
Exposing agents as web services: a case study using JADE and
SPADE

Henrique Donâncio1, Arthur Casals2, Anarosa A. F. Brandão2

1Instituto de Matemática e Estatı́stica - Universidade de São Paulo (IME-USP)
R. do Matão, 1010 - 05508-090 - São Paulo - SP - Brazil

2Escola Politécnica - Universidade de São Paulo (EPUSP)
Av. Prof. Luciano Gualberto, 158 - trav. 3 - 05508-900 - São Paulo - SP - Brazil

donancio@ime.usp.br, {arthur.casals,anarosa.brandao}@usp.br

Abstract. Agents are autonomous software components that can be combined
into multiagent systems (MAS). They possess capabilities related to distributed
systems. For this reason, agents have been studied along with web services and
Web technologies in Service-Oriented Architectures (SOA). With the advent of
new Web-related paradigms, the need of reviewing existing work in this area
arises. In this paper we briefly review some of the existing work relating agents
and web services. For this purpose, we perform a comparison between two
existing multiagent platforms (JADE and SPADE) considering their ability to
support agents as web services. This comparison is done using an existing im-
plementation of a simple MAS in JADE and its re-implementation in SPADE.

1. Introduction
Agents are autonomous entities that can be organized in communities and work together
to solve problems of different complexity degrees [Ferber 1999]. As such, multiagent
system (MAS) are systems composed of multiple agents that interact among themselves
in a single environment [Russell and Norvig 2003]. Also, due to their inherent interac-
tive capabilities, agents can be used as a paradigm when designing complex distributed
systems [Wooldridge 2009]. Due to their inherent interoperability, each agent can act
to maximize the expected output of the system and to adapt to unexpected contingen-
cies [Jennings 2000].

Part of the research related to MAS and complex systems involves integrat-
ing agents and web services [Jennings et al. 1998, Lieberman et al. 1995, Etzioni 1996,
Ardissono et al. 1999, Greenwood and Calisti 2004]. Designing inter-operable complex
systems involves not only creating systems with distributed capabilities, but also systems
capable of using existing communication protocols and mechanisms in order to share and
reuse knowledge.

In particular, the idea of using agents as web services appeared in the
early 2000s [Hendler 2001, Huhns 2002]. Subsequent work on agents exposed as
web services was also related to web-based MAS [Muldoon 2007, Thiele et al. 2009,
Tapia et al. 2009]. However, while SOAP web services are still largely used to implement
SOA systems [Keen et al. 2004], new web paradigms use different technologies, from
hypermedia-controlled RESTful web services (HATEOAS [Alarcon et al. 2010]) to real-
time protocols (such as WebSockets 1) and event-driven architecture [Michelson 2006]

1https://tools.ietf.org/html/rfc6455



elements.

Our research is focused on inter-operable agents capable of using Internet commu-
nication protocols. For this reason, we need to explore how existing MAS platforms can
be used in conjunction with technologies related to the existing web paradigms. Differ-
ent MAS platforms were developed in the last years [Kravari and Bassiliades 2015], with
different levels of compliance with inter-operable systems development standards. Since
the BDI agent architecture (explained below) is of particular interest for our research, we
focused our comparison in MAS platforms that support this architecture. Also, due to the
fact that we are interested in inter-operable agents, we explicitly analyze the communica-
tion language used by agents in the compared platforms.

This paper is organized as follows: in Section 2, we provide some background on
web services, intelligent agents, and agent communication languages. Section 3 contains
some of the existing work related to using agents in conjunction with Web-related tech-
nologies. In Section 4, we briefly present some multiagent platforms as well as the criteria
used to choose them. These platforms are compare in Section 5. In addition, Section 6
is dedicated to illustrate how an agent can be deployed as a web service using two of
the evaluated platforms. Finally, Section 7 discusses and concludes this paper with some
perspectives for future work.

2. Background

In this section we present some concepts that will be used along this work. First we pro-
vide a brief description of web services, followed by an overview on intelligent agents
(with emphasis on one particular architecture). After that we provide an overview on
languages used by the agents to interact between themselves, referred to as agent commu-
nication languages.

