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ABSTRACT

Studying the loss landscapes of neural networks is critical to identifying gener-
alizations and avoiding overconfident predictions. Flatness, which measures the
perturbation resilience of pre-trained parameters for loss values, is widely acknowl-
edged as an essential predictor of generalization. While the concept of flatness has
been formalized as a PAC-Bayes bound, it has been observed that the generalization
bounds can vary arbitrarily depending on the scale of the model parameters. Despite
previous attempts to address this issue, generalization bounds remain vulnerable to
function-preserving scaling transformations or are limited to impractical network
structures. In this paper, we introduce new PAC-Bayes prior and posterior distribu-
tions invariant to scaling transformations, achieved through the decomposition of
perturbations into scale and connectivity components. In this way, this approach
expands the range of networks to which the resulting generalization bound can be
applied, including those with practical transformations such as weight decay with
batch normalization. Moreover, we demonstrate that scale-dependency issues of
flatness can adversely affect the uncertainty calibration of Laplace approximation,
and we propose a solution using our invariant posterior. Our proposed invariant
posterior allows for effective measurement of flatness and calibration with low
complexity while remaining invariant to practical parameter transformations, also
applying it as a reliable predictor of neural network generalization.

1 INTRODUCTION

Neural networks (NNs) have succeeded tremendously, but understanding their generalization mech-
anism in real-world scenarios remains challenging (Kendall & Gal, 2017; Ovadia et al., 2019).
Although it is widely recognized that NNs naturally generalize well and avoid overfitting, the un-
derlying reasons are not well understood (Neyshabur et al., 2015b; Zhang et al., 2017; Arora et al.,
2018). Recent studies on the loss landscapes of NNs attempt to address these issues. For example,
Hochreiter & Schmidhuber (1995) proposed the flat minima (FM) hypothesis, which states that loss
stability for parameter perturbations positively correlates with network generalizability, as empirically
demonstrated by Jiang et al. (2020).

However, the FM hypothesis still has limitations. According to Dinh et al. (2017), rescaling two
successive layers can arbitrarily degrade a flatness measure while maintaining the generalizability
of NNs. Meanwhile, Li et al. (2018) argued that weight decay (WD) leads to a contradiction of the
FM hypothesis in practice: Although WD sharpens pre-trained NNs (i.e., decreased loss resilience),
it generally improves the generalization. In short, they suggest that transformations on network
parameters (e.g., re-scaling layers and WD) may lead to contradictions to the FM hypothesis. A
thorough discussion on this can be found in Appendix E.

To resolve this contradiction, we investigate PAC-Bayesian prior and posterior distributions to derive
a new scale-invariant generalization bound. As a result, our bound guarantees invariance for a general
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class of function-preserving scale transformations with a broad class of networks. Specifically,
our bound is more general than existing works (Tsuzuku et al., 2020; Kwon et al., 2021), both in
terms of transformations (e.g., activation-wise rescaling (Neyshabur et al., 2015a) and WD with
batch normalization (BN; Ioffe & Szegedy (2015))) that guarantee invariance and in terms of NN
architectures. Therefore, our bound ensures no FM contradiction for the first time, which should not
occur in practical NNs, including ResNet (He et al., 2016) and Transformer (Vaswani et al., 2017).

Our generalization bound is derived from scale invariances of prior and posterior distributions,
guaranteeing not only its scale invariance but also the scale invariance of its substance, the Kullback-
Leibler (KL) divergence-based kernel. We call this kernel an empirical Connectivity Tangent Kernel
(CTK), as a modification of empirical Neural Tangent Kernel (Jacot et al., 2018) with the scale-
invariance property. Moreover, we define a new sharpness metric as the trace of CTK, named
Connectivity Sharpness (CS). We show via empirical studies that CS predicts NN generalization
performance better than existing sharpness measures (Liang et al., 2019; Neyshabur et al., 2017).

