
Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Alex Tamkin 1 Mohammad Taufeeque 2 Noah D. Goodman 3

Abstract
Understanding neural networks is challenging in
part because of the dense, continuous nature of
their hidden states. We explore whether we can
train neural networks to have hidden states that are
sparse, discrete, and more interpretable by quan-
tizing their continuous features into what we call
codebook features. Codebook features are pro-
duced by finetuning neural networks with vector
quantization bottlenecks at each layer, producing
a network whose hidden features are the sum of
a small number of discrete vector codes chosen
from a larger codebook. Surprisingly, we find that
neural networks can operate under this extreme
bottleneck with only modest degradation in per-
formance. In addition, we can control a model’s
behavior by finding codes that activate on a de-
sired behavior, then activating those same codes
during generation. We first validate codebook fea-
tures on a finite state machine dataset with far
more hidden states than neurons. In this setting,
our approach overcomes the superposition prob-
lem by assigning states to distinct codes, and we
find that we can make the neural network behave
as if it is in a different state by activating the code
for that state. We then train Transformer language
models with up to 410M parameters on two natu-
ral language datasets. We identify codes in these
models representing diverse, disentangled con-
cepts (ranging from negative emotions to months
of the year) and find that we can guide the model
to generate different topics and pronoun genders
by activating these codes during inference. Over-
all, codebook features appear to be a promising
unit of analysis and control for neural networks
and interpretability. Our codebase and models are
open-sourced at this URL.1

1Anthropic, Work performed while at Stanford University.
2FAR AI 3Stanford University. Correspondence to: Alex Tamkin
<atamkin@cs.stanford.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Author contributions listed in Appendix A .

1. Introduction
The strength of neural networks lies in their ability to learn
emergent solutions that we could not program ourselves.
Unfortunately, the learned programs inside neural networks
are challenging to make sense of, in part because they differ
from traditional software in important ways. Most strikingly,
the state of a neural network program, including interme-
diate computations and features, is implemented in dense,
continuous vectors inside of a network. As a result, many
different pieces of information are commingled inside of
these vectors, violating the software engineering principle
of separation of concerns (Dijkstra, 1982). Moreover, the
continuous nature of these vectors means no feature is ever
truly off inside of a network; instead, they are activated to
varying degrees, vastly increasing the complexity of this
state and the possible interactions within it.

A natural question is whether it is possible to recover some
of the sparsity and discreteness properties of traditional soft-
ware systems while preserving the expressivity and learn-
ability of neural networks. To make progress here, we
introduce a structural constraint into training that refactors
a network to adhere more closely to these design princi-
ples. Specifically, we finetune a network with trainable
vector quantization bottlenecks (Gray, 1984) at each layer,
which are sparse and discrete. We refer to each vector in
this bottleneck as a code and the entire library of codes as
the codebook. See Figure 1 for a visual depiction of this
motivation.

The resulting codebooks learned through this process are a
promising interface for understanding and controlling neural
networks. For example, when we train a codebook language
model on the outputs of a finite state machine, we find a
precise mapping between activated codes in different layers
of the model to the states of the state machine, overcom-
ing the challenge of superposition (Elhage et al., 2022b).
Furthermore, we demonstrate a causal role for these codes:
changing which code is activated during the forward pass
causes the network to behave as if it were in a different state.
Additionally, we apply codebook features to transformer
language models with up to 410M parameters, showing that
despite this bottleneck, they can be trained with only mod-
est accuracy degradation compared to the original model.
We find codes that activate on a wide range of concepts,

1

https://github.com/taufeeque9/codebook-features

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

check
temp

check
pH

heat
off

more
heat

Traditional Software Neural Networks Codebook Features

0.3 -0.8 -0.7 0.1 0.4 -0.1

Matrix
multiplications

0.3 -0.8 -0.7 0.1 0.4 -0.1

most similarmost similar

codebook layer

code 428

code 428

code 938 code 83

code 83

code 201

if > 95ºC

if < 95ºC
+

Matrix
multiplications

Requires known algorithm
Sparse, discrete state
improves understanding

Emergent algorithm
Dense, continuous state
hinders understanding

Emergent algorithm
Improved understanding via
sparse, discrete form

✅

✅ ✅

✅

⛔

⛔

Figure 1: Codebook features attempt to combine the expressivity of neural networks with the sparse, discrete state often
found in traditional software.

spanning punctuation, syntax, lexical semantics, and high-
level topics. We then show how to use codebook features
to control the topic of a model’s generations, providing a
practical example of how to use our method to understand
and control real language models.

2. Method
Codebook features aim to improve our understanding and
control of neural networks by compressing their activation
space with a sparse, discrete bottleneck. Specifically, we
aim to learn a set of discrete states the network can occupy,
of which very few are active during any single forward pass.
As we will show later in the paper (Sections 3 and 4), this
bottleneck encourages the network to store useful and disen-
tangled concepts in each code. Even more importantly, we
show that these interpretations enable us to make causal in-
terventions on the network internals, producing the expected
change in the network’s behavior. Crucially, codebooks are
learned, not hand-specified, enabling them to capture be-
haviors potentially unknown by human researchers.

Concretely, codebook features are produced by replacing
a hidden layer’s activations with a sparse combination of
code vectors. Let a ∈ RN be the activation vector of
a given N-dimensional layer in a network. We have a
codebook C = {c1, c2, ..., cC} ∈ RC×N , where C is the
codebook size and the code vectors ci are randomly ini-
tialized using a standard normal distribution N (0, 1). To
apply the codebook, we first compute the cosine similar-
ities sim(a, ci) = a·ci

|a||ci| between a and each code vector
ci. We then replace a with fC(a) =

∑
i∈S ci, where S

contains the indices of the top k most similar code vectors
and fC(a) is the output of the codebook on the input a. In
other words, we activate and sum the k code vectors most
similar to the original activation a. The value of k controls
the bottleneck’s sparsity; we aim to make k as small as pos-
sible while achieving adequate performance. k is a small
fraction of C in our experiments, typically less than 1%,
and as a result, we find that codebooks are tight information
bottlenecks, transmitting much less information than even
4-bit quantized activations (Appendix C).

While codebook features can be applied to any neural net-
work, we primarily focus on Transformer networks, placing
codebooks after either the network’s MLP blocks or at-
tention heads. Figure 2 shows the precise location of the
codebook for each type of sublayer. Note that this position-
ing of the codebooks preserves the integrity of the residual
stream of the network, which is important for optimizing
deep networks (He et al., 2016; Elhage et al., 2021).

2.1. Training with codebooks

To obtain codebook features, we add the codebook bottle-
necks to existing pretrained models and finetune the model
with the original training loss. Thus, the network must learn
to perform the task well while adjusting to the discrete code-
book bottleneck. Using a pretrained model enables us to
produce codebook features more cheaply than training a
network from scratch. When finetuning, we use a linear
combination of two losses:

Original training loss In our work, we apply codebooks to
Transformer-based causal language models and thus use the

2

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Layer Activations

Attn Head 1 Attn Head 2

Attention Projection

Feedforward Block

+

Figure 2: Applying codebook features to transformers.
Attention heads: We add one codebook (depicted by the col-
ored rectangles) for each attention head. The codebook is
inserted before the projection into the residual stream. Feed-
forward block: We insert the codebook after the feedforward
block, before addition into the residual stream. Note that
the Layer Activations itself is a sum of codebook features
from all the previous layers, which is passed as it is through
the residual stream.

typical cross-entropy loss these models were trained with:
LLM(θ) = −

∑N
i=1 log pθ(xi|x<i) where θ represents the

model parameters, xi is the next token of input sequence
x<i, pθ(xi|x<i) is the model’s predicted probability of to-
ken xi given input x<i, and N is the length of the input
sequence.

Reconstruction loss Because we compute the similarity
between activations and codebook features using the cosine
similarity, which is invariant to magnitude, the code vectors
can often grow in size throughout training, leading to insta-
bility. For this reason, we find it helpful to add an auxiliary
loss to the codes: LMSE = MSE(fC(a), stop-gradient(a)),
where a are the input activations to the codebook, fC(a)
is the codebook output, and MSE is the mean squared er-
ror, to keep the distance between inputs and chosen codes
small. The stop gradient means the gradient of this operation
only passes through the codebook, not the input a, which
we found was important to avoid damaging the network’s
capabilities.2

Final loss and optimization The final loss is simply a
combination of both losses above L = LLM +λLMSE where
λ is a tradeoff coefficient. We set λ to 1 in this work. To
optimize the codebooks despite the discrete choice of codes,
we use the straight-through estimator: we propagate gra-
dients to the codes that were chosen on each forward pass

2We performed preliminary experiments that only used the re-
construction loss (keeping the language model’s parameters fixed),
similar to a VQ-VAE (van den Oord et al., 2017) at every layer.
However, we achieved significantly worse performance. See Ta-
ble 8 for more details.

and pass no gradients to the remaining codes (Bengio et al.,
2013; van den Oord et al., 2017). We use this strategy to
successfully perform end-to-end training of networks up
to 24 layers deep, with each layer having a codebook. We
defer additional details to Appendix B.

2.2. Using codebooks for understanding and control

A trained codebook model enables a simple and intuitive
way of controlling the network’s behavior. This method
consists of two phases:

1) Generating hypotheses for the role of codes. Most
codes are activated infrequently in the training dataset. We
can gain an intuition for the functional role of each code
in the network’s hidden state by retrieving many examples
in the dataset where that code was activated. For exam-
ple, if a code activates mainly around words like “candle,”
“matches,” and “lighters,” we might hypothesize that the
token is involved in representations of fire. The discrete
on-or-off nature of codes makes this task more manageable
than looking at continuous values like neuron activations,
as past work has speculated that lower-activating neurons
can “smuggle” important information across layers, even if
many neurons appear interpretable (Elhage et al., 2022a).
As we will show in the following sections, the codes we
discover activate more often on a single interpretable fea-
ture, while neurons may activate on many unrelated features.
Appendix F.1 discusses the advantages and tradeoffs of code-
books over neuron- and feature direction–based approaches
in more detail.

2) Steering the network by activating codes. After we
have identified codes that reliably activate on the concept
we are interested in, we can directly activate those codes
to influence the network’s behavior. For example, if we
identified several codes related to fire, we could activate
those codes during generation to produce outputs about fire
(e.g., as in Section 4.1). This intervention confirms that the
codes have a causal role in the network’s behavior.

In the following sections, we apply this same two-step pro-
cedure across several different datasets, showing that we
can successfully gain insight into the network and control
its behavior in each case.

3. Algorithmic Sequence Modeling
The first setting we consider is an algorithmic sequence mod-
eling dataset called TokFSM. The purpose of this dataset
is to create a controlled setting exhibiting some of the com-
plexities of language modeling, but where the latent features
present in the sequence are known. This setting enables us
to evaluate how well the model learns codes that activate
on these distinct features. An overview of the section and
our findings is shown in Figure 3. Below, we describe the

3

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

27 53

06 14

2 7 0 6 1 4

finite state machine (FSM)

most similar

emergent mapping
between codes
and FSM states

codebook layer

MLP output
activations

TokFSM dataset example

codebook output
(most similar code)

code 428 code 938 code 83 code 201

0.3 -0.8 -0.7 0.1

0.2 -0.6 -0.8 0.3

Figure 3: Codebook features learn the hidden structure
of an algorithmic sequence modeling task. The code-
book transformer learns to detect the states of a finite state
machine and assigns a code to each state. We can then
manipulate these codes to cause the network to make pre-
dictions as if it were in a different state.

dataset, and then (following Section 2.2) we first generate
hypotheses for the role of codes, then show how one can pre-
dictably influence the network’s behavior by manipulating
these codes.

