
On the role of noise in factorizers
for disentangling distributed representations

Anonymous Author(s)
Affiliation
Address
email

Abstract

To efficiently factorize high-dimensional distributed representations to the con-1

stituent atomic vectors, one can exploit the compute-in-superposition capabilities2

of vector-symbolic architectures (VSA). Such factorizers however suffer from the3

phenomenon of limit cycles. Applying noise during the iterative decoding is one4

mechanism to address this issue. In this paper, we explore ways to further relax5

the noise requirement by applying noise only at the time of VSA’s reconstruc-6

tion codebook initialization. While the need for noise during iterations proves7

analog in-memory computing systems to be a natural choice as an implementa-8

tion media, the adequacy of initialization noise allows digital hardware to remain9

equally indispensable. This broadens the implementation possibilities of factoriz-10

ers. Our study finds that while the best performance shifts from initialization noise11

to iterative noise as the number of factors increases from 2 to 4, both extend the12

operational capacity by at least 50× compared to the baseline factorizer resonator13

networks.14

1 Introduction15

Some basic Visual perception tasks, such as disentangling static elements from moving objects in16

a dynamic scene and enabling the understanding of object persistence, depend upon the factoriza-17

tion problem [1–4]. The principle of factorization extends to auditory perception, e.g. separating18

individual voices or instruments from a complex soundscape [5]. Factorization also plays a key19

role in higher-level cognitive tasks. Understanding analogies for example requires decomposing the20

underlying relationships between different concepts or situations [6–10]. While biological neural21

circuits solve the above challenges deftly, factorization remains a problem unsolvable within poly-22

nomial time complexity [11]. Outside the biological domain, factorization is at the core of many23

rapidly developing fields. In robotics, factorization can enable robots to 1) understand their environ-24

ment by parsing visual scenes and identifying objects, locations, and relationships [12], and 2) plan25

and execute tasks by decomposing complex actions into a simple sequence of steps. Factorizing26

semi-primes has implications for cryptography and coding theory [13]. Factorization helps develop27

more transparent and explainable AI systems [14], by decomposing complex decision processes into28

understandable components.29

Vector-symbolic architectures (VSA) [15–18] is an emerging computing paradigm that can repre-30

sent and process a combination of attributes using high-dimensional holographic vectors. Unlike the31

traditional methods where information might be stored in specific locations (e.g., a single bit repre-32

senting a value), VSA distributes the information across the entire vector signifying a holographic33

nature. This means if some components of the vector are corrupted or lost, the overall information34

can still be recovered due to the distributed nature of the encoding. In high-dimensional spaces,35

Submitted to the Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNCP
2024). Do not distribute.

randomly generated vectors are very likely to be nearly orthogonal aka quasi-orthogonal [18]. This36

crucial property allows efficient and robust representation of a vast number of different concepts37

in VSA with minimal interference using these nearly orthogonal vectors as building blocks. More38

details on the background of VSA are provided in Appendix 5.1.39

A typical algebraic operation for combining F different attributes in an object is to element-wise40

multiply associated D-dimensional holographic vectors. Due to the properties of high-dimensional41

spaces, this operation tends to produce unique representations for different attribute combinations.42

A deep convolutional neural network can be trained to generate these product vectors approxi-43

mately [14] by taking the raw image of the object. The inverse of the binding problem becomes44

the factorization problem which is the disentangling of an exact product vector or, as in the latter45

case, an inexact product vector, into its constituent attribute vectors. While binding is a straightfor-46

ward calculation, factorization involves searching for the correct combination of attributes among47

an exponentially large space of possibilities.48

Resonator network [19, 20], a type of factorizer, built upon the VSA computing paradigm, introduces49

a promising approach to perform rapid and robust factorization. Resonator networks employ an50

iterative, parallel search strategy over high-dimensional vector data structures called codebooks,51

leveraging the properties of high-dimensional spaces to explore the search space efficiently and52

converge on the most likely attribute combinations. In resonator networks’ iterative search strategy53

limit cycles pose an obstacle to effective functioning.54

As one potential remedy, the IN-MEMORY FACTORIZER (IMF) [21] harnesses the intrinsic stochas-55

