
AdapterBias: Parameter-efficient Token-dependent Embedding Shift for
Adapters in NLP Tasks

Anonymous ACL submission

Abstract

Transformer-based pre-trained models with001
millions of parameters require large storage.002
Recent approaches tackle this shortcoming by003
training adapters, but these approaches still re-004
quire a relatively large number of parameters.005
In this study, AdapterBias, a surprisingly sim-006
ple yet effective adapter architecture, is pro-007
posed. AdapterBias adds a token-dependent008
shift to the embedding to adapt to downstream009
tasks with only a vector and a linear layer. Ex-010
tensive experiments are conducted to demon-011
strate the effectiveness of AdapterBias. The012
experiments show that our proposed method013
can dramatically reduce the trainable parame-014
ters than the previous works with a minimal015
decrease in task performances compared with016
fine-tuned pre-trained models. We further find017
that AdapterBias automatically learns to as-018
sign more significant shifts to the tokens re-019
lated to the task in consideration.020

1 Introduction021

While large pre-trained language models (PLMs)022

reached the state-of-the-art results on natural lan-023

guage processing (NLP) tasks, PLMs require up-024

dating all parameters and storing the fully fine-025

tuned model for each downstream task. These re-026

quirements have led to difficulties in real-world027

applications. Moreover, fine-tuning PLMs on low-028

resource datasets are subject to instabilities.029

To tackle these shortcomings, Adapters (Houlsby030

et al., 2019), a more parameter-efficient alternative031

training strategy for the transformer architecture032

(Vaswani et al., 2017) has been proposed. Instead033

of fully fine-tuning the whole model, Adapters in-034

troduces extra tunable weights and freezes the orig-035

inal parameters of PLM. Adapters demonstrated036

comparable performance with fully fine-tuning the037

entire model. Although Adapters solve the prob-038

lem of the PLM’s massive parameters, researchers039

are curious about how many more parameters are040

required to reach state-of-the-art performance on041

Figure 1: Overview of the main concept of our work
compared to BitFit (Ben Zaken et al., 2021). Left: Bit-
Fit tends to add the same embedding shift to differ-
ent tokens. Right: Our work applies different embed-
ding shifts to tokens considering their importance to the
downstream task and their characteristics. The shifts
of the input words that are more task-related is more
significant than that of other tokens. For example, in
SST-2 (Socher et al., 2013), which is a semantic task,
the embedding shifts of the semantic words, such as
"kind" and "worse", are larger than that of other words.