The TokFSM Dataset The TokFSM dataset is produced
by first constructing a simplified finite state machine (FSM).
Our FSM is defined by (V,E) where V = {0, · · · , N − 1}
is a set of nodes and E ⊆ V × V indicates the set of valid
transitions from one state to the next. In our setting, we
choose N = 100 and give each node 10 randomly chosen
outbound neighbors, each assigned an equal transition prob-
ability (0.1). Entries in the dataset are randomly sampled
rollouts of the FSM up to 64 transitions. We tokenize the
sequences at the digit level; this gives a sequence length of
128 for each input. For example, if our sampled rollout is
[18, 00, 39], we would tokenize it as [1, 8, 0, 0, 3, 9] for the
neural network. Thus, the model must learn to detokenize
the input into its constituent states, predict the next FSM
state, and then retokenize the state to predict the next token.

Training and evaluating the codebook models We train 4-
layer Transformers with 4 attention heads and an embedding
size of 128 based on the GPTNeoX architecture (Black et al.,
2022) on the TokFSM dataset. We train several models
with different numbers of codes and sparsity values k, with
codebooks either at the network’s attention heads or both the
attention heads and MLP Layers (see Figure 2). In Table 1,
we report the accuracy of the resulting models both in terms
of their language modeling loss, next token accuracy, and
their ability to produce valid transitions of the FSM across
a generated sequence. The k = 1 model with codebooks at
only the attention layers achieves comparable performance
across all metrics to the original model. At the same time,
larger values of k enable the model with codebooks at both

Table 1: Performance of original and codebook models
on TokFSM. A k = 1 codebook model on only attention
layers attains similar performance to the original model,
while attention-and-MLP codebooks require a higher k and
codebook size C to match performance. † indicates the
model we analyze in the rest of the section.

Codebook Type Loss LM Acc State Acc

No Codebook 1.179 46.36 96.77

Attn Only k=1, C=2k 1.18 46.33 96.39

†Attn+MLP k=1, C=10k 1.269 45.27 63.65
Attn+MLP k=1, C=20k 1.254 45.56 63.81
Attn+MLP k=4, C=20k 1.192 46.20 80.69
Attn+MLP k=16, C=20k 1.183 46.32 91.53
Attn+MLP k=128, C=20k 1.178 46.38 95.82

attention and MLP blocks to attain comparable performance.
It is striking that networks can perform so well despite
this extreme bottleneck at every layer. We defer additional
training details to Appendix D.1 and ablation studies to
Table 8.

3.1. Generating hypotheses for the role of codes

After training these models, we examine the k = 1 at-
tention and MLP codebook transformer following Sec-
tion 2.2. Looking at activating tokens reveals a wide range
of interesting-looking codes. We provide descriptions of
these codes along with a table of examples in Table 6, and
focus our analysis on two families of codes here: in the
last three MLP layers (layers 1, 2, and 3), we identify state
codes that reliably activate on the second token of a spe-
cific state (of which there are 100 possibilities), as well as
state-plus-digit codes that activate on a specific digit when
it follows a specific state (686 possibilities in our state ma-
chine). For example, code 2543 in MLP layer 2 activates on
the 0 in the state 40 (e.g., 50-40-59). This finding is notable
because there are only 128 neurons in a given MLP layer,
far lower than the total number of these features. Thus, the
codebooks must disentangle features represented in a dis-
tributed manner across different neurons inside the network.
(Anecdotally, the top-activating tokens for the neurons in
these layers do not appear to follow any consistent pattern.)

We quantify this further with an experiment where we use
state codes to classify states and compare them to the neuron
with the highest precision at that state code’s recall level.
As shown in Figure 6a, codes have an average precision of
97.1%, far better than the average best neuron precision of
70.5%. These pieces of evidence indicate that codebooks
can minimize the superposition problem in this setting. See
Appendix D for additional details and experiments.

4

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

N
one

L0 Attn

L1 M
LP

A
ll Attn

A
ll M

LP

A
ll Attn, M

LP

0

0.2

0.4

0.6

0.8

1

N
o
r
m

a
li

z
e
d

 J
S

 D
iv

(a) State code interventions

N
one

L0 Attn

L1 M
LP

A
ll Attn

A
ll M

LP

A
ll Attn, M

LP

0

0.2

0.4

0.6

0.8

1

N
o
r
m

a
li

z
e
d

 J
S

 D
iv

(b) State-plus-digit code inter-
ventions

Figure 4: Interventions on the state and state-plus-digit
codes in a sequence. Changing just the MLP codes to codes
associated with another state shifts the output distribution
almost entirely to the target state. Changing codes in other
layers has a much smaller effect. Normalized JS Div stands
for the normalized Jensen-Shannon Divergence, where the
initial difference (None) is normalized to 1.

3.2. Steering the network by activating codes

While these associations can provide hypotheses for code
function, they do not provide causal evidence that codes
causally influence the network’s behavior. For this, inter-
ventional studies are necessary (Spirtes et al., 2000; Pearl
& Mackenzie, 2018; Geiger et al., 2020; 2021). The state
and state-plus-digit codes presented in Section 3.1 suggest a
natural causal experiment: set the activated code in a given
codebook to the code corresponding to another state and
see whether the next token distribution shifts accordingly.3

More specifically, let C(l)(xt) be the codebook at layer l
applied to input token xt. As we consider a k = 1 model,
C(l)(xt) returns a single code c

(l)
t ∈ Rd. We replace this

code with c̃
(l)
t , a code that activates when a different state is

present. We then recompute the forward pass from that point
and observe whether the network’s next token distribution
resembles the next token distribution for the new state.

In Figure 4a, we find that this is precisely the case—
changing only the state codes in the MLP layers to a differ-
ent state code shifts the next token distribution towards that
other state, as measured by the Jensen-Shannon Divergence
(JSD Lin, 1991), averaged over 500 random state transitions.
This effect is even more substantial for the state-plus-digit
codes, where changing the codes in the MLP layers makes
the next-state distribution almost identical to that of the new
state (Figure 4b). These results provide strong evidence that
these codes perform the expected causal role in the network.
Note that applying a similar perturbation to just a single
MLP layer or all the attention layers causes a much smaller
drop in JSD, indicating that this information is mainly stored
across several MLP layers.

3This experiment is similar to what Geiger et al. (2020) call
an interchange intervention, and more generally establish a causal
abstraction over the neural network (Geiger et al., 2021).

Once upon a time, a dragon

 upon a time, a dragon flew

Layer 1

Layer 2

Activating the
“dragon code” across
the sequence steers
the generated text

Figure 5: Steering a language model with topic codes. We
identify several codes that activate on examples of a given
topic (e.g., dragons). We then activate these codes at each
generation step, producing generated text about that topic.
See Table 10 for examples.

4. Language Modeling
Next, we apply codebook features to language models (LMs)
trained on naturalistic text corpora. We demonstrate the
generality and scalability of our approach by training two
models of different sizes on two different datasets. After
describing the models we train and the training data, we
follow the strategy described in Section 2.2 and identify
hypotheses for the role of codes in the network. Then, we
validate these hypotheses by steering the models through
targeted activation of codes.

Trained models We finetune a small, 1-layer, 21 million
parameter model on the TinyStories dataset of children’s
stories (Eldan & Li, 2023). We also finetune a larger, 24-
layer 410M parameter model on the WikiText-103 dataset,
consisting of high-quality English-language Wikipedia arti-
cles (Merity et al., 2016). See Appendix E for more training
details.

Codebook models are still strong language models Re-
markably, despite the extreme bottleneck imposed by the
codebook constraint, the codebook language models can
still achieve strong language modeling performance. As
shown in Table 2, codebook models can attain a loss and
accuracy close to or better than the original models with the
proper settings. In addition, the generations of the codebook
look comparable to the base models, as shown in Table 10.
Finally, in Appendix E.4, we profile the inference speed
of these codebook models, showing how sparsity and fast
maximum inner product search (MIPS) algorithms enable
codebooks to run much more efficiently than the naive im-
plementation of two large matrix multiplications.

Generating hypotheses for the role of codes We also
explore the interpretability of codes by looking at examples
that the code activates on. In Table 11, we catalog codes that
selectively activate on a wide range of linguistic phenomena,
spanning orthography (e.g., names starting with “B”), word
types (e.g., months of the year), events (e.g., instances of

5

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 2: Codebook models are still capable language models.. Asterisks (*) denote the base model we apply the codebooks
to, while daggers (†) indicate the codebook models we analyze in the rest of the paper. We trained the other models to
provide additional comparisons (see Appendix E.3 for more details, including on grouped codebooks.). All models have a
codebook size of C = 10k. Note that the MLP 16-group k = 8 model is comparable to the attention k = 8 model because
our model has 16 attention heads. While we use a pretrained TinyStories model as our base model, we also report metrics
for a model we finetune to account for any subtle differences in data processing.

(a) TinyStories 1-Layer Model

Language Model Loss Acc

*Pretrained 1.82 56.22
Finetuned 1.57 59.27

†Attn, k = 8 1.66 57.91
MLP, k = 100 1.57 59.47
MLP, grouped 16× (k = 8) 1.60 59.36

(b) WikiText-103 410M 24-Layer Model

Language Model Loss Acc

*Finetuned (Wiki) 2.41 50.52
Finetuned 160M (Wiki) 2.72 46.75

†Attn, k = 8 2.74 46.68
Attn, k = 64 2.55 48.44
MLP, k = 100 3.03 42.47
MLP, grouped 16× (k = 8) 2.73 46.16
MLP, grouped 16× (k = 64) 2.57 48.46

fighting), and overall topics (e.g., fire or football). Interest-
ingly, codes for a particular linguistic phenomenon may not
always activate on the words most relevant to that concept.
For example, in our TinyStories model, we find a code that
activates on mentions of fighting and violence might trigger
on the word the but not the adjacent word quarrel. We
suspect this may be because the network can store pieces
of information in nearby tokens and retrieve them when
needed via attention.

Comparison to neuron-level interpretability As in Sec-
tion 3.1, we would like to compare the interpretability of
the codebook to neuron-level interpretability. While nat-
ural language features are more complex than the states
in Section 3, we conduct a preliminary experiment com-
paring both neuron- and code-based classifiers to regular
expression-based classifiers. We first collect a set of codes
that appear to have simple, interpretable activation patterns
(e.g., “fires on years beginning with 2”). We then created
heuristic regular expressions targeting those features (e.g.,
2\d\d\d). Next, we compute the precision of the code
classifier, using the regular expression as our source of truth.
We then take the recall of our code classifier and search
across all neurons, thresholding each at the same recall as
the code and reporting the highest precision found. As Fig-
ure 6b demonstrates, codes are far better classifiers of these
features than neurons on average, with over 30% higher av-
erage precision. We defer additional details and discussion
to Appendix E.7.

4.1. Steering the network by activating topic codes

As in Section 3.2, we would like to validate that codes do
not merely fire in a correlated way with different linguistic
features but that they have a causal role in the network’s be-
havior. As an initial investigation of this goal, and potential

application of codebooks, we study a subset of codes in the
attention codebook model that appear to control the topic
of a model’s generations. To identify potential topic codes,
we use a simple heuristic and select only codes that activate
on more than 50% of tokens in a given sequence.4 Of these,
we manually filter by looking at the activating tokens of
these codes and choose only those that appear to activate
frequently on other examples related to that topic.

