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ABSTRACT

Task-oriented dialogue (TOD) systems for patient history-taking improve clinical
workflow efficiency by collecting key diagnostic information. Most data-driven
approaches for this rely on large language models (LLMs) and mimic fast, intu-
itive System 1 thinking. In contrast, clinicians typically reason about potential
diagnoses and use that to guide the dialog.
To bridge this gap, we propose ProbMedTOD, a TOD system that combines the
conversational abilities of LLMs with the probabilistic reasoning of a disease-
symptom Bayesian Network (BayesNet). At each turn, ProbMedTOD extracts
information from patient utterances, updates its diagnostic hypothesis over a set
of potential principal diagnoses via Bayesian inference, and generates the next
question using a supervised policy LLM trained on dialogue data. The BayesNet
structure is programmatically constructed from clinical documents, while its pa-
rameters are inferred automatically via self-consistent prompting of an LLM, re-
moving the need for expert-labeled data.
We develop a patient simulator that uses patient profiles informed by the dia-
logue context and engages in realistic end-to-end interactions with the system,
enabling evaluation of dialogue-level success. ProbMedTOD significantly outper-
forms LLM and retrieval-based baseline in next-question prediction and dialogue-
level success, obtaining 20 pt MRR improvement in simulation experiments.

Patient history taking is a critical step in clinical diagnosis (Engel & Morgan, 1973; Hampton et al.,
1975; Boyd & Heritage, 2006). It involves a strategic conversation to narrow down on a principal
diagnosis, condition chiefly responsible for the patient’s visit (CMS, 2024). This process is inher-
ently uncertain as symptoms may be ambiguous or incomplete, requiring clinicians to iteratively
update their diagnostic hypotheses. For example, a persistent cough could suggest a common cold,
tuberculosis, or even lung cancer. To refine diagnoses, a doctor must consider plausible conditions
by their likelihoods and select future inquiries. Figure 1 illustrates this process where the doctor
decides the next inquiry (Fatigue) to refine diagnostic belief (Tuberculosis).

1 INTRODUCTION

A TOD system for patient history-taking must imitate this process through multi-turn interactions.
While recent systems based on LLMs have achieved impressive fluency (Dou et al., 2023; Xu et al.,
2024; He et al., 2024) and can ground themselves in clinical knowledge bases (Xu et al., 2023; Sree
et al., 2024; Varshney et al., 2025a), they generally do so by learning patterns in the training data.
Such an approach is reflective of System 1 thinking. They lack explicit reasoning mechanisms to
manage uncertainty robustly. They also do not inherently model how evidence accumulates over
time, how beliefs over principal diagnoses should probabilistically change as new information ar-
rives, or how to select informative inquiries to efficiently improve diagnosis in a principled way.

To address this critical gap, we propose ProbMedTOD, a medical dialogue system that treats history
taking as decision-making informed by probabilistic inference, aligning with the System 2 thinking
of medical practitioners. At each dialogue turn, ProbMedTOD employs a pipeline of specialized
modules. At each turn, a Natural Language Understanding (NLU) component extracts structured
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Figure 1: Doctor iteratively refines a diagnostic hypothesis (Tuberculosis) by asking targeted ques-
tions. ProbMedTOD aims to replicate this process using a disease-symptom BayesNet.

symptoms from the patient’s utterance to update a distribution over possible diagnoses via Bayesian
inference on a disease-symptom Bayesian Network (BayesNet). A supervised dialogue policy then
selects the next inquiry for a Natural Language Generation (NLG) component to verbalize. After
the dialogue, ProbMedTOD uses its final posterior distribution to output the most likely principal
diagnosis.

Bayesian networks are well suited to medical diagnosis, capturing the probabilistic dependencies
between diseases and symptoms and allowing principled belief updates as new evidence arrives
(Polotskaya et al., 2024). They also provide a transparent reasoning process, which is crucial for
clinical trust. While the network structure can often be derived from domain knowledge, estimating
its parameters usually requires large-scale patient data (which has privacy implications). ProbMed-
TOD addresses this challenge by leveraging an LLM as a novel source for estimating key param-
eters, disease priors and symptom likelihoods, through structured prompting and self-consistency
sampling, enabling the construction of a reliable probabilistic model without extensive datasets.

Since the goal of a history-taking system is to conduct effective patient interviews and produce an
accurate principal diagnosis, conventional dialogue metrics (e.g., BLEU, Intent F1) are insufficient.
They evaluate only turn-level conversational quality and may penalize valid questions asked later. To
address this, we introduce a notion of task success based on patient cases sourced from MediTOD
(Saley et al., 2024) and MIMIC-IV (Johnson et al., 2023) datasets, and develop a user simulator
that uses these profiles for high quality conversations. This allows realistic simulations to measure
dialogue-level performance. In this environment, ProbMedTOD consistently outperforms strong
baselines on principal diagnosis accuracy, demonstrating the value of explicit probabilistic modeling
and learned dialogue strategies in medical dialogue systems.