2.1. Web services and SOA

A web service can be described as a software designed to interact with existing appli-
cations, enabling different applications to interact between themselves using Web tech-
nologies and protocols [Alonso et al. 2004]. It can be discoverable through the use of a
directory service, and it can be described in terms of message formats, communication
protocols, and data types it uses. Web services embody the concepts of a service-oriented
architecture (SOA)1 [Erl 2005], so they can be used in conjunction to obtain the function-
alities of an equivalent larger system.

2.2. Intelligent agents

As mentioned before, agents are autonomous entities able to work together to solve de-
termined problems. Agents can exist in both physical and virtual environments, and they
are capable of proactively interacting with other agents. Such interactions can involve
cooperation, negotiation, or coordination, and each agent is capable of creating their own
goals and taking individual actions in order to satisfy them [Wooldridge 2009]. As a con-
sequence, a MAS composed of goal-oriented agents is intrinsically adaptable, and can be
used to solve problems in many different domains [Pěchouček and Mařı́k 2008].

1http://www.opengroup.org/subjectareas/soa



Intelligent agents are capable of reasoning, deciding which action to per-
form according (i) to the available information and (ii) to their consequences
in the environment [Wooldridge 2009]. The belief-desire-intention (BDI) architec-
ture [Rao and Georgeff 1991] is one of the software architectures used to model
and implement intelligent agents, and it is based on the human practical reasoning
model [Bratman 1987]. A BDI agent uses the concepts of belief, desire, and intention
in a means-ends reasoning process, and its actions are organized in an execution plan
built on top of (i) what the agent believes to be true, and (ii) what the agent desires to
achieve as a goal [Konolige and Nilsson 1980].

2.3. Agent Communication Languages

An agent communication language (ACL) establishes a structure for the message ex-
changing between agents, both in type and meaning. However, agents don’t simply ex-
change messages; they actually engage in conversations [Labrou 2001]. A conversation
can be seen as a pre-arranged protocol or message exchanging pattern, oriented towards a
specific task or objective.

We will limit the scope of the ACLs to the two most consistently
used [Li and Kokar 2013, Kamdar et al. 2018]: FIPA-ACL and KQML. Both languages
are based on the speech acts theory [Searle 1969] and are composed of different performa-
tives 1. They can be understood as sentences that describe and influence an environment
at the same time. As such, the messages exchanged between agents can represent actions
or communicative acts. Despite being relatively old, these standards are still being used
to this date [Răileanu et al. 2018, Blos et al. 2018].

The FIPA protocol 2 is an effort to established guidelines to make platforms inter-
operable. FIPA-ACL is composed of 22 communication performatives. The most com-
mon performatives are:

• inform: The sender informs the receiver that a given proposition is true;
• request: The sender requests that the receiver execute some action;
• agree: The sender agrees to take some action, possibly in the future;
• not understood: The sender (eg, i) informs the recipient (eg, j) that it perceived

the action performed by j, but did not understand it;
• refuse: The sender refuses to execute a particular action, explaining the reason for

the refusal.

While FIPA-ACL only establishes interaction protocols between agents, there are
also FIPA specifications for agent management used in conjunction with the communica-
tion standards. The basic components of these specifications are (i) the Agent Platform,
where each agent has a unique identifier called AID (FIPA Agent Identifier); (ii) the Agent
Management System (AMS), responsible for managing the Agent Platform; and (iii) the
Directory Facilitator (DF), that allows the agents to publish services in a discoverable
manner.

Similarly, the KQML language is also composed of communication performa-
tives. It possesses three different layers:

1https://stanford.library.sydney.edu.au/entries/speech-acts/
2http://www.fipa.org/



• Content layer: where the actual content of the message resides, in the computer’s own
representation language;

• Communication layer: used to encode lower level communication parameters, such
as the identity of both the sender and the recipient of the message;

• Message layer: provides the performatives used in the communication process, finding
all possible interactions with KQML-compliant agents.