To shift the output generations of the model, we then take an
input prompt (e.g., the start-of-sequence token) and activate
the topic codes in the model for every token of this prompt.
Then, we sample from the model, activating the topic codes
for each newly generated token. Unlike Section 3, our
models here have k > 1. Thus, we explore two types
of interventions: First, activating a single code in each
codebook (replacing the code with the lowest similarity
with the input) and second, replacing all activated codes in
each codebook with k copies of the topic code.5 We use
the attention-only codebook with k = 8 in our experiments.
See Figure 5 for a graphical depiction.

Remarkably, activating the topic codes causes the model to
introduce the target topic into the sampled tokens in a largely
natural way. We show several examples of this phenomenon
in Tables 4, 13 and 14. Interestingly, even though the topic
code is activated at every token, the topic itself is often
only introduced many words later in the sequence, when it
would be contextually appropriate. We quantify the success

4This heuristic is inspired by past work connecting activa-
tion patterns in frequency space to different linguistic phenomena
(Tamkin et al., 2020)

5If m > 1 codes map to the steering topic in a given codebook,
we replace the m lowest-scoring codes in the first case and ran-
domly select one code to replace all the codes in that codebook in
the second case.

6

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Neuron Precision

C
o
d

e
 P

r
e
c
is

io
n

(a) Finite-state machine dataset (TokFSM)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Neuron Precision

C
o
d

e
 P

r
e
c
is

io
n

(b) WikiText-103

Figure 6: Codes are better classifiers of simple textual features than neurons. Y-axis: precision of a given code at
classifying a regular expression. X-axis: precision of the best neuron in the network, with a threshold chosen to match the
recall of the code. Red line: y = x

Table 3: Activating topic codes causes the model to discuss those topics. Percentage of generations that mention the topic
before and after setting one or all codes in each attention head to the topic code. Numbers in (parentheses) indicate the
number of activated topic codes. This number is smaller for the all codes condition because only one topic code will be
activated if multiple topic codes are located in the same attention head.

(a) Wikitext

Topic Baseline
Freq

Steered
(one code)

Steered
(all codes)

Video game 2.5 55.0 (18) 75.0 (4)
Football 7.5 47.5 (18) 95.0 (8)
Movie 27.5 42.5 (12) 90.0 (5)
Song 20.0 32.5 (17) 85.0 (11)

(b) TinyStories

Topic Baseline Freq Steered (1 code)

Dragon 2.5 65.0 (8)
Slide 2.5 95.0 (12)
Friend 42.5 75.0 (9)
Flower 0.0 90.0 (8)
Fire 2.5 100.0 (16)
Baby 0.0 90.0 (15)
Princess 40.0 87.5 (14)

of this method by generating many steered sequences and
classifying the generated examples into different categories
with a simple word-based classifier. The results, presented
in Table 3, demonstrate that the steered generations mention
the topic far more often, with almost all generations success-
fully mentioning the topic when all codes in a codebook are
replaced. See Appendix E.8 for more details and additional
generations. These interventions constitute meaningful evi-
dence of how codebook features can enable interpretation
and control of real language models.

4.2. Gender bias and pronoun codes

The topic codes discussed in the previous section are an ex-
ample of controlling a global attribute of the generated text.
In this subsection, we describe an application of codebooks
for understanding and controlling a more local linguistic
phenomenon. In particular, we identify a set of sixteen codes
in layer 17, head 11 of the Pythia 410m parameter model

that appear to 1) be activated by the presence of gendered
entities in the sentence, and 2) causally influence the use of
male or female gendered pronouns later in the sentence.

To quantify link (1) between gendered entities and the codes,
we collect a subset of 127 words used to study gender bias in
Bolukbasi et al. (2016) and substitute them into the sentence:
The [word] said that, counting how many of the
gendered pronoun codes activate. As shown in Table 16,
the eight male codes predominantly activate on words like
footballer and lawyer, while the eight female codes acti-
vate on words like mother and baker. To quantify link (2)
between the activation of the codes and the presence of
gendered pronouns, we take similar templated sentences
and activate either the male codes, the female codes, 4 of
each type of code, or use default generation, and analyze the
generated pronouns. Starting from a baseline of 37.3/19.3%
male/female pronouns, we see 75.3/2.6% when activating
male codes, 14.6/70.0% for female codes, and 45.3/48.6%

7

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 4: Example steered generations for TinyStories model. More examples in Table 13

Concept # Codes Example steered generation

Dragon 8 Once upon a time, there was a little girl named Lily. She was very excited to go outside and
explore. She flew over the trees and saw a big, scary dragon. The dragon was very scary. [...]

Flower 8 Once upon a time, there was a little girl named Lily. She liked to pick flowers in the meadow.
One day, she saw a big, green [...]

Fire 16 Once upon a time, there was a little boy named Timmy. Timmy loved his new toy. He always
felt like a real fireman. [...]

Princess 14 Once upon a time, there was a little bird named Tweety. One day, the princess had a dream that
she was invited to a big castle. She was very excited and said, “I want to be a princess and [...]

when activating four male and four female codes, showing
a strong causal link between the code activations and gener-
ated pronouns. We provide more details in Appendix E.11.

5. Related Work
Mechanistic interpretability Our work continues a long
stream of work since the 1980s on understanding how neural
networks operate, especially when individual neurons are
uninterpretable (Servan-Schreiber et al., 1988; Elman, 1990)
Recent work has continued these investigations in modern
computer vision models (Olah et al., 2018; 2020; Bau et al.,
2020b) and language models (Elhage et al., 2021; Geva et al.,
2021), with special focus on the problem of understanding
superposition, when many features are distributed across a
smaller number of neurons (Elhage et al., 2022b). Recent
work has investigated whether sparse dictionary learning
techniques can recover these features (Yun et al., 2021;
Sharkey et al., 2022), including the concurrent work of
Bricken et al. (2023) and Cunningham et al. (2023). Our
work shares similar goals as the above works. Codebook
features attempt to make it easier to identify concepts and
algorithms inside of networks by refactoring their hidden
states into a sparse and discrete form. We also show how
codebooks can mitigate superposition by representing more
features than there are neurons and that we can intervene on
the codebooks to alter model behavior systematically.

Discrete structure in neural networks Our work also
connects to multiple streams of research on incorporating
discrete structure into neural networks (Andreas et al., 2016;
Mao et al., 2019; Träuble et al., 2023). Most relevant is
VQ-VAE (van den Oord et al., 2017), which trains an au-
toencoder with a vector quantized hidden state (Gray, 1984).
Our work also leverages vector quantization; however, un-
like past work, we extend this method by using it as a sparse,
discrete bottleneck that could inserted between the layers of
any neural network (and apply it to autoregressive language
models), enabling better understanding and control of the
network’s intermediate computation.

Inference-time steering of model internals Finally, our
work connects to recent research on steering models based
on inference-time perturbations. For example, Merullo et al.
(2023) and Turner et al. (2023) steer networks by adding
vectors of different magnitudes to different layers in the net-
work. Our work supports these aims by making it easier to
localize behaviors inside the network (guided by activating
tokens) and making it easier to perform the intervention by
substituting codes (so the user does not have to try many dif-
ferent magnitudes of a given steering vector at each layer).

We include an extended discussion of related work, includ-
ing the relative advantages of codebooks and dictionary
learning methods in Appendix F.

6. Discussion and Future Work
We present codebook features, a method for training models
with sparse and discrete hidden states. Codebook features
enable unsupervised discovery of algorithmic and linguistic
features inside language models, making progress on the
superposition problem (Elhage et al., 2022b). We have
shown how the sparse, discrete nature of codebook features
reduces the complexity of a neural network’s hidden state,
making it easier to find controllable features within models.

Our work has limitations. First, we only study Transformer
neural networks on one algorithmic dataset and two natural
language datasets; we do not study transformers applied
to visual data or other architectures, such as convolutional
neural networks, leaving this for future work. In addition,
we only explore topic manipulation in language models;
future work can explore the manipulation of other linguistic
features in text, including sentiment, style, and logical flow.

Codebook features are a promising framework for interpret-
ing and controlling complex phenomena in models. Looking
forward, we hope the sparse, discrete nature of codebooks
aids in discovering circuits across layers, better control of
model behaviors, as well as automated interpretability.6

6See Appendix G for an extended discussion of future work.

8

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
We would like to thank Shyamal Buch, Adrià Garriga-
Alonso, Atticus Geiger, Adam Gleave, Lev McKinney, Jesse
Mu, Remy Ochei, and Zhengxuan Wu for helpful discus-
sions and comments on drafts, and Hofvarpnir Studios for
compute support. AT was supported by an Open Phil AI
Fellowship.

References
Alain, G. and Bengio, Y. Understanding intermediate

layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural
module networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 39–48,
2016.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Lin-
ear algebraic structure of word senses, with applica-
tions to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018. doi: 10.
1162/tacl a 00034. URL https://aclanthology.
org/Q18-1034.

Bau, D., Liu, S., Wang, T., Zhu, J.-Y., and Torralba, A.
Rewriting a deep generative model. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pp. 351–369.
Springer, 2020a.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou,
B., and Torralba, A. Understanding the role of individ-
ual units in a deep neural network. Proceedings of the
National Academy of Sciences, 117(48):30071–30078,
2020b.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Black, S., Biderman, S. R., Hallahan, E., Anthony, Q. G.,
Gao, L., Golding, L., He, H., Leahy, C., McDonell,
K., Phang, J., Pieler, M. M., Prashanth, U. S., Puro-
hit, S., Reynolds, L., Tow, J., Wang, B., and Weinbach,
S. GPT-NeoX-20B: An Open-Source Autoregressive
Language Model. arXiv preprint arXiv:2204.06745,
2022. URL https://api.semanticscholar.
org/CorpusID:248177957.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and
Kalai, A. T. Man is to computer programmer as woman
is to homemaker? debiasing word embeddings. Advances
in neural information processing systems, 29, 2016.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the Opportunities and Risks
of Foundation Models. arXiv preprint arXiv:2108.07258,
2021.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Buch, S., Fei-Fei, L., and Goodman, N. D. Neural event
semantics for grounded language understanding. Trans-
actions of the Association for Computational Linguistics,
9:875–890, 2021.

Candes, E. J., Romberg, J. K., and Tao, T. Stable signal
recovery from incomplete and inaccurate measurements.
Communications on Pure and Applied Mathematics: A
Journal Issued by the Courant Institute of Mathematical
Sciences, 59(8):1207–1223, 2006.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Green-
blatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris,
B., and Thomas, N. Causal scrubbing: A method for rig-
orously testing interpretability hypotheses. In Alignment
Forum, 2022.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What Does BERT Look At? An Analysis of BERT’s
Attention. arXiv preprint arXiv:1906.04341, 2019.

9

https://aclanthology.org/Q18-1034
https://aclanthology.org/Q18-1034
https://api.semanticscholar.org/CorpusID:248177957
https://api.semanticscholar.org/CorpusID:248177957

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

Dijkstra, E. W. On the role of scientific thought. Selected
writings on computing: a personal perspective, pp. 60–
66, 1982.

Donoho, D. L. Compressed sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006.

Elad, M. and Aharon, M. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Transactions on Image processing, 15(12):3736–3745,
2006.

Eldan, R. and Li, Y. TinyStories: How Small Can Language
Models Be and Still Speak Coherent English?, 2023.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1, 2021.