standard NLP tasks. The results in Houlsby et al. 042

(2019) have shown that the performance on GLUE 043

benchmark (Wang et al., 2018) drops slightly when 044

removing the Adapters in the first layers, which 045

indicates that not every adapter is useful. It leaves 046

the question of whether adapters can be even more 047

parameter-efficient. 048

To develop practical and memory-efficient 049

adapters, Diff pruning (Guo et al., 2020) enables 050

parameter-efficient transfer learning that scales 051

well with new tasks. The approach learns a task- 052

specific “diff” vector that extends the original pre- 053

trained parameters and encourages the sparsity of 054

the vector through L0-norm regularization. An- 055

other approach is BitFit (Ben Zaken et al., 2021), 056

which shows that with small-to-medium training 057

data, fine-tuning only a subset of the bias terms of 058

pre-trained BERT models (Devlin et al., 2018) is 059

competitive with fine-tuning the entire model. The 060

1



central concept of these approaches is to add a task-061

specific shift to the output embedding of the PLM062

so as to adapt to different tasks. In the previous063

works, Ben Zaken et al. (2021); Guo et al. (2020)064

both add the same embedding shifts regardless of065

which token is more relevant to the task. However,066

considering some specific tokens might be more067

critical to a particular task, the embedding can bet-068

ter adapt to the downstream task under a limited069

amount of parameters if these shifts are based on070

the input tokens.071

Based on this concept, in this study, we add072

token-dependent biases to the embedding shifts by073

proposing AdapterBias, which consists of a vector074

and a linear layer (Lα). The vector represents the075

task-specific shift, and Lα produces the weights for076

input tokens. Thus, with vector and the weights,077

AdapterBias can add a token-dependent shift to078

the transformer layer. Since the concept of BitFit079

(Ben Zaken et al., 2021) is similar to AdapterBias080

by adding an embedding shift, we demonstrate the081

difference between BitFit and AdapterBias in Fig-082

ure 1. BitFit assigns the identical shifts to all the083

tokens, while AdapterBias adds more significant084

shifts to the tokens related to the task.085

With fewer trainable parameters required,086

AdapterBias achieves comparable performance on087

the GLUE benchmark with Houlsby et al. (2019);088

Pfeiffer et al. (2020a); Guo et al. (2020); Ben Za-089

ken et al. (2021). We further decrease the param-090

eters of AdapterBias in different ways, including091

partial weight-sharing in AdapterBias and adding092

L0-norm regularization. Finally, AdapterBias has093

better interpretability due to its simplicity. We094

use different tools, including WordCloud and PCA095

(Jolliffe, 2002), to visualize what AdapterBias has096

learned, and we found that the proposed approach097

automatically learns to assign larger shifts to the098

task-related tokens.099

2 Related Work100

For NLP tasks, adapters are introduced for the101

transformer architecture. A set of adapter param-102

eters was added at each transformer layer, which103

is mostly bottleneck architectures. By keeping the104

output dimension similar to their input, they cause105

no change to the structure or parameters of the106

original model.107

Adapters quickly gained popularity in NLP with108

various applications. For multi-task learning (Caru-109

ana, 1997; Zhang and Yang, 2017; Liu et al.,110

2019b), a projected self-attention layer is proposed 111

by Stickland and Murray (2019), while Bapna et al. 112

(2019) proposed an additional layer norm suitable 113

for machine translation. 114

Besides the applications of adapters, researchers 115

are also dedicated to improving their performance. 116

Based on the architecture introduced by Houlsby 117

et al. (2019), AdapterFusion (Pfeiffer et al., 2020a) 118

leveraged knowledge from multiple tasks with a 119

new two-stage learning algorithm. Despite the re- 120

cent popularity of these methods, they still train a 121

relatively large number of training parameters. 122

Recently, studies start to focus on improving 123

the parameter-efficiency of adapters. Diff-pruning 124

(Guo et al., 2020) achieves parameter efficiency by 125

adding a sparse, task-specific difference-vector to 126

the fixed original parameters. The vector is adap- 127

tively pruned during training with a differentiable 128

approximation to theL0-norm penalty to encourage 129

sparsity. Pfeiffer et al. (2020b) introduced Adapter- 130

Drop (Rücklé et al., 2020) by removing adapters 131

from lower transformer layers during training and 132

inference, which can dynamically reduce the com- 133

putational cost. Mahabadi et al. (2021) proposed 134

Compacter, which improved the trade-off between 135

performance and trainable parameters per task with 136

low-rank optimization. 137

On the other hand, without modifying the ar- 138

chitecture of the PLM, BitFit (Ben Zaken et al., 139

2021) shows that fine-tuning only the bias terms of 140

a large PLM is also competitive with fine-tuning 141

the entire model. Fine-tuning only the bias terms 142

can be considered as adding a task-specific shift 143

to the token embedding. BitFit is most similar to 144

our work. While in BitFit, the shifts added to all 145

the embeddings are exactly the same for all input 146

tokens, in our work, the embedding shifts are token- 147

dependent. 148

3 Method 149

In this section, we present AdapterBias, an efficient 150

way to adapt large-scale PLMs. In order to better 151

adapt to different downstream tasks, the adapter 152

module should be token-specific. AdapterBias pro- 153

duces a suitable weight of the bias based on the 154

input tokens. 155

Problem Formulation We consider the general 156

problem of fine-tuning PLMs, where the training 157

data D = (xi, yi)
N
n=1 is given. Assume that given 158

a PLM with parameters θ and AdapterBias with 159

parameters θ′. During the training stage, we freeze 160

2



Figure 2: Model architectures comparison of Houlsby et al. (2019), BitFit (Ben Zaken et al., 2021), and the
proposed method AdapterBias. The orange blocks indicate the trainable parts, while the gray blocks indicate the
frozen parameters during the training stage. Left: Houlsby et al. (2019) adds their Adapters after the feed-forward
layers, and their Adapter consists of two linear layers and an active function. Middle: BitFit tunes all biases from
the original transformer layers. Right: AdapterBias, consisting of a linear layer (Lα) and a vector (v), is added
after the second feed-forward layer only in each transformer layer.