tic noise of analog in-memory computing (IMC) to break free of limit cycles during the iterative56

decoding. Together with an additional nonlinearity in the form of a computationally cheap thresh-57

olding function on the similarity estimates, IMF solves significantly larger problem sizes compared58

to the original resonator networks. Indeed, more recent advancements on resonator networks [22]59

make also use of nonlinearities in the form of ReLU and exponentiation and noise on the similarity60

estimates. In this case, the noise has to be generated by a dedicated noise source (e.g., a random61

number generator) at every decoding iteration. IMF however does not need such an additional noise62

source thanks to the IMC’s intrinsic noise; yet, its performance relies on the availability of underly-63

ing hardware with specific noise levels across decoding iterations.64

In this article, we explore novel factorizers with alternative noise requirements to mitigate limit cy-65

cles. In particular, we propose ASYMMETRIC CODEBOOK FACTORIZER (ACF), where codebooks66

are initialized with some noisy perturbations and the same instance of noise used across iterations67

providing a relaxed noise requirement to circumvent limit cycles. We conceptualize a purely digital68

factorizer design that can provide energy efficiency gains by eliminating data conversions. We find69

that compared to the baseline resonator network [19], the variants embracing noise, IMF, and ACF,70

always perform better in terms of operational capacity and require fewer iterations to converge at71

different sizes of search spaces.72

2 Background: Resonator Networks73

The resonator network is an iterative algorithm designed to factorize high-dimensional vectors [19].74

Essential to the operation of resonator networks are codebooks, which serve as repositories of quasi-75

orthogonal high-dimensional vectors called codevectors, with each codevector representing a dis-76

tinct attribute value. For instance, in a system designed for visual object recognition, 3 separate77

codebooks might store representations for shapes (like circles, squares, triangles), colors (red, green,78

blue), and positions (top left, bottom right, center) each having 3 distinct possibilities for the attribute79

values. See Fig. 1. The number of potential combinations of these codevectors to form product vec-80

tors grows MF with respect to the number of attributes (i.e., factors F) and attribute values (i.e.,81

codebook size M) exponentially. However, the dimensionality (D) of these vectors is usually fixed82

to several hundred leading to (D << MF), searching for the specific combination of codevectors83

that compose a given product vector becomes computationally expensive, presenting a hard combi-84

natorial search problem. Thanks to the quasi-orthogonal property of codevectors however, resonator85

networks can rapidly navigate the vast search space.86

Starting with an initial estimate for each factor, and the product vector, it updates the estimates one87

factor at a time. It achieves this by first ”unbinding”(UB) or removing the influence of the estimated88

values of all but the selected factor from the product vector. In the context of bipolar spaces, where89

2

blue

x

y
Position
codebook

Object
codebook

position

object

color

Color
codebook

bl
ue

gr
ee
n

Estimate
Vectors

Product
Vector

AS
RC

AS
RC

AS
RC

C
on
ve
rg
en
ce

D
et
ec
tio
n

Factorizerre
d

UB

AA

UB AA

UB AA

Fig. 1: Factorization of perceptual representations: color position and object type using factorizers.
Taking the product vector as input, and starting from initial estimate vectors the factorizer undergoes
unbinding (UB), associative search (AS), attention activation (AA), and reconstruction (RC) phases
to iteratively refine the estimate. AS and RC take the biggest share of the computing and memory.
They map to a predominantly MVM operation.

codevector components are +1 or -1, unbinding is accomplished through element-wise multiplica-90

tion. Secondly, the unbound vector is compared against all codevectors within the corresponding91

codebook using an associative search (AS), typically a series of cosine similarity or dot products92

that can be formulated as a matrix-vector-multiplication (MVM) operation. The associative search93

outputs an attention vector of length M , measuring how the unbound vector aligns with the codevec-94

tors. Thirdly, the attention vector is passed through an optional attention activation (AA) function.95

This allows us to filter out uninteresting codevectors. Fourthly, using activated attentions as weights,96

codevectors are superimposed to reconstruct a new estimate vector for the selected factor. This re-97

construction (RC) operation can also be formulated by an MVM operation with the transpose of the98

codebook itself acting as the reconstruction matrix and the activated attention acting as the vector.99

