023a) and Avalon (Light et al., 2023)
demonstrate that LLMs can achieve impressive results in multi-agent settings. This success
is particularly notable when LLMs are combined with reinforcement learning or fine-tuning.
Shi et al. (2023) find that LLMs can be applied to achieve Ad Hoc teamwork in the Avalon
game. Recently, a generative agent-based social simulator (Vezhnevets et al., 2023) has been
proposed to serve as a test bed for multi-agent LLM interactions as well.

LLMs for Autonomous Driving. LLMs have shown great potential in solving various
autonomous driving tasks. In particular, they are promising in tackling corner cases (Wen
et al., 2023b) due to their reasoning ability and the common-sense knowledge embedded,
yielding a more generalizable autonomous driving stack. Recent studies have explored
various approaches to tailor state-of-the-art LLMs for driving. Similar to other embodied
tasks (Driess et al., 2023; Brohan et al., 2023), a foundational challenge lies in grounding
LLMs in the real world—the LLMs need to perceive and understand the traffic scenarios. A
straightforward approach is to obtain the observations from oracle perception models (Mao
et al., 2023b) and convert them to textual descriptions (Mao et al., 2023a; Sha et al., 2023;
Jin et al., 2023; Cui et al., 2023). Some other studies tackled this challenge by introducing
Visual Language Models (VLMs), which are adapted to driving domains through in-context
instruction tuning (Ma et al., 2023) or fine-tuning (Wayve, 2023; Xu et al., 2023b; Ding et al.,
2023; Yang et al., 2023). To enhance LLMs’ reasoning ability, prior works have investigated
incorporating handcrafted guidance and examples in the prompts (Sha et al., 2023; Jin et al.,
2023; Cui et al., 2023), structuring the reasoning procedure (Mao et al., 2023b; Sima et al.,
2023), and fine-tuning the models on driving datasets. Notably, fine-tuning LLMs and VLMs
requires an extensive amount of driving data with language labels. While a limited number
of such datasets are available (Kim et al., 2018; 2019; Malla et al., 2023), they were mostly
created in the pre-LLM era and, thus, are not designed for LLM fine-tuning. While several
works have attempted to adapt existing language-driving datasets for LLM fine-tuning (Ding
et al., 2023; Xu et al., 2023b; Ma et al., 2023), growing attention has been drawn to directly
augment large-scale multimodal driving datasets, such as nuScenes (Caesar et al., 2020),
Waymo (Sun et al., 2020), and ONCE (Mao et al., 2021)), with language labels (Qian et al.,
2023; Shao et al., 2023; Sima et al., 2023; Nie et al., 2023). Note that existing models
were predominantly evaluated in open-loop fashions, except for Shao et al. (2023); Sha et al.
(2023); Jin et al. (2023). The open-loop evaluation results may not effectively imply the
models’ closed-loop performance after deployment. In contrast, similar to Surrealdriver (Jin
et al., 2023), we conduct closed-loop tests of the proposed multi-agent communication and
control framework in CARLA (Dosovitskiy et al., 2017). More importantly, none of the
existing works have explored LLMs in a multi-agent setting with V2V communication as we
did. LanguageMPC (Sha et al., 2023) was demonstrated in a multi-agent scenario, yet its
controller is centralized.

3 Problem Definition

We frame the problem of Talking Vehicles as a general-sum partially observable stochastic
game (POSG), focusing on optimizing the social welfare of a focal population (F) (Agapiou
et al., 2022) — defined as the cumulative reward of all agents of interest — as the primary
objective. This problem is a general-sum game because it includes scenarios that are not
entirely cooperative; conflicts of interest may exist and some agents may have to sacrifice
their individual interests for the overall benefits. Each agent’s observation space is limited to
a partial view of the full state, and agents make decisions in a decentralized manner based
on ego partial observations and received messages from other agents. Within this problem,
the action space for each agent has two main components: 1. the generation of messages,
and 2. the control of the vehicle. In this work, the message generation space is scoped within
natural language.
A POSG can be described by the tuple 〈I,S, {Oi}, {Ai},P, {Ri}, γ〉, where I = {1, 2, ..., N}
refers to the identities of actionable agents; S is the state space comprehensively describing
the environment; Oi is the observation space of agent i’s state; Ai is the action space of
agent i; P represents the state transition function S ×A1 ×A2 × ...×AN → S; Ri is the
reward function of agent i; Finally, γ is the discount factor.
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In this problem, the goal for each agent i ∈ I is to optimize a policy πi to maximize the
expected sum of all the agents’ returns in the focal population F ⊆ I:

max
π1,π2,...,πN

Eπ1,π2,...,πN

[∑
i∈F

Ri

]
(1)

The policy πi(Oi, {Mj}j∈I) → Ai maps the observation of agent i and received messages
{Mj}j∈I to its action space Ai = 〈Mi, Ci〉, whereMi is the message generation space, and
Ci is the control space which includes dimensions for throttle, brake, and steering inputs.
The generated message Mi by agent i at time step t is broadcast to all other connected
agents within a specific communication range (Radius) at the next time step t+ 1.
In summary, the essence of the talking vehicles problem is to enable each agent to derive
effective control-communication strategies from its observations and the messages it receives.
These strategies, coupled with appropriate vehicle control actions, aim to achieve coordinated
driving behavior.
This problem presents the following technical challenges to the machine-learning community:

1. How can learned agents understand the situation and generate meaningful messages
to help others perceive the environment and potentially negotiate about plans;

2. How can learned agents comprehend and analyze the received messages and generate
reasonable high-level driving plans as well as low-level controls optimizing the social
welfare;

In this work, we assume that the agents could communicate truthfully in real-time, meaning
they accurately convey their real intentions in a timely fashion and follow through on their
stated decisions. However, since they act simultaneously, other agents will only be able to
process the received message in the next decision step. Additionally, we assume that all
agents aim to cooperate with the focal population and do not send deceptive messages or
act aggressively to intentionally sabotage the driving goals of others. Exploring scenarios
where these assumptions are lifted could be an interesting direction for future work.

4 Method

The core technical problem that we address is to let agents communicate purposely to facilitate
cooperation and act correspondingly using human language as the medium. Training language
policies to perform particular communication tasks by self-play is known to generate non-
human comprehensible languages. While Bakhtin et al. (2022) imitates human communication
strategy through a large dataset and filters the message through values, they require a
planning or reinforcement learning agent specifically trained for this game. To establish an
initial solution to the talking vehicles problem, we start with large language models (LLMs)
as a foundational prior for autonomous agents to engage in human-like communication,
regularizing the message within natural language space, allowing agents to interpret messages,
and making driving decisions accordingly. A key challenge of using LLMs lies in that
they are not specifically trained for driving tasks. To address this, we propose a method,
LLM+Debrief, which introduces feedback loops that enable LLMs to improve multi-agent
coordination in driving scenarios interactively with confederate agents through trial and
error. In particular, just like humans debrief after a WereWolf game, we enable language
models to debrief to reinforce their strategies after each interaction episode. As demonstrated
by Figure 2, our method consists of three main components: In-episode communication,
Chain-of-Thought Reasoning, and Post-Episode Debriefing. Please refer to Appendix
A for a detailed algorithmic description of the method (see Algorithm 1).

In-episode Communication. Each driving agent is equipped with a transceiver mod-
ule that enables real-time communication during episodes. Agents broadcast and receive
structured messages by subscribing to topic-specific communication channels. Each message
follows a predefined format containing key details such as content, timestamp, sender ID, and
sender location. This structured approach ensures that messages are contextually relevant
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LLM
Reasoning

Driving 
Decision

Message

Trajectories 
Evaluation and 
Feedback

Env Obs

Task/Goal

Cooperative 
Strategy 
Learned 
Knowledge

“Long-term 
Memory”

Reflection

“Something that you should 
keep in mind for future driving”

Chain-of-Thought 
Reasoning 

LLM Policy Multi-Agent Interactions
In-episode Communication
and Informed Decision-Making

t t+1 ...

Post-episode 
Communication Sharing 
reasoning and discuss 
cooperation strategies

Debriefing

My reasoning 
was...That’s why 
I did ... I 
propose that we 
should do ...

I see, then we 
should probably 
do .. 

ok.Multi-Agent 
Environment

Observations, 
Reasonings, 
Messages, 
Decisions

Replay Buffer

Figure 2: Method. A LLM+Debrief policy is provided a task to complete for each scenario,
and the environment will provide the text observation of the surroundings and message dialogues.
Along with the previous experience, the policy first performs chain-of-thought reasoning about all
the inputs, generates messages to others, and drives decisions based on observation and in-episode
communication. Then the agents within the multi-agent environment will perform the decisions made
by their corresponding policies. After each episode, agents receive feedback from the environment
evaluation containing information like timeout, success, or collision information. This feedback,
along with the {observation, reasoning, message, and commands}, are stored in a replay buffer for
future learning. During the debriefing phase, agents are able to revise their strategy and knowledge
about decision-making by learning others’ reasoning during and after episodes. Such knowledge is
then stored as a long-term experience for future decision-making.

and easily interpretable within multi-agent communication. Received messages are stored
in a buffer, and recent message dialogs are incorporated into the agent’s observations for
decision-making.

Chain-of-Thought Reasoning. Ye et al. (2024) observed that current LLMs can make
irreversible mistakes when computing variables without sufficient context. To address this, we
prompt the LLM to first reason about the environment based on its task, observations, received
messages, cooperative strategy, and accumulated knowledge before making decisions. After
reasoning, the LLM generates actions in a structured JSON format with keys: "reasoning",
"command", and "message". These outputs are then translated into vehicle controls and
communication messages to pushlish. All observations, commands, messages, and reasoning
are stored in a replay buffer for further learning and refinement.

