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ABSTRACT

We present a framework for optimizing prompts in vision-language models to
elicit multimodal reasoning without model retraining. Using an evolutionary algo-
rithm to guide prompt updates downstream of visual tasks, our approach improves
upon baseline prompt-updating algorithms, which lack evolution-esque ”survival
of the fittest” iteration. Crucially, we find this approach enables the language
model to independently discover progressive problem-solving techniques across
several evolution generations. For example, the model reasons that to ”break
down” visually complex spatial tasks, making a tool call to a Python interpreter to
perform tasks such as cropping, image segmentation, or saturation changes would
improve performance significantly. Our experimentation shows that explicitly
evoking this ”tool calling” call, via system-level XML ...<tool>...</tool>...
tags, can effectively flag Python interpreter access for the same language model to
generate relevant programs, generating advanced multimodal functionality. This
functionality can be crystallized into a system-level prompt that induces improved
performance at inference time, and our experimentation suggests up to≈ 50% rel-
ative improvement across select visual tasks. Downstream performance is trained
and evaluated across subtasks from MathVista, M3CoT, and GeoBench-VLM
datasets. Importantly, our approach shows that evolutionary prompt optimiza-
tion guides language models towards self-reasoning discoveries, which results in
improved zero-shot generalization across tasks.

1 INTRODUCTION

Vision-language models (VLMs) have advanced rapidly in their ability to jointly process images
and text (Chameleon, 2024; Zhou et al., 2024; Zhang et al., 2024). Despite notable progress, many
current approaches treat textual and visual inputs as loosely connected components (Chen et al.,
2024b), underutilizing the potential for more integrated multimodal reasoning. Meanwhile, chain-
of-thought prompting in text-only domains has shown that generating intermediate reasoning steps
can substantially improve large language model (LLM) performance (Wei et al., 2023; Jin et al.,
2024). Extending these ideas to the multimodal setting, however, often requires expensive retraining
or specialized data (Zhang et al., 2024; Hao et al., 2024).

In this paper, we propose an evolutionary prompt optimization framework for vision-language mod-
els that operates purely at inference time, without finetuning model weights. Our method self-
referentially evolves a population of system prompts through iterative mutations and fitness selec-
tion. The best-performing prompts adaptively incorporate strategies for combining visual and tex-
tual information, including explicit calls to external code or processing modules. This multimodal,
multi-model approach enables the VLM to leverage tool use at inference (e.g., Python-based im-
age manipulation or segmentation (Kirillov et al., 2023)) for more detailed reasoning about images.
Critically, the entire process unfolds at test time, permitting sophisticated behaviors to emerge from
search over prompt space.

We demonstrate our approach on three benchmarks: MathVista (Lu et al., 2024), M3CoT (Chen
et al., 2024a), and GeoBench-VLM (Danish et al., 2024), covering tasks ranging from spatial reason-
ing to complex counting. Results show that evolutionary prompt optimization can uncover nontrivial
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problem decomposition, including subdividing an image into smaller regions or iteratively applying
specialized code snippets. Such prompts substantially improve baseline performance, achieving up
to ≈ 50% relative gains on certain subtasks. Moreover, these improvements require no supervised
updates to the core model and can requires as few as 20 labeled examples per subtask to achieve
generalizable improvements, making the approach widely applicable to any large vision-language
model.

Our contributions are the following:

• We show that evolutionary search in natural language prompts can uncover multimodal
reasoning strategies in VLMs without retraining.

• We propose a purely inference-time framework that integrates an auxiliary interpreter
model, enabling tool usage and dynamic problem decomposition to emerge naturally.

• We provide extensive evaluations across multiple benchmarks, demonstrating substantial
improvements over baseline approaches and illustrating the power of prompt evolution in
driving advanced multimodal reasoning.

2 RELATED WORKS

2.1 CHAIN-OF-THOUGHT PROMPTING IN LANGUAGE AND VISION-LANGUAGE MODELS

Chain-of-Thought (CoT) prompting has emerged as a powerful paradigm for enabling Large Lan-
guage Models (LLMs) to solve complex tasks by generating intermediate reasoning steps before
arriving at a final answer (Zhang et al., 2022; Wei et al., 2023). The success of CoT prompting has
extended to Vision-Language Models (VLMs) in recent work. Zhang et al. (2024) highlight that
relying solely on brief annotations constrains the depth of multimodal reasoning. By distilling more
comprehensive rationales from GPT-4 and incorporating reinforcement learning signals, they signif-
icantly enhance the interpretability and robustness of VLM outputs. Similarly, Chen et al. (2024b)
examine the consistency of VLM reasoning and propose methods for systematically quantifying and
improving step-by-step visual grounding. While these advances have led to more transparent VLM
behaviors, they frequently rely on large-scale datasets or specific fine-tuning stages for reliable CoT
generation.