The above four phases are repeated, refining the estimates for each factor with each iteration until100

the resonator network converges to a stable solution representing the most probable factorization of101

the product vector.102

This can be mathematically formulated as follows:103

Let us consider a three-factor (F = 3) problem with the factors originating from three codebooks:104

A = { a(1), a(2), · · · , a(M) } , B = {b(1),b(2), · · · ,b(M) } , C = { c(1), c(2), · · · , c(M) } ,105

each with D dimensional bipolar codevectors A,B,C ∈ {−1,+1 }D×M . Let the estimate for106

each factor be represented using â, b̂, ĉ respectively, and the product vector denoted with x, then for107

the first factor, unbinding of other factors is given by: ã = x⊘ b̂⊘ ĉ. Based on the unbound vector ã108

of the first factor, AS, AA, and RC phases can be written as in the following equations respectively.109

αa(t) = ã(t)AT (1) , α′
a(t) = f(αa(t)) (2) , â(t+ 1) = sign(α′

a(t)A) (3)110

Where t,α, f, sign stands for iteration number, attention vector, activation function, and signum111

function respectively. A similar approach can be followed to compute the next estimate vector of112

the other factors b̂, ĉ.113

3

3 Breaking Free from Limit Cycles with Noise114

As we discussed, resonator networks operate iteratively, progressively refining their estimates for115

each factor by comparing them to codebook entries. However, during this iterative process, the116

network can sometimes get trapped in a repeating sequence of states. Then the network’s estimate117

for a factor oscillates between a small set of codevectors without ever settling on the true factor.118

This phenomenon, referred to as a limit cycle, can prevent the network from reaching the optimal119

solution forever.120

The emergence of limit cycles can be attributed to the symmetric and deterministic nature of the121

codebooks used in the AS and RC phases of the baseline resonator network’s (BRN) [19, 20] search122

procedure. This deterministic behavior is particularly problematic when the search space is large123

and contains many local minima, which can trap the network’s updates in a repeating pattern. When124

a resonator network gets stuck in a limit cycle, it fails to converge to the correct factorization, even125

if given an unlimited number of iterations. This lack of convergence can significantly impact the126

network’s accuracy and efficiency, rendering it ineffective for tasks that require precise factorization.127

Fig. 2: Implementing noise during a decoding iteration of a single factor of factorizer. (a) The
codebooks are implemented on an analog memory device crossbar array which introduce intrinsic
noise to each iteration of both the AS and RC phases. (b) The codebooks are implemented on digital
memory devices. The second codebook used in the RC phase is made asymmetric from the first
codebook in the AS phase by a bit flip mask perturbation. (c) The resulting attention using analog
IMC. It can have a continuous distribution. (d) The resulting attention using asymmetric codebooks.
It follows a discrete distribution.

Introducing stochasticity into the network’s update rules can help it break free from deterministic128

limit cycles. This is a crucial finding that not only pushes the factorizers’ operational capacity but129

also shifts the hardware landscape they thrive. In particular, there is a potential for leveraging the130

intrinsic randomness associated with memristive devices in IMC implementations of factorizers as131

prescribed in IMF [21]. An example implementation is illustrated in Fig. 2(a). The codevectors of132

a codebook are programmed along the columns of the crossbar arrays. In the first crossbar used for133

the AS phase, the inputs are passed through the west side digital to analog converters (DACs), and134

the resulting currents/charges are collected on the south periphery and converted back to the digital135

domain using the analog to digital converters (ADCs). After activating the resulting attentions,136

the sparse attention vector is input through the south-side DACs for the RC phase. The resulting137

currents/charges are collected through the east side periphery and converted to digital using ADCs138

before converting via signum function to the next estimate vector.139

The memory devices used in these arrays are fabricated using phase-change memory (PCM) tech-140

nology and exhibit natural variations in their behavior forming a near-Gaussian distribution of141

the attention result as seen in Fig. 2(c). This can be expressed in an approximated form as142