In summary, our main contributions are as follows. (1) We present ProbMedTOD, a hybrid TOD
system that integrates an NLU component, BayesNet-based probabilistic inference, and a learned
dialogue policy for robust patient history taking under uncertainty. (2) We develop a novel and effi-
cient method for automatically estimating parameters of a disease-symptom BayesNet directly from
an LLM using structured self-consistency prompting, eliminating the need for manual knowledge
engineering or large structured medical datasets. (3) We design a robust simulation-based evaluation
framework with patient profiles grounded in MediTOD and extended with MIMIC-IV, providing re-
alistic and scalable benchmarks for diagnostic reasoning. (4) We perform evaluation comparing our
model with two types of baselines (LLMs without BayesNet and LLMs with retrieval-augmented
generation) on next utterance and principal diagnosis prediction tasks to find that ProbMedTOD
outperforms all baselines on both tasks.
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2 PROBLEM DEFINITION & SOLUTION APPROACHES

We now formally define the task of a TOD system for patient history taking. Let Ht =
{u1, s1, u2, s2, . . . , ut} denote dialogue history up to turn t, where ui and si represent the patient
and system (doctor) utterances, respectively. The objective is to generate the next system response
st that strategically gathers information to produce an accurate principal diagnosis (CMS, 2024) at
the end of the dialogue.

A standard design decomposes TOD into three supervised modules: Natural Language Understand-
ing (NLU), Policy (POL), and Natural Language Generation (NLG) (Young et al., 2013; Hosseini-
Asl et al., 2020; Lin et al., 2020). The NLU (Natural Language Understanding) module extracts
semantic information from the patient’s utterance ut, such as intents (e.g., inform, inquire) and slot-
value pairs (e.g., symptom–fever, past medical history–diabetes). This information accumulated
across dialogue turns into a dialogue state dstt. Based on the dialogue history Ht and the current
state dstt, the POL (Policy) module selects the next action at (e.g., inquire about a new symp-
tom). Finally, the NLG (Natural Language Generation) module converts at into a natural language
response st (e.g., Do you have a fever?).

Recent approaches model these components by fine-tuning LLMs on a dataset D =
{(Ht, dstt, at, st)}, consisting of annotated doctor-patient dialogue turns. In this work, we focus
on the POL module, which is critical to the TOD system’s performance, as it determines the next
question to ask and thus defines the flow of the interaction.

To support diagnostic reasoning, an external corpus consisting of documents describing diseases
{D1, D2, . . . , DN} and their associated symptoms is often available. Retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020; Sree et al., 2024; Xu et al., 2024) methods select top-k documents
from the corpus using Ht, and condition the policy on these retrieved documents to generate the
next action.

However, such approaches typically treat documents as flat contexts and do not explicitly model the
probabilistic relationships between diseases and symptoms. This limits their ability to reason under
uncertainty or update diagnostic beliefs as new evidence is collected. An effective TOD system
for history-taking must not only retrieve relevant knowledge but also reason about the evolving
likelihoods of candidate conditions to select maximally informative next questions.

ProbMedTOD is composed of two main components: (1) a probabilistic reasoning module based on
a disease-symptom Bayesian Network (BayesNet), and (2) a policy model that selects the next sys-
tem action using both the dialogue history and the current diagnostic belief. At each dialogue turn,
ProbMedTOD uses symptoms specified in dstt to form a diagnostic hypothesis BNt via Bayesian
inference. This diagnostic hypothesis, BNt, is then passed to a policy language model that generates
the next doctor action. Figure 2 illustrates the overall design of ProbMedTOD.

2.1 BAYESNET

Structure and Parameterization To capture probabilistic relationships between diseases and
symptoms while avoiding the intractability of modeling a full joint distribution, we employ a
Bayesian Network (BayesNet) with a Noisy-OR parameterization (Jaakkola & Jordan, 1999). The
network takes the form of a bipartite graph as shown in figure 3a. It consists of binary disease nodes
{D1, D2, . . . , DN} and binary symptom nodes {S1, S2, . . . , SM}, a structure that naturally encodes
the causal flow from diseases to their symptoms. Such a representation is well suited to medical rea-
soning, as it combines interpretability with efficient inference in high-dimensional settings.

The model have three types of parameters: disease priors pj = P (Dj = 1), representing the
marginal probability of each disease; causal probabilities qji, which specify the likelihood that an
active disease D j independently triggers symptom Si; and leak probabilities λi, which account for
unobserved or unknown triggers of Si. Under the Noisy-OR assumption, if D = (D1, . . . , DN ) is
a binary vector of disease states (Dj ∈ {0, 1}) and pa(Si) denotes the set of (parent) disease nodes
causally connected to symptom Si, then

P (Si = 1 | D) = 1− (1− λi)
∏

j∈pa(Si)

(1− qji)
Dj . (1)
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Figure 2: ProbMedTOD architecture. Dialogue history and extracted symptoms are used to infer
disease posteriors via a BayesNet. The top diseases are fed into the policy model along with the
dialogue state to generate the next inquiry.

We construct the network from publicly available clinical corpus by programmatically extracting
disease–symptom edges, followed by manual validation and correction as needed. The resulting
network contains 34 diseases, 123 symptoms, and 376 directed edges.

3 PROBMEDTOD SYSTEM

Parameter Estimation LLMs have recently shown strong performance across a range of clinical
tasks, including medical question-answering and diagnostic reasoning (Singhal et al., 2025; Nori
et al., 2023; Pal & Sankarasubbu, 2024). These capabilities suggest that LLMs encode structured
medical knowledge, implicitly capturing associations between diseases and symptoms. We lever-
age this insight to prompt an LLM to directly estimate disease priors pj and symptom conditional
likelihoods qji, eliminating the need for patient-level data or expert-curated annotations.