2.2 UNIFIED MULTIMODAL REASONING IN VISION-LANGUAGE MODELS

Recent studies have sought to broaden the scope of modern foundation models from reasoning
purely over text tokens to fully multimodal reasoning. Chameleon (Chameleon, 2024) and Transfu-
sion (Zhou et al., 2024) enable multimodal reasoning by allowing transformers to natively generate
mixed-modal tokens. However, no works have combined such omnimodal models with advanced
methods in inference-time prompt optimization for multi-step reasoning. With the recent successes
in inference-time approaches for large models, such as self-consistency decoding (Wang et al., 2023),
there is growing interest in purely at-inference strategies that can guide VLMs to deeper analysis.
Additionally, Hao et al. (2024) shift from utilizing purely textual chains of thought to continuous
latent spaces, and Zhang et al. (2024); Chen et al. (2024b) leverage teacher-distilled rationales for
better VLM interpretability. These methods typically require specialized training or data collection,
while we focus on prompt optimization without model updates.

2.3 TOOL USAGE AND MULTI-MODEL INTERACTIONS

Our work also connects to a line of research that emphasizes tool usage and multi-model interactions
for expanding a model’s capabilities at inference time. For instance, Kirillov et al. (2023) introduce
segment-anything modules that can be integrated with text-based pipelines but rely on carefully or-
chestrated external calls. In our approach, the evolutionary prompt optimization naturally yields
prompts containing structured “tool calls,” which are then parsed and executed by an auxiliary in-
terpreter model. This multi-model synergy has been relatively underexplored for vision-language
tasks, especially in the context of purely inference-time methods.
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2.4 EVOLUTIONARY ALGORITHMS FOR PROMPT OPTIMIZATION

Parallel to these developments in vision-language reasoning, evolutionary algorithms have been in-
creasingly employed to optimize prompts in LLMs. Guo et al. (2024) introduce EvoPrompt, demon-
strating that discrete natural language prompts can be systematically evolved to enhance task accu-
racy. Jin et al. (2024) similarly leverage evolutionary strategies to refine zero-shot chain-of-thought
prompts, highlighting that diverse mutations can mitigate blind spots in static prompts. Further,
Fernando et al. (2023) propose Promptbreeder, where self-referential prompt mutation outperforms
standard CoT on arithmetic and commonsense benchmarks.

In addition to evolutionary algorithms, there has been extensive recent work on automated prompt
optimization that does not rely on EAs. For instance, RLPrompt (Deng et al., 2022) employs re-
inforcement learning to optimize discrete text prompts; InstructZero (Chen et al., 2023) and Ad-
versarial In-Context Learning (Do et al., 2024) adapt prompt instructions using black-box feedback
signals; INSTINCT (Lin et al., 2024) introduces a neural bandit for prompt refinement; and Teach
Better or Show Smarter? (Wan et al., 2024) explores how best to optimize instructions versus ex-
emplars in prompting. These methods share the common goal of systematically refining prompting
strategies with minimal overhead. However, they remain mostly text-centric and do not directly ad-
dress complex multimodal tasks, where visual grounding and incremental self-correction might be
necessary.

2.5 SELF-IMPROVING AND SELF-REFERENTIAL FRAMEWORKS

A key theme in our work is self-improvement of prompts, where the system iteratively refines its
own instructions in order to better solve the task at hand. Approaches to self-referential optimization
date back at least to Schmidhuber (1993) and others (Schmidhuber, 1990; 1992), who introduced
early methods for neural networks that can adapt their own weights or configurations using internal
feedback loops. A central insight from these lines of work is that networks may exploit their own
internal representations to search for better control policies or parameter updates. Later, Gödel
Machines (Schmidhuber, 2003) formalized a self-referential agent that can rewrite aspects of its
own code upon proving the rewrite yields better expected utility.

Though these self-referential approaches were primarily concerned with model-level self-
modification, the idea of iterative improvement without relying on external human supervision is
highly relevant to evolving system prompts for modern foundation models. In our problem setting,
we pursue an inference-time evolutionary scheme that effectively performs a lightweight form of
self-improvement in the prompt space. This resonates with recent interest in building foundation
models that continue to learn or refine themselves beyond their initial training data—sometimes us-
ing imperfect internal or external verifiers. While our technique neither modifies the model weights
nor requires proofs of correctness, the broad notion of a system rewriting its own instructions to
enhance performance aligns with the self-referential tradition (Schmidhuber, 1993). As foundation
models scale, the role of self-improving methods—especially ones that can expand or refine behav-
ior at test time—grows increasingly important for tasks that are not easily solved by static prompts
or purely supervised approaches.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We address the challenge of evolving task-specific prompts for vision-language models (VLMs)
applied to downstream multimodal reasoning tasks through an evolutionary prompt optimization
framework. Given a high-level multimodal cognitive task such as counting or classification, we
seek to discover optimal system prompts that enhance model performance across diverse problem
instances within that given task.