KQML also describes a special class of agents named facilitators. The facilita-
tor is responsible for performing multiple communication services, such as maintaining
a registry of services, routing messages to these services based on content, and providing
mediation between communication parts. Differently from FIPA-ACL, these specifica-
tions are contained in the ACL definition, and do not depend on additional standards.

Despite being similar in multiple aspects, there are some characteristics particular
to one or another ACL that make their use domain-dependent. We will not detail all
the differences between the two ACLs at this point. These differences, however, can be
crucial in choosing one or another ACL according to a specific set of requirements.

3. Related work
Integrating agents and the web services has been both proposed and experimented
on since the late 1990s [Jennings et al. 1998, Lieberman et al. 1995, Etzioni 1996,
Ardissono et al. 1999, Greenwood and Calisti 2004]. In particular, the idea of using
agents as web services appeared in early 2000s [Hendler 2001, Huhns 2002]. Using
BDI agents as web services was also proposed around that time by Dickinson and
Wooldridge [Dickinson and Wooldridge 2005].

Using agents in conjunction with web services was further explores with platforms
such as CArtAgO-WS [Ricci et al. 2010], which allowed the development of SOA appli-
cations populated by agents taking into account both the concepts of artifacts - ”objects”
or services that could be used by the agents - and the use of agent architectures (including
BDI). Most of the existing work in this field, however, considers the Internet environment
mostly as a means for communicating - which is from where our research motivation is
originated.

Another related work [Radhakrishnan et al. 2018] presents a comparative perfor-
mance study between SPADE and JADE, with focus on security in the cloud environment.
The compared platforms were chosen due to reasons similar to our own, with the addition
of considering knowledge transferring capabilities with the use of ontologies.

In our research, we would like to explore in detail how different Internet tech-
nologies could be used by agents and MAS - and not only for communication. Exposing
agents as web services is an intuitive manner of taking advantage of the communication
protocols already in place. However, the Web can be also used as a distributed environ-
ment per se. The existing interoperability provided by the SOA architecture can also be
used for distributed reasoning and planning, for example, allowing a MAS to be fully im-
plemented and deployed using technologies not necessarily particular to agents or MAS.

For this reason, it is important first to understand how the existing multiagent
platforms could be used in this context, and what were their restrictions or limitations
regarding the integration with the Web. The objective of the present work is to revisit



web-based agents considering the current state of the Internet. We focus particularly on
agents deployed as web services and MAS that use them. For this purpose, we compared
different existing multiagent platforms in terms of capabilities and web-related capabili-
ties. This comparison is detailed in the next paragraphs.

4. Multiagent platforms
In order to compare existing multiagent platforms, our first criteria was to choose which
ones were open-source and were actively used by the multiagent community. In addi-
tion, we also consider the platforms recently used in the annual Multiagent Programming
Context event 1 to select the following ones to compare: JaCaMo 2, JIAC V 3, JADE 4,
SPADE 5, and SARL 6.

Since the BDI architecture is of particular interest for our research and JIAC and
SARL do not provide support for BDI agents, we did not include them in the comparison
presented in this work. Both JaCaMo and SPADE provide native support for BDI agents,
and JADE uses a complementary layer called BDI4JADE 7. In terms of implementation,
however, JADE and SPADE provide a communication middleware for agents. JaCamo,
on the other hand, is a meta-framework for Multi-Agent Oriented Programming (MAOP)
implemented in Java. It is composed of three different frameworks, and due to its nature
it could be modified to be used on top of JADE or other communication middleware. For
this reason, we focused our analysis in the JADE and SPADE platforms.

Before presenting the evaluated platforms, we will describe the communication
standards they use. Understanding these standards is not crucial to comprehend the plat-
forms or their evaluation. It is important, however, to understand how they take advantage
of the Internet environment from a lower-level perspective. Such understanding is related
to the motivation behind the present work, and it will play a steering role in our future
research.

4.1. JADE
JADE is a distributed middleware written in JAVA that requires a minimal knowledge
of agent theory to implement FIPA-compliant agents. Each agent in JADE is hosted by
a Container. While a host can contain other Containers, ultimately there is a Main Con-
tainer on top of them all, responsible for providing the essential FIPA-ACL functionalities
for the agents.