Post-Episode Debriefing. After each episode, the learning agents replay their experiences,
similar to how humans debrief after a game to adapt their strategies. During this process,
agents share how they have interpreted messages, made driving decisions, and assess the
effectiveness of their actions. This structured post-episode analysis mirrors the Centralized
Training Decentralized Execution (CTDE) framework commonly used in multi-agent learning.
When an episode concludes, the environment evaluates the performance of the agents in the
focal group and provides rich semantic feedback, such as “Vehicle 109 collided with Vehicle
110” or “Time out because you failed to help Vehicle 109 complete its task.” Each learning
data point is retrospectively labeled with other agents’ responses and the episode’s outcomes
for further learning. Each learning data point is retrospectively labeled with other agents’
responses and the episode’s outcomes for further learning.
The post-episode discussion is conducted in a turn-based manner over N rounds. In each
debrief, one agent samples a batch of its learning data and proposes a cooperation strategy,
while the other agents either refine or adjust this strategy based on their own experiences.
After debriefing, agents gain a clearer understanding of one another and summarize the
discussion to form cooperative strategies and individual knowledge for future driving tasks.
Chain-of-thought reasoning is applied during debriefing to reinforce decision-making processes.
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4.1 Implementation Details

The complete algorithm is presented in Algorithm 1. We use Llama-3-8B-Instruct (Dubey
et al., 2024) at a temperature of 0.2, collecting experiences every 0.5 seconds (10 simulation
frames) and continuously updating the knowledge base for prompting. The received message
dialog is maintained within 2 seconds of message age. The debriefing process spans 2 rounds,
followed by a final individual reflection step to summarize the discussion. A batch size of
2 is used to sample transition data from the trajectory. In some scenarios, initial frames
are skipped to speed up the simulation. The experiments were conducted on two Nvidia
A40 40GB GPUs to run the LLM policies and manage the server. Additional details can be
found in Appendix A and the anonymous code repository.

5 Environment

To provide concrete and typical driving scenarios that expose the talking vehicles chal-
lenge, we have developed a simulation environment, TalkingVehiclesGym, which is a
multi-agent gymnasium environment for closed-loop evaluation of urban driving policies.
TalkingVehiclesGym provides a flexible configuration of heterogeneous agents (such as lan-
guage agents, sensory agents, human agents, behavior agents, etc.) and policies in the
environment. This framework also enables in-episode communication capabilities of agents
using a realistically simulated communication protocol MQTT and the dynamic simulation
is built upon CARLA (Dosovitskiy et al., 2017), a high-fidelity urban driving simulator. A
wide array of sensors are also available for models that handle corresponding modalities. To
simplify environmental perception for language-only models, TalkingVehiclesGym is equipped
with a partially-observable captioner that translates the observation into text for an agent
but preserves the partial observability of line-of-sight sensors.

Overtake Highway Merge Highway Exit

Negotiation

Overtake Red Light Left Turn Yield

Cooperative Perception

Figure 3: Overview of Test Scenarios. Agent roles are marked with circles with different colors. Red:
Potential Colliders; Green: Focal Agents, agents having both driving control and communication
capabilities; Blue: Other Cooperative Agents, agents that can communicate to help the focal agents.
Detailed descriptions of environment dynamics are in Table 3, Appendix B.

TalkingVehiclesGym has been set up with several accident-prone scenarios where multi-
agent communication could be advantageous (Figure 3). Scenarios labeled with Cooperative
Perception represent opportunities for agents to benefit from shared information about areas
outside their immediate line of sight. On the other hand, scenarios tagged with Negotiation
are designed to demonstrate the advantages of agents discussing and reconciling their plans
when conflicts arise. For a detailed description of the design structure of TalkingVehiclesGym,
and scenario descriptions (Table 3), please refer to Appendix B.

Atomic Actions. Since LLMs take considerable time to generate reasoning and deci-
sions, and are not highly accurate with numerical tasks, it is currently impractical to use
them for controlling low-level vehicular motions. Instead, this paper focuses on high-level
decision-making with natural language communications. Our multi-agent communication and
simulation framework allows models to consider only high-level plans, abstracting trajectories
into a sequence of atomic actions such as Go, Stop, Slow Down, Speed Up, Change to
Left Lane, Change to Right Lane, Turn Left, Turn Right.
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6 Experiments

In this section, we aim to verify the following hypotheses with empirical experiments:

1. LLM agents can perform better with communication than without; LLM agents can
effectively respond to natural language messages without training and cooperate
with each other through communication to improve their performance;

2. LLM agents can autonomously improve themselves in the collaboration tasks through
decentralized reflection without human intervention;

3. Debriefing can further enhance LLM learning from interactions more effectively than
decentralized reflection alone;

Metrics. In each scenario, we define a focal population whose movements we are interested
in and can control to accomplish a specific task within a certain time limit. Evaluation
metrics are then established based on the performance of this focal population over 30
evaluation episodes. We utilize three key metrics: the average total reward (R) accrued by
the focal population, the average number of collisions per episode (CR) of the population,
and the average episodic success rate (SR) normalized by the size of the population. Success
is defined as reaching target locations within a designated time frame without collision. An
agent who successfully completes the task earns a reward of +1. Conversely, collision incurs
a penalty of −1 for each agent involved in the collision while remaining stagnant at any
point until timeout results in a reward of 0 because, although not ideal, conservative policies
are at least safe.