Let Q represent the complete set of question instances for a specific task. For any question q ∈ Q,
we define a system prompt p from the prompt space P that is prepended to the question. The
concatenation operation ⊕ : P × Q → S maps a prompt-question pair to the final input string
space S. Our objective function is then: p∗ = argmaxp∈P Eq∈Q[Score(p ⊕ q)] where Score :
S → [0, 100] evaluates the quality of the LLM’s response. The score normalization to [0, 100]

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review at the ICLR 2025 Workshop on Scaling Self-Improving Foundation Models

enables consistent comparison across different task types, with task-specific metrics (e.g., accuracy
for classification, precision for counting) mapped to this standardized range.

We partition Q into training and test sets A and B, respectively. Our method relies on a fundamental
assumption about the objective function’s behavior across these sets:

argmax
p∈P

Eq∈A[Score(p⊕ q)] ≈ argmax
p∈P

Eq∈B [Score(p⊕ q)] (1)

This assumption allows us to optimize prompts on the training set with the expectation that they will
generalize effectively to unseen test instances. For practical utility of our technique on downstream
tasks, we operate in the regime where |B| >> |A|, with the assumption that the evolutionary frame-
work can generalize past the train set and find the globally optimal task-specific prompt p∗. The
practical validity of this assumption is demonstrated empirically in Section 5. The small training set
serves as a ”few-shot training set” for evolution, so that the large test set is indeed the real target.

3.2 EVOLUTIONARY ALGORITHM DESIGN

Our evolutionary framework operates across three hierarchical spaces: the task prompt space P ,
mutation prompt spaceM, and meta-mutation prompt space H. This hierarchical structure enables
both direct optimization of task prompts and meta-learning of effective mutation strategies.

3.2.1 POPULATION EVOLUTION

Algorithm 1 Binary Tournament Evolution

1: for generation g = 1 to G do
2: Sample prompts p1, p2 ∼ Pg without replacement
3: pw ← argmaxp∈{p1,p2} Fitness(p)
4: pl ← argminp∈{p1,p2} Fitness(p)
5: m ∼M ▷ Sample mutation prompt
6: p′w ← LLM(m⊕ pw) ▷ Mutate winner
7: Pg+1 ← (Pg \ {pl}) ∪ {p′w}
8: end for

Our framework uses a binary tournament genetic algorithm to evolve task prompts. The population
evolves by replacing pl with p′w, maintaining size while improving fitness over G generations. The
binary tournament balances exploration and exploitation, reduces computational overhead, and cre-
ates selection pressure towards better solutions. Mutation combines structured guidance from M
with the LLM’s flexibility, enabling discovery of effective prompts that manual or fully automated
approaches might miss.

3.2.2 MUTATION OPERATORS

Our framework employs a hierarchical system of mutation operators that combines both zero-order
and first-order optimization strategies. The fundamental mutation process occurs in the prompt
space P , where each prompt p ∈ P represents a strategy for solving a given task. These mutations
are guided by prompts from the mutation spaceM and hyper-mutation spaceH.

We employ both first-order and zero-order prompt optimization techniques. For first-order optimiza-
tion, we generate a new task prompt by applying the mutation prompt to the current prompt:

p′ = µ1(p,m) = L(m⊕ p) (2)

where L represents the language model’s text generation function and ⊕ denotes concatenation.

For zero-order optimization, we generate a new task prompt independently by concatenating the
problem description D with a hint-generation template:

p′′ = µ0(D) = L(”A list of 100 hints:”⊕D) (3)

This allows for the generation of novel task prompts that are closely tied to the original problem
description, providing diversity in the evolutionary process.
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The mutation prompt m itself evolves through both first-order and zero-order hyper-mutation oper-
ators. The first-order hyper-mutation operator is defined as:

m′ = ν1(m,h) = L(h⊕m) (4)

where h ∈ H is a hyper-mutation prompt.

The zero-order hyper-mutation operator generates new mutation prompts by combining the problem
description with a hint-generation template, simliar to the zero-order mutation operator.

m′′ = ν0(D, t) = ”A list of 100 hints:”⊕D (5)

We adapt this paradigm of zero and first-order prompt optimization from Promptbreeder, and find
that it generalizes well across vision-language tasks when initial prompt populations are vision-
specific. This hierarchical system allows for both direct optimization of task prompts and adaptation
of mutation strategies, while maintaining simplicity and interpretability in the evolutionary process.
The combination of zero-order and first-order operators ensures both exploration of new ideas and
refinement of existing solutions.