θ and tune θ′ only.161

3.1 AdapterBias162

The architecture of AdapterBias is shown in the163

right part of Figure 2. AdapterBias consists of two164

modules: a vector (v) and a linear layer (Lα). v is a165

task-specific shift added to the embedding output of166

each transformer layer. Since some tokens are more167

task-related, these tokens should be assigned larger168

embedding shifts than other tokens. The linear169

layer (Lα) produces a token-dependent weight vec-170

tor α = [α1, α2 . . . αm]
T , where αi is the weight171

of the ith token’s embedding shift. By applying the172

token-specific weight to the task-specific embed-173

ding shift (v), AdapterBias can focus on the tokens174

that are more related to the task and is able to adapt175

to different downstream tasks efficiently.176

We define the output of AdapterBias as the bias177

(B), which is the outer product of v and the learned178

weights vector α. When the dimension of the to-179

ken’s embedding is e with with m input tokens, the180

function can be defined as follows:181

B = v ⊗ αT =
(
α1v α2v . . . αmv

)
(1)182

where v ∈ Re, α ∈ Rm, and B ∈ Re×m.183

To further elaborate the details of AdapterBias,184

we give an example of how AdapterBias produces185

B and how B adds to the transformer layer. In Fig-186

ure 3, we assume that there are three embedding 187

outputs (e1, e2, e3) after the first layer normaliza- 188

tion. The dimension of e1, e2 and e3 is 768. Note 189

that the dimension of the vector (v) in AdapterBias 190

is also 768. With three token embedding inputs 191

(e1, e2, e3), the linear layer (Lα) produces α, where 192

α ∈ R3. The blocks in different colors represent 193

the difference of the weights (α1, α2, α3). After 194

performing outer product with the weights vector 195

α and the vector (v), the dimension of B becams 196

768× 3. For example, b1, the first column of B, is 197

the embedding shift for the first token. 198

3.2 Further improvement on 199

parameter-efficiency of AdapterBias 200

In this section, we experiment on two ways to make 201

AdapterBias more parameter efficient. One is par- 202

tial weight-sharing of AdapterBias among trans- 203

former layers, another is enforcing the weights of 204

the linear layer (Lα) to be sparse by utilizing L0- 205

norm penalty. 206

3.2.1 Cross-layer parameters sharing in 207

AdapterBias 208

Redundancies have been observed in the informa- 209

tion captured by adapters, with adapters in lower 210

layers being less important. In the work of Houlsby 211

et al. (2019), they observed that their Adapter mod- 212

ules in the lower layers are less important. In ad- 213

3



dition, sharing parameters of the Adapter across214

layers leads to a comparatively small drop in per-215

formance in some tasks. In light of the above in-216

formation, we further reduce the number of param-217

eters required for each task by partially sharing218

the weights of the adapters across all transformer219

layers. The experimental result are discussed at220

Section 4.6.1.221

3.2.2 L0 regularization in AdapterBias222

Sparsity has been utilized in various parameter-223

efficient methods. For applications in NLP tasks,224

Diff-pruning (Guo et al., 2020) learns a sparse vec-225

tor added to the whole PLM with L0-norm penalty.226

Inspired by their work, we further apply L0-norm227

regularization to Lα in the AdapterBias module,228

aiming to encourage the sparsity of Lα. We choose229

to drop Lα because it contributes most of the pa-230

rameters in AdapterBias. Encouraging its sparsity231

can further increase the parameter efficiency. Note232

that we specifically apply L0 regularization in Sec-233

tion 4.6.2.234

In AdapterBias, we add L0-norm penalty to the235

linear layer (Lα). The optimization problem can236

be expressed as,237

min
θ′

L(D; θ, θ′) + λ‖θ′Lα
‖0, (2)238

where L(D; ·) represents the original loss with239

training data D. λ is the hyperparameter for L0-240

norm penalty. Note that θ′ represents trainable241

parameters and θ′Lα
represents the parameters of242

Lα in AdapterBias. Following the work of Diff-243

pruning, we utilize a relaxed mask vector (Louizos244

et al., 2017) with a stretched Hard-Concrete distri-245

bution (Jang et al., 2016; Maddison et al., 2016) to246

encourage L0 sparsity.247

4 Experiments248

In this section, we evaluate the effectiveness of our249

proposed adapter module in NLP training tasks,250

and provide the analysis of what AdapterBias has251

learned in different tasks.252

4.1 Experimental settings253

For the experiments, we base our experiments254

on HuggingFace PyTorch implementation (Wolf255

et al., 2019) of BERT (Devlin et al., 2018) and256

RoBERTa (Liu et al., 2019c) models. The learning257

rate is set in the range [10−4, 10−3], with AdamW258

(Loshchilov and Hutter, 2017) as the optimizer.259

GLUE benchmark (Wang et al., 2018) and SQuAD260

Figure 3: The detailed architecture of how AdapterBias
produces the bias (B) and how B is added to the output
of transformer layers.

v1.0 (Rajpurkar et al., 2016) are the training data 261

in our settings. The training details are shown in 262

Appendix A. Note that the second layer normal- 263

ization in each transformer layer is also tuned dur- 264

ing the training stage, corresponding to the orange 265

component in the right part of Figure 2. Due to 266

instability during training, we experiment with 3 267

random seeds and report the best. We report the 268

test metrics provided on the submission website1. 269

4.2 Results on GLUE 270

In this section, we compare AdapterBias to other 271

parameter-efficient methods, including Adapters 272

(Houlsby et al., 2019), AdapterFusion (Pfeiffer 273

et al., 2020a), Diff-pruning (Guo et al., 2020), and 274

BitFit (Ben Zaken et al., 2021). In Table 1, we 275

report the test scores on GLUE benchmark and the 276

percentage of required new parameters per task. 277

Here we use BERT-large as the PLM. Adapter- 278

Bias reaches 81.2 average score in GLUE bench- 279

mark, with the smallest parameters (0.067%) added 280

per task. AdapterBias shows competitive perfor- 281

mance as its parameters are 31.34× and 298.51× 282

less than the works of Houlsby et al. (2019); Pfeif- 283

fer et al. (2020a), respectively. Although Diff- 284

pruning (Guo et al., 2020) has the best average 285

score among all parameter-efficient methods, their 286

work trains an additional vector whose parameters 287

are equivalent to the parameters of the whole PLM. 288

Thus, Diff-pruning requires 100% trainable param- 289

1https://gluebenchmark.com/

4



Method %Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BERTLARGE 100% 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2