αa(t) = ã(t)AT + n. Where n is the M -dimensional noise vector sampled from i.i.d. Gaus-143

sian distribution n ∼ N (0, σ · IM) and σ denotes the standard deviation of the noise, which ranges144

around 0.01 in a recent large-scale chip based on phase-change memory devices [23]. As seen in145

4

Sec. 4, this σ value falls in the useful noise range enabling escaping repeating patterns and exploring146

a wider range of solutions.147

Even if an arbitrary number of iterations are allowed, a deterministic digital design with unperturbed148

symmetric codebooks fails to achieve the accuracy of the IMF due to its susceptibility to limit cycles.149

Stochasticity, as a key operation to eliminate limit cycles, has significant added costs in terms of150

energy and area in mature digital hardware implementation. For example, generating Gaussian noise151

involves several expensive floating point operations such as exponentiation and multiplication.152

We explore the possibility of inserting the noise into the codebooks at the time of initialization. If153

the same noise is added to both copies of the codebook it would still keep the same quasi-orthogonal154

relationship of the codevectors and would not change the dynamics of the factorizer. Instead, we155

propose perturbing only a single copy of the codebook using a randomly generated bitflip mask.156

Fig. 2(b) shows perturbing the codebook used in the RC phase by applying a bit flip mask BFM ∈157

{−1,+1 }D×M of certain sparsity as shown in Eq. 4. We call this type of model an Asymmetric158

Codebook Factorizer (ACF).159

BFM(r) =

{
+1 if u+ r > 1

−1 otherwise
ARC = A ⊙BFM(r)

â(t+ 1) = sign(α′
a(t)ARC)

(4)

Where u ∼ U(0, 1) ∈ [0, 1]D×M is a noise matrix sampled from the uniform distribution. The160

sparsity r is a hyperparameter that can be optimally obtained using a hyperparameter search scheme.161

The perturbed codebook for the RC phase ARC is calculated by element-wise multiplication between162

BFM and the codebook as shown in Eq. 4. As r increases the factorizer starts losing its ability163

to converge and iterate on the correct solution. However, with the presence of the convergence164

detection circuit detailed in Appendix 5.2, the need to resonate is not essential. Similarly, codebooks165

that are not bipolar in nature [24] can be perturbed using an appropriate random function.166

Apart from noise, another known approach to solving limit cycles and converge faster to the right167

solution involves the use of non-linear activation functions. One such activation function, employed168

both in IMF and ACF, uses a threshold to sparsify the attention vector. It is explained further in169

Appendix 5.3.170

4 Results and Discussion171

We conduct experiments to measure the operational capacity and other behaviors of different variants172

of factorizers, namely the BRN, IMF, and ACF. Operational capacity is defined as the maximum size173

of the search space that can be handled with more than 99% accuracy while requiring fewer iterations174

than what a brute force approach would have taken. A brute force approach would in the worst case175

find the correct factors in MF steps.176

The results are presented in Fig. 3. We consider 3 cases for the number of factors F = {2, 3, 4}. The177

dimensions of the codevectors for these cases are set based on the minimum dimensions reported in178

the BRN, namely D = 1000, 1500, 2000 respectively for F = 2, 3, 4 respectively. For each case, we179

span the search space size starting from 104 up to a maximum of 1011 until the operational capacity180

is reached. At each selected search space size, we conduct 5000 trials factorizing randomly sampled181

product vectors. From this, we calculate the average accuracy and the average number of iterations182

as reported in Fig. 3.183

The BRN reaches its capacity at approximately 105, 106, and 107 for F = 2, 3, 4 cases respectively.184

Although the accuracy momentarily dropped slightly below 99% in a few search space sizes between185

105 and 106 at F = 2, IMF does not reach the operational capacity for all search space sizes tested.186

For ACF, we observe the reaching of the operational capacity at > 5 × 109 for F = 4. In the187

other two cases, ACF did not reach the operational capacity point for the search space sizes tested.188

The momentary drop in accuracy and rise in iterations in certain search spaces can be attributed to189

inadequate hyperparameter exploration. The optimum hyperparameter setting we achieved during190

our experiments is further detailed in Appendix 5.4191

Both IMF and ACF exhibit better performance in terms of operational capacity and the number of192

iterations compared to the BRN. In theory, the IMF has better control over noise as it is applied193

over the iterations. This becomes clear in the F = 4 case where it outperforms ACF by achieving194