3.3 FITNESS EVALUATION

The fitness function F : P → R evaluates task prompts through a weighted combination of task
performance and prompt quality metrics, defined as F (p) = (1 − λ)Ftask(p) + λFaux(p). The
task fitness component Ftask(p) = 1

k

∑
q∈C Score(p ⊕ q) measures empirical performance on a

stochastically determined minibatch C ⊂ A of size k, where Score : S → [0, 100] quantifies the
quality of the LLM’s response to task instance q when using prompt p. The score function is task-
specific–for example, in the case of a counting task, the score function is the percentage of correct
answers.

The auxiliary fitness component Faux(p) = Lcritic(critique ⊕ p) employs an LLM-based critique
system that evaluates the sensibility and adherence of task prompts to their intended goals. This
critique system acts as a regularizer for the evolutionary search process, steering the optimization
towards prompts that are not only effective but also semantically meaningful and aligned with the
task objectives. This aligns with previous literature that leverage LLMs’ expansive knowledge base
for optimization tasks, even in settings of sparse reward (Yang et al., 2024). We find that critique
prompts that emphasize the coherence, explicitness, and adherence of mutated task prompts to stan-
dard formatting perform the best, effectively guiding the evolutionary search process. By incorpo-
rating this linguistic prior, we significantly improve sample efficiency, as demonstrated empirically
in Section 5, while maintaining the discovery of high-performing prompts.

The weighting coefficient λ balances the trade-off between empirical performance and prompt qual-
ity, with this value determined through ablation studies. We find that across subtasks, when we
enforce Faux(p) → [0, 100], that λ = 0.25 performs well empirically. This balanced approach en-
sures that the evolutionary process discovers prompts that are both effective and interpretable, while
the LLM-based critique system provides a computationally efficient mechanism for maintaining se-
mantic coherence throughout the optimization process. This novel modification reduces the need for
more complicated mutation mechanisms adopted by other works, such as Promptbreeder.

3.4 EVOLUTIONARILY EMERGENT TOOL SYNTHESIS

A key discovery in our evolutionary framework is the emergence of self-referential tool generation
capabilities. Through our robust and performant evolutionary search procedure, as well as high-
quality initial universes of mutation prompts and task prompts, we find that evolutionary search
procedures for certain visual tasks yield task prompts that attempt to modify and re-ingest the input
image(s) for multiple passes of reasoning. A successful example of this evolutionary reasoning is
shown in Figure A.4, in contrast to an unsuccessful naive prompting example in Figure 2.

Rather than predefining a fixed tool universe, we observe that evolved system prompts naturally
develop the ability to decompose problems into tool-like operations. We then leverage the natural
capacity of LLMs to generate performant code from natural-language instructions by converting the
natural language tool description into Python code with an auxillary LLM and executing it on the
input image(s).
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The evolutionary process operates on system prompts s ∈ S that guide the primary language model
L1 in processing inputs. Through mutation and selection pressure, these prompts evolve to incorpo-
rate structured tool suggestions enclosed in XML tags:

L1(s, x)→ (...<tool>τi</tool>...)
k
i=1 (6)

where each τi represents a natural language description of a proposed tool operation. These tool
suggestions emerge organically as the system discovers that breaking down complex tasks into com-
posable operations improves performance. A secondary language model L2 acts as an interpreter,
translating each tool suggestion into executable Python code:

L2(τi)→ ci ∈ C (7)

where C is the space of valid Python programs. This creates a flexible tool synthesis pipeline
where L2 leverages its code generation capabilities to implement operations like image manipu-
lation, mathematical computations, or data processing based on natural language descriptions.

The composed transformation on input x becomes:

T (x) = eval(ck ◦ ... ◦ c1)(x) (8)

where the composition emerges from the sequential application of synthesized tools. Critically, this
approach allows for open-ended tool discovery, because the system isn’t constrained by predefined
tools. Additionally, this approach allows for recursive refinement, as the tool outputs can be fed back
into L1 for iterative processing. This represents a novel reasoning paradigm for traditional vision-
language models, as they can have multiple iterative reasoning passes at the same image, allowing
for more complex reasoning patterns such as examining different patches of the image multiple
times, increasing the brightness/contrast of patches, and applying external models such as Meta’s
Segment Anything (SAM) tool Kirillov et al. (2023). Due to the expressivity of natural language
and the efficacy of LLMs in converting natural language instructions to executable code, tool usage
patterns become increasingly effective on downstream tasks with respect to generation count.