Houlsby et al. (2019) 2.1% 56.9 94.2 89.6 91.4 68.8 87.3 85.3 84.6 71.8 81.1
Pfeiffer et al. (2020a) 20% 59.3 94.7 87.6 91.5 71.5 86.5 85.2 84.3 71.4 81.3

Guo et al. (2020) 0.5% 61.1 94.1 89.7 93.3 70.6 86.0 86.4 86.0 71.1 82.0
Ben Zaken et al. (2021) 0.08% 59.7 94.1 88.9 92.0 72.0 85.5 84.5 84.8 70.5 81.3

AdapterBias 0.067% 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

Table 1: Performance of all methods on the GLUE testing sets scored by the GLUE evaluation server. For each
method, we report the new adding parameters per task. For QQP, we report the F1 score. For STS-B (Cer et al.,
2017), we report Spearman correlation coefficients. For CoLA (Warstadt et al., 2019), we report Matthews correla-
tion. For all other tasks, we report accuracy. Bold fonts indicate the least trainable parameter per task. The first row
(BERTLARGE) represents fine-tuning the whole BERT-large model without adding new parameters. The results of
baselines including (Houlsby et al., 2019; Guo et al., 2020; Ben Zaken et al., 2021) are their reported performance
and Pfeiffer et al. (2020a) performance is reproduced on our setting. Due to insatiability during training, we restart
experiments with 3 random seeds and report the best.

Method %Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 100% 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB AdapterBias 0.075% 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BL Full-FT 100% 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL AdapterBias 0.067% 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

RoB Full-FT 100% 61.3 94.7 90.4 92.0 74.4 87.5 87.4 86.8 71.9 82.9
RoB AdapterBias 0.066% 61.9 94.5 90.2 91.1 74.1 88.7 85.3 85.1 70.5 82.4
RoL Full-FT 100% 63.3 96.7 92.3 95.4 84.5 92.2 90.8 90.2 74.3 86.6
RoL AdapterBias 0.062% 63.9 96.4 90.4 94.7 83.6 91.3 89.8 89.4 72.3 85.8

Table 2: Performances of AdapterBias adding in different PLMs. Here we experiment four model : BERT-base
(BB), BERT-large (BL), RoBERTa-base (RoB) and RoBERTa-large (RoL). The percentage of new parameters is
compared with the PLM. The setting follows by Table 1. The Full-FT represents fine-tuning the whole PLM
without adding adapters.

eters of BERT-large during the training stage, while290

AdapterBias only trains 0.062% parameters. Fur-291

thermore, AdapterBias achieves comparable perfor-292

mance with BitFit with fewer parameters needed293

per task. This shows that AdapterBias is a worth-294

while targeted fine-tuning method.295

4.3 Different base models296

To analyze the generalization ability on different297

models of AdapterBias, as shown in Table 2, we298

apply AdapterBias in different transformer-based299

PLMs, including BERT-base (BB), BERT-large300

(BL), RoBERTa-base (RoB), and RoBERTa-large301

(RoL), on GLUE benchmark. All results are scored302

by the GLUE evaluate server. The percentage of303

new parameters per task is compared with the PLM.304

In Table 2, not only can AdapterBias perform well305

on BERT but also achieve competitive performance306

on larger PLMs such as RoBERTa.307

4.4 Size of training data308

In the previous experimental results, we observe309

that AdapterBias tends to have higher performance310

on tasks with a smaller amount of data (i.e. CoLA,311

SST-2, and RTE). To further validate this obser- 312

vation, we follow the work of BitFit (Ben Zaken 313

et al., 2021) by training AdapterBias on increasing- 314

sized subsets of SQuAD v1.0 (Rajpurkar et al., 315

2016). The experiments are conducted with BERT- 316

base model. The results on the validation set of 317

the SQuAD dataset are listed in Figure 4, which 318

shows the tendency of AdapterBias outperform- 319

ing fully fine-tuning when the size of the training 320

dataset is smaller. However, with more training 321

data available, the trend is reversed. The results 322

show that AdapterBias has the ability to outperform 323

fine-tuning the whole PLM with a small-to-medium 324

data size similar to BitFit. 325

4.5 Investigation on the effectiveness of token 326

dependent embedding shift 327

Different from BitFit (Ben Zaken et al., 2021), 328

where the bias terms in all transformer layers are 329

tuned, we claim that the bias added to the em- 330

bedding should be token-dependent, and proposed 331

AdapterBias based on this concept. We conduct 332

ablation studies to verify this claim. In this exper- 333

iment, the linear layer (Lα) in AdapterBias that 334

5



Method %Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
w/o Lα 0.008% 45.6 91.5 87.4 88.3 65.6 81.0 77.9 78.4 65.7 75.7