5

Fig. 3: The number of iterations (top row) and accuracy (bottom row) for three variants of the
factorizer: baseline resonator (in blue) [19], in-memory factorizer (in orange) [21], and our asym-
metric codebook factorizer (in green). The left, center, and right column results correspond to 2,3,
and 4-factor scenarios, respectively. The regions that meet operational capacity criteria (i.e. ≥99%
accuracy) are plotted with solid lines while other regions are plotted with dotted lines.

greater operational capacity. ACF however edges over IMF in the F = 2 case where there are fewer195

interactions among factors.196

Another aspect to consider is the hardware design costs. As shown in Fig. 2, IMF achieves area197

efficiency with a single copy of codebooks in a crossbar array and achieves energy efficiency by198

performing arithmetic operations implicitly using device physics. ACF on the other hand has explicit199

multipliers and adders but saves the bulk of the energy spent on converting data from digital to analog200

and vice versa several times per decoding iteration. As a consequence of the converter-less design,201

ACF can operate faster, with several nanoseconds per iteration as opposed to several microseconds.202

Thus ACF can achieve more iterations per unit period of time.203

The principles used in the IMF and ACF are not mutually exclusive. While in this work we study204

and compare their standalone performance, there is no reason that prevents them from being em-205

ployed in unison. One possible realization of this involves perturbing the target conductance values206

corresponding to the codebook values before they get programmed into the analog memory devices207

in the IMF. Incorporating both sources of notice may result in a synergistic effect enabling more208

performant factorizers.209

5 Conclusion210

In conventional wisdom, stochasticity and noise are considered a bane in computing. We demon-211

strate that factorizers grounded on VSAs empower a new computing paradigm that embraces noise212

to push the limits of operational capacity. We discuss two variants, the first harnessing intrinsic noise213

in analog in-memory computing during MVM operation, the second initializing the codebooks with214

noisy perturbations yielding a model that widely appeals to deterministic digital design systems.215

While there are tradeoffs, both these variants empirically outperform the baseline resonator networks216

in multiple facets. When combined with appropriate hardware designs, they provide promising di-217

rections to solve factorization problems in large-scale search spaces within reasonable timescales.218

6

References219

[1] Roland Memisevic and Geoffrey E. Hinton. Learning to represent spatial transformations with220

factored higher-order boltzmann machines. Neural Computation, 22(6):1473–1492, 06 2010.221

[2] Yoram Burak, Uri Rokni, Markus Meister, and Haim Sompolinsky. Bayesian model of dy-222

namic image stabilization in the visual system. Proceedings of the National Academy of Sci-223

ences, 107(45):19525–19530, 2010.224

[3] Charles F. Cadieu and Bruno A. Olshausen. Learning intermediate-level representations of225

form and motion from natural movies. Neural Computation, 24(4):827–866, 04 2012.226

[4] Alexander G. Anderson, Kavitha Ratnam, Austin Roorda, and Bruno A. Olshausen. High-227

acuity vision from retinal image motion. Journal of Vision, 20(7):34–34, 07 2020.228

[5] Ying Hu and Guizhong Liu. Separation of singing voice using nonnegative matrix partial229

co-factorization for singer identification. IEEE/ACM Transactions on Audio, Speech, and Lan-230

guage Processing, 23(4):643–653, 2015.231

[6] J. E. Hummel and K. J. Holyoak. Distributed Representations of Structure: A Theory of232

Analogical Access and Mapping. Psychological Review, 104(3):427–466, 1997.233

[7] P. Kanerva. Dual Role of Analogy in the Design of a Cognitive Computer. In Advances in234

Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and235

Neural Sciences, pages 164–170, 1998.236

[8] P. Kanerva. Pattern Completion with Distributed Representation. In International Joint Con-237

ference on Neural Networks, pages 1416–1421, 1998.238

[9] T. A. Plate. Analogy Retrieval and Processing with Distributed Vector Representations. Expert239

Systems: The International Journal of Knowledge Engineering and Neural Networks, 17(1):240