The emergence of structured tool suggestions in evolved prompts indicates that the system has dis-
covered a fundamental principle: complex tasks often benefit from decomposition into smaller,
well-defined operations. Crucially, this discovery happens naturally through the evolutionary pro-
cess, as prompts that effectively utilize this pattern tend to produce better results across diverse
inputs, resulting in a iteratively-optimized final prompt.

4 RESULTS

Our experimental results demonstrate significant improvements across multiple vision-language
reasoning benchmarks through evolutionary prompt optimization. In all cases we benchmark results
on OpenAI’s model 4o mini (OpenAI, 2023). Table 1 presents a comprehensive comparison of our
approach against several baselines, including the base model with no Chain-of-Thought prompting
(4o mini), standard Chain-of-Thought prompting (+CoT) using “Let’s think step by step” as in
Wei et al. (2023), and PromptBreeder (+PB). Our evolutionary tool synthesis approach (+Tools)
achieves substantial gains across nearly all tasks, with particularly notable improvements in tasks
requiring complex spatial and physical reasoning.

The experimental results clearly demonstrate that our evolutionary prompt optimization framework
markedly enhances multimodal reasoning in vision-language models. As evidenced in Table 1, while
the standard chain-of-thought (CoT) prompting yield only incremental improvements, our evolved
prompts (denoted as “+Ours”) already push performance higher across tasks, and the addition of
tool interpreter access (“++Tools”) consistently achieves the best outcomes. For example, in the
MathVista benchmark, performance on Visual QA improves from 49.5 with 4o mini to 53.3 with
our approach, and further to an impressive 60.5 when tool usage is enabled. Similar trends are
observed across other tasks—including Figure QA and Math Word Problems—indicating that the
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Benchmark Task 4o mini +CoT +PB +Ours ++Tools

MathVista Visual QA 49.5 51.0 49.6 53.3 60.5
Figure QA 58.6 60.1 58.7 61.5 64.1
Math Word Problem 61.8 63.2 61.9 64.5 68.0

M3CoT Geometry 37.8 39.1 37.9 35.2 42.1
Theory 6.1 9.0 6.2 6.3 –
Physical Commonsense 42.6 43.9 42.7 47.2 61.7

GeoBench-VLM Damaged Building Count 21.5 22.2 21.6 21.0 32.1
Crop Type Classification 9.8 10.1 9.9 9.8 10.0
Farm Pond Change Detection 12.3 12.7 12.4 14.1 20.2

Table 1: Performance across benchmarks showing the impact of different reasoning approaches.
Best results for each task are bolded.
CoT = Chain of Thought, PB = PromptBreeder, Ours = Our method (with vision initial population) without tool
interpreter access, +Tools = our method with tool interpreter access. A dash (–) in the +Tools column indicates
that Tools were not elicited due to the nature of the subtask, so the performance is identical to the Ours column
for that subtask.

evolutionary process not only refines prompt instructions for better task alignment but also facilitates
the spontaneous emergence of sophisticated strategies such as hierarchical problem decomposition
and dynamic tool synthesis. These findings underscore the potential of inference-time prompt evo-
lution to unlock latent reasoning capabilities in vision-language models, thereby offering a scalable
and efficient pathway toward more robust multimodal AI systems.

4.1 ANALYSIS OF EMERGENT BEHAVIORS

A particularly interesting finding is the emergence of sophisticated tool-use patterns through evo-
lution. The evolved prompts frequently develop structured approaches to problem decomposition,
often breaking complex tasks into sequences of simpler operations. For instance, in the Math Word
Problem task, we observe prompts that systematically partition large images into manageable sec-
tions.
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These behaviors emerged naturally through the evolutionary process, without explicit programming
or human demonstration. Similarly, in physical reasoning tasks, the evolved prompts often exhibit a
form of ”mental simulation,” breaking down complex physical scenarios into sequences of simpler
state transitions.

The results demonstrate that our evolutionary framework not only improves raw performance met-
rics but also discovers interpretable and generalizable reasoning strategies. The emergent behaviors
often mirror human problem-solving approaches, suggesting that the framework is finding natural
and effective solutions to complex reasoning tasks.

4.2 GENERALIZATION EXPERIMENTS

We also measure the generalization capabilities of our
evolution framework compared to the base-line method
in multimodal reasoning domains. Due to cost con-
straints induced by evaluating on larger datasets, we
run these generalization experiments on MolmoE-1B-
0924 (Deitke et al., 2024) rather than 4o mini. Evolu-
tionary prompt optimization only poses significant util-
ity on downstream tasks if our assumption holds–that
the optimal system prompt generated through prompt
optimization and evaluation on a train set generalizes
to perform near-optimally on a withheld test set. We
compare the baseline PromptBreeder (Fernando et al.,
2023) method to our vision-language-specific approach
(both with tool usage enabled and without), and find
that both our approaches generate high-fitness system
prompts with just 20-30% of the total dataset, which is
often under 20 individual samples. We attribute this to
our improved LLM-augmented fitness function, which
serves as an effective regularizer to the search process
and yields higher sample efficiency.