In Bayesian NN regimes, we connect the contradictions of the FM hypothesis with the issue of
amplifying predictive uncertainty. Then, we alleviate this issue by using a Bayesian NN based on the
posterior distribution of our PAC-Bayesian analysis. We name this Bayesian NN as Connectivity
Laplace (CL), as it can be seen as a variation of Laplace approximation (LA; MacKay (1992)) using
a different Jacobian. Specifically, we demonstrate the major pitfalls of WD with BN in LA and show
how to remedy this issue using CL.1 We summarize our contributions as follows:

• Our novel PAC-Bayes generalization bound guarantees invariance for general function-preserving
scale transformations with a broad class of networks (Sec. 2.2 and 2.3). We empirically verify this
bound gives non-vacuous results for ResNet with 11M parameters (Sec. 2.4).

• Based on our bound, we propose a low-complexity sharpness metric CS (Sec. 2.5), which empiri-
cally shows a stronger correlation with generalization error than other metrics (Sec. 4.1).

• To prevent overconfident predictions, we show how our scale-invariant Bayesian NN can be used
to solve pitfalls of WD with BNs, proving its practicality (Sec. 3 and 4.2).

2 PAC-BAYES BOUND WITH SCALE-INVARIANCE

This section introduces a data-dependent PAC-Bayes generalization bound without scale-dependency
issues. To this end, we introduce our setup in Sec. 2.1, construct the scale-invariant PAC-Bayes
prior and posterior in Sec. 2.2, and present the detailed bound in Sec. 2.3. Then, we demonstrate the
effectiveness of this bound for ResNet-18 with CIFAR in Sec. 2.4. An efficient proxy of this bound
without complex hyper-parameter optimization is provided in Sec. 2.5.

2.1 BACKGROUND

Setup and Definitions. We consider a Neural Network (NN), f(·, ·) : RD × RP → RK , given
input x ∈ RD and network parameter θ ∈ RP . Hereafter, for simplicity, we consider vectors as
single-column matrices unless otherwise stated. We use the output of NN f(x, θ) as a prediction for
input x. Let S := {(xn, yn)}Nn=1 denote the independently and identically distributed (i.i.d.) training
data drawn from true data distribution D, where xn ∈ RD and yn ∈ RK are input and output represen-
tations of n-th training instance, respectively. For simplicity, we denote concatenated input and output
of all instances as X ∈ RND and Y ∈ RNK , respectively, and f(X , θ) ∈ RNK as a concatenation
of {f(xn, θ)}Nn=1. Given a prior distribution of network parameters p(θ) and a likelihood function
p(S|θ) :=

∏N
n=1 p(yn|f(xn, θ)), Bayesian inference defines posterior distribution of network param-

eter θ as p(θ|S) := exp(−L(S, θ))/Z(S), where L(S, θ) := − log p(θ)−
∑N
n=1 log p(yn|xn, θ) is

training loss and Z(S) :=
∫
p(θ)p(S|θ)dθ is the normalizing factor. For example, the likelihood

function for a regression task will be Gaussian: p(y|x, θ) = N (y|f(x, θ), σ2IK) where σ is (ho-
moscedastic) observation noise scale. For a classification task, we treat it as a one-hot regression
task following Lee et al. (2019a); He et al. (2020). While we adopt this modification for theoretical
tractability, Hui & Belkin (2021) showed this modification offers good performance competitive to
the cross-entropy loss. Details on this modification are given in Appendix C.

1https://github.com/sungyubkim/connectivity-tangent-kernel
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Laplace approximation. In general, the exact computation for the Bayesian posterior of a net-
work parameter is intractable. The Laplace approximation (LA; MacKay (1992)) is proposed
to approximate the posterior distribution with a Gaussian distribution defined as pLA(ψ|S) ∼
N (ψ|θ∗, (∇2

θL(S, θ∗))−1) where θ∗ ∈ RP is a pre-trained parameter with training loss and
∇2
θL(S, θ∗) ∈ RP×P is a Hessian matrix of loss function w.r.t. parameter at θ∗.