29–40, 2000.241

[10] R. W. Gayler and S. D. Levy. A Distributed Basis for Analogical Mapping: New frontiers in242

Analogy Research. In New frontiers in Analogy Research, Second International Conference243

on the Analogy, pages 165–174, 2009.244

[11] Steven G Krantz. The proof is in the pudding: The changing nature of mathematical proof.245

Springer, 2011.246

[12] Alpha Renner, Lazar Supic, Andreea Danielescu, Giacomo Indiveri, E Paxon Frady,247

Friedrich T Sommer, and Yulia Sandamirskaya. Visual odometry with neuromorphic resonator248

networks. Nature Machine Intelligence, 6(6):653–663, 2024.249

[13] Denis Kleyko, Connor Bybee, Christopher J Kymn, Bruno A Olshausen, Amir Khosrowshahi,250

Dmitri E Nikonov, Friedrich T Sommer, and E Paxon Frady. Integer factorization with compo-251

sitional distributed representations. In Proceedings of the 2022 Annual Neuro-Inspired Com-252

putational Elements Conference, pages 73–80, 2022.253

[14] Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi. A neuro-254

vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelli-255

gence, 5(4):363–375, 2023.256

[15] R. W. Gayler. Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive257

Neuroscience. In Joint International Conference on Cognitive Science, pages 133–138, 2003.258

[16] T. A. Plate. Holographic Reduced Representations. IEEE Transactions on Neural Networks, 6259

(3):623–641, 1995.260

[17] T. A. Plate. Holographic Reduced Representations: Distributed Representation for Cognitive261

Structures. Stanford University, 2003.262

[18] P. Kanerva. Hyperdimensional Computing: An Introduction to Computing in Distributed Rep-263

resentation with High-Dimensional Random Vectors. Cognitive Computation, 1(2):139–159,264

2009.265

7

[19] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer. Resonator Networks, 1: An266

Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Struc-267

tures. Neural Computation, 32(12):2311–2331, 2020.268

[20] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen. Resonator Networks, 2: Factoriza-269

tion Performance and Capacity Compared to Optimization-Based Methods. Neural Computa-270

tion, 32(12):2332–2388, 2020.271

[21] Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca Benini, Abu Sebastian, and272

Abbas Rahimi. In-memory factorization of holographic perceptual representations. Nature273

Nanotechnology, 18(5):479–485, 2023.274

[22] Alpha Renner, Lazar Supic, Andreea Danielescu, Giacomo Indiveri, Bruno A Olshausen, Yulia275

Sandamirskaya, Friedrich T Sommer, and E Paxon Frady. Neuromorphic visual scene under-276

standing with resonator networks. Nature Machine Intelligence, 6(6):641–652, 2024.277

[23] Riduan Khaddam-Aljameh, Milos Stanisavljevic, et al. Hermes core–a 14nm cmos and PCM-278

based in-memory compute core using an array of 300ps/LSB linearized CCO-based ADCs and279

local digital processing. In 2021 Symposium on VLSI Circuits, pages 1–2. IEEE, 2021.280

[24] Michael Hersche, Aleksandar Terzic, Geethan Karunaratne, Jovin Langenegger, Angéline281

Pouget, Giovanni Cherubini, Luca Benini, Abu Sebastian, and Abbas Rahimi. Factorizers282

for distributed sparse block codes. Neurosymbolic Artificial Intelligence, 2024.283

[25] Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A survey on hy-284

perdimensional computing aka vector symbolic architectures, part I: models and data transfor-285

mations. ACM Comput. Surv., may 2022.286

[26] Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A survey on hy-287

perdimensional computing aka vector symbolic architectures, part II: applications, cognitive288

models, and challenges. ACM Comput. Surv., June 2022.289

8

Appendix290

5.1 Vector-symbolic architectures291

Here, we provide a brief overview of vector-symbolic architectures (VSAs) [15–18] of which the292

resonator networks [19, 20] are based on. VSA is a powerful computing framework that is built on293

an algebra in which all representations are high-dimensional holographic vectors of the same, fixed294

dimensionality denoted by D. This is attributed to modeling the representation of information in the295

brain as distributed over many neurons. In this work, we consider a VSA model based on bipolar296

vector space [15], i.e., {−1,+1}D. The similarity between two vectors is defined as the cosine297

similarity:298

sim(x1,x2) =
⟨x1,x2⟩
||x1||||x2||

=
⟨x1,x2⟩

D
(5)