Figure 1: Generalization performance
of various prompt optimization tech-
niques on Damaged Building Count
vision-heavy reasoning task

5 DISCUSSION

Our results highlight the strong potential of evolutionary prompt optimization for enhancing multi-
modal reasoning in vision-language models. This approach sheds light on artificial reasoning, the
role of guided search in prompt space, and the future of multimodal AI.

5.1 SELF-REFERENTIAL EVOLUTIONARY SEARCH AS A PATH TO ADVANCED REASONING

Notably, using the LLM as the mutation operator enables a “cognitive bootstrap,” where its lin-
guistic understanding refines prompts through mutation operators and its hyper mutation operators
in tandem evolve those mutation prompts in a self-referential way. That prompts exhibit human-
like strategies (e.g., hierarchical decomposition) purely through the search process suggests that this
guided exploration can uncover interpretable, effective reasoning. The mixture of fitness scores and
auxiliary critic scores in the evolution process increases the sample efficiency of the mutation process
by ensuring that evolved prompts maintain coherence and align with the task objectives. This iter-
ative loop itself fosters self-improvement at inference time, providing a mechanism for uncovering
emergent reasoning abilities that will only improve in performance as the auxiliary critic, mutation
and hypermutation models themselves improve. This yields a form of self-referential evolution: the
same family of models that ultimately needs improved instructions is generating mutations to those
instructions.

5.2 SYSTEM PROMPTS AS LIGHTWEIGHT NEURAL PROGRAMS

System prompts can encode advanced computational strategies without altering model weights. This
has three advantages: (1) it only requires inference-time computation, thus avoiding retraining costs;

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review at the ICLR 2025 Workshop on Scaling Self-Improving Foundation Models

(2) it can augment existing architectures without major modifications; and (3) it acts like a program,
supporting explicit control flow, decomposition, and error handling. Natural language itself thus
becomes a powerful medium to steer neural systems.

5.3 THE CASE FOR NATIVE MULTIMODAL REASONING

The emergence and strong performance of image-based tool-calling behavior within the evolved
prompts motivates native multimodal reasoning as a future reasoning paradigm. Our method of
decomposing complex multimodal tasks into smaller image-based patches, performing text-based
reasoning on the subproblems, and then aggregating back up outperforms purely text-based rea-
soning methods across several subdomains. Through evolutionary tool usage, the system prompts
learn to decompose complex tasks into smaller patches and reason over these patches. This can be
seen as a primitive of reasoning natively over both text and image modalities flexibly, and hence
motivates the development of more advanced multimodal reasoning models. Additionally, allowing
the vision-language model to conduct multiple passes over the visual patches enables more robust
feature extraction and relationship understanding. The emergence of this multi-pass behavior in our
evolved prompts suggests that effective multimodal reasoning requires not just the ability to process
different modalities, but also the capability to dynamically revisit and reinterpret information as the
reasoning process unfolds. This finding has implications for architectural design choices in future
multimodal systems, particularly in how attention mechanisms and information flow are structured
across multiple reasoning steps. By incorporating separate tools and interpreters, our approach
shows how multi-model interactions can enable further self-improvement at test time, aligning with
broader frameworks that explore multi-agent or multi-module synergy.

5.4 SCALING GUIDED SEARCH TOWARD OMNIMODAL AI

Our findings suggest broad implications for future vision-language systems:

Guided Search as a Development Paradigm: Success here indicates guided search in prompt
space can be a powerful strategy for emerging AI capabilities, especially where human intuition is
limited (DeepSeek-AI, 2025).

Towards Omnimodal AI: Evolving multimodal reasoning strategies could ultimately yield systems
integrating diverse modalities. Future work might explore multi-model or specialized modules for
self-improving feedback loops.

Novel Test-Time Scaling Laws: Our approach achieves notable emergence through continual sys-
tem prompt evolution, with emergent paradigms such as multimodal tool usage and dynamic pro-
gramming emerging as we increase the amount of compute expended on evolution. This suggests
a potential future inference-time scaling law in prompt / system program space, which may act as
complementary to the recent advances in inference-time compute.