Baselines. We established several baselines and scenarios to evaluate our hypothesis.
These baselines include: (1) an untrained LLM, (2) an LLM trained with decentralized
reflection that updates in-context knowledge (LLM+Reflection), (3) an LLM that corrects
past actions via decentralized reflection, storing these corrections in a vector-based, retrievable
memory and uses few-shot retrieval augmented generation (LLM+Reflection+RAG), and
(4) an LLM trained with debrief discussions as outlined in Section 4 (LLM+Debrief). The
retrieval augmented method without communication adapts DiLU (Wen et al., 2023a), a
non-communicating single-agent LLM-based approach that drives via reflection, to our
environment. The multi-agent communication extension of DiLU, AgentsCoDriver (Hu et al.,
2024), resembles the Reflection+RAG (Comm) method, but they do not actively optimize
the messages. For a fair comparison across DiLU, AgentsCoDriver, and other baselines, we
do not initialize the knowledge with human data, nor is there human involvement during the
learning process. Additionally, we include Coopernaut (Cui et al., 2022), a LiDAR-based
cooperative driving method, as a reference for cooperative perception. Note that since
Coopernaut relies on intermediate sensor data representations rather than natural language
communication, its results are not directly comparable to the other methods being compared.

Experiment Setup. For each baseline2, we consider two settings labeled as “Silent” and
“Comm”, respectively. In the “Silent” setting, the method operates without communication,
where policies focus solely on controlling the vehicle without generating messages. In contrast,
the “Comm” setting allows the method to either generate messages alone or both messages
and driving commands. For each LLM-based learning method, we train the models for up
to 30 episodes per scenario, with early stopping if the scenario is solved, indicated by 10
consecutive successful episodes. After training, we evaluate each method over 30 episodes
and report the average performance across these evaluations.

6.1 Quantitative Result

LLMs can facilitate cooperation through language communication in zero-shot.
Table 1 presents our evaluation of LLM agents without training across all scenarios under both
the “Comm” and “Silent” settings. We observe that, even without learning, LLMs are able

2Except for LLM+Debrief, which is only tested under the “Comm” setting since it is particularly
designed for improving multi-agent communication.
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Table 1: Experiment Results for Communication vs Silent Agents. We evaluate on adversarial cases
where being aggressive or conservative will result in failure.

Method
Scenario Overtake (Perception) Red Light Left Turn

Name LLM Comm R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑
Untrained (Silent) Yes No 0.00 0.00 0.0 -0.60 0.80 20.0 0.20 0.33 53.3
Untrained (Comm) Yes Yes -0.63 0.66 33.3 0.80 0.07 86.7 0.20 0.33 56.7
Coopernaut No Yes 1.00 0.00 100.0 0.97 0.00 96.7 0.93 0.03 96.7

Method
Scenario Overtake (Negotiation) Highway Exit Highway Merge

Untrained (Silent) Yes No 0.50 0.67 3.3 -0.93 1.5 20.0 -1.26 1.63 18.5
Untrained (Comm) Yes Yes 0.50 0.70 53.3 -0.73 0.6 33.3 -0.10 1.03 45.5

to leverage communication to foster some levels of cooperation in most scenarios, indicated
by higher success rates when addressing conflict or partial observation challenges. However,
there remains substantial room for improvement. Interestingly, while communication enables
cooperation, it also tends to increase the frequency of collisions compared to the Silent
setting. We hypothesise that it is because LLMs become overly confident in their perceptions
or behave more aggressively in driving tasks. In contrast, without communication, LLMs
often adopt overly conservative policies, particularly in scenarios like Overtake (Perception).
The typical message length generated by LLMs ranges from 0 to 50 words, requiring less
than 0.01 Mbps, a stark contrast to the 5.1 Mbps reported in Coopernaut Cui et al. (2022),
highlighting the efficiency of using natural language as the communication protocol, especially
in negotiation tasks.

Table 2: Experiment Results for Improvement Methods.

Method
Scenario Red Light Highway Merge

Name LLM Comm R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑
Untrained Yes No -0.6 0.80 20.0 -1.26 1.63 18.5
+Reflection Yes No -0.73 0.86 13.3 -0.86 1.43 28.5
+Reflection+RAG Yes No -1.00 1.00 0.00 -2.00 2.00 0.0
Untrained Yes Yes 0.80 0.07 86.7 -0.10 1.03 45.5
+Reflection Yes Yes 0.70 0.13 83.3 0.20 0.87 50.0
+Reflection+RAG Yes Yes -0.93 0.96 3.3 -2.00 2.00 0.0
+Debrief Yes Yes 0.80 0.07 90.0 0.40 0.57 51.5

LLMs can be further improved through reflection and debriefing. Table 2 evaluates
different training methods in Red Light (Perception) and Highway Merge (Negotiation)
scenarios. We found that LLMs’ performance in negotiation tasks improves with reflection,
but incorporating in-context knowledge updates and revising them with new experiences
proves more reliable than LLMs’ self-correcting actions without human oversight.
We hypothesize that the failure of Retrieval Augmented Generation (RAG) methods in our
environment stems from the complexity of generating accurate messages—the search space
is too large for language models to easily correct without additional message validation.
Improvements from reflection were less pronounced in perception tasks but significantly
enhanced performance in negotiation tasks, where reflection benefited both silent and
communication settings. The LLM+Debrief method achieved the best performance overall,
underscoring the potential of collective discussion in improving cooperation.