Elhage, N., Hume, T., Olsson, C., Nanda, N., Henighan,
T., Johnston, S., ElShowk, S., Joseph, N., DasSarma,
N., Mann, B., Hernandez, D., Askell, A., Ndousse, K.,
Jones, A., Drain, D., Chen, A., Bai, Y., Ganguli, D.,
Lovitt, L., Hatfield-Dodds, Z., Kernion, J., Conerly, T.,
Kravec, S., Fort, S., Kadavath, S., Jacobson, J., Tran-
Johnson, E., Kaplan, J., Clark, J., Brown, T., McCandlish,
S., Amodei, D., and Olah, C. Softmax Linear Units.
Transformer Circuits Thread, 2022a. https://transformer-
circuits.pub/2022/solu/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., Grosse, R., McCandlish, S., Kaplan, J.,
Amodei, D., Wattenberg, M., and Olah, C. Toy Models
of Superposition. Transformer Circuits Thread, 2022b.

Elman, J. L. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12873–12883, 2021.

Fallah, K. and Rozell, C. J. Variational sparse coding with
learned thresholding. arXiv preprint arXiv:2205.03665,
2022.

Fong, R. and Vedaldi, A. Net2vec: Quantifying and explain-
ing how concepts are encoded by filters in deep neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 8730–8738,
2018.

Friedman, D., Wettig, A., and Chen, D. Learning Trans-
former Programs. arXiv preprint arXiv:2306.01128,
2023.

Geiger, A., Richardson, K., and Potts, C. Neural nat-
ural language inference models partially embed theo-
ries of lexical entailment and negation. arXiv preprint
arXiv:2004.14623, 2020.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal abstrac-
tions of neural networks. Advances in Neural Information
Processing Systems, 34:9574–9586, 2021.

Geiger, A., Wu, Z., Potts, C., Icard, T., and Goodman,
N. D. Finding Alignments Between Interpretable Causal
Variables and Distributed Neural Representations. arXiv
preprint arXiv:2303.02536, 2023.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer
Feed-Forward Layers Are Key-Value Memories, 2021.

Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D.,
and Zuidema, W. Under the Hood: Using Diagnostic
Classifiers to Investigate and Improve how Language
Models Track Agreement Information. arXiv preprint
arXiv:1808.08079, 2018.

Goh, G., †, N. C., †, C. V., Carter, S., Petrov, M., Schu-
bert, L., Radford, A., and Olah, C. Multimodal Neurons
in Artificial Neural Networks. Distill, 2021. doi: 10.
23915/distill.00030. https://distill.pub/2021/multimodal-
neurons.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gould, S. J. The exaptive excellence of spandrels as a term
and prototype. Proceedings of the National Academy of
Sciences, 94(20):10750–10755, 1997.

Gould, S. J. and Lewontin, R. C. 5 The Spandrels of San
Marco and the Panglossian Paradigm: A Critique of the
Adaptationist Programme. Conceptual Issues in Evolu-
tionary Biology, 205:79, 1979.

Gray, R. Vector quantization. IEEE Assp Magazine, 1(2):
4–29, 1984.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hernandez, E., Li, B. Z., and Andreas, J. Measuring and ma-
nipulating knowledge representations in language models.
arXiv preprint arXiv:2304.00740, 2023.

10

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Hewitt, J., Thickstun, J., Manning, C. D., and Liang, P.
Backpack Language Models, 2023.

Jacobsson, H. Rule extraction from recurrent neural net-
works: Ataxonomy and review. Neural Computation, 17
(6):1223–1263, 2005.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2010.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with gpus. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Corrado,
G., et al. Google’s multilingual neural machine translation
system: Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics, 5:339–
351, 2017.

Kanerva, P. Sparse distributed memory. MIT press, 1988.

Keshari, R., Singh, R., and Vatsa, M. Guided Dropout.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):4065–4072, Jul. 2019. doi: 10.1609/aaai.
v33i01.33014065. URL https://ojs.aaai.org/
index.php/AAAI/article/view/4302.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., and
Socher, R. CTRL: A Conditional Transformer Language
Model for Controllable Generation, 2019.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning,
pp. 2668–2677. PMLR, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingsley Zipf, G. Selected studies of the principle of relative
frequency in language. Harvard university press, 1932.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models. In
International conference on machine learning, pp. 5338–
5348. PMLR, 2020.

Lee, H., Battle, A., Raina, R., and Ng, A. Efficient sparse
coding algorithms. Advances in neural information pro-
cessing systems, 19, 2006.

Lin, J. Divergence measures based on the shannon entropy.
IEEE Transactions on Information theory, 37(1):145–151,
1991.

Liu, Z., Gan, E., and Tegmark, M. Seeing is Believing:
Brain-Inspired Modular Training for Mechanistic Inter-
pretability, 2023.

Madsen, A., Reddy, S., and Chandar, S. Post-hoc Inter-
pretability for Neural NLP: A Survey. ACM Computing
Surveys, 55(8):1–42, 2022.

Makhzani, A. and Frey, B. J. Winner-take-all autoencoders.
Advances in neural information processing systems, 28,
2015.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. arXiv
preprint arXiv:1904.12584, 2019.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in GPT. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022a.

Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y., and
Bau, D. Mass-editing memory in a transformer. arXiv
preprint arXiv:2210.07229, 2022b.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
Sentinel Mixture Models, 2016.

Merullo, J., Eickhoff, C., and Pavlick, E. Language Models
Implement Simple Word2Vec-style Vector Arithmetic.
arXiv preprint arXiv:2305.16130, 2023.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. arXiv preprint
arXiv:2110.11309, 2021.

Mu, J. and Andreas, J. Compositional explanations of neu-
rons. Advances in Neural Information Processing Sys-
tems, 33:17153–17163, 2020.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert,
L., Ye, K., and Mordvintsev, A. The Building Blocks of
Interpretability. Distill, 2018. doi: 10.23915/distill.00010.
https://distill.pub/2018/building-blocks.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom In: An Introduction to Cir-
cuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Olshausen, B. A. and Field, D. J. Sparse coding with an
overcomplete basis set: A strategy employed by V1?
Vision research, 37(23):3311–3325, 1997.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

11

https://ojs.aaai.org/index.php/AAAI/article/view/4302
https://ojs.aaai.org/index.php/AAAI/article/view/4302

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Pearl, J. and Mackenzie, D. The book of why: the new
science of cause and effect. Basic books, 2018.

Rogers, A., Kovaleva, O., and Rumshisky, A. A primer
in BERTology: What we know about how BERT works.
Transactions of the Association for Computational Lin-
guistics, 8:842–866, 2021.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and Ol-
shausen, B. A. Sparse coding via thresholding and local
competition in neural circuits. Neural computation, 20
(10):2526–2563, 2008.

Rumelhart, D. E., Hinton, G. E., McClelland, J. L., et al.
A general framework for parallel distributed processing.
Parallel distributed processing: Explorations in the mi-
crostructure of cognition, 1(45-76):26, 1986.

Rumelhart, D. E., McClelland, J. L., Group, P. R., et al.
Parallel distributed processing. Foundations, 1, 1988.

Santurkar, S., Tsipras, D., Elango, M., Bau, D., Torralba,
A., and Madry, A. Editing a classifier by rewriting
its prediction rules. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 23359–23373. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
c46489a2d5a9a9ecfc53b17610926ddd-Paper.
pdf.

Sermanet, P., Kavukcuoglu, K., Chintala, S., and LeCun,
Y. Pedestrian detection with unsupervised multi-stage
feature learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3626–
3633, 2013.

Servan-Schreiber, D., Cleeremans, A., and McClelland,
J. Learning sequential structure in simple recurrent net-
works. Advances in neural information processing sys-
tems, 1, 1988.

Sharkey, L., Braun, D., and Millidge, B. Taking
features out of superposition with sparse au-
toencoders. In Alignment Forum, 2022. URL
https://www.alignmentforum.org/posts/
z6QQJbtpkEAX3Aojj.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,
prediction, and search. MIT press, 2000.

Tamkin, A., Jurafsky, D., and Goodman, N. Language
through a prism: A spectral approach for multiscale lan-
guage representations. Advances in Neural Information
Processing Systems, 33:5492–5504, 2020.

Thorpe, S. Local vs. distributed coding. Intellectica, 8(2):
3–40, 1989.

Tonolini, F., Jensen, B. S., and Murray-Smith, R. Variational
sparse coding. In Uncertainty in Artificial Intelligence,
pp. 690–700. PMLR, 2020.

Träuble, F., Goyal, A., Rahaman, N., Mozer, M., Kawaguchi,
K., Bengio, Y., and Schölkopf, B. Discrete key-value
bottleneck. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., and
MacDiarmid, M. Activation Addition: Steering Lan-
guage Models Without Optimization. arXiv preprint
arXiv:2308.10248, 2023.

van den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the Wild: a Circuit for
Indirect Object Identification in GPT-2 small. arXiv
preprint arXiv:2211.00593, 2022.

Wong, E., Santurkar, S., and Madry, A. Leveraging sparse
linear layers for debuggable deep networks. In Inter-
national Conference on Machine Learning, pp. 11205–
11216. PMLR, 2021.

Yu, J., Li, X., Koh, J. Y., Zhang, H., Pang, R., Qin, J., Ku,
A., Xu, Y., Baldridge, J., and Wu, Y. Vector-quantized
image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

Yuksekgonul, M., Wang, M., and Zou, J. Post-hoc concept
bottleneck models. arXiv preprint arXiv:2205.15480,
2022.

Yun, Z., Chen, Y., Olshausen, B. A., and LeCun, Y. Trans-
former visualization via dictionary learning: contextual-
ized embedding as a linear superposition of transformer
factors. arXiv preprint arXiv:2103.15949, 2021.

Zhang, H., Xue, M., Liu, X., Chen, K., Song, J., and Song,
M. Schema inference for interpretable image classifica-
tion. arXiv preprint arXiv:2303.06635, 2023.

Zhang, T., Du, C., and Wang, J. Composite quantization for
approximate nearest neighbor search. In International
Conference on Machine Learning, pp. 838–846. PMLR,
2014.

Zhu, J. and Xing, E. P. Sparse topical coding. arXiv preprint
arXiv:1202.3778, 2012.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

A. Author Contributions
AT served as the primary research contributor to the work. MT served as the primary engineering contributor. NDG provided
feedback and advice throughout the project.

B. General Training and Optimization Details
Here, we provide some additional training details relevant to all experiments.

Layer norm We apply layer norm to the input activations of the codebooks, which we found improved accuracy and
stability.

Optimizer hyperparameters Unless otherwise specified, we use the Adam optimizer (Kingma & Ba, 2014) with learning
rate 5e-4 and default values of β1 = 0.9, β2 = 0.99. For experiments using learning rate decay this refers to the peak
learning rate; we spend 5% of training on a linear warmup to the max learning rate and the rest on a linear decay to 0. We
did not find a benefit to using weight decay in our experiments. We also found no benefit to using k-means initialization of
the codebooks.

Training hyperparameters We train for 15k steps for most experiments. For the TinyStories datasets, we train for 100k
steps. The sequence length for WikiText-103 is 1024, and for TinyStories it is 512. Depending on the model, we use a
batch size of 64 to 256 and between 1-4 A100 GPUs. By default, codebooks have C = 10k codebook size unless otherwise
specified.

C. Codebooks as information bottlenecks
Codebooks are information bottlenecks: they limit the bits of information that can be transmitted from a given layer into the
rest of the network. Intuitively, they force the network to represent its activations as a choice of k distinct, unordered codes
out of a vocabulary size of C. This fact enables us to compute the channel capacity, or number of bits the codebook can
transmit each forward pass: ⌈log2

(
C
k

)
⌉. In Table 5, we present the channel capacity of various codebooks of size 10,000

with values of k ∈ [1, 8, 100]. We also compare this with the channel capacity of a standard 16-bit activation with size 1024
hidden state, as well as quantized 4-bit vectors. We observe that even the k = 100 case transmits far fewer bits than even a
4-bit quantized 1024-dimensional vector.