JADE uses the FIPA protocol not only for agent communication, but also for man-
agement. The FIPA protocol specifies an agent management infrastructure (named Agent
Platform) and a service publishing platform (named Directory Facilitator). Using JADE
allows the identification of every agent through the use of an unique identifier (AID) in a
distributed environment. The Directory Facilitator, on the other hand, allows the agents
to publish services that are visible to other agents.

1https://multiagentcontest.org/
2http://jacamo.sourceforge.net/
3http://www.jiac.de/agent-frameworks/jiac-v/
4http://jade.tilab.com/
5https://pypi.org/project/SPADE/ - version 2.*
6http://www.sarl.io/
7http://www.inf.ufrgs.br/prosoft/bdi4jade/



The message delivering mechanism used by JADE depends on an agent’s location,
and it is optimized to minimize the delivery time of messages. If two communicating
agents reside in the same host, JADE use an internal set of message transport protocols.
Also, if both agents share the same container, the message will not be serialized, but
cloned, and the new object reference is passed to the receiving agent. Otherwise, commu-
nication between different containers uses JAVA RMI (Remote Method Invocation) 1. A
study of the performance of the message transport layer system of the JADE platform is
presented in [Cortese et al. 2002], where it was shown that the JADE internal communi-
cation protocol was more efficient for intra-platform communication.

4.2. SPADE

SPADE (Smart Python multi-Agent Development Environment) is an agent framework
written in Python, and it is also FIPA-compliant. The BDI architecture used by SPADE
is based on a distributed schema: plans used by the agents are represented in the form
of services. Therefore, instead of possessing a library with multiple plans, the agents’
actions are defined by services published in the Directory Facilitator. In that sense, a
plan becomes a composition of offered services that are accessed by the agent so it can
accomplish its intentions.

Similarly to JADE, SPADE implements the agent management infrastructure
specified by the FIPA protocol. However, it uses a different message delivering mecha-
nism - mostly due to differences in the programming language used in the implementation
(Python 2). It is important to notice that in this work we used SPADE version 2.*, which
is built using Python version 2.* .

5. Multiagent Platforms Comparison

We established the comparison criteria between JADE and SPADE 2 from a Web-related
perspective. For this reason, we focused on (i) communication protocols and associated
characteristics; (ii) organization representation; (iii) support to content language; and (iv)
support to ontologies. The latter is especially important since ontologies can be used
to model and consume knowledge in an inter-operable manner [Bechhofer 2009]. The
results of the comparison can be found in Table 1:

Table 1. Comparison: JADE and SPADE

JADE SPADE
BDI X X
Directory Facilitator (DF) X X
Agent Management System (AMS) X X
FIPA-ACL X X
KQML
Multiplatform X X
Explicit organization representation
Ontologies X

1http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
2https://www.python.org/



It is important to mention that SPADE can use ontologies according to the FIPA-
ACL specifications, which state that ontologies can be passed as parameters within mes-
sages. However, SPADE does not possesses functionalities related to creating and manip-
ulating ontologies within its own environment. JADE, on the other hand, possesses such
functionalities - despite the fact that JADE-based ontologies cannot be reused since they
are modeled as Java classes.

It is also important to notice that JADE and SPADE possess multiple points in
common - especially considering the adherence to the FIPA protocol. While these speci-
fications are not necessarily mandatory for integrating agents and the Web, they are cer-
tainly important in scenarios involving a huge number of services. The DF functions as
a yellow pages for services, cataloging and listing all web services that can be used by
the agents. The AMS, on the other hand, is crucial for the study of message passing and
process management within the MAS platforms. The MAS architecture and some aspects
of the implementation are detailed in the next section.

6. Deploying agents as web services

As part of our study process, we modeled a simple MAS that used agents deployed as web
services. The objective of this step was to verify how this could be built and deployed us-
ing the current technologies and tools. As mentioned before, we chose JADE and SPADE
as the target multiagent platforms. Part of the reason behind this choice was related to the
framework’s web-related functionalities previously described. While the modeled MAS
is not complex (and we will not describe it in detail in the present work), we intend to
explore and evolve this implementation as our research advances.