AdapterBias 0.075% 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 3: The importance of the linear layer (Lα) in AdapterBias. The setting follows by Table 1. The backbone
model is BERT-base. w/o Lα means that there is only a vector (v) in AdapterBias.

Figure 4: Comparison of Finetune, BitFit (Ben Za-
ken et al., 2021), and AdapterBias with BERT-base on
SQuAD validation set. The x-axis represents the total
number of training sets while the y-axis represents the
exact match score.

produces the token-dependent weights vector (α)335

is removed; that is, only the v is trained. All shifts336

added to the embedding outputs are identical within337

the same transformer layer. The experiments are338

conducted with BERT-base model. We report the339

test scores on the GLUE benchmark in Table 3.340

The performance of AdapterBias without the lin-341

ear layer (Lα) dramatically decreases. Without Lα,342

it is hard for the vector (v) to adapt to different343

downstream tasks. This result demonstrates the im-344

portance of Lα. In other words, assigning different345

shifts to different token embeddings improves the346

performance of the method.347

4.6 More parameter-efficiency improvement348

in AdapterBias349

We further apply two additional methods to350

AdapterBias to enhance its parameter efficiency.351

Experiments are conducted to see whether Adapter-352

Bias can be more parameter-efficient by sharing353

its components across all layers. Moreover, we354

experiment on adding L0-norm regularization dur-355

ing the training stage to encourage the sparsity of356

AdapterBias.357

4.6.1 Sharing components in AdapterBias 358

In this experiment, we conduct ablation study of 359

partial weight-sharing in the AdapterBias module. 360

In Table 4, we share components of AdapterBias 361

among different transformer layers. Share v rep- 362

resents sharing v among AdapterBias across all 363

transformer layers, while Share Lα means sharing 364

the linear layer (Lα). Share v+Lα denotes sharing 365

one AdapterBias among all transformer layers. As 366

can be seen in Table 4, Share Lα stands out among 367

other partial weight-sharing methods, while Share 368

v leads to a poor performance. 369

From the experiments above, we conclude that 370

the linear layer (Lα) captures general task informa- 371

tion by learning the weights of the bias for different 372

tokens. Thus, sharing Lα across all layers results in 373

better performance compared to other components. 374

The vector module (v) in AdapterBias aims to learn 375

local information in each transformer layer. If v 376

among different transformer layers are shared, the 377

performance drops dramatically. This might due to 378

v’ failure to learn general information which can 379

be adapted to each individual transformer layer. 380

4.6.2 L0-norm regularization in AdapterBias 381

We observed that many of the trained parameters 382

in Lα have values that are extremely close to zero 383

after tuning on downstream tasks, which might 384

cause redundancy of the parameters. To further 385

encourage the sparsity of AdapterBias, we add L0- 386

norm regularization to Lα during the training stage. 387

In Table 4, we use BERT-base for the PLM. We 388

compare the performance of the original Adapter- 389

Bias and the one trained with L0-norm regulariza- 390

tion. The experiment shows that adding L0-norm 391

regularization during the training step improves the 392

performance on 7 out of 9 tasks. In addition, the lin- 393

ear layer (Lα) with constraining L0-norm penalty 394

saves about 17% parameter on average compared 395

to the original AdapterBias. We also experiment on 396

BERT-large with L0-norm regularization applied 397

in the training stage, where the results are shown 398

in Appendix A. 399

6



Method %Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
Share v 0.068% 50.1 90.8 87.1 87.6 65.0 84.9 77.5 77.9 65.1 76.2

Share Lα 0.045% 50.4 91.9 88.1 89.1 65.4 85.2 79.8 79.9 66.6 77.4
Share v+Lα 0.037% 46.8 90.9 87.3 87.8 64.8 85.7 77.7 78.0 64.9 76.0

AdapterBias (L0) 0.062% 53.7 92.5 87.5 90.3 68.3 85.7 81.7 81.5 69.8 79.0
AdapterBias 0.075% 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 4: Analysis of more parameter-efficiency improvement in AdapterBias. The setting follows by Table 1.
The backbone model is BERT-base. Share v, Share Lα and Share v+Lα means that we share vector, linear layer,
and both of them, respectively. AdapterBias (L0) means that we constrain the linear layer Lα with L0-norm
regularization.