As one of the main property of the high-dimensional vector space, any two randomly drawn vectors299

lie close to quasi-orthogonality to each other, i.e., their expected similarity is close to zero with a300

high probability [18]. The vectors can represent symbols, and can be manipulated by a rich set of301

dimensionality-preserving algebraic operations:302

• Binding: Denoted by ⊙, the Hadamard (i.e., element-wise) product of two input vectors303

implements the binding operation. It is useful to represent a hierarchical structure whereby304

the resulting vector lies quasi-orthogonal to all the input vectors. The binding operation305

follows the commutative law x1 ⊙ x2 = x2 ⊙ x1 = p.306

• Unbinding: The unbinding operation reverses the binding operation. As the element-wise307

multiplication in the bipolar space is self-inverse, the same operation as for the binding can308

be used. Using the unbinding operator ⊘ the operation is defined as p⊘ x1 = x2.309

• Bundling: The superposition of two vectors is calculated by the bundling operation ⊕. The310

operation is defined by an element-wise sum with consecutive bipolarization. In case of an311

element-wise sum equal to zero, we randomly bipolarize.312

• Clean-up: The clean-up operation maps a noisy vector to its noise-free representation by313

an associative memory lookup.314

• Permutation: Permutation is a unary operation on a vector that yields a quasi-orthogonal315

vector of its input. This operation rotates the coordinates of the vector. A simple way to316

implement this is as a cyclic shift by one position.317

Interested readers can refer to a detailed survey [25, 26] about VSAs.318

5.2 Detection of convergence319

The iterative factorization problem is said to be converged if, for two consecutive time steps, all320

the estimates are constant, i.e., x̂f(t + 1) = x̂f(t) for f ∈ [1, F]. We define an early convergence321

detection algorithm since it avoids unnecessary iterations and in the case of Asymmetric Codebook322

Factorizer (ACF), the legacy definition of convergence no longer holds.323

In the new definition, the factorizer is said to be converged if a single similarity value across all the324

factors surpasses a convergence detection threshold:325

converged =

{
true, if max(αf (t)[i]) > Tconvergence

false, otherwise,
(6)

where i ∈ [1,M] for f ∈ [1, F]. Upon convergence, the predicted factorization is given by the326

codevector associated with the largest similarity value per each codebook. This algorithm also327

eliminates the need to store the history of prior estimates. In the legacy definition of convergence, the328

previous estimate for each factor had to be stored to be able to compare it to the current estimate and329

detect convergence, resulting in a total of F ·D stored bits. Our experiments show that the optimal330

convergence detection threshold stays at a fixed ratio of D for any given set of hyperparameters and331

problem sizes.332

9

5.3 Threshold-based Activation333

Replacing the identity function, which acts as a linear activation in the BRN, with a nonlinear334

winner-take-all approach can enhance both the convergence rate and the maximum solvable search335

space[21]. This strategy sparsifies the similarity vector, essentially zeroing out weaker similarity336

values and focusing the network’s attention on the most promising candidates. By suppressing less337

likely solutions, sparse activation functions can help prevent the network from getting bogged down338

in local minima and facilitate convergence to the global optimum. For a threshold T , the threshold-339

based attention activation is given as:340

∀i ∈ (1,M) α′[i] =

{
α[i], if αi > T

0, otherwise.
(7)

5.4 Hyperparameter Search341

For the three cases of experiments we conducted, we first set the following common hyperparam-342

eters for both ACF and IMF. These include dimension (D) and search space size (MF). Then the343

following hyperparameters have to be tuned to achieve the best results. For ACF, they include the344

sparsity parameter r and the activation threshold (T). For IMF, they include iterative noise standard345

deviation σ and the activation threshold (T). Tables 1, 2, and 3 provide the optimum hyperparameter346

combinations that give rise to the best accuracy and number of iterations results reported in Fig. 3.347