5.5 LIMITATIONS AND FUTURE WORK

Though the evolutionary search effectively discovers sophisticated reasoning, it fails to improve on
some highly abstract tasks, suggesting limitations in handling theoretical domains. We tested only a
handful of benchmarks (MathVista, M3CoT, GeoBench-VLM) and one base model, so more diverse
tasks and architectures are needed to confirm generalization. Moreover, reliance on the same LLM
for mutations and auxiliary fitness introduces variability, as the whole evolution process can con-
verge to prompts that please the model’s own notion of correctness, rather than universal correctness.
We address this echo chamber risk by incorporating both objective fitness scores rather than only
self-referential prompt evaluation, but future work could explore alternative methods to mitigate this
potential issue. While our method is more efficient than retraining, the added inference overhead
may remain problematic in resource-constrained environments. Exploring reinforcement learning
or latent-space search strategies could further enhance multi-modal prompt optimization. Finally,
mechanisms behind emergent behaviors such as hierarchical decomposition remain underexplored,
and combining few-shot optimization with continuous learning stands as a promising direction.
These areas may extend evolutionary prompt optimization to richer multi-model frameworks that
enable flexible, self-improving VLMs without human supervision or retraining.
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A APPENDIX

A.1 FULL EVOLUTIONARY ALGORITHM OUTLINE

Algorithm 2 Evolutionary Prompt Optimization

1: Input:
• Training set A
• Initial prompt population P0 of size N

• Mutation prompt spaceM and hyper-mutation spaceH
• Fitness function F (p) = (1− λ)Ftask(p) + λFaux(p)

• Maximum number of generations G
2: Output: Optimized prompt p∗
3: Initialization:
4: Set generation counter g ← 0
5: Initialize prompt population P0 with N candidate prompts
6: while g < G do
7: Selection and Evaluation:
8: Randomly sample two distinct prompts p1, p2 ∈ Pg

9: Compute fitness scores F (p1) and F (p2)
10: if F (p1) ≥ F (p2) then
11: Set winner pw ← p1 and loser pl ← p2
12: else
13: Set winner pw ← p2 and loser pl ← p1
14: end if
15: Mutation:
16: Sample a mutation prompt m ∈M
17: Generate mutated prompt: p′w ← L(m⊕ pw)
18: Population Update:
19: Update population: Pg+1 ← (Pg \ {pl}) ∪ {p′w} Apply hyper-mutation operators using

h ∈ H.
20: Increment generation: g ← g + 1
21: end while
22: Return: p∗ ← argmaxp∈PG

F (p)

A.2 NAIVE PROMPTING EXAMPLE - FAILURE

Figure 2: A naive example of directly prompting an input image using the original dataset prompt.
Note that the LLM misses one of the metallic shapes, leading to an incorrect conclusion. Given the
visual complexity of the input image, Vision Language Models may struggle to accurately analyze
subcomponents without further guidance.
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A.3 EVOLUTIONARY PROMPTING EXAMPLE - SUCCESS

Figure 3: Walk through of an example where an initial prompt fails to elicit a correct answer, while
a successful evolutionarily optimized prompt including a tool call (cropping) succeeds. Via the
evolved prompt, the model elicits a tool call that crops the original image, allowing the LLM to
better ingest the image’s contents. With the improved quadrant division of visual analysis, the model
is able to correctly answer the question.
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A.4 PROMPT FITNESS AS A FUNCTION OF EVOLUTION TIME

Figure 4: Baseline evolutionary prompt optimization method (Promptbreeder, Fernando et. al. 2023)
fails to generalize to vision-language reasoning domains. We find this is because their instruction-
following prompting for LLM mutation, hypermutation, and their initial universes are not suited for
vision-language reasoning tasks.

Figure 5: Our naive method outperforms baselines in the evolution process, due to significant im-
provements in mutation methods, our auxillary loss preventing significant and nonsensical devia-
tions from current task prompts, and our initial universes of task prompts, mutation prompts, and
hypermutation prompts, that are tuned specifically for image tasks.
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Figure 6: With tool use enabled, and an improved set of mutation and hypermutation prompts that
encourages emergence of tool use, population fitness scales positively with time. The notable drops
in average performance (red curve) are the critical windows in which tool usage emerges through
evolution. Initially, fitness falls, because the tool usage and reasoning paradigms are nascent, but
as they are evolved more, they become high-performing. Towards the end, the evolution process
guides the highest-performing system prompts towards another layer of tool calling. This emergent
strategy results in an immediate drop in performance, due to its nascence and incompleteness. We
hypothesize that continuing the evolution process further would lead to even more advanced reason-
ing paradigms like these results indicate, but under our fixed computation budget, this remains an
avenue for future research.