6.1. JADE

JADE agents have already been used in conjunction with web ser-
vices [Nguyen and Kowalczyk 2007a, Nguyen and Kowalczyk 2007b, Liu et al. 2006].
The JADE platform uses an add-on called WSIG1 for this purpose, which handles all
requests coming from the Web and sending them to the MAS.

Also, a JADE agent must possess an Ontology and a set of Actions so that its capa-
bilities can be exposed as web services. Ontologies define the vocabulary and semantics
used in the communication between JADE agents. Actions are objects that correspond
to a request: once a request is made, it results in an action object containing the request
elements that is sent to the JADE agent.

6.2. SPADE

SPADE does not possess a specifically created component or add-on to expose agents
as Web Services. For this reason, we used a Python-based library called Werkzeug 2

that works similarly to JADE’s WSIG. Using this library made it possible to manipulate
requests via the Web and send them to the agent platform.

Since exposing agents as web services is not an existing functionality in SPADE,
it also does not have a established set of rules for Ontologies and Actions, present in the

1https://jade.tilab.com/doc/tutorials/WSIG Guide.pdf
2http://werkzeug.pocoo.org/



JADE platform. Its messaging mechanism, however, allows matching specific actions
with messages received through the use of a labeling mechanism: inbound messages are
checked for this label and processed accordingly, resulting in different actions depending
on the label.

6.3. Implementation

In order to perform the proposed comparison, we felt the need to use a single MAS model
implemented using the two different MAS platforms. For this reason, we used SPADE
to re-implemented an existing MAS that was originally implemented in JADE, called
Smart Agenda [Casals et al. 2018] (see Figure 1). This MAS functions as an agent-based
personal assistant, and it will be explained in the next paragraphs.

At this point, we would like to mention that the original MAS implementation
depends on intrinsic multiagent platform components and functionalities (as seen below).
For this reason we chose to use each of the platforms’ functionalities as extensively as we
could, as a manner of effectively comparing their built-in capabilities.

6.4. MAS Smart Agenda Requirements and Architecture

The original Smart Agenda MAS is a web-based, agent-based personal assistant. It is
deployed on the web, and all interactions between the user and the system are performed
through the use of a one-page web application. After creating an account in the sys-
tem, the user can use it to schedule new events or to modify existing ones, with the
option of including other registered users in these events. It works pretty much as a
web calendar application, with the difference that it uses intelligent agents not only for
event coordination among multiple users, but also for its built-in recommendation sys-
tem [Casals et al. 2018].

The recommendation system used by Smart Agenda takes into account user prefer-
ences (i.e. accommodation, transportation means, and periods of the day in which events
should be scheduled) for the scheduling of any new events. It also allows the automatic
re-scheduling of existing events in the case of any unforeseen circumstances, without the
intervention of the user. A video detailing the operation and use of SmartAgenda (made
available by the original authors of the system) can be found at https://bit.ly/Emas18Demo
.

From the MAS perspective, the system uses three different types of agents: Co-
ordinator, Manager and Agenda. The Coordinator agent is responsible for handling all
requests between the user and the system. In order to make the system scalable, every
Manager is responsible only for a limited number or users. Every request made by an
users is forwarded to a correspondent Manager agent, which is responsible for forward
to respective Agenda agent. The Agenda checking if existing any restrictions at the mo-
ment. If everything is OK, then proceeds with the event scheduling according to the user’s
preferences. The Manager agent also plays a role in inter-mediating communications and
scheduling conflicts when events involving more than one user are scheduled.

7. Discussion
In this work, we revisited some of the existing work on web-based agents and MAS.
We also presented two different open source multiagent platforms: JADE and SPADE.



Figure 1. Implementation architecture for the Smart Agenda agents - adapted
from [Casals et al. 2018]

Our objective was to compare them according to their support to developing agents to be
exposed as web-services. The comparison was presented and a simple MAS was imple-
mented using JADE and SPADE, with agents deployed as web services. Although not
being complex, the idea behind the implementation was to create an MAS that could be
further evolved and explored during the course of our research.