Table 5: Comparison of information content for different information bottlenecks.

Scenario Bits Transmitted

1024-dimensional 16-bit vector 16384
1024-dimensional 4-bit vector 4096

1 code from codebook of size 10,000 14
8 codes from codebook of size 10,000 91
100 codes from codebook of size 10,000 804

D. Finite State Machine Experiments
This section presents additional details and experiments for the finite state machine (FSM) domain.

D.1. TokFSM Training Hyperparameters

We use a constant learning rate of 1e− 3 with a batch size of 512 and train the models for 20, 000 training steps. Note that
the architecture used in Section 3 uses parallel attention and MLP blocks, following (Black et al., 2022).

13

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

D.2. Dead codes

After training the models, we notice that many codes in the model do not activate at all on the eval set; we refer to these as
dead codes, and the opposite as active codes (Yu et al., 2021). We report the number of active codes for each component of
the k = 1 Attn+MLP codebook model in Table 7, computed over an evaluation set of 10240 samples of sequence length
128. While many codes end up dead, we find that starting training with fewer codes leads to worse accuracy than training
with more codes than needed, suggesting some role for dead codes in the codebook optimization process.

D.3. Additional observations from activating tokens

Although the strongest form of evidence we consider are the causal intervention experiments in Section 4.1, we briefly
overview a range of different types of codes we identify through qualitative observation:

• Codes in MLP layer 0 (the first MLP layer), which activate on each different token

• Codes in MLP layers 1, 2, and 3, which activate on bigrams corresponding to different states of the FSM (e.g., 42, 59,
29), only on the second digit of a state (state codes)

• Codes in MLP layers 1, 2, and 3, which activate on trigrams: (e.g., 823, 182), only on the first digit of a state
(state-plus-digit codes)

• In many cases, several different states (or state-plus-digits) activate the same code. In Appendix D.4, we show that these
state groups have much more similar next-token distributions than average codes and provide potential interpretations
for this phenomenon.

• Codes that activate on bigrams or trigrams, regardless of which digit they are present on

• Codes in several attention heads, which activate on states beginning with a specific digit (e.g., 51, 52, 53 . . .)

• Codes that do not appear to fire on any discernible pattern.

From these points of anecdotal evidence, we make several broader observations:

1. The network learns codes that fire in association with useful high-level features of the input space, e.g., when a given
FSM state is present

2. Individual features are not necessarily isolated to a single point in the network; multiple places may represent the same
piece of information, as (Bau et al., 2020b) found in a computer vision context.7

3. It is possible for the behavior of a given layer to be position dependent—that is, the network can store different
information in the same layer depending on the position in the sequence. For example, the same MLP layer may hold
different information when the input token is the first digit vs. when it is the second digit of a state. Thus, absolute
statements that certain layers or attention heads “store concept X” warrant caution, as this layer’s function could be
contextually dependent.

4. Sometimes, the network forms representations that seem to admit a meaningful interpretation but do not immediately
appear useful to the network. For example, it initially seems useless to have a code that activates based on states that
share the same first digit (e.g., 51, 52, 53, . . .) as these states are unrelated. It may be possible this code is used as part
of a circuit to identify an FSM state in a future layer, or perhaps it is simply a vestigial or spandrel feature (Gould &
Lewontin, 1979; Gould, 1997).

7We suspect it may be possible to detect these families of codes by computing co-occurrence statistics, but we leave this to future work.

14

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 6: Example Code Activations for the TokFSM dataset. The bolded digits indicate the token positions that activated
the given code. Hyphens (-) are added between each state for readability but are not presented to the model. MLP codes
are written in the form layer.code-id, while attention codes are written in the form layer.head.code-id. More
activations are available at https://huggingface.co/spaces/taufeeque/codebook-features .

Code Interpretation Example Activations

MLP 0.2523 1 digit 31-83-40-87-80-78-38-76-03-86-17-97-76-09-15
10-57-62-43-92-31-83-82-23-65-94-33-23-49-41
19-83-31-73-29-47-04-15-77-05-79-23-47-89-95

MLP 1.2527 489 trigram (either pos.) 86-04-89-80-17-03-40-74-24-09-93-35-59-61-49
40-46-50-38-47-04-89-80-91-82-94-33-41-77-59
18-94-55-55-48-24-68-48-90-43-97-50-74-77-59

MLP 2.2543 40 bigram (2nd pos.) 80-04-70-50-40-59-07-73-28-02-71-54-31-62-40
74-05-13-72-95-66-52-31-98-20-88-40-59-22-19
40-46-44-01-88-66-51-14-41-57-18-84-89-60-51

Attn 1.2.3207 Tokens after 44 bigram 44-27-74-05-59-64-67-72-42-93-35-09-67-39-96
44-27-74-05-22-65-98-75-83-20-00-60-80-57-94
77-69-28-02-34-46-52-72-94-18-84-12-16-64-46

Attn 2.0.3044 Tokens on or after 59 74-05-59-64-67-72-42-93-35-09-67-39-96-07-96
88-40-59-22-19-33-31-93-42-53-75-94-33-31-76
87-14-40-59-24-72-86-04-30-04-81-56-01-17-30

D.4. Analysis of code purity in the finite-state-machine models

The TokFSM dataset from Section 3 was designed such that we know the exact number of features in the data, permitting
us to understand how the representation of these features changes across the network. In Figure 8, we plot the fraction of
codes that are pure at each layer, meaning they activate only on a single state (in the case of state codes) or state and first
digit (in the case of state-plus-digit codes). We compute these statistics over all valid combinations of two- or three-digit
starting sequences. We see very high levels of purity for both sets of codes. The high purity of the codes at the first layer
demonstrates that codebook training has mostly resolved the superposition problem at the first layer.

The code purity declines in higher layers as the model forms its prediction of the next token. Why is this? As Figure 9
demonstrates, when two different states activate the same code, they tend to have much more similar next-token distributions.
Specifically, the next-token distributions of trigram states that activate the same code (red bars) are much smaller than those
of random pairs of trigram states (blue bars). This result suggests that states are merged when they share a similar next-token
distribution. We speculate that codes merge later in the network as the network shifts from identifying the state to forming
its prediction of the next token, as previous work has also speculated (Elhage et al., 2022a).

In general, we believe that better understanding when two concepts share a code is a fruitful avenue for future study.

Table 7: Number of active codes in k = 1 attention + MLP codebook model trained on TokFSM. Each codebook has
10,000 codes; most of the codes in each codebook are not active by the end of training.

Layer Head 0 Head 1 Head 2 Head 3 MLP

0 40 45 41 49 11
1 293 367 657 460 1027
2 1482 3071 1103 1499 943
3 690 282 315 1233 247

15

https://huggingface.co/spaces/taufeeque/codebook-features

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

5 1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5

1μ

10μ

100μ

0.001

0.01

0.1

Rank

F
r
e
q
u
e
n
c
y

Figure 7: Code activation frequencies appear to follow a power law Frequency of code activations by rank from
TinyStories 1-layer attention-only codebook model. The x-axis denotes the rank of the code in terms of frequency on a
subset of the training set. We observe that most codes activate very rarely, while a long tail of codes activate very frequently.

D.5. Ablation experiments

We perform several ablation studies to identify the importance of different elements of our training method. Specifically, we
compare the next-token accuracies of several families of models, including the TinyStories one-layer model, the 4-layer
TokFSM model, and the 24-layer wikitext model. For each model, we present the accuracies for 1) the attention codebook
model presented in the paper, 2) the same model but with a random initialization as opposed to the pretrained model, and 3)
a codebook model where the model parameters were frozen and only the codebook parameters were trained, and 4) a model
where only the codebook parameters were trained, and they were trained with only the autoencoding portion of the loss.
The results of these experiments are presented in Table 8. Broadly, we find that all components are necessary for strong
performance, although we do not exhaustively tune hyperparameters for each ablation.

Table 8: Ablation studies. Next-token accuracy (for TinyStories and WikiText-103) and next-state transition accuracies
(for TokFSM) across various ablation studies. Legend: Attn CB: Codebook applied to the attention layers. Random Init:
Codebooks applied to a randomly-initialized model instead of a pretrained model (then finetuned end-to-end as usual).
Train Only CB: Train only the codebook layers with the original loss while keeping the base model frozen. Only AE Loss:
Only apply the autoencoding loss to the codebooks; do not update the model parameters. Attn + MLP CB Codebooks
applied to the attention and MLP codebooks simultaneously.

Model Attn CB Random Init Train Only CB Only AE Loss

TinyStories-1L 57.91 55.67 47.08 51.73
FSM-4L 96.39 52.35 58.48 43.44
WikiText-103-24L 46.16 38.53 31.22 28.35

E. Language Model Experiments
E.1. 1-Layer TinyStories model

We train a small, 1-layer 21 million parameter transformer on the TinyStories dataset of children’s stories, constructed by
prompting a language model (Eldan & Li, 2023). We train for 100k steps with a batch size of 96, with learning rate warmup
of 5% and linear cooldown to 0. We start by loading the 21M pretrained model from the TinyStories paper (Eldan & Li,
2023). We train two models: one with the codebook affixed to each of the heads of all the attention layers and one to both
the attention heads and MLP layers (Figure 2).

In Figure 7, we plot the distribution of code activation frequencies for the 1-layer TinyStories k = 1 Attn + MLP model.
We find a very unequal distribution of use of the codebooks, with a small number of codes activated extremely frequently
and many others activated hardly at all. This distribution is reminiscent of the Zipfian distribution known to characterize
phenomena such as word frequency in natural language (Kingsley Zipf, 1932).

16

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

0 1 2 3

0

50

100

bigram trigram

Layer

P
u

r
e
 C

o
d

e
s
 (

%
)

Figure 8: Codebook training overcomes the superposition challenge in the first layer. We plot the fraction of codes
which are pure at each layer, meaning they activate only on a single state (in the case of bigrams) or state + first digit (in the
case of trigrams). We see very high levels of purity for both bigram and trigram models. Because the number of hidden
states is 128, and there are 1000 trigram combinations for the model to learn, the network cannot allocate each state to a
different neuron. The high purity of the codes demonstrates that codebook training has mostly resolved the superposition
problem at the first layer. Code purity declines in higher layers as the model forms its prediction of the next token (see
Figure 9). Experiment performed on the MLP codebooks of the k = 1 Attn + MLP codebook TokFSM model over all 100
and 1000 possible combinations of the first two and three digits, respectively.

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0 0.2 0.4 0.6

random trigram pairs merged trigram pairs

JS Divergence JS Divergence JS Divergence

P
r
o
b

a
b

il
it

y
P

r
o
b

a
b

il
it

y
P

r
o
b

a
b

il
it

y

Layer 1 Layer 2 Layer 3

Figure 9: When two different states activate the same code, they tend to have much more similar next-token
distributions. We find that the next-token distributions of trigram states that activate the same code (red bars) are much
smaller than those of random pairs of trigram states (blue bars). This result suggests that states are merged when they share
a similar next-token distribution. X-axis: Jenson-Shannon Divergence (JSD) between next-token distributions of different
states. The JSD is a measure of the distance between probability distributions).

17

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 9: Maximum inner product search algorithms can close much of performance gap between codebook and
tranditional models. Performance Comparison of Models with Different Parameters. Computed on an A100 40GB GPU,
with a batch size of 64 and over 100 batches.