The prompt templates used for estimation are provided in Appendix B. Each prompt asks the LLM
to return a numerical value corresponding to either the disease prevalence or the likelihood of a
symptom given a disease. To improve the stability of our estimation, we apply self-consistency
prompting (Wang et al., 2023), sampling 50 completions for each query. We use a temperature of
1.0 to maximize the diversity among the completions. The final probability for each parameter is
computed as the mean across samples.

Inference At each dialogue turn t, ProbMedTOD extracts the set of positive symptoms S+ and
negative symptoms S− from the dialogue state dstt, and computes the posterior probability of each
disease given this evidence: P (Dj = 1 | S+,S−).

Direct computation of this posterior is generally intractable due to the exponential complexity of
marginalizing over all possible disease combinations. Since our primary objective is to identify
the principal diagnosis, we adopt a single-disease generative model – we assume one disease to be
chiefly responsible for the patient’s visit (Guan & Baral, 2021). This assumption greatly simplifies
inference, but is not a limitation of our framework as BayesNets can naturally be extended to support
multiple concurrent diagnoses. Under the single-disease assumption, the posterior simplifies to:

P (Dj = 1 | S+,S−) ∝ P (Dj = 1, Dj− = 0)

×
∏
i∈S+

P (Si = 1 | Dj = 1, Dj− = 0)×
∏
i∈S−

P (Si = 0 | Dj = 1, Dj− = 0) (2)
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(a) Plate diagram
for disease-symptom
Bayesian network (b) Simulator Architecture

Figure 3: The BayesNet structure and the simulator design

where Dj− = 0 denotes that all other diseases are inactive. The symptom likelihoods P (Si | Dj =
1, Dj− = 0) are computed using the Noisy-OR model as in equation 2.1. This simplification allows
posterior inference to be performed efficiently in O(N ∗ |S− ∪ S−|) time. A detailed derivation is
provided in Appendix C.

3.1 POLICY MODEL

The goal of the policy model in ProbMedTOD is to predict the next doctor action at based on
the dialogue context and the current diagnostic hypothesis. At each turn, ProbMedTOD computes
the posterior distribution over diseases using the BayesNet, as described earlier. It then selects
the top-k most probable diseases as a diagnostic hypothesis set BNt. For each disease in this set,
ProbMedTOD constructs a short note that includes the disease name, its posterior probability, and a
brief description from the corpus of diseases. This note is then combined with the dialogue history
Ht and the dialogue state dstt, and passed as input to the policy model. The policy model is a
language model that outputs the next action at.

Including numerical posterior probabilities in the input allows the policy model to interpret how
likely each disease is, rather than treating all diagnoses equally. This helps it focus on the most
relevant conditions, ask more informative questions, and make better decisions under uncertainty.
We experiment using LLaMA3 8B (Grattafiori et al., 2024) and Qwen3 8B (Team, 2025) as our
policy models and fine-tune then on a dataset of annotated medical dialogues, where each dialogue
turn is labeled with the corresponding doctor action.

4 PATIENT SIMULATOR

Evaluating medical TOD systems is essential to ensure they support accurate diagnosis. However,
existing metrics typically compare predicted actions to a fixed ”gold standard” dialogue, failing
to account for the variability in valid clinical reasoning. For example, a tuberculosis patient may
present with fever and chills; asking about either is valid, yet current metrics may penalize it.

We propose a patient simulator for more robust evaluation. The simulator engages a TOD system in
multi-turn interactions and assesses whether it can gather relevant information to reach the correct
diagnosis. To support diverse reasoning paths, we construct complete and clinically accurate patient
profiles, specifying all active symptoms, medical history, habits, and other relevant details. An LLM
then generates fluent, faithful responses grounded in these profiles. The overall working of our
simulator is shown in Figure 3b.

Patient Profile Construction We begin by constructing patient profiles from the MediTOD
dataset (Saley et al., 2024), which contains 213 doctor–patient dialogues. A team of professional
annotators with backgrounds in biology and pharmacology first labeled a subset of these dialogues

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

following the annotation guidelines of Saley et al. (2024). Their annotations were reviewed by a
medical doctor, and the highest-performing annotators were then tasked with assigning principal
diagnoses for the remaining cases. These diagnoses serve as anchors for building the knowledge
corpus and BayesNet used in our experiments.

To generate patient profiles for the simulator, we draw from the MediTOD test dialogues. For
each case, we use the known principal diagnosis and enrich it with additional, clinically plausible
symptoms. For example, if a patient is diagnosed with sinusitis and reports headache, we augment
the profile with sinus pressure as a co-occurring symptom. To ensure consistency and medical
validity, we intermittently use the Gemini-2.5-Pro model to support profile generation.

MIMIC-IV Patient Profiles While the MediTOD test set provides high-quality dialogues, it con-
tains only 18 cases, limiting scale of our evaluations. In response, we turn to the publicly available
MIMIC-IV Clinical Note dataset (Johnson et al., 2023), a large, de-identified repository of hospital
records. From this corpus, we filter for patients’ first hospital visits and select cases whose ICD-
9/10 diagnosis codes align with the diseases present in MediTOD. For each disease, we sample up
to three distinct patient cases to balance diversity with manageable evaluation cycles. Patient pro-
files are then constructed by bootstrapping key information from the clinical notes, such as the chief
complaint, history of present illness, and past medical history.