Table 1: The hyperparameters that achieve the highest accuracy while minimizing the number of
iterations for two factors

Common parameters ACF-specific IMF-specific
Search

space size
MF

Number
of factors

F

Dimension

D

BFM
Sparsity

r

Activation
Threshold

T

Iterative
Noise
σ

Activation
Threshold

T
10000 2 1000 0.005 0.01 0.008 0.001
21609 2 1000 0.075 0 0.008 0.1
46225 2 1000 0.1 0 0.008 0.1
99856 2 1000 0.1 0 0.008 0.1

215296 2 1000 0.1 0 0.008 0
463761 2 1000 0.1 0 0.008 0

1000000 2 1000 0.1 0.075 0.008 0
2155024 2 1000 0.1 0 0.008 0
4639716 2 1000 0.1 0 0.008 0
9998244 2 1000 0.1 0 0.008 0

21548164 2 1000 0.1 0.1 0.008 0.1
46416969 2 1000 0.1 0.1 0.008 0.1
1.00E+08 2 1000 0.05 0.1 0.008 0.1
2.15E+08 2 1000 0.05 0.1 0.008 0.1
4.64E+08 2 1000 0.05 0.1 0.008 0.1
1.00E+09 2 1000 0.01 0.1 0.008 0.1

10

Table 2: The hyperparameters that achieve the highest accuracy while minimizing the number of
iterations for three factors

Common parameters ACF-specific IMF-specific
Search

space size
MF

Number
of factors

F

Dimension

D

BFM
Sparsity

r

Activation
Threshold

T

Iterative
Noise
σ

Activation
Threshold

T
10648 3 1500 0.1 0.01 0.007 0.001
21952 3 1500 0.1 0.01 0.007 0.01
46656 3 1500 0.05 0.01 0.007 0.01
97336 3 1500 0.05 0.01 0.007 0.01

216000 3 1500 0.005 0.01 0.007 0.05
456533 3 1500 0.1 0.05 0.007 0.05

1000000 3 1500 0.1 0.05 0.007 0.05
2146689 3 1500 0.1 0.05 0.007 0.05
4657463 3 1500 0.05 0.05 0.007 0.05
9938375 3 1500 0.05 0.05 0.007 0.05

21484952 3 1500 0.01 0.05 0.007 0.05
46268279 3 1500 0.01 0.05 0.007 0.05
99897344 3 1500 0.0005 0.05 0.007 0.05
2.15E+08 3 1500 0 0.05 0.007 0.05
4.64E+08 3 1500 0 0.05 0.007 0.05
1.00E+09 3 1500 0 0.05 0.007 0.05

Table 3: The hyperparameters that achieve the highest accuracy while minimizing the number of
iterations for four factors

Common parameters ACF-specific IMF-specific
Search

space size
MF

Number
of factors

F

Dimension

D

BFM
Sparsity

r

Activation
Threshold

T

Iterative
Noise
σ

Activation
Threshold

T
10000 4 2000 0.1 0 0.006 0.01
20736 4 2000 0.09 0 0.006 0.01
50625 4 2000 0.05 0 0.006 0.001

104976 4 2000 0.02 0.001 0.006 0.001
234256 4 2000 0.006 0.01 0.006 0.01
456976 4 2000 0.005 0 0.006 0.01

1048576 4 2000 0.001 0 0.006 0.01
2085136 4 2000 0.008 0.025 0.006 0.01
4477456 4 2000 0.006 0.025 0.006 0.01
9834496 4 2000 0.006 0.025 0.006 0.05

21381376 4 2000 0.006 0.025 0.006 0.05
47458321 4 2000 0.003 0.03 0.006 0.05
1.00E+08 4 2000 0.002 0.03 0.006 0.05
2.14E+08 4 2000 0.02 0.04 0.006 0.05
4.67E+08 4 2000 0.008 0.04 0.006 0.05
1.00E+09 4 2000 0.008 0.04 0.006 0.05

11

	Introduction
	Background: Resonator Networks
	Breaking Free from Limit Cycles with Noise
	Results and Discussion
	Conclusion
	Vector-symbolic architectures
	Detection of convergence
	Threshold-based Activation
	Hyperparameter Search