6.2 Qualitative Analysis

While the main cooperation mode in perception tasks is sharing critical or abnormal traffic
information, the cooperation mode in negotiation mainly lies in the argument on road priority.
Interestingly, we found that LLMs can form a convention through in-episode communication
and demonstrate diverse conventions across episodes. For example, in the evaluation of the
LLM+Debrief model, we found that LLMs could gives way to vehicles on the main highway,
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I am creating a 
safe gap for you

Thank you for 
slowing down

I am slowing 
down to position 
myself for 
merge

I am maintaining 
my current 
speed.

Figure 4: Diverse cooperation modes in the Highway Merge negotiation scenario. In this scenario,
both vehicles aim to merge quickly as they are in a hurry. Top: The merging vehicle successfully
negotiates for the highway vehicles to yield. Bottom: The merging vehicle opts to wait for the
highway vehicle to pass before merging.

while sometimes successfully convince the highway cars to slow down for them, demonstrated
in Figure 4. We provided videos demonstrating messages and reasoning process along with
the paper in the supplementary materials.
In Red Light Violation scenario, we compare the generated cooperative strategy and knowl-
edge for future driving from reflection and debriefing. We found that the debriefed knowledge
and cooperative strategies are more comprehensive and proactive than the decentralized
reflection knowledge. Details in Appendix D.

7 Conclusion and Future Work

In summary, we identify a novel application domain for large language models in multi-
agent learning systems, talking vehicles, where agents are required to send natural language
messages and understand natural language messages to incorporate them into driving plans.
Solutions to the talking vehicles problem have the potential to enable autonomous agents
to facilitate cooperative perception and negotiation with human drivers. As a first attempt
to solve the talking vehicles challenge, we propose a new method, LLM+Debrief, for
generating messages and comprehending received messages. Our experiments show the
effectiveness of LLM+Debrief quantitatively and qualitatively.

Limitations and Future Work. While we provide initial evidence of LLM+Debrief’s
potential in the talking vehicles problem, this research opens up several exciting future research
areas for further exploration and development. First, the current LLM+Debrief framework
takes text description as observations, which relies on an idealized perception system. The
TalkingVehiclesGym environment is able to provide multi-modal sensor observations. In
future work, we are interested in developing a multi-modal extension of LLM+Debrief,
which allows end-to-end perception and reasoning over the rich context information embedded
in multi-modal observations. Second, this paper reports on a successful proof-of-concept,
we are interested in scaling the evaluation benchmark and solution to more diverse traffic
scenarios and operation conditions resembling real-world V2V communication, e.g., subject to
time delays, adversarial attacks, and limited bandwidths. Last, our framework opens up the
exciting potential to create a cooperative driving system for mixed-autonomy traffic scenarios.
We are interested in realizing this potential, by studying the talking vehicles problem
with human-in-the-loop experiments and exploring framework design to enable efficient
communication between autonomous vehicles and human drivers.
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A Method

The algorithm implements LLM+Debrief, a centralized multi-agent learning framework
that leverages communication and reflection using large language models (LLMs) to enhance
coordination between agents in a simulated environment.
Messages exchanged between agents during the simulation are incorporated into their
observations, allowing the agents to adapt their strategies continuously. After completing
each episode, the environment provides feedback, which is used to label and process the
experiences in the replay buffer for further learning. This feedback helps the agents refine
their knowledge and improve their decision-making in subsequent episodes.
The debriefing process plays a crucial role in this algorithm. After each episode, agents
engage in multiple rounds of debriefing, where they propose or revise cooperative strategies
based on their experiences and interactions. The order of debriefing is randomized to simulate
natural dialogues, enhancing the realism of the communication. Once the debriefing rounds
are complete, the agents reflect individually, summarizing the discussions and updating their
knowledge bases. This reflection step is critical for improving future performance, enabling
agents to learn from successes and failures.
At the conclusion of the training process, the agents’ knowledge and policies are updated,
with the final policies from the last self-play iteration being used for further evaluations.
The entire process is designed to improve the agents’ ability to communicate effectively and
make informed decisions in a multi-agent setting.
The agents use Llama-3-8B-Instruct to generate and interpret messages, with a temperature
setting of 0.2 to ensure more deterministic outputs. The environment updates every 0.5
seconds (equivalent to 10 simulation frames), and the agents’ messages are considered relevant
for up to 2 seconds, ensuring timely and efficient communication. The experiments were
conducted on two Nvidia A40 40GB GPUs, which were used to manage both the LLM-based
policies and the simulation environment. This setup allowed the agents to run their LLM-
based decision-making processes in parallel, enhancing the scalability of the system and
enabling more efficient training.
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Algorithm 1 Multi-Agent Centralized Debrief Reflection with Communication
Input: Multi-agent Simulation Environment env, LLM agents{πi∈I}, Debriefing round
R.
Initialize: Knowledge {Ki∈I}, Replay Buffer ReplayBuffer
for j=1, 2, 3... // Training epoch do
{obsi} = env.reset()
while t<T // Time step do