Simulator Workflow Figure 3b shows our simulator in action. At each turn, the policy model
receives the current dialogue state from a trained NLU module and generates the next action such as
a symptom inquiry. This action is passed to the trained NLG module to generate the corresponding
doctor utterance (e.g., “Do you have chills or fever?”).

The same system-generated action is used by the simulator to query the patient profile for relevant
symptom values (e.g., Positive: Fever). Then, an LLM produces a fluent, natural-sounding patient
response that remains faithful to the profile (e.g., “Yes, I’ve been feeling feverish lately.”). This
response is parsed by the NLU to update the dialogue state, and the interaction continues.

We use tailored prompts based on the type of doctor action to ensure medical coherence and profile
consistency throughout the simulation. Appendix E provides further details.

Evaluation After each simulated patient dialogue, the TOD system analyzes the collected clinical
information to produce a ranked list of potential principal diagnoses. We train our POL model over
MediTOD train set to predict a principal diagnosis when prompted. To generate a ranked list, we
use Beam search with width five to collect various diagnoses.

For comparison, we benchmark our system against a Retrieval-Augmented Generation (RAG)
method, which ranks diseases based on retrieved medical knowledge. We then evaluate the accuracy
of the rankings against the correct principal diagnosis using standard retrieval metrics like Mean
Reciprocal Rank (MRR) and Hit@K. These metrics measure how prominently the correct principal
diagnosis appears in the output, emphasizing alignment with effective clinical reasoning. Unlike
conventional metrics that track surface-level actions, our approach rewards systems for collecting
relevant evidence through diverse diagnostic paths.

5 EXPERIMENTAL SETUP

Dataset We use official train/valid/test splits of MediTOD dataset (Saley et al., 2024) for our
experiments. MediTOD contains English doctor-patient dialogues from pulmonary specialty, where
each utterance has comprehensive action annotations. As discussed in the last section, we assign
each dialogue a gold principal diagnosis label, a condition chiefly responsible for the patient’s visit.
Details are given in Appendix A.

Evaluation Metrics We conduct a multi-faceted evaluation to validate our approach. Following
Saley et al. (2024), we perform turn-level evaluations on the provided test set and report Medical
F1 and Precision@K metrics. Medical F1 compares predicted actions with gold annotations at each
turn. Precision@K matches them with any of the next K gold actions. While Medical F1 is strict,
Precision@K allows for flexibility in dialogue paths. To evaluate diagnostic utility, we simulate
doctor–patient dialogues and report MRR and Hit@K.
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Model Medical Precision@

F1 1 4 8 Inf

PPTOD (base)* 0.210 0.153 0.284 0.326 0.359
Flan-T5 (base)* 0.203 0.115 0.204 0.238 0.265

BioGPT* 0.185 0.135 0.251 0.300 0.348
OpenBioLLM 8B* 0.217 0.161 0.295 0.338 0.374

Llama3 8B* 0.239 0.188 0.318 0.382 0.416
RAG 0.257 0.195 0.327 0.390 0.423

ProbMedTOD (Llama3 8B) 0.262 0.209 0.357 0.408 0.442
ProbMedTOD (Qwen3 8B) 0.273 0.219 0.364 0.415 0.453

Table 1: ProbMedTOD performance on MediTOD Policy Learning Task. The highest and second-
highest scores are bolded and underlined, respectively. * - results taken from Saley et al. (2024).

Baselines We compare our approach against several supervised policy models, including PPTOD
(Su et al., 2022), Flan-T5 (Longpre et al., 2023), OpenBioLLM (Ankit Pal, 2024), BioGPT (Luo
et al., 2022), and LLaMA3 8B (Grattafiori et al., 2024).

Our primary baseline, however, is a Retrieval-Augmented Generation (RAG) system, which lever-
ages external medical knowledge. Specifically, we implement RAG using a BGE-M3 (Chen et al.,
2024) pre-trained retriever to perform maximum inner product search over the corpus of disease
documents. The query consists of the dialogue history concatenated with the current dialogue state.
The top-5 retrieved documents are then passed, along with the original query, as input to a LLaMA3
8B policy model, which is fine-tuned on MediTOD train set.

Implementation Details We train all our models with LLaMA3 8B (Grattafiori et al., 2024) and
Qwen3 8B (Team, 2025) as the backbone LLMs. For efficient training, we adopt the Unsloth frame-
work (Daniel Han & team, 2023). All models are fine-tuned using LoRA (Hu et al.) with hyper-
parameters: rank r = 32, LoRA α = 128, a learning rate of 5×10−5 and a batch size of 16. Training
is conducted for 10 epochs on a single A100 GPU, with each policy model taking about twelve hours
to train. For RAG and ProbMedTOD, we use the top five diseases to form the diagnostic hypothesis
for the policy model. For all models, we use greedy decoding to generate outputs.

Parameter estimation is performed using Gemma 2 27B IT (Team et al., 2024), chosen for its pub-
lic availability, cost-efficiency, and single-GPU inference with vLLM (Kwon et al., 2023). While
performance is satisfactory, proprietary models like GPT-4o may yield better estimates at higher
computational costs. We set all leak probabilities λi in the BayesNet to a small constant 10−4

decided based on the performance on validation set.

Simulator Settings We evaluate our approach using a patient simulator, training its NLU and
NLG on the MediTOD train set. Patient responses are generated with the MedGemma 27B model
(Sellergren et al., 2025) at temperature 0.0 for reproducibility.