Figure 5: We utilize PCA (Jolliffe, 2002) to visual-
ize the shifting difference between Bitfit (Ben Zaken
et al., 2021) and AdapterBias on SST-2 evaluate set. ’0’
with light color means the embedding before shifting.
’1’ with dark color means the embedding after shifting.
The color red represents positive sentences, and blue
represents negative sentences.

4.7 Deeper look on what AdapterBias have400

learned401

AdapterBias has good interpretability due to its402

simplicity. Compared to our similar work Bit-403

Fit (Ben Zaken et al., 2021), where the shifts are404

identical for all tokens, AdapterBias adds token-405

dependent shifts to the output embedding. By ob-406

serving these token-dependent shifts, we provide407

analysis of what AdapterBias has learned when408

adapting to downstream tasks.409

4.7.1 The direction of embedding shifts in410

different tasks411

Different from BitFit (Ben Zaken et al., 2021),412

where all the embedding shifts are identical within413

one task, AdapterBias produces different weights414

for the shift based on each token. In this section,415

we compare the transformed tokens in AdapterBias416

and BitFit. We utilize PCA (Jolliffe, 2002) to re-417

duce the dimension of the tokens. In Figure 5, we418

input five sentences from the evaluation set of SST-419

2. We experiment on the last transformer layer420

since it has the most obvious shifts compared to the421

previous layers. ’0’ with lighter color indicates the422

Figure 6: We analyze the average absolute value of
weights vector α, the output of the linear layer (Lα),
in each layer for different tasks. The y-axis represents
the index of transformer layers, ordered from earlier to
later (i.e. the embedding layer is shown at the top). The
x-axis represents the average absolute value of α.

embedding before shifting, which is the output of 423

the first layer normalization. ’1’ with darker color 424

is the shifted embedding, which is the output of the 425

second layer normalization. The color red repre- 426

sents positive sentences, and blue are the negative 427

ones. 428

The result shows that BitFit shifts all tokens to- 429

wards the same direction regardless of the ground- 430

truth label. On the other hand, AdapterBias dis- 431

cerns the label of the sentences and thus shifts the 432

tokens of different sentences toward different direc- 433

tions. 434

4.7.2 Average embedding shifting in 435

transformer layers 436

In light of the works of Liu et al. (2019a); Tenney 437

et al. (2019); Kovaleva et al. (2019), different infor- 438

mation has been encoded by different transformer 439

layers of PLMs. We assume that AdapterBias pro- 440

vides different embedding shifts to the transformer 441

layers through task-specific fine-tuning. In Adapter- 442

Bias, the linear layer (Lα) produces a weights vec- 443

7



Figure 7: WordCloud of CoLA, a corpus of linguistic
acceptability. We utilize BERT-base model as the PLM
and words come from validation data. The weights of
the words are the summation of their weights produced
by the linear layer (Lα) in twelve transformer layers.

tor α for embedding shifts, therefore, the average444

absolute value of vector α can give us a look at445

the shifting amount in the transformer layers when446

adapting to downstream tasks. In Figure 6, the447

layers are ordered from lower to upper. From the448

experimental result, we find that the weight in each449

layer is considerably different in different tasks in450

general.451

CoLA (Warstadt et al., 2019) is the only syn-452

tactic task that consists of English acceptability453

judgments in the GLUE benchmark. As shown in454

Figure 6, its average shift at the ninth layer is the455

highest among all layers, which is quite different456

from the others. We speculate that the ninth layer457

has the ability to extract the syntactic information,458

leading AdapterBias to add the largest shift in this459

layer. Our experiment has a similar observation460

with the work of Jawahar et al. (2019). In their461

findings on BShift (Conneau et al., 2018), which462

is also a syntactic task, the ninth layer of BERT463

embeds a rich hierarchy of syntactic information.464

(Jawahar et al., 2019)465

Moreover, we observe similar distributions be-466

tween specific tasks. For instance, RTE (Giampic-467

colo et al., 2007; Bentivogli et al., 2009) and468

MNLI (Williams et al., 2017), where both tasks469

recognize textual entailment, have higher values in470

the upper layers than those in the lower ones.471

Based on these findings, we find that Adapter-472

Bias assigns suitable embedding shifts in different473

tasks. For tasks with similar objectives, Adapter-474

Bias tends to add similar embedding shifts.475

4.7.3 Which kind of word does Lα focus on476

Since αi represents the weight of the embedding477

shift for ith token in a transformer layer, we can478

observe the significance of ith token from the sum-479

mation of αi in all the transformer layers. Special480

Figure 8: WordCloud of SST-2, a corpus of movie re-
views categorized in two sentimental classes (i.e. posi-
tive, negative). The visualization approach is the same
as the Figure 7.