for i=1,..., N //Per agent, but execute in parallel do
// Get CoT reasoning for each agent based on observation and knowledge
reasoningi ←agents.reason(obsi, Ki)
// Get decisions for each agent based on observation and knowledge
messagei, controli ←agents.act(obs, Ki, reasoningi)

end for
// Step the environment with actions
{next_obsi} ←env.step({messagei, controli})
// Store experience to the replay buffer
ReplayBuffer.add(obs, next_obs, reasonings, messages)
// Message Dialog becomes part of the observation
{obsi} ←{next_obsi} ∪ {messagei}

end while
// Get episode feedback from the environment
feedback ←env.evaluate()
// Lable all the transition data in hindsight
data_post_processing(ReplayBuffer))
// Debriefing and learning from feedback, update knowledge
// Randomly decide debrief order
for r=1,...,R do

if strategy=None then
cooperation_stategy = agentr.propose()

else
cooperation_stategy = agentr.revise()

end if
end for
Summarize the dialogue and use it for future learning
{Ki} ←agent.reflect()({Ki},

end for
last {πi,j} during the last iteration of self-play
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B Environment

The environment follows gymnasium and PettingZoo API, assuming a parallel-acting envi-
ronment because we leverage this feature to parallel language model inference. We made
significant changes to support multi-agent communication and heterogeneous agent configura-
tion in CARLA. TalkingVehiclesGym wraps around the CARLA server and the client to set
up agents as a bridge between the simulator and learning agent policies that are able to learn
from replay buffers. Language Communication Agents can the MQTT-based transceiver we
implemented, and the communication is among Agents instead of going through server.

Env (Server + Client)

Agents
Sensor subscription
Message passing

Scenario

Vehicles

Other actors

Policy
learning/human/

heuristic

Captions, feedbacks
Sensor data, reward

Control / Message

Apply control

Carla Data Provider
Experience
Obs, action, next 

obs, reward, 
feedback

CARLA Server

ClientEvaluator

Reward

Feedback

Talking Vehicles Gym
A multi-agent, gym-like (pettingzoo), high-fidelity, communication-supporting, scenario-based environment

Assume perfect perfect perception from 
sensors, and we have atomic tests to 
understand reasons for  failure episodes

Figure 5: TalkingVehiclesGym

Table 3: Example Scenarios. Here we describe the fundamental composition of each accident-
prone scenario, where the background agents can be configured in terms of density, controlling
policies, and communication capabilities.
Interaction Type Scenario Name Description

Cooperative
Perception

Overtake A vehicle plans to overtake a broken and stopped
truck by moving into the opposite lane. The truck
can still communicate but the opposite-going car can
not.

Left Turn A vehicle tries to turn left on a left-turn yield light
when a truck is blocking the view of the opposite
lane. The truck is able to communicate.

Red Light Violation A vehicle is crossing the intersection when there is
another vehicle running the red light. Lidar fails
to sense the other vehicle because of the lined-up
vehicles waiting for a left turn, one of those cars
being able to communicate.

Negotiation
Overtake A vehicle is going to borrow the opposite lane to

overtake a stopped truck. The truck is not able to
connect, but an opposite-going car is able to commu-
nicate.

Highway Merge A vehicle is going to merge onto the highway but the
target lane has continuous traffic flows. A vehicle on
that lane is able to communicate and alter plans.

Highway Exit A vehicle is going to exit the highway but it needs to
cross lanes where there is a traffic flow. A vehicle in
the flow is able to communicate and alter plans.
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C Prompts

This figure serves as a demonstration of the prompts; the prompts that we use are more
complex as they are structured in the code.

System
You are driving a car, and your goal is to accomplish a given <task>.
You can coordinate with any other vehicles to avoid collisions and or reduce wait time. I will give you 
description of the driving situation from your LiDAR perception, but note that it may be partially 
observable.\nThe observations are formatted as:  
Observation: <observation>
Possible actions are: 1. stop (stop the vehicle) 2. go (follow the planned route)

1. Sign of the Lane ID indicate the direction of the lane.
2. Your received messages are from other vehicles. Be sure to analyze the messages and how that message 
will affect you.
3. You decide an action every 10 frames (0.5 seconds).
4. Do not switch your action unless it is necessary.

User
'Observation: You are driving the Vehicle 465, and it is a vehicle.lincoln.mkz_2020. Your 
current speed is: 4.26 m/s, and the speed limit is: 8.33 m/s.   
The traffic light is currently: green. You are at an intersection. Around you, there are 
other vehicles:
(1)Vehicle 467 is a vehicle.carlamotors.carlacola, and is     
stationary. It is at an intersection. It is 3.83 meters behind you and 3.66 meters to 
your left.
(2)Vehicle 466 is a vehicle.audi.tt, traveling at speed: 8.11 m/s. It is
moving closer to you. It is at an intersection. It is 3.95 meters ahead of you and 2.58 
meters to your left.
Your task is: pass the intersection if the traffic lights are green. 
Analyze the other vehicles in the situation, received messages from other vehicles and 
how to react or negotiate to accomplish your task safely.