(a) 70m Parameters

Model Tok/s ∆ FAISS ∆ Base

Base 57.5
CB w/ FAISS 37.4 34.2% -34.9%
CB no FAISS 27.9 -51.5%

(b) 410m Parameters

Model Tok/s ∆ FAISS ∆ Base

Base 14.8
CB w/ FAISS 7.2 56.2% -51.5%
CB no FAISS 4.6 -68.9%

E.2. 24-Layer WikiText-103 model

We also train a larger, 24-layer 410M parameter model on the WikiText-103 dataset, consisting of high-quality English-
language Wikipedia articles. We finetune for 20, 000 steps with a batch size of 24 and learning rate warmup and cooldown.
For a pretrained model, we use the Pythia 410m parameter model, trained on the Pile dataset with deduplication (Biderman
et al., 2023). The model has 16 attention heads, with a hidden size of 1024. We again train two variants of codebook models
here, with codebooks on every attention head and codebooks on every MLP block.

E.3. Comparing the performance of codebook and base models

Here, we provide more details on the models trained in Table 2. Most model names in the table are self-explanatory; for
example, MLP, k=100 indicates a model with codebooks on the MLP layers with a k of 100. The only exceptions are as
follows:

Finetuned 160M (Wiki) The largest base language model we finetune is a 410M parameter 24-layer model from the
Pythia series of models (Biderman et al., 2023), finetuned on the WikiText-103 dataset (Merity et al., 2016). To explore
how much codebooks reduce the performance of language models, we also finetune the next smallest model in the series: a
160M parameter 16-layer model. As we see, the language modeling accuracy of the Attn k = 8 model is comparable to this
smaller model, and the Attn k = 64 model falls squarely in between the 160M and 410M parameter models.

MLP, grouped 16× (k = 8 or 64) The MLP codebook layers broadly seem to attain lower performance than the attention
layers. Moreover, we found diminishing returns to increasing the value of k for this layer. We observe that we can attain
higher performance for these layers by splitting the MLP layer activations into several equal-sized chunks (16 in our case)
and training a smaller codebook independently on each chunk, as in product quantization (Jegou et al., 2010). We refer to
this method as “grouped codebooks.”

All models except the grouped MLP codebook model are trained with the same hyperparameters. We found that the
grouped MLP codebook model achieved 4-5% higher accuracy and trained more stably if we used a 10x higher learning
rate on the codebook parameters than the default learning rate (which was used for the language model parameters). We
suspect the combination of grouped codebooks and higher learning rates on the codebook parameters may be helpful when
applying codebooks to higher-dimensional layers. While we suspect the primary benefit of grouped codebooks is in aiding
optimization, an interesting direction for future work is whether they improve expressivity or interpretability of the resulting
codebooks.

E.4. Codebook models still have usable inference speed

The codebook modules at each attention head add parameters and computation to the model. While this results in higher
latency, the resulting model is still usable for real-time inference. Moreover, inference can be sped up an additional amount
through fast maximum inner product search (MIPS) algorithms such as FAISS, which are faster than computing the matrix
multiplication explicitly (Johnson et al., 2019). In Table 9, we show that the codebook models show a significant decrease
in the number of generated tokens per second (between 34% and 69% slowdown). However, this decrease is significantly
lower when FAISS is used. A decrease in latency may be acceptable in exchange for increased interpretability or control,
and we expect further optimizations (e.g., approximate MIPS algorithms, custom kernels) to continue to close this gap.

18

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 10: Example generations from language models. The prompts are highlighted in bold. While the factuality of the
completions is unreliable for all models, all models generate largely grammatical text.

Language
Model

TinyStories 1-Layer Model WikiText-103 Model

Base Once upon a time there was a little boy named
Timmy. Timmy loved to play outside in the rain.
He would jump in puddles and splash around.
One day, Timmy saw a big puddle in the park. He
jumped in it and got all wet.[...]

The war was fought against the Ottoman Empire
and the Kingdom of Hungary. The Ottoman Turks,
their king, and several of their princes were killed
and many more captured, and the kingdom was
divided among the Hungarian monarchs ; [...]

Codebooks
(Attn)

Once upon a time, there was a little girl named
Lily. She loved to play with her toys and her
friends. One day, Lily’s mom told her that they
were going to buy a new toy. Lily was very
excited and asked, “Can I play with your toys,
please?”[...]

The war was fought by France and the British
Empire, and by the Axis powers. With the excep-
tion of the Italians and Americans, whose armies
won the war against the Axis Powers, the victori-
ous Allies suffered the most of the war, a terrible
defeat on both fronts. [...]

Codebooks
(MLP)

Once upon a time, there was a little boy named
Timmy. Timmy loved to play with his toy cars
and trucks. One day, Timmy’s mom took him to
the store to buy a new toy. Timmy saw a big red
truck and asked his mommy if they could get it,
but she said they had to wait until they got to the
store.

The war was fought between the United States
and France. The French responded by launching
an invasion of the Allied continent in June 1917
with the aim of defeating the Allied armies in
northern France. [...]

E.5. Example language model generations

We display example generations from both language models in Table 10.

E.6. Activating Tokens

We present examples of activating tokens for both language models in Table 11

E.7. Additional notes on neuron-level interpretability experiments

We briefly note two caveats to this preliminary experiment. First, regular expressions are not perfect proxies for the features
we care about (e.g., our regular expression for countries only includes some countries or ways of spelling each country).
Thus, these precision scores likely underestimate each classifier’s true precision. Second, we note a potential bias in the
experimental protocol due to developing the regular expressions for codes that admit a meaningful interpretation. This could
result in a slight bias in favor of the code classifiers. However, we also exhaustively search over all 410 million neurons in
the network to find the best performer, which mitigates this bias. The complete list of regexes we use is available in our
codebase.

E.8. Language model topic steering experiments

We present additional language model steering results in Table 13.

Note that while we use the MLP codes to steer the TokFSM model, we use the attention codes to steer the WikiText model.
The reason for using different codes here is because we are trying to control different aspects of the sequence/text in each
model. In the TokFSM environment, we are trying to alter the prediction of an individual state or token. We find codes
in the MLP layers are most associated with these single tokens. For the language modeling experiments, we are trying to
alter the global topic of a generation. Topics typically manifest across many tokens, rather than a single token, and we find
the attention layers are most associated with these features. However, we believe it is quite possible that for more local
linguistic features (such as word choice) editing the MLP codes in a language model may prove to be the best way to edit
the model’s behavior.

19

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 11: Example Code Activations for the TinyStories and the WikiText-103 dataset. The bolded word indicates the token
positions that activated the given code. Note that the concept may be near but not directly at the activated token. MLP
codes are written in the form layer.code-id, while attention codes are written in the form layer.head.code-id.
At symbol (@) delimiters present in WikiText-103 data have been omitted for readability. More activations are available at
https://huggingface.co/spaces/taufeeque/codebook-features .

(a) WikiText-103

Code Interpretation Example Activations

7.12.7884 Months (after prepo-
sition)

at Toulon in August The ship began trials [. . .] and spent three weeks in
September attached to
14 : 30 on 7 December. The division had the [. . .] a major attack until 8
December
on August 31, a Utah [. . .] On September 1, 1987

4.15.6101 Evaluative words Initially , the New Zealand attack progressed well
Superman from the main timeline is successfully teleported into
only HWMs evaluated as ”excellent” are used by NHC

1.9.295 Names starting with
‘B‘

In one account from the Bahamas , a mating pair ascended

while John and Roy Boulting noted that [...]
Bockscar, sometimes called Bock’s Car, is the name of the United States
Army Air Forces B-29 bomber

4.14.4742 Years in 2000s As of 2011 , the International Shark Attack File lists
In 2014 , a study at the University of Amsterdam with
Fabian Cancellara kicked off his 2010 campaign with an overall victory
at the Tour of

9.3.3727 Square Units Atlanta encompasses 134.0 square miles (347.1km2)
it covered more than 55 square metres (590 sq ft)
6 percent or 101,593 square kilometres (39,225 sq mi) of [...]

(b) TinyStories

Code Interpretation Example Activations

0.2 Fighting The two cats started to quarrel loudly over the bone
They ran around the house, fighting over the thread
But then, they got into a fight over who got to play with the toy

0.3 Negative emotions He feels angry and scared. He tries to catch the boat, but it
She started to feel nervous because she thought she wouldn’t be able to
Lily and Tom felt fearful. They did not like storms.

0.6 “You” dialogue The dragon smiled and said, ”You are too small. It’s not possible.”
The happy fish thanked her and said ”You must be very persistent to
complete this task.
John smiled and said, ”You won! You were really fast.”

1.2 Fire The fire spread to the cans and bottles and made more explosions. The
garage was full of smoke
Lily knew that fire could be dangerous and she always remembered to
be careful when playing with matches or lighters.
Mom hugged them and said, ”I know, but fire is not a toy. It can hurt
you and the plants and animals.

5.3 Discovered/found Lily found a delicate flower in the garden and showed it to her sister.
had discovered an amazing reef and helped a turtle in need.
One day, Tom and Mia found a ball in the hut.

20

https://huggingface.co/spaces/taufeeque/codebook-features

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 12: Regular expressions used to measure topic steering for the text generated by the models.

(a) Wikitext

Topic Regex

Football football| soccer| goal| stadium| fifa| player|
trophy| league

Movie movie| tv| television| film| media
Video Game game
Song song| music| mtv

(b) TinyStories

Topic Regex

Dragon dragon
Slide slide
Friend friend
Tom & Sam tom| sam
Flower flower
Fire fire
Baby baby
Princess prince| crown| king| castle

1 3 5 7 9 all

0

20

40

60

80

100
Dragon

Slide

Friend

Flower

Fire

Princess

Baby

Number of Topic Codes

T
o
p

ic
 C

o
m

p
le

t
io

n
 R

a
t
e

Figure 10: Increasing the number of topic codes activated increases the rate at which the language model is successfully
steered to the desired topic.

E.9. Qualitative observations: steering with MLP codes

The codes in the single-layer TinyStories MLP codebook model can be understood through the tokens they try to predict.
For example, if we patch all the k=100 activated codes in the codebook with code 42638, the model predicts the “ her” token
with 95+% probability for any context. However, if we patch 5/100 activated codes at every position with the same code,
then the code lifts the probability of “ her” by more than 20% where predicting the pronoun makes sense in context and
doesn’t modify the probability of the token by more than 2-3% in a context where the pronoun doesn’t fit. So activating
the “ her” code in the prompt “The mother heard Lucy cry. She hugged” shifts the top prediction from “ Lucy” to “ her”.
However, it does not shift the probability of “ her” in a sentence like “The mother heard Lucy” where “ her” would not be
an appropriate continuation. We find that all the other codes can be used in a similar way to shift next token prediction in
ambiguous contexts.

E.10. How does varying the number of codes influence how well the model can be steered?

To steer the language model, we activate a number of topic codes discovered throughout the network. In Figure 10 we plot
how changing the number of codes activated increases the rate at which the topic is introduced to the generation. We observe
a general increase in the steering rate as the number of topic codes activated increases.

21

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 13: Steering the TinyStories language model with topic codes. While the language model generations are often
incoherent, the topics are largely introduced in grammatical ways

Topic Codes Steered generations

Null (default
generation)

- Once upon a time, there was a little girl named Lily. She loved to play
with her toys and eat yummy food. One day, she went to the store with
her mommy to buy some apples. She saw a big basket and wanted to
buy it. Her mommy said, ”Let’s count the apples and buy the yummiest
apples!” Lily was so happy and said, ”Yes, please!”

Dragon 8 Once upon a time, there was a little girl named Lily. She was very
excited to go outside and explore. She flew over the trees and saw a big,
scary dragon. The dragon was very scary. But Lily knew that things
were not real and she would hurt her.