6 RESULTS

Turn-level Results Table 1 summarizes policy generation performance across different models
on the MediTOD test set. Our proposed models, ProbMedTOD (LLama3 8B) and ProbMedTOD
(Qwen3 8B), consistently outperform all baselines on both Medical F1 and Precision@K metrics.

RAG remains the strongest baseline due to access to structured external knowledge. However,
ProbMedTOD models achieve substantial improvements, with ProbMedTOD (Qwen3 8B) show-
ing a 16 points gain in Medical F1 over RAG. The advantage of ProbMedTOD is particularly pro-
nounced across Precision@K, with the gap consistent at higher values of K, highlighting that our
probabilistic approach generates inquiries that are not only immediately relevant but also more in-
formative and diagnostic for future dialogue turns.

Overall, the results indicate that incorporating probabilistic reasoning improves policy learning,
leading to more informative and diagnostic actions during the dialogue.
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Model MediTOD MIMIC-IV

MRR Hit@1 Hit@5 MRR Hit@1 Hit@5

RAG 0.303 0.111 0.556 0.261 0.119 0.369
ProbMedTOD (Llama3 8B) 0.491 0.444 0.556 0.281 0.226 0.357
ProbMedTOD (Qwen3 8B) 0.500 0.444 0.611 0.303 0.214 0.452

Table 2: Simulation Results: ProbMedTOD achieves higher MRR and Hit@K compared to RAG.

MediTOD MIMIC-IV
Model Med F1 Precision@Inf MRR Hit@5 MRR Hit@5

ProbMedTOD (Qwen3 8B) 0.219 0.453 0.500 0.611 0.303 0.452
w/o BayesNet 0.197 0.436 0.303 0.389 0.230 0.345

Table 3: Ablation Results

Simulation Results To further assess the diagnostic effectiveness of the policy models, we eval-
uate them in our simulation framework. In this setting, the end goal is to accurately identify the
patient’s principal diagnosis after a full dialogue interaction with the simulator. We report MRR and
Hit@K as evaluation metrics.

Table 2 shows the comparative performance of ProbMedTOD and the RAG baseline. Both
ProbMedTOD variants outperform RAG across most metrics. These improvements suggest that
integrating probabilistic reasoning is beneficial for this task. The Qwen3 8B variant, in particular,
emerges as the superior model. On the MediTOD dataset, it achieves a MRR of 0.500 and a Hit@5
of 0.611. This trend extends to the MIMIC-IV dataset, where the Qwen3 model again leads with
an MRR of 0.303 and a Hit@5 of 0.452. Dominance of Qwen3 8B over Llama3 8B indicates that
Qwen3 adapts to diagnostic hypothesis better. Finally, all models exhibit weaker performance on
the MIMIC-IV dataset compared to MediTOD, indicating a clear need for further improvements to
enhance generalization across different clinical datasets.

Ablation Study To access the contribution of our probabilistic reasoning module, we perform
an ablation study using our best-performing model, ProbMedTOD (Qwen3 8B). For this study, we
remove the BayesNet, creating a variant that relies solely on an LLM-only policy model to interact
with the patient and perform the principal diagnosis at the end.

The results in table 3 clearly show that removing the BayesNet leads to a significant degradation in
performance across all metrics on both datasets. On MediTOD, for example, the MRR drops by 19
points, and the Hit@5 score falls sharply by 22 points. A similar decline is observed on the MIMIC-
IV dataset. This sharp performance drop shows that BayesNet’s explicit probabilistic reasoning is
integral to the model’s diagnostic accuracy.

Parameter Validation Although our results indicate LLM-estimated parameters are sensible,
their direct assessment is challenging. To provide more evidence, we divide Bayesian network edges
into primary (273) and other (103) based on disease corpus. Our strategy yields an average likeli-
hood estimate across edges of 0.59 for primary vs. 0.34 for other (difference = 0.250), compared
to a random baseline of 0.51 vs. 0.53 (difference = -0.02). For example, for whooping cough, the
primary symptom coughing receives a higher estimate (0.948) than the secondary symptom fever
(0.278), illustrating that our parameters meaningfully capture symptom relevance.

7 QUALITATIVE ANALYSIS

Appendix D) provides a simulated doctor-patient dialogue snippet with ProbMedTOD (Qwen3-8B)
as the doctor. We find the the mode demonstrates a structured and clinically attentive approach.
It systematically gathers key details about the cough, including onset, duration, type, and presence
of mucus. Notably, it asks high-yield questions, such as the presence of blood (hemoptysis) and
nocturnal shortness of breath (paroxysmal nocturnal dyspnea, PND), providing crucial information
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to rule out serious conditions like tuberculosis, lung cancer, or heart failure. This illustrates model’s
attempt to refine the differential diagnosis aligned with System 2 thinking. Overall, the dialogue
exhibits a logical flow, focusing on critical clinical indicators while attending to the patient’s fatigue
and weakness, reflecting a contextually appropriate and diagnostic-oriented consultation. However,
we find as the conversation progress, the model asks non-informative questions.