Agent
Based on the observation, I can analyze the situation as follows:\n\n1. Vehicle 467 
(Carlacola) is stationary and is at an intersection,    
which means it is not a threat to my movement.
2. Vehicle 466 (Audi TT) is traveling towards me and is at an intersection. It is 
moving at a speed of 8.11 m/s, which is    
slightly above the speed limit. This vehicle may pose a threat to my movement if it 
does not slow down or yield to me.
Considering the task is to pass the intersection if the traffic lights are green, I 
should prioritize my safety and the safety of other vehicles.
Action: 2. go (follow the planned route)
I will continue to follow the planned route and pass the intersection, but I will 
also keep an eye on Vehicle 466 and be prepared to adjust my speed or action if 
necessary to avoid a collision.

User
You MUST respond with an action, formatted as a JSON object with the following 
structure:
command: <command>
where you replace <command> with your actual command, chossing from: go, stop
Do nothing else but return the action.

Agent
{"command": "go"}
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D Example Learned Knowledge and Cooperative Strategies

Red Light - Debrief - Truck. “knowledge”: Here is the revised knowledge for myself
to keep in mind for future driving: When approaching an intersection, I will prioritize
continuous information sharing and mutual awareness with other cooperative vehicles. I will
share my intentions and speed with other vehicles, and request information about their status
and intentions. I will provide detailed information about approaching vehicles, including
their speed and distance, as well as any obstacles or hazards on the road. I will also request
and receive similar information from other vehicles, creating a shared understanding of the
situation. As a big truck, I will continuously monitor the surrounding vehicles and adjust my
actions accordingly, considering the distance and speed of other vehicles, including those that
are stationary or slowing down. I will be aware of the potential for occluded vehicles and
take steps to mitigate any potential hazards. I will also be prepared to adjust my speed and
trajectory in response to changing circumstances, such as a vehicle slowing down or stopping
unexpectedly. I will maintain a watchful eye on the intersection, identifying potential hazards
or situations that may cause stagnation or inefficiency, and sending messages to other
vehicles to address these issues. I will also be mindful of the importance of slowing down and
communicating intentions when approaching an intersection, and be prepared to adjust my
speed and trajectory in response to changing circumstances.I will also consider the following
key principles: * Prioritize continuous information sharing and mutual awareness with other
cooperative vehicles * Share intentions and speed with other vehicles, and request information
about their status and intentions * Provide detailed information about approaching vehicles,
including their speed and distance, as well as any obstacles or hazards on the road * Request
and receive similar information from other vehicles, creating a shared understanding of the
situation * Continuously monitor the surrounding vehicles and adjust actions accordingly
* Be aware of the potential for occluded vehicles and take steps to mitigate any potential
hazards * Be prepared to adjust speed and trajectory in response to changing circumstances
* Identify potential hazards or situations that may cause stagnation or inefficiency, and send
messages to other vehicles to address these issues * Be mindful of the importance of slowing
down and communicating intentions when approaching an intersection, and be prepared
to adjust speed and trajectory in response to changing circumstances. By following this
strategy, I can help ensure a safe and efficient journey for all cooperative vehicles, and adapt
to changing circumstances to reduce the risk of accidents and improve overall traffic flow.
“cooperative knowledge”: The revised cooperative strategy for all vehicles is as follows:
We will focus on sharing critical traffic information to ensure a safe and efficient passage
through the intersection. Each vehicle will monitor the surrounding environment and share
updates with other cooperative vehicles, including stationary vehicles on adjacent roads
and approaching vehicles. We will request information from other vehicles to gain a better
understanding of the situation and provide warnings about potential hazards. By sharing
information and coordinating our actions, we can work together to avoid accidents and
optimize traffic flow. We will send messages to cooperative vehicles indicating the presence
of stationary vehicles, approaching vehicles, and potential hazards, and request updates on
their speed and direction. Additionally, we will prioritize caution and adjust our speed and
trajectory accordingly to ensure a safe passage through the intersection. This strategy will
enable us to make informed decisions and adapt to changing situations, ultimately leading
to a safer and more efficient intersection experience.