Slide 12 Once upon a time, there was a big cake. He wanted to escape and
explore the world, but he was scared. He thought and thought about how
to use the slide. He asked his mom for some help.

Friend 9 Once upon a time, there was a little girl named Lily. She had a friend
named Sue. Sue was a nosy cat. She liked to play with her brother Tom.
One day, they went to the park and saw a big dog. The dog was not nice.

Flower 8 Once upon a time, there was a little girl named Lily. She liked to pick
flowers in the meadow. One day, she saw a big, green caterpillar on a
leaf. She wanted to take it home and sell it to someone else. As she
picked the flower, it started to bloom and made it look pretty.

Fire 16 Once upon a time, there was a little boy named Timmy. Timmy loved
his new toy. He always felt like a real fireman. One day, Timmy’s
mom made him some hot soup and gave him some medicine to help his
mommy feel better. Timmy was scared that the fire would be gone, but
he didn’t feel happy.

Baby 15 Once upon a time, there was a little girl named Lily. She loved going to
the gym with her mommy. One day, Lily’s mom asked her to help put
the baby in the crib.

Princess 14 Once upon a time, there was a little bird named Tweety. One day, the
princess had a dream that she was invited to a big castle. She was very
excited and said, “I want to be a princess and ride the big, pretty castle!”

22

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 14: Steering language model generations with topic codes. Full table available at link . At symbol (@) delimiters
present in WikiText-103 data have been omitted for readability.

Topic Codes Original generations Steered generations

Video
game

18 The war was fought on two fronts.
The war was initiated in 1914 between
Austria-Hungary and Serbia, when the
Entente Powers signed a treaty of
friendship between the two countries.
In October 1914, Tschichky was sent
to defend the German Empire’

The war was fought on both sides, and
was only the second game to deal with
one-on-one battles, following SimCity
2D Blade II. The game was released to
critical acclaim, with praise particularly
directed to the new console

Football 18 The war was fought on two fronts.
The war was initiated in 1914 between
Austria-Hungary and Serbia, when the
Entente Powers signed a treaty of
friendship between the two countries.
In October 1914, Tschichky was sent
to defend the German Empire’

The war was fought in its first forty
years. In the summer of 1946, the Car-
dinals of the All-America Football Con-
ference (AAFC) were rapidly becom-
ing the favorites for NFL Hall-of-Fame
coach Jim Mora, who had

Movie 12 The novel was published in Novem-
ber 2009 by MacChinnacle, a London
publishing house. The book’s publish-
ers, Syco, published the book in the
United Kingdom and the United States
on 1 November 2009. The book re-
ceived generally positive reviews from
critics, who praised the

The novel was published in the United
States and Canada. The film was di-
rected by Joe Hahn and stars Steven
Spielberg as Lucas, Neil Patrick Har-
ris, and Jude Lawder as Lucas’s best
friend, Jonathan Miller. The plot fol-
lows a character (Lucas

Song 17 The team won their first ever Grand
Prix and the first since the 1990 season.
The team finished in third place behind
Williams and Ralf Schumacher, with
the Ferraris of David Coulthard and
Jarno Trulli finishing in the top three.

The team won the Grammy Awards for
Best Gospel Album. = = Background
= = In 2004, The Dream released their
third studio album, The Beacon Street
Collection, which produced the singles
”HOV Lane” and ”Wishing Machine

23

https://docs.google.com/spreadsheets/d/10gbVwSFe_G1josj51n4J9iCu1vnILJSHx05SA7Oln8w/edit?usp=sharing

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 15: The gendered pronoun codes causally influence what gendered pronouns are used during generation.
Percentage that each type of pronoun (i.e. he/him/his or she/her/hers) is mentioned for each steering condition. No steering
indicates the default case where the model generates tokens normally. Male and Female indicate that all eight male or female
codes are activated at all positions in the sequence during generation. Equal means that four male and four female codes are
activated during generation. % Male and Female Pronouns indicates the percentage of samples which contain a male or
female token. Avg Abs ∆ in Probability indicates the average absolute difference in probability of the next token between
male pronouns and female pronouns. Across all measures, the male/female settings cause more male/female pronouns,
while the balanced setting results in a more balanced distribution.

Codes activated % Male Pronouns % Female Pronouns Avg Abs ∆ in Probability

No steering 37.3 19.3 11.7

All male 75.3 2.6 17.6
All female 14.6 70.0 16.3

Half male and female 45.3 48.6 3.8

E.11. Gender pronoun code experiments

Here we provide more details for the gender pronoun code experiments in Section 4.2.

Searching for codes We searched for codes associated with predicting pronouns by patching attention head codes from
one prompt to another on the following prompts: (1) “The girl picked up the boy’s ball and gave it to” and (2) “The boy
picked up the girl’s ball and gave it to”. We found that patching all the k=8 codes from the Layer 17 Head 11 from one
prompt to the other shifts the prediction of (1) from “ him” to “ her” and vice-versa for (2). This gives us a set of 8 male
codes and a set of 8 female codes responsible for predicting pronouns in the model.

Steering pronoun predictions To confirm the causal role of the codes in predicting the pronouns, we patch the gendered
pronoun codes found in the attention head for n=15 different gender-neutral prompts at all token positions and sample 10
generations with 20 new tokens. We then check whether the pronouns predicted in any of the 20 generated tokens match
that of the codes patched. Table 15 shows that the predicted pronouns in the generation indeed match that of the codes
patched in. We also observe that patching 4 male and 4 female codes in each prompt results in nearly the same proportion of
male and female pronouns being predicted. In addition, the equal code patching results in the least average difference of
probabilities between male and female pronouns.

The 15 prompts for evaluation are the following: 1. The doctor told the patient that 2. The director told the actors that 3. The
teacher told the students that 4. The lawyer told the client that 5. The nurse told the patient that 6. The doctor said to the
patient that 7. The director said to the actors that 8. The teacher said to the students that 9. The lawyer said to the client that
10. The nurse said to the patient that 11. The doctor gave the patient one of 12. The director gave the actors one of 13. The
teacher gave the students one of 14. The lawyer gave the client one of 15. The nurse gave the patient one of

F. Extended Discussion of Related Work
In this section, we review related work and attempt to describe in more detail the design decisions behind codebook features
and how these lead to different tradeoffs compared to other approaches. We focus on several subareas most relevant to our
current work, with a particular focus on dictionary learning methods, leaving more general overviews of interpretability
research to prior surveys (Rogers et al., 2021; Bommasani et al., 2021; Madsen et al., 2022).

F.1. Sparse Coding and Sparse Dictionary Learning

Sparse coding, also known as sparse dictionary learning, is a well-studied research area with applications in machine
learning, neuroscience, and compressed sensing (Kanerva, 1988; Olshausen & Field, 1997; Lee et al., 2006; Candes et al.,
2006; Donoho, 2006; Rozell et al., 2008). The typical objective in sparse coding is to learn a fixed set of vectors, known
as atoms or dictionary elements; given this set of vectors, one should be able to represent a given input as a sparse linear
combination of these vectors. Sparse coding methods have been applied to various problems in machine learning, including

24

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Table 16: The gendered pronoun codes reliably activate when gendered entities are present Groups of tokens that
activate either at least 3 out of 8 gendered pronoun codes for sentences of the form The [word] said that. Words
taken from Bolukbasi et al. (2016). Note that the words that activate these codes are not merely gender-related, such as
“pink,” or “penis,” but are words that would result in a gendered pronoun. Note that tokens in the Neither category might be
classified into either Male or Female if a lower threshold than 3 were chosen.

Gender Words

Male barber, boy, boyfriend, businessman, father, footballer, grandfather, guitarist, husband, king, labourer, man,
manly, nephew, officer, priest, rabbi, rapist, robber, stylist, waiter, warrior

Female ballerina, bitch, blonde, brunette, daughter, diva, feminine, feminist, girl, girlfriend, grandmother, hairdresser,
homemaker, hostess, housekeeper, housewife, lady, lesbian, maid, mother, nanny, niece, nun, nurse, prostitute,
queen, receptionist, sex worker, sister, socialite, victim, volleyballer, waitress, wife, witch, worker

Neither adorable, architect, bartender, bastard, bookkeeper, boss, brilliant, broadcaster, brother, buddy, builder, burly,
cake, captain, carpentry, cleric, commander, cousin, daddy, dance, dancer, dress, figher pilot, financier,
firepower, gay, genius, goofy, guidance counselor, host, interior designer, jersey, lanky, lecturer, librarian,
maestro, magician, midfielder, penis, petite, philosopher, pink, police, protege, pundit, red, secretary, sewing,
shopkeeper, shorts, singer, skipper, skirts, superstar, surgeon, sweater, ultrasound, user, vagina, vampire,
vocalist, yard

in computer vision (Elad & Aharon, 2006) and natural language domains (Zhu & Xing, 2012; Arora et al., 2018).

Dictionary learning methods have recently seen renewed interest as an interpretability approach for neural networks (Yun
et al., 2021; Wong et al., 2021). One reason for this is the superposition problem: to represent more feature directions than
neurons, some neurons will be activated for multiple different features (Yun et al., 2021; Elhage et al., 2022b). For example,
one family of approaches trains a wide autoencoder with a sparsity penalty. The width of the autoencoder is made greater
than the size of the input activations (producing an overcomplete basis); by regularizing the activations of the autoencoder to
be sparse, the dimensions of the autoencoder appear to correspond to more disentangled features (Yun et al., 2021; Sharkey
et al., 2022; Bricken et al., 2023; Cunningham et al., 2023).

Codebook features share important similarities with dictionary learning approaches: for example, both approaches learn
a codebook of elements larger than the number of input neurons and attempt to activate a small fraction of that basis on
each forward pass. However, a significant conceptual difference between codebook features and dictionary learning is their
implicit choice of how features are represented inside of neural networks:

F.1.1. FEATURES-AS-DIRECTIONS

Recent dictionary learning approaches typically start from an assumption we might call features-as-directions: features the
network learns are represented as continuous vectors along a direction in activation space. This assumption is substantiated
by prior work on interpretability (Kim et al., 2018; Olah et al., 2018), and has the benefit that the magnitude of the vector
along that direction corresponds to the strength of the feature or the probability of the feature existing in the data. However,
the feature as directions assumption also faces some challenges:

A direction can hold multiple features First, a single direction can theoretically represent multiple distinct features.
For example, the positive and negative magnitudes of a direction could each hold a different (mutually exclusive) feature,
which could be extracted by outgoing weights of 1 and −1, respectively, in combination with a ReLU activation. More
complex encodings of multiple features within a single direction are possible with bias terms and activation functions. For
example, a network could detect whether a feature along direction x has low, medium, or high magnitude by computing
softmax(x, 2x − 1, 5x − 7); the first dimension is greatest when x < 1, the second when 1 < x < 2 and the third when
x > 2.

Continuous features can be challenging to interpret Second, the continuous and graded nature of feature directions can
make them challenging to interpret: does an increase in the magnitude of one feature mean the network is more confident
the feature is present, or merely that the strength of the feature is stronger in the input? If an input activates a feature at

25

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

magnitude 0.52, or more strongly than in 90% of inputs, does this mean the feature is present? The same factors also make
it challenging to compare the strengths of different features without understanding how the network weights process each of
them.

Smuggling of information Another difference between codebook features and dictionary learning approaches is the
contrast between soft and hard sparsity. Recent dictionary learning approaches train an L1-regularized autoencoder (Sharkey
et al., 2022). This method causes the hidden activations of the autoencoder to have a small number of entries with a high
magnitude but does not force the model to set the other features to be exactly zero. Past work has suggested that important
information can be “smuggled” via low-magnitude activations (Elhage et al., 2022a), making it challenging to be confident
that the interpretable features found by a dictionary learning approach are fully capturing the information a network is
detecting in the input.