8 RELATED WORK

Medical Dialogue Systems With the rise of LLMs, their application in medical tasks has expanded
rapidly, showing strong performance in medical QA and diagnosis benchmarks (Chen et al., 2023;
Savage et al., 2024; Pal & Sankarasubbu, 2024; Tu et al., 2024; Singhal et al., 2025). Recent work
has focused on adapting LLMs to medical dialogue settings. Li et al. (2023) fine-tuned LLaMA on
doctor-patient conversations to build a QA system. Other approaches, such as Xu et al. (2024) and
He et al. (2024), use chain-of-thought prompting (Wei et al., 2022) to capture clinical reasoning,
distilling this into smaller models. Several systems (Sree et al., 2024; Varshney et al., 2025b) also
integrate external medical knowledge through retrieval-augmented generation (RAG) (Lewis et al.,
2020); for example, Xu et al. (2024) uses RAG to infer likely diagnoses from dialogue context.

However, none of these systems explicitly model diagnostic uncertainty. They rely on medical
relationships learned during training, without probabilistic reasoning or belief updates. In contrast,
ProbMedTOD maintains a diagnostic hypothesis using a Bayesian network, enabling principled
updates and structured decision-making under uncertainty.

BayesNets in Medical Diagnosis BayesNets have a long history in medical diagnosis, offering
a principled way to model uncertainty and reason under incomplete information. Seminal efforts
include the probabilistic reformulation of the INTERNIST-1/QMR system (Shwe et al., 1991) and
the use of variational inference for scalable reasoning in the QMR-DT network (Jaakkola & Jordan,
1999). More recent work highlights the continued relevance of BayesNets in healthcare (Polotskaya
et al., 2024).

Two closely related works are those by Guan & Baral (2021) and Pavez & Allende (2024). Guan
& Baral (2021) use a Bayesian framework to select the next symptom to inquire based on expected
information gain, aiming to reduce diagnostic uncertainty. However, their system operates on struc-
tured inputs and lacks conversational capabilities.

Pavez & Allende (2024) combine a BERT-based classifier with a Bayesian Network for mental
health diagnosis, using BERT to generate a prior over diseases that is refined via probabilistic infer-
ence. While both approaches share our focus on uncertainty-aware reasoning, they do not leverage
natural language dialogue or learn from conversational data. In contrast, ProbMedTOD integrates
Bayesian inference with the fluent interaction abilities of LLMs, enabling data-driven, interpretable,
and conversational medical history-taking.

9 CONCLUSION

In this work, we introduced ProbMedTOD, a hybrid task-oriented dialogue system for medical his-
tory taking that integrates LLM–based policy learning with explicit probabilistic reasoning via a
disease–symptom Bayesian Network. ProbMedTOD employs a novel method for automatically
estimating BayesNet parameters from an LLM through structured self-consistency prompting, re-
moving the need for large-scale patient datasets and expensive annotations. We also create a patient
simulation framework for computing dialogue level metrics; now, models do not get unfairly penal-
ized if they ask the same symptom at a later utterance. Through comprehensive experiments on the
MediTOD and MIMIC-IV datasets, ProbMedTOD outperforms strong LLM and RAG baselines on
both turn-level policy metrics (Medical F1 and Precision@K) and diagnostic metrics within our sim-
ulation framework (MRR and Hit@K). Ablation study highlights the critical role of the BayesNet
in improving both inquiry quality and final diagnosis accuracy. We will release both the code and
dataset for further research.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we fixed the random seed to 44 across all experiments. For inference,
we used greedy decoding with temperature set to 0.0 for all models, including both baselines and
simulations. We will release the code and data accompanying this work to facilitate replication and
enable future research.

ETHICS STATEMENT

In this work, we introduce ProbMedTOD, a task-oriented dialogue system for patient history taking.
ProbMedTOD combines probabilistic reasoning using a BayesNet with conversational abilities of a
large language model (LLM). The BayesNet parameters are estimated automatically using an LLM
through self-consistency prompting. We evaluate our system on the publicly available MediTOD
dataset, where it shows improved diagnostic reasoning and dialogue performance.

We reflect on the ethical aspects of our work along two dimensions: (1) potential deployment in
real-world clinical settings, and (2) the resources used to build and evaluate ProbMedTOD.

Deployment in Real-world Clinical Settings We believe that ProbMedTOD represents a step
towards building more reliable and interpretable dialogue systems for patient interaction. These
qualities are important for earning the trust of medical professionals. However, we stress that our
work is primarily a research project, motivated by the goal of combining traditional machine learning
models with modern LLMs.

While it would be exciting to see systems like ProbMedTOD adapted for real-world use, such de-
ployment requires careful consideration beyond diagnostic accuracy. For example, diseases may
present differently based on a patient’s demographics, lifestyle, or medical history. ProbMedTOD’s
probabilistic reasoning offers a foundation to handle such variations, but thorough evaluation by
doctors across different demographics and specializations is essential to ensure patient safety.

ProbMedTOD is designed to systematically gather patient information. If used in practice, it is crit-
ical that any patient data collected complies with privacy and data protection laws, such as HIPAA.
Additionally, patients must be clearly informed that they are interacting with an AI system, not a
real doctor.

We also note that ProbMedTOD is not perfect and may make mistakes. These errors can result
from LLM hallucinations, limitations in the BayesNet structure, inaccurate parameter estimations,
or software bugs. Therefore, we strongly advise against using ProbMedTOD as a substitute for pro-
fessional medical advice. Consulting a qualified doctor is essential for any health-related concerns.