While the MAS architecture was simple enough to be modeled using a traditional
BDI architecture, we found a few difficulties related to the implementation - mostly re-
lated to exposing the agents as web services. This is interesting because at this point we
would expect that the libraries would be mature enough to allow a seamless implemen-
tation. Instead, we found problems varying from incomplete documentation to message
passing between agents. This is somewhat worrisome considering that the first imple-
mentations exposing agents as web services (and specifically using JADE) are more than
a decade old.

As a development ecosystem, Python features a variety of well-structured APIs
(Application Programming Interface) as RESTful web services, thus providing multi-
ple inter-operable functions that could be used by Python-based agent platforms. How-
ever, we encountered multiple difficulties while trying to establish agent communica-
tion within SPADE using web standards, even when using an auxiliary third-party library
(Werkzeug). In comparison, we were able to do the same with the WSIG add-on for
JADE, despite the fact that both JADE and SPADE are considered to be mature multia-
gent platforms. While this situation raises some concerns regarding the SPADE platform,
it also validates our decision to evaluate MAS platforms considering simple SOAP web
services, instead of using newer technologies. We intend to explore this point further in



future work.

This work is meant to be a stepping stone to our research interests. Our long-term
objective is to study and explore MAS platforms from both the modeling and the im-
plementation perspective, considering both existing agent-oriented software engineering
methodologies and new Web paradigms.

At this point, it was meant only to verify possible bottlenecks in the chosen MAS
platforms related to the technologies involved (which we successfully achieved). We also
intend to evolve and consolidate both implementations, so they can be complex enough
to be analyzed in terms of performance, scalability, and robustness. Once we have a
consolidated model implemented in different MAS platforms, we will be able to establish
a common baseline for future performance and scalability comparisons.

Nevertheless, we could use these results to define an architecture to delivery, for
instance, web-bots that can chat with web users to assist them in several ways.

8. Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brazil (CAPES) - Finance Code 001. This work is partially supported by
ANEEL’s Research and Development (R&D) Program.

References

Alarcon, R., Wilde, E., and Bellido, J. (2010). Hypermedia-driven restful service compo-
sition. In International Conference on Service-Oriented Computing, pages 111–120.
Springer.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Distributed Information
Systems, pages 3–27. Springer Berlin Heidelberg, Berlin, Heidelberg.

Ardissono, L., Barbero, C., Goy, A., and Petrone, G. (1999). An agent architecture for
personalized web stores. In Proceedings of the third annual conference on Autonomous
Agents, pages 182–189. ACM.

Bechhofer, S. (2009). Owl: Web ontology language. In Encyclopedia of database systems,
pages 2008–2009. Springer.

Blos, M. F., da Silva, R. M., and Wee, H.-M. (2018). A framework for designing supply
chain disruptions management considering productive systems and carrier viewpoints.
International Journal of Production Research, pages 1–17.

Bratman, M. (1987). Intention, plans, and practical reason, volume 10. Harvard Univer-
sity Press Cambridge, MA.

Casals, A., Seghrouchni, A. E. F., Negroni, O., and Othmani, A. (2018). Exposing agents
as web services in jade. In International Workshop on Engineering Multi-Agent Sys-
tems. Springer.

Cortese, E., Quarta, F., Vitaglione, G., and Vrba, P. (2002). Scalability and performance
of jade message transport system. In AAMAS workshop on agentcities, Bologna, vol-
ume 16, page 28.



Dickinson, I. and Wooldridge, M. (2005). Agents are not (just) web services: considering
bdi agents and web services. In Proceedings of the 2005 Workshop on Service-Oriented
Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands.

Erl, T. (2005). Service-Oriented Architecture – Concepts, Technology, and Design. Pren-
tice Hall, 1 edition.

Etzioni, O. (1996). Moving up the information food chain: Deploying softbots on the
world wide web. In Proceedings of the national conference on artificial intelligence,
pages 1322–1326.