F.1.2. FEATURES-AS-POINTS

In contrast, codebook features embody a view of features-as-points. For example, an activated code is simply a vector of
fixed magnitude that is added to the output of the codebook layer. This design avoids many of the challenges in the previous
subsection. For example, a single point can only hold one bit of information, indicating the presence or absence of some
feature, avoiding the challenges of holding multiple features and graded interpretations. Similarly, because the weight of
non-activated codes is zero, the network cannot smuggle information through them.

However, there are several reasonable concerns one might have about features-as-points:

Multiple codes per feature First, the network could hypothetically encode more complex features via complicated
combinations of codes instead of assigning one feature to each code. For example, codes 1 and 2 together might represent
happiness, while codes 1 and 3 together might represent cars. However, the simplicity of how the codes are chosen (by cosine
similarity) makes it challenging to select codes with much complexity. Furthermore, similar concerns present themselves for
continuous dictionary learning approaches where complex features are encoded via combinations of directions.

Multiple features per code Second, the reverse failure mode might present itself: the model might still encode multiple
features per code. Indeed, we have discussed certain cases where this is true, for example, in Sections 3 and 4. While some of
this may be improved by choosing a larger codebook size or enabling the number of active codes k to vary based on the input
and position, it is unclear whether these approaches will solve the problem. Of course, as noted above, features-as-directions
approaches may also suffer these failure modes.

Lack of gradedness Third, one might worry that features-as-points cannot express the graded, continuous nature of many
real-world features, such as sentiment. We share this concern; however, we note that there are mechanisms for expressing
gradedness with discrete codes. For example, the network might choose to activate multiple codes in a given position or
nearby positions or allocate different codes to different levels of the gradation. Furthermore, the strong language modeling
performance of the codebook models suggests that the model can accomplish its task well despite this discrete constraint.

F.2. Additional benefits and tradeoffs of codebook features

We list two additional differences between codebook features and dictionary learning approaches:

Modification of the original network Dictionary learning approaches are typically trained off of a frozen network. By
contrast, in codebook features, the pretrained network is typically finetuned to achieve high performance on the task with
the codebook bottleneck. This training means we are interpreting a new network rather than the original one. Furthermore,
the performance of this network is often slightly lower than the pretrained network, which is another tradeoff.

Improved Efficiency Because codebook features use hard sparsity, only one large matrix multiplication is necessary (to
compute similarity scores with each element of the codebook). In contrast, a second large matrix multiplication may be
needed by some sparse autoencoder approaches to do a full weighted sum over all C dictionary elements rather than over
k << C elements chosen from the codebook; though activations such as ReLU may mitigate this problem to some degree.
Furthermore, as we show in Appendix E.4, hard sparsity enables us to use libraries such as FAISS to replace the first matrix
multiplication as well, further increasing efficiency.

26

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

F.3. Mechanistic Interpretability

Researchers have long attempted to extract concepts, rules, and algorithms from neural networks. For example, a line of
work since the late 1980s attempted to extract rules and finite automata from neural networks, especially recurrent neural
networks (RNNs) (Servan-Schreiber et al., 1988; Elman, 1990, see (Jacobsson, 2005) for a review). A core challenge
noted in these works is that neural networks use distributed representations (Rumelhart et al., 1986; 1988; Thorpe, 1989).
This form of representation enables networks to represent more concepts than hidden units, at the expense of each unit no
longer being interpretable (Elman, 1990). Thus, individual hidden units may not correspond to interpretable concepts, and a
holistic analysis of the entire vector may be necessary to extract such structures (Servan-Schreiber et al., 1988; Elman, 1990;
Jacobsson, 2005).

Recent work has attempted to revitalize this goal for today’s much more expressive networks, attempting to detect concepts
(Alain & Bengio, 2016; Kim et al., 2018; Olah et al., 2018; Goh et al., 2021; Bau et al., 2020b) and algorithms (Giulianelli
et al., 2018; Clark et al., 2019; Olah et al., 2020; Bau et al., 2020a; Geiger et al., 2021; Geva et al., 2021; Elhage et al., 2021;
Olsson et al., 2022; Wang et al., 2022; Chan et al., 2022; Friedman et al., 2023) inside of models, with many works focusing
specifically on the challenges of neurons that fire on multiple concepts (Fong & Vedaldi, 2018; Olah et al., 2020; Mu &
Andreas, 2020; Elhage et al., 2022b; Geiger et al., 2023), sometimes termed superposition (Olah et al., 2020).

Our work shares similar goals with the above works. Codebook features attempt to make identifying concepts and algorithms
more manageable inside networks by refactoring their internal representations into a sparse and discrete form that is easier
to understand and manipulate. We also discover one instance in Section 3 where codebooks represent more features than
there are neurons, circumventing the superposition problem.

F.4. Introducing Discrete Structure into Neural Networks

A range of works attempts to introduce discrete bottlenecks or structures into neural networks (Makhzani & Frey, 2015;
Andreas et al., 2016; Keshari et al., 2019; Buch et al., 2021; Mao et al., 2019; Liu et al., 2023). Most saliently, vector
quantization (Gray, 1984, VQ) is a classical technique in signal processing that was applied most prominently in machine
learning through VQ-VAE (van den Oord et al., 2017) for use in autoencoder networks. By contrast, our method applies
vector quantization to each hidden layer of any neural network (including autoregressive language models), enabling better
understanding and control of the network’s intermediate computation. Our grouped codebook method additionally employs
product quantization (Jegou et al., 2010), an extension of vector quantization to multiple codebooks whose outputs are
concatenated. Finally, our k > 1 models leverage ideas very similar to composite quantization (Zhang et al., 2014), where
vectors from multiple codebooks are aggregated to represent the network; in our setting, it is the top-k vectors of the same
codebook which are aggregated.

Another line of work introduces structured bottlenecks into training for interpretability and control. For example, concept
bottlenecks (Koh et al., 2020) directly supervise an intermediate state of the network to align to a set of known features,
while post-hoc concept bottlenecks (Yuksekgonul et al., 2022) enable transferring known features from another source (e.g.,
a multimodal model). In contrast to these methods, the concepts learned by the codebook are discovered emergently by the
network as part of the training process. Another related work, Backpack Language Models (Hewitt et al., 2023), generate
predictions by computing a set of weights over previous tokens; the next token is then predicted through a weighted sum of
learned sense vectors associated with those tokens. By contrast, codebook features are applied to the hidden states of a
neural network and facilitate better understanding and control of this via a sparse, discrete representation.

Work in computer vision has also explored vector quantization for image generation (Esser et al., 2021) and classification
(Zhang et al., 2023), suggesting promising avenues for multimodal applications of these techniques.

F.5. Editing or steering neural networks

Various methods attempt to control, edit, or steer the behavior of trained neural networks. A natural approach is to finetune
the network on labeled data (Sermanet et al., 2013), though this process can be time- and resource-intensive and may distort
the model’s other capabilities. Prompting a model with natural language instructions (Brown et al., 2020) or control tokens
(Keskar et al., 2019) is a lightweight steering method that overcomes some of these difficulties; however, not all models are
promptable, and there may be instances where prompting is insufficient to ensure the model performs the desired behavior.
In addition, a stream of work focusing on model editing makes targeted edits to concepts or decision rules inside of neural
networks with a small number of examples (Bau et al., 2020a; Santurkar et al., 2021; Mitchell et al., 2021; Meng et al.,

27

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

2022a;b).

Most related to our work, several recent works perform post-hoc steering of networks in ways that do not require per-edit
optimization (Merullo et al., 2023; Hernandez et al., 2023; Turner et al., 2023) by adding vectors of different magnitudes to
different layers in the network. Our work attempts to support the aims of such work by producing a sparse, discrete, hidden
representation inside of networks. This representation makes it easier to localize behaviors inside the network (so that the
user does not have to exhaustively perform interventions at every layer of the network to find the most effective intervention
site) and makes it easier to perform the intervention by substituting codes (so the user does not have to try many different
magnitudes of a given steering vector at each layer).

G. Extended Discussion of Applications, Significance, and Future Directions
G.1. Uses for codebook features

While we primarily explore codebook features on transformer language models, our method is modality agnostic and can be
applied to neural networks trained on any combination of modalities. We envision several different use cases for codebook
features in such diverse contexts:

Identifying phenomena in complex data Codebook features is an unsupervised method for discovering different latent
features inside models. This method could be useful in situations where brainstorming novel kinds of features in data may
be helpful for research. For example, codebook features could potentially help uncover new protein, genomic, or medical
imaging data features by observing token activations and seeing what the examples all have in common.

Feature detection In many applications, it is helpful to count the number of times a particular feature occurs or raise an
alert when it does. While it may be more effective in many cases to collect a labeled dataset and train a classifier for a
particular feature, codebook features are ready-made for this task and may enable faster iteration and experimentation.

Counterfactual explanations One way of explaining a model’s decision is via a counterfactual: would the model’s
decision change if this feature changed? While these counterfactuals often occur at the input level, codebooks enable
counterfactual explanations at the hidden feature level.

Steering models Finally, as explored in Sections 3.2 and 4.1, codebook features can be used to steer the complex
generations of models. We anticipate the flexibility of this method to improve as codebook features are better understood.

G.2. What this says about transformer computation

As seen in Table 5, codebooks enforce a strong information bottleneck between layers. We find it surprising that neural
networks can operate amidst such a strong information constraint; this suggests that the underlying computation happening
inside these networks is or can be made sparse along a set of understandable features.

G.3. Future work

We see several exciting directions for future work:

Understanding circuits and weights Past work has investigated circuits in vision models, where more complex features
are built up out of smaller features (see Appendix F for a full overview). The sparse and discrete nature of codebooks may
make it far easier to identify such circuits, including in language models, due to the smaller number of possible relationships
between components across layers. The discrete nature of codebooks also makes it easier to compute which codes tend to
fire together across layers without the added complexity of accounting for continuous-valued neurons or feature directions.
Understanding the relationship between activations across a single layer may also enable a better understanding of the
weights of that layer, as these determine the input-output relationship the layer must produce.

Understanding adversarial examples In computer vision, adversarial examples are small perturbations added to images
that cause the network to misclassify them; for example, misclassifying a cat as a dog (Goodfellow et al., 2014). Codebooks
enable identifying which codes in the network shifted to produce that change in decision: for example, was a cat ear feature
changed to a dog ear feature? The discrete nature of codebook activations may also enable better defenses against adversarial
attacks.

28

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Improving interpretability in larger models While we found that single-layer codebook models produced codebooks
where the majority of codes had a comprehensible interpretation, in larger models, there were many codes where this was not
the case. Future work might consider training models with even larger codebooks to capture the greater number of features
the models represent. Future work might also consider using co-occurrence statistics of code activations to investigate
whether there are codes that routinely fire together and may represent a single feature in tandem.

Better quantization methods While we explore a simple cosine similarity–based approach in our paper, other methods
for sparse quantization of activations (e.g. recent variational sparse coding methods (Tonolini et al., 2020; Fallah & Rozell,
2022)) may yield further gains.

Understand shared representations across domains and modalities Recent work has shown generalization across
distributions: for example, multimodal models contain neurons that fire on concepts (e.g., spiderman) in both text and image
form (Goh et al., 2021), and language models trained on multiple languages can generalize zero-shot from one language to
another (Johnson et al., 2017). Codebooks may enable tracing exactly how and where these features are integrated across
the network.

29