Resources Used in ProbMedTOD We develop and evaluate ProbMedTOD using the MediTOD
dataset, which is publicly available and contains annotated dialogues focused on pulmonary condi-
tions. MediTOD is constructed through staged doctor-patient interactions by medical professionals,
and no real patient data is involved.

As part of our work, we enhance MediTOD by annotating each dialogue with a diagnosis. This an-
notation process was carried out by paid professional annotators with a background in life sciences,
under the supervision of a medical doctor. For building the BayesNet used in ProbMedTOD, we
manually curate a disease-symptom structure based on publicly available medical resources. The
BayesNet parameters are estimated using open-weight Gemma models. We plan to release these
resources following the acceptance of our work to promote transparency and reproducibility.
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LIMITATIONS

While ProbMedTOD achieves strong results, it has several limitations. First, although we show
improvements in supervised policy models, its effectiveness in in-context settings with LLMs re-
mains unexplored. Second, our evaluation is restricted to the MediTOD dataset—the only publicly
available English doctor–patient dialogue resource. Third, the Bayesian Network adopts a simpli-
fied bi-partite Noisy-OR design, capturing only direct symptom–disease links. In future, a more
complete design involving additional nodes such as patient medical history, family history, habits
and exposures can be explored. Further, demographics information could be incorporated to high-
light ProbMedTOD’s generalization. Finally, Bayesian Network structure is manually derived from
documents, which poses scalability concerns. Future work could investigate automated construction
using LLMs.

A DATASET DETAILS

Table 4 provides statistics for MediTOD dataset.
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Train Valid Test

#Dialogues 175 20 18
#Utterances 16852 1869 1798

Table 4: Statistics for MediTOD dataset.

B PROMPTS FOR BAYESNET ESTIMATIONS

Disease Priors

Based on your medical knowledge and experties regarding typical {{disease}} patterns, what is
the estimated percentage likelihood that an otherwise healthy adult, with no known underlying
health conditions will develop/contract acute bronchitis in a typical year? Use the following
format to provide the answer. Outline your thinking briefly after you provide your answer.

<answer>write single number from 1 to 100, representing the percentage likelihood </answer>

Symptom Likelihoods

You are a medical professional and an expert in the field of medicine. You will be given a
disease and a symptom. Your task is to predict the likelihood of the symptom given that a
patient suffers from the disease. Base your prediction on your extensive knowledge of medical
literature and clinical experience. Specifically, provide a number between 0-100 indicating
the likelihood. Enclose your answer in ‘<answer>‘ and ‘<answer>‘ tags. For example:
<answer>55 <answer>

Here is the disease and the symptom for which you need to predict the likelihood.

# Disease
{{disease}} (in its typical presentation in adult patients)

# Symptom
{{symptom}} (as reported by the patient)

Outline your thinking briefly before you provide your answer.

C EXACT BAYESIAN INFERENCE USING NOISY-OR

Following (Guan & Baral, 2021; CMS, 2024), we assume a primary diagnosis model, i.e., chiefly
one disease is responsible for the patient’s condition. To compute the posterior P (Dj = 1 |
S+,S−), we start with marginalizing over all Dj− combinations.

P (Dj = 1 | S+,S−) =
∑
∀Dj−

P (Dj = 1, Dj− |S+,S−)

= P (Dj = 1, Dj− = 0|S+,S−)

Now, posterior is computed by applying Bayes’ Rule.

P (Dj = 1 | S+,S−)

=
P (S+S−|Dj = 1, Dj− = 0)P (Dj = 1, Dj− = 0)

P (S+,S−)

Note that the term P (S+,S−) is common for all diseases Dj . Applying conditional independence
of symptoms given disease, we compute the posterior using the following equation.
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Gold Diagnosis - Bronchitis Predicted Diagnosis - Bronchitis

Patient: oh, hello doctor. i’ve come in because i’ve had a persistent cough and i’ve been feeling
very weak.
Doctor: ok, and when did the cough start?
Patient: it started a while ago, doctor. i can’t quite recall the exact date, but it’s been going on
for some time now.
Doctor: ok, and how long is a while?
Patient: oh, dear. it’s hard to say exactly, doctor. it feels like it’s been a few weeks, maybe
longer. it’s been going on for quite a while now.
Doctor: ok, and is it a dry cough or a cough with mucus?
Patient: oh, it’s not dry, doctor. i’ve been coughing up some phlegm.
Doctor: ok, and what color is the phlegm?
Patient: oh, it’s sort of grayish-green, doctor.
Doctor: ok, and have you noticed any blood?
Patient: no, doctor, i don’t think so. i haven’t seen any blood.
Doctor: ok, and has the cough been getting worse or staying the same?
Patient: well, doctor, it hasn’t really gotten better. i’ve been coughing quite a bit, and i’m still
feeling weak.
Doctor: ok, and is there anything that makes the cough worse?
Patient: well, doctor, sometimes when i lie down, i feel like i can’t catch my breath, and the
coughing gets worse then. it’s just hard to breathe sometimes.
Doctor: ok, and when did the shortness of breath start?
Patient: oh, the shortness of breath? i think it started around the same time as the cough, doctor.
it’s been getting worse lately, especially when i try to lie down.
Doctor: ok, and do you find that you wake up in the middle of the night to take a breath?
Patient: oh, waking up at night? no, i don’t think so, doctor. i just feel tired, especially when i
lie down.
Doctor: ok, and how is your energy been?
Patient: oh, doctor, my energy is very low. i’ve been feeling quite weak, especially lately with
this cough. ... ...