Ferber, J. (1999). Multi-agent systems: an introduction to distributed artificial intelli-
gence, volume 1. Addison-Wesley Reading.

Greenwood, D. and Calisti, M. (2004). Engineering web service-agent integration. In
Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 2,
pages 1918–1925. IEEE.

Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent systems, 16(2):30–37.

Huhns, M. N. (2002). Agents as web services. IEEE Internet computing, 6(4):93–95.

Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence,
117(2):277–296.

Jennings, N. R., Sycara, K., and Wooldridge, M. (1998). A roadmap of agent research
and development. Autonomous agents and multi-agent systems, 1(1):7–38.

Kamdar, R., Paliwal, P., and Kumar, Y. (2018). A state of art review on various aspects of
multi-agent system. Journal of Circuits, Systems and Computers, page 1830006.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R.,
Adams, J., and Verschueren, P. (2004). Patterns: Implementing an soa using an enter-
prise service bus. IBM Redbooks, 336:20–28.

Konolige, K. and Nilsson, N. J. (1980). Multiple-agent planning systems. In AAAI,
volume 80, pages 138–142.

Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial
Societies and Social Simulation, 18(1):11.

Labrou, Y. (2001). Standardizing agent communication. In ECCAI Advanced Course on
Artificial Intelligence, pages 74–97. Springer.

Li, S. and Kokar, M. M. (2013). Agent Communication Language, pages 37–44. Springer
New York, New York, NY.

Lieberman, H. et al. (1995). Letizia: An agent that assists web browsing. IJCAI (1),
1995:924–929.

Liu, S., Küngas, P., and Matskin, M. (2006). Agent-based web service composition with
jade and jxta. In SWWS, volume 6, pages 110–116.

Michelson, B. M. (2006). Event-driven architecture overview. Patricia Seybold Group,
2(12):10–1571.

Muldoon, C. (2007). An agent framework for ubiquitous services. PhD thesis, Citeseer.



Nguyen, X. T. and Kowalczyk, R. (2007a). Ws2jade: Integrating web service with jade
agents. In Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stoutenburg,
S., and Sycara, K. P., editors, Service-Oriented Computing: Agents, Semantics, and
Engineering, pages 147–159, Berlin, Heidelberg. Springer Berlin Heidelberg.

Nguyen, X. T. and Kowalczyk, R. (2007b). Ws2jade: Integrating web service with jade
agents. In International Workshop on Service-Oriented Computing: Agents, Seman-
tics, and Engineering, pages 147–159. Springer.

Pěchouček, M. and Mařı́k, V. (2008). Industrial deployment of multi-agent technolo-
gies: review and selected case studies. Autonomous Agents and Multi-Agent Systems,
17(3):397–431.

Radhakrishnan, G., Chithambaram.V, and K.L., S. (2018). Comparative Study of JADE
and SPADE Multi Agent System.

Răileanu, S., Anton, F. D., Borangiu, T., and Anton, S. (2018). Design of high availability
manufacturing resource agents using jade framework and cloud replication. In Service
Orientation in Holonic and Multi-Agent Manufacturing, pages 201–215. Springer.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In Allen, J., Fikes, R., and Sandewall, E., editors, Proceedings of the 2nd
International Conference on Principles of Knowledge Representation and Reasoning,
pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

Ricci, A., Denti, E., and Piunti, M. (2010). A platform for developing soa/ws applica-
tions as open and heterogeneous multi-agent systems. Multiagent and Grid Systems,
6(2):105–132.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition.

Searle, J. R. (1969). Speech acts: An essay in the philosophy of language, volume 626.
Cambridge university press.

Tapia, D. I., Rodrı́guez, S., Bajo, J., and Corchado, J. M. (2009). Fusion@, a soa-based
multi-agent architecture. In International Symposium on Distributed Computing and
Artificial Intelligence 2008 (DCAI 2008), pages 99–107. Springer.

Thiele, A., Kaiser, S., Konnerth, T., and Hirsch, B. (2009). Mams service framework.
In International Workshop on Service-Oriented Computing: Agents, Semantics, and
Engineering, pages 126–142. Springer.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.