tokens, including [CLS], [SEP], and [PAD], are not 481

included for analysis. We use the validation sets 482

of CoLA and SST-2, and WordCloud is used for 483

visualizations. 484

In Figure 7, we visualize all words in the valida- 485

tion data of CoLA. The result shows that Adapter- 486

Bias focuses more on reflexive pronouns, such as 487

yourself, himself, and myself. This is because there 488

are many incorrect sentences with misused reflex- 489

ive pronouns, such as "He washed yourself." 490

In Figure 8, we visualize all words in the valida- 491

tion data of SST-2. The result shows that Adapter- 492

Bias focuses more on adjectives, such as "bad", 493

"awful", and "worst". SST-2 is a binary sentiment 494

analysis dataset, which classifies movie reviews 495

into positive and negative classes. AdapterBias 496

learns that adjectives often constitute a crucial fac- 497

tor in sentiment analysis during tuning, and adds 498

larger shifts to these adjective tokens. 499

5 Conclusion 500

In this study, we present AdapterBias. By adding 501

token-dependent embedding shifts to the PLM, 502

AdapterBias shows competitive results when us- 503

ing far less trainable parameters than the existing 504

methods. Through extensive experiments, not only 505

does AdapterBias reaches competitive results on 506

the GLUE benchmark, but it also obtains good 507

performance on small-to-medium datasets. In addi- 508

tion, we demonstrate the robustness of AdapterBias 509

in different PLMs. Finally, we provide analysis 510

on what AdapterBias have learned by comparing 511

α, the weights of embedding shift from different 512

tokens, finding it has the ability to identify task- 513

specific information. Our study overturns previous 514

architectures of adapters by proposing a simple 515

adapter that can produce suitable embedding shifts 516

for different tokens. 517

8



References518

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.519
2019. Simple, scalable adaptation for neural ma-520
chine translation. arXiv preprint arXiv:1909.08478.521

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-522
berg. 2021. Bitfit: Simple parameter-efficient523
fine-tuning for transformer-based masked language-524
models. arXiv e-prints, pages arXiv–2106.525

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo526
Giampiccolo. 2009. The fifth pascal recognizing tex-527
tual entailment challenge. In TAC.528

Rich Caruana. 1997. Multitask learning. Machine529
learning, 28(1):41–75.530

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-531
Gazpio, and Lucia Specia. 2017. Semeval-2017532
task 1: Semantic textual similarity-multilingual and533
cross-lingual focused evaluation. arXiv preprint534
arXiv:1708.00055.535

Alexis Conneau, German Kruszewski, Guillaume Lam-536
ple, Loïc Barrault, and Marco Baroni. 2018. What537
you can cram into a single vector: Probing sentence538
embeddings for linguistic properties. arXiv preprint539
arXiv:1805.01070.540

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and541
Kristina Toutanova. 2018. Bert: Pre-training of deep542
bidirectional transformers for language understand-543
ing. arXiv preprint arXiv:1810.04805.544

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,545
and William B Dolan. 2007. The third pascal recog-546
nizing textual entailment challenge. In Proceedings547
of the ACL-PASCAL workshop on textual entailment548
and paraphrasing, pages 1–9.549

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.550
Parameter-efficient transfer learning with diff prun-551
ing. arXiv preprint arXiv:2012.07463.552

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,553
Bruna Morrone, Quentin De Laroussilhe, Andrea554
Gesmundo, Mona Attariyan, and Sylvain Gelly.555
2019. Parameter-efficient transfer learning for nlp.556
In International Conference on Machine Learning,557
pages 2790–2799. PMLR.558

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-559
ical reparameterization with gumbel-softmax. arXiv560
preprint arXiv:1611.01144.561

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.562
2019. What does bert learn about the structure of563
language? In ACL 2019-57th Annual Meeting of the564
Association for Computational Linguistics.565

Ian T Jolliffe. 2002. Springer series in statistics. Prin-566
cipal component analysis, 29.567

Olga Kovaleva, Alexey Romanov, Anna Rogers, and568
Anna Rumshisky. 2019. Revealing the dark secrets569
of bert. arXiv preprint arXiv:1908.08593.570

Nelson F Liu, Matt Gardner, Yonatan Belinkov, 571
Matthew E Peters, and Noah A Smith. 2019a. Lin- 572
guistic knowledge and transferability of contextual 573
representations. arXiv preprint arXiv:1903.08855. 574

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian- 575
feng Gao. 2019b. Multi-task deep neural networks 576
for natural language understanding. arXiv preprint 577
arXiv:1901.11504. 578

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 579
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 580
Luke Zettlemoyer, and Veselin Stoyanov. 2019c. 581
Roberta: A robustly optimized bert pretraining ap- 582
proach. arXiv preprint arXiv:1907.11692. 583

Ilya Loshchilov and Frank Hutter. 2017. Decou- 584
pled weight decay regularization. arXiv preprint 585
arXiv:1711.05101. 586