P (Dj = 1 | S+,S−) ∝ P (Dj = 1, Dj− = 0)

×
∏
i∈S+

P (Si = 1 | Dj = 1, Dj− = 0)

×
∏
i∈S−

P (Si = 0 | Dj = 1, Dj− = 0)

where P (Dj = 1, Dj− = 0) = P (Dj = 1)
∏

∀j′ ̸=j (1− P (Dj′ = 1)) are the priors.

D EXAMPLE DIALOGUE GENERATED BY PROBMEDTOD (QWEN3-8B)

E SIMULATION DETAILS

E.1 NLU AND NLG MODELS

Both NLU and NLG models are LLaMA3 8B models fine-tuned on the respective task data from
MediTOD. At each dialogue turn, NLU model inputs the entire dialogue history and the last doctor
action to predict intent and slot-value pairs from the latest patient utterance. NLG model inputs the
entire dialogue history and the predicted doctor action to generate doctor response. Our NLU model
operates at 86.57% test Medical F1 and NLG model operates at 20.59 test BLEU score showcasing
high performance.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Patient Response to Inquire Actions

In the conversation given below, the doctor is interviewing a participant (either patient or a
guardian in case the patient is a child). In his last utterance, the doctor is making an inquiry.
Assume the role of the participant and respond to the doctor’s inquiry. Specifically, convert
the given answer sketch into an appropriate patient response to the doctor. Instructions for
formulating the patient’s response are given below.

# Task Instructions (procedure to formulate the answer)
1. Read the last doctor utterance. Analyze what information is being inquired in the last utter-
ance.
2. Determine whether the participant is a patient or a guardian. If the participant is a guardian,
assume the role of the guardian and respond to the doctor’s inquiry.
3. Convert the answer sketch into an appropriate response to the doctor. Make sure that the
response is meaningful and relevant to the inquiry.
4. Enclose the response in ‘<answer>‘ and ‘</answer>‘ tags.
5. The response must be TRUTHFUL to the answer sketch. The response MUST NOT IN-
CLUDE any information not present in the answer sketch. The response must be honest, mean-
ingful, and concise.
6. Remember you are not a medical expert. Your response must use layman’s language devoid
of any medical terms.
7. The response must continue the conversation fluently and meaningfully.
8. The response must be SHORT preferably a few words. It should not include any unnecessary
information.
9. If the answer sketch is empty, your response must indicate that you cannot provide any
information.
Describe your thinking for EACH of the above 8 steps in details.

# Output Format
**thinking**: <your detailed thinking for each of the 8 steps>
**output**: <your final answer enclosed in <answer>and </answer>tags>

# Doctor-patient Conversation
{{dialogue history}}

# Last Doctor Utterance (a question you need to respond to.)
{{last doctor uttr}}

# Answer sketch (a sketch for your answer - includes information to be used for answering the
doctor’s query)
“‘JSON
{{answer sketch}}
“‘

E.2 PATIENT RESPONSE GENERATION PROMPTS
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Patient Response to Chit-chat Actions

In the conversation given below, the doctor is interviewing a participant (either patient or a
guardian in case the patient is a child). In his last utterance, the doctor is making a casual
conversation. Assume the role of the participant and respond to the doctor’s chit-chat. Keep
the response short and casual. Enclose the response in ‘<answer >‘ and ‘</answer >‘ tags.
Here is the doctor-patient conversation.

# Doctor-patient Conversation
{{dialogue history}}

# Last Doctor Utterance (a question you need to respond to.)
{{last doctor uttr}}

Patient Response to Diagnosis

In the conversation given below, the doctor is interviewing a participant (either patient or a
guardian in case the patient is a child). In his last utterance, the doctor is making a diagnosis.
Assume the role of the participant and respond to the doctor’s diagnosis. Accept the doctor’s
diagnosis as FINAL, regardless of the ongoing dialogue. Do not contradict the doctor. Continue
the conversation by simply ACKNOWLEDGING and ACCEPTING the diagnosis. Keep the
response short. Enclose the response in ‘<answer>‘ and ‘</answer>‘ tags. Here is the
doctor-patient conversation.

# Doctor-patient Conversation
{{dialogue history}}

# Last Doctor Utterance (a question you need to respond to.)
{{last doctor uttr}}

Patient Response to Salutations

In the conversation given below, the doctor is interviewing a participant (either patient or
a guardian in case the patient is a child). In his last utterance, the doctor is concluding the
conversation. Assume the role of the participant and respond to the doctor’s conclusion. Express
gratitude for the consultation. Keep the response short. Enclose the response in ‘<answer>‘
and ‘</answer>‘ tags. Here is the doctor-patient conversation.

# Doctor-patient Conversation
{{dialogue history}}
# Last Doctor Utterance (a question you need to respond to.)
{{last doctor uttr}}

17


	Introduction
	Problem Definition & Solution Approaches
	BayesNet

	ProbMedTOD System
	Policy Model

	Patient Simulator
	Experimental Setup
	Results
	Qualitative Analysis
	Related Work
	Conclusion
	Dataset Details
	Prompts for BayesNet Estimations
	Exact Bayesian Inference using Noisy-OR
	Example dialogue generated by ProbMedTOD (Qwen3-8B)
	Simulation Details
	NLU and NLG models
	Patient Response Generation Prompts