Red Light - Debrief - Car1. “knowledge”: Here is the revised knowledge summary
for myself to keep in mind for future driving:* When approaching an intersection, prioritize
caution and coordination by continuously monitoring the situation and adjusting speed
and actions accordingly to ensure a safe and efficient passage.* Foster a culture of open
communication and mutual awareness by actively listening to and responding to messages
from other vehicles, and be prepared to adjust actions accordingly.* Consider the speed and
distance of approaching vehicles and adjust my own speed and actions accordingly to avoid
potential conflicts and ensure a safe passage.* Prioritize coordination and communication
when approaching an intersection with multiple vehicles, and be prepared to adjust speed
and actions based on the responses of other vehicles.* When receiving messages from other
vehicles, carefully consider the information and adjust actions accordingly to ensure a
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safe and efficient passage.* Be prepared to adjust speed and actions based on the traffic
light status and the presence of other vehicles, and maintain a safe distance to avoid
potential collisions.* Prioritize mutual awareness and cooperation by actively monitoring the
surroundings, including any occluded vehicles, and adjusting speed and trajectory accordingly
to ensure a safe and efficient passage.* Continuously monitor the situation and adjust speed
and actions accordingly to ensure a safe and efficient passage, even when encountering
unexpected situations or changes in the traffic environment.* Prioritize flexibility and
adaptability when navigating intersections, and be prepared to adjust speed and actions
in response to changing circumstances.* Consider the potential impact of my actions on
other vehicles and the intersection as a whole, and adjust speed and actions accordingly
to ensure a safe and efficient passage.* Use clear and concise communication to convey my
intentions and status to other vehicles, and be prepared to adjust my actions based on their
responses.* Continuously share information about my current speed, position, and trajectory
with other cooperative vehicles, and adjust my actions accordingly based on their responses.*
Prioritize coordination and communication with other vehicles to ensure a smooth and safe
passage through intersections, and be prepared to adjust speed and actions based on the
responses of other vehicles.I will keep these principles in mind for future driving, focusing on
communication, coordination, and mutual awareness to ensure a safe and efficient passage
through intersections.
“cooperative knowledge”: The revised cooperative strategy for all vehicles is as follows:
We will focus on sharing critical traffic information to ensure a safe and efficient passage
through the intersection. Each vehicle will monitor the surrounding environment and share
updates with other cooperative vehicles, including stationary vehicles on adjacent roads
and approaching vehicles. We will request information from other vehicles to gain a better
understanding of the situation and provide warnings about potential hazards. By sharing
information and coordinating our actions, we can work together to avoid accidents and
optimize traffic flow. We will send messages to cooperative vehicles indicating the presence
of stationary vehicles, approaching vehicles, and potential hazards, and request updates on
their speed and direction. Additionally, we will prioritize caution and adjust our speed and
trajectory accordingly to ensure a safe passage through the intersection. This strategy will
enable us to make informed decisions and adapt to changing situations, ultimately leading
to a safer and more efficient intersection experience.

Red Light - Reflection - Truck. “knowledge”: Here is the revised knowledge I can
keep in mind for future driving: * When approaching an intersection, be aware of the
vehicles around you, including stationary and moving vehicles, and consider their speed and
direction.* When receiving messages from other vehicles, acknowledge and respond to them
to maintain a cooperative and safe environment.* When slowing down or stopping, make
sure to communicate your actions to other vehicles around you to avoid potential collisions
or misunderstandings.* When coordinating with other vehicles, consider their speed and
direction and suggest slowing down or adjusting course to ensure a safe passage.* When
encountering a potential threat or accident-prone situation, prioritize safety and communicate
with other vehicles to take necessary precautions.* As a stationary vehicle, focus on sharing
critical traffic information with other vehicles to help them navigate the intersection safely,
and prioritize clear and concise communication to avoid misunderstandings.* Be aware of
possible occlusions and use sensors to detect occluded vehicles, adjusting actions accordingly.*
Prioritize safety and communicate with other vehicles to take necessary precautions in
potential threat or accident-prone situations.* When providing guidance to other vehicles,
consider the intersection layout and suggest a safe path, taking into account the speed and
direction of other vehicles.* When receiving guidance from other vehicles, acknowledge and
follow their instructions to ensure a safe passage.* As a stationary vehicle, be prepared to
provide guidance and support to other vehicles, especially those approaching the intersection,
and prioritize clear and concise communication to avoid misunderstandings. I removed the
mention of Vehicle ID and revised the knowledge to focus on general principles and strategies
for safe and cooperative driving.

Red Light - Reflection - Car1. “knowledge”: Based on my analysis and proposed
strategy, I have revised my knowledge summary for future driving as follows:* When
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approaching an intersection, prioritize caution and consider the possibility of other vehicles
approaching or changing their speed.* Be aware of stationary vehicles around you and adjust
your speed accordingly to ensure a safe passage.* When receiving messages from other
vehicles, take them into consideration and adjust your actions accordingly to ensure a safe
and smooth passage.* Always be vigilant and consider potential occlusions that may hide
other vehicles from your view.* When following a planned route, be prepared to adjust your
speed or actions if necessary to ensure a safe and efficient passage.* When approaching
a traffic light, be prepared to stop or slow down if necessary, as the light could change
to red at any moment.* When driving, always prioritize caution and awareness of your
surroundings, and be prepared to adjust your actions accordingly to ensure a safe and
efficient completion of your tasks.* Consider the possibility of other vehicles changing their
speed or direction, and adjust your actions accordingly to maintain a safe distance and avoid
potential collisions.* Be prepared to adjust your speed or actions in response to changing
road conditions, such as construction or inclement weather.* Always maintain a safe distance
from other vehicles and be prepared to stop or slow down if necessary to avoid a collision.*
When approaching a stationary vehicle, be prepared to adjust your speed and trajectory to
ensure a safe passage, taking into account the vehicle’s position and any potential hazards.*
When receiving a message from a stationary vehicle, take it into consideration and adjust
your actions accordingly to ensure a safe and smooth passage.* When approaching a potential
collision or hazard, prioritize caution and take immediate action to avoid the situation, such
as slowing down or changing direction.* Always keep in mind the potential consequences of
your actions and be prepared to adapt to changing situations.I have revised the knowledge
summary to focus on general principles and strategies for safe and efficient driving, without
referencing specific Vehicle IDs. This will allow me to adapt to changing situations and
vehicles without relying on specific IDs.
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