Christos Louizos, Max Welling, and Diederik P 587
Kingma. 2017. Learning sparse neural net- 588
works through l_0 regularization. arXiv preprint 589
arXiv:1712.01312. 590

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 591
2016. The concrete distribution: A continuous relax- 592
ation of discrete random variables. arXiv preprint 593
arXiv:1611.00712. 594

Rabeeh Karimi Mahabadi, James Henderson, and Se- 595
bastian Ruder. 2021. Compacter: Efficient low- 596
rank hypercomplex adapter layers. arXiv preprint 597
arXiv:2106.04647. 598

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 599
Kyunghyun Cho, and Iryna Gurevych. 2020a. 600
Adapterfusion: Non-destructive task composi- 601
tion for transfer learning. arXiv preprint 602
arXiv:2005.00247. 603

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish- 604
warya Kamath, Ivan Vulić, Sebastian Ruder, 605
Kyunghyun Cho, and Iryna Gurevych. 2020b. 606
Adapterhub: A framework for adapting transform- 607
ers. arXiv preprint arXiv:2007.07779. 608

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 609
Percy Liang. 2016. Squad: 100,000+ questions 610
for machine comprehension of text. arXiv preprint 611
arXiv:1606.05250. 612

Andreas Rücklé, Gregor Geigle, Max Glockner, 613
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and 614
Iryna Gurevych. 2020. Adapterdrop: On the effi- 615
ciency of adapters in transformers. arXiv preprint 616
arXiv:2010.11918. 617

Richard Socher, Alex Perelygin, Jean Wu, Jason 618
Chuang, Christopher D Manning, Andrew Y Ng, 619
and Christopher Potts. 2013. Recursive deep mod- 620
els for semantic compositionality over a sentiment 621
treebank. In Proceedings of the 2013 conference on 622
empirical methods in natural language processing, 623
pages 1631–1642. 624

9



Asa Cooper Stickland and Iain Murray. 2019. Bert625
and pals: Projected attention layers for efficient626
adaptation in multi-task learning. In International627
Conference on Machine Learning, pages 5986–5995.628
PMLR.629

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.630
Bert rediscovers the classical nlp pipeline. arXiv631
preprint arXiv:1905.05950.632

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob633
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz634
Kaiser, and Illia Polosukhin. 2017. Attention is all635
you need. arXiv preprint arXiv:1706.03762.636

Alex Wang, Amanpreet Singh, Julian Michael, Felix637
Hill, Omer Levy, and Samuel R Bowman. 2018.638
Glue: A multi-task benchmark and analysis platform639
for natural language understanding. arXiv preprint640
arXiv:1804.07461.641

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-642
man. 2019. Neural network acceptability judgments.643
Transactions of the Association for Computational644
Linguistics, 7:625–641.645

Adina Williams, Nikita Nangia, and Samuel R Bow-646
man. 2017. A broad-coverage challenge corpus for647
sentence understanding through inference. arXiv648
preprint arXiv:1704.05426.649

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien650
Chaumond, Clement Delangue, Anthony Moi, Pier-651
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-652
towicz, et al. 2019. Huggingface’s transformers:653
State-of-the-art natural language processing. arXiv654
preprint arXiv:1910.03771.655

Yu Zhang and Qiang Yang. 2017. A survey on multi-656
task learning. arXiv preprint arXiv:1707.08114.657

A Example Appendix658

10



CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
Max_len 128 128 128 512 350 512 128 128 350
Batchsize 32 32 32 16 32 16 32 32 32

Learning rate 10−3 10−3 10−3 10−4 4× 10−4 10−3 4× 10−4 4× 10−4 4× 10−4

Epoch 20 10 10 10 20 20 10 10 10

Table 5: Our training details of GLUE benchmark(Wang et al., 2018).

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB AdapterBias 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BB AdapterBias (L0) 53.7 92.5 87.5 90.3 68.3 85.7 81.7 81.5 69.8 79.0
BL Full-FT 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL AdapterBias 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2
BL AdapterBias (L0) 58.0 93.7 88.2 91.5 69.2 87.2 84.2 84.1 71.2 80.8

Table 6: Performances of our AdapterBias with L0-norm regularization. Here we experiment with two models:
BERT-base (BB) and BERT-large (BL). The setting follows by Table 1. The Full-FT represents fine-tuning the
whole PLM without adding adapters.

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
BB AdapterBias (L0) 26.2% 82.0% 83.1% 82.3% 81.0% 83.0% 83.2% 83.3% 83.4%
BL AdapterBias (L0) 83.2% 83.0% 83.3% 83.7% 83.2% 83.2% 83.4% 83.7% 83.6%

Table 7: Percentage of remaining parameters compared with the original parameters of the linear layer (Lα). Here
we experiment with two models: BERT-base (BB) and BERT-large (BL). The setting follows by Table 1.

11