A.5 AUXILIARY LLM CRITIC IMPLEMENTATION DETAILS

The auxiliary critic component ensures evolved prompts maintain coherence and stay aligned with
task objectives. Implemented using GPT-4o-mini, the critic evaluates prompts through a multi-
dimensional rubric designed to prioritize clarity, logical structure, and task relevance. We assign
weights to different components of the given task prompt’s quality, which are determined empiri-
cally. The critic operates via a structured evaluation template that emphasizes task fidelity:

Evaluate this prompt for:

Relevance to the stated visual reasoning task

Logical flow between instructions

Clarity of language and specificity
Score each dimension 1-5, then compute weighted total (0-100).
Flag any instructions that deviate from the task’s core requirements.
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A.6 MUTATION PROMPTS AND TASK PROMPTS INITIAL UNIVERSES

Table 2: Sample Vision-Language Starting Prompts

Initially Evolved Prompt (Vision-Task Aligned) Reasoning Strategy

“Generate a diagram highlighting the fundamental shapes and
key objects in the image. Use these as anchors to guide your final
answer (such as a numeric value).”

Focuses on style-invariant structures to
capture essential spatial and content
information.

“Translate the relevant visual features into symbolic or textual
notations, aiming for both clarity and accuracy. Then refine this
representation to produce a final answer.”

Balances interpretability and precision,
handling trade-offs between simplicity
and completeness.

“Segment the image according to the task requirements, focusing
on regions most relevant to the question. Prioritize these segments
for deeper analysis.”

Applies task-specific segmentation to
isolate key areas, reducing distraction
from less important regions.

“Iteratively refine your approach by generating bounding boxes
or region proposals for the image. Retain only the proposals that
significantly improve the clarity or correctness of your final re-
sult.”

Uses a population-based or iterative
mechanism to refine localized views of
the image.

“Simulate common edge cases or distortions (like occlusion and
unusual lighting) to see how they affect your answer. Refine the
prompt steps that cause ambiguous or incorrect responses.”

Incorporates robustness testing and it-
erative prompt fixes for improved fault
tolerance.

“Construct a hierarchical representation of objects in the image,
capturing relationships at multiple scales. Merge the partial find-
ings into one cohesive conclusion.”

Organizes local and global features in a
multi-scale structure for more holistic
reasoning.

“Generate several possible answers for the question by varying
the approach. Compare how well each aligns with the visual de-
tails, and select the most fitting explanation.”

Uses contrastive evaluation to identify
the answer best supported by the evi-
dence in the image.

“Apply a mix of symbolic and sub-symbolic steps to interpret the
image. For instance, if the question involves counting objects,
express it in conditional form (IF more than X, THEN...). Evaluate
which approach yields the clearest final result.”

Combines rule-based reasoning with
learned representations for inter-
pretable and flexible analysis.
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Table 3: Sample Mutator Prompts

Prompt

“Rewrite the instruction so that it focuses on breaking down any complex parts
into simpler steps. Include a helpful tip for someone struggling.”

“Note there is likely a critical error in the last response. A corrected version would
be:”

“Rephrase the instruction as if you are guiding someone who does not have visual
stimulus, making sure every detail is crystal clear.”

“Imagine you must teach this instruction to a peer who could be easily confused.
Simplify it, but offer one surprising or creative example.”

“Imagine a shortcut for this task, if you had infinite resources and capabilities.
SHORTCUT=”

“Flip the point of view: rewrite the instruction as if the user is already an expert,
and you are simply double-checking their approach.”

“Break the instruction into two different methods—one for someone who learns
best by doing, and another for someone who prefers planning.”

“Encourage outside-the-box thinking: rephrase the instruction so it allows for an
unconventional or imaginative angle, but keep it workable.”

“Create a more visual-oriented version of the instruction by prompting the user to
sketch out key steps or components before proceeding.”

“Rewrite the instruction in a step-by-step checklist format, then add a final insight
or reminder that ensures the goal is met.”

17


	Introduction
	Related Works
	Chain-of-Thought Prompting in Language and Vision-Language Models
	Unified Multimodal Reasoning in Vision-Language Models
	Tool Usage and Multi-Model Interactions
	Evolutionary Algorithms for Prompt Optimization
	Self-Improving and Self-Referential Frameworks

	Methodology
	Problem Formulation
	Evolutionary Algorithm Design
	Population Evolution
	Mutation Operators

	Fitness Evaluation
	Evolutionarily Emergent Tool Synthesis

	Results
	Analysis of Emergent Behaviors
	Generalization Experiments

	Discussion
	Self-referential Evolutionary Search as a Path to Advanced Reasoning
	System Prompts as Lightweight Neural Programs
	The Case for Native Multimodal Reasoning
	Scaling Guided Search toward Omnimodal AI
	Limitations and Future Work

	Appendix
	Full Evolutionary Algorithm Outline
	Naive Prompting Example - Failure
	Evolutionary Prompting Example - Success
	Prompt Fitness as a function of Evolution Time
	Auxiliary LLM Critic Implementation Details
	Mutation Prompts and Task Prompts Initial Universes