Recent works on LA replace the Hessian matrix with (Generalized) Gauss-Newton matrix to make
computation easier (Khan et al., 2019; Immer et al., 2021). With this approximation, the LA posterior
of the regression problem can be represented as

pLA(ψ|S) ∼ N (ψ|θ∗, (IP /α2︸ ︷︷ ︸
Damping

+J⊤
θ Jθ/σ

2︸ ︷︷ ︸
Curvature

)−1) (1)

where α, σ > 0, IP ∈ RP×P is a identity matrix, and Jθ ∈ RNK×P is a concatenation of Jθ(x, θ∗) ∈
RK×P (Jacobian of f w.r.t. θ at input x and parameter θ∗) along training input X . Inference with
LA requires a further sub-curvature approximation for modern NN architectures (e.g., ResNet (He
et al., 2016) and Transformer (Vaswani et al., 2017)) because of the prohibitively large covariance
matrix. This approximation includes diagonal, Kronecker-factored approximate curvature (KFAC),
last-layer, and subnetwork approximation (Ritter et al., 2018; Kristiadi et al., 2020; Daxberger et al.,
2021). Meanwhile, it is well known that proper selection of prior scale α is needed to balance the
dilemma between overconfidence and underfitting in LA.

PAC-Bayes bound with data-dependent prior. We consider a PAC-Bayes generalization error
bound of classification task used in McAllester (1999); Perez-Ortiz et al. (2021) (especially equation
(7) of Perez-Ortiz et al. (2021)). Let P be a PAC-Bayes prior distribution over RP independent of
training dataset S , and err(·, ·) : RK×K → [0, 1] be an error function defined separately from the loss
function. For any constant δ ∈ (0, 1] and λ > 0, and any PAC-Bayes posterior distribution Q over

RP , the following holds with probability at least 1−δ: errD(Q) ≤ errS(Q)+

√
KL[Q∥P]+log(2

√
N/δ)

2N

where errD(Q) := E(x,y)∼D,θ∼Q[err(f(x, θ), y)], errS(Q) := E(x,y)∼S,θ∼Q[err(f(x, θ), y)], and
N denotes the cardinality of S . That is, errD(Q) and errS(Q) are generalization error and empirical
error, respectively. The only restriction on P here is that it cannot depend on the dataset S.

Following the recent discussion in Perez-Ortiz et al. (2021), one can construct data-dependent PAC-
Bayes bounds by (i) randomly partitioning dataset S into SQ and SP so that they are independent,
(ii) pre-training a PAC-Bayes prior distribution PD only dependent of SP (i.e., PD belongs to a
PAC-Bayes prior due to the independence of SQ), (iii) fine-tuning a PAC-Bayes posterior distribution
Q dependent of entire dataset S , and (iv) computing empirical error errSQ(Q) with target subset SQ
(not entire dataset S). In summary, we modify the aforementioned original PAC-Bayes bound through
a data-dependent prior PD as

errD(Q) ≤ errSQ(Q) +

√
KL[Q∥PD] + log(2

√
NQ/δ)

2NQ
(2)

where NQ is the cardinality of SQ. We denote sets of input and output of partitioned datasets (SP,SQ)
by XP,YP,XQ,YQ for simplicity.

2.2 SCALE-INVARIANT PRIOR AND POSTERIOR FROM LINEARIZATION W.R.T. CONNECTIVITY

Our goal is to construct scale-invariant PD and Q. To this end, we assume a pre-trained parameter
θ∗ ∈ RP with the prior dataset SP. This parameter can be attained with standard NN optimization
procedures (e.g., stochastic gradient descent (SGD) with momentum). Then, we consider a linearized
NN at the pre-trained parameter with an auxiliary variable c ∈ RP as

glinθ∗ (x, c) := f(x, θ∗) + Jθ(x, θ
∗)diag(θ∗)c (3)

where diag is a vector-to-matrix diagonal operator. Note that equation 3 is the first-order Taylor
approximation of NN with perturbation θ∗ ⊙ c given input x and parameter θ∗: gpertθ∗ (x, c) :=

f(x, θ∗ + θ∗ ⊙ c) ≈ glinθ∗ (x, c), where ⊙ denotes element-wise multiplication of two vectors. Here
we express the perturbation in parameter space as θ∗ ⊙ c instead of a single variable such as δ ∈ RP .
By decomposing the scale and connectivity of perturbation, this linearization design matches the

3



Published as a conference paper at ICLR 2023

scale of perturbation (i.e., θ∗ ⊙ c) to the scale of θ∗ in a component-wise manner. Note that a
similar decomposition was proposed in pruning at initialization (Lee et al., 2019c;b) to measure the
importance of each connection independently of its weight. However, they only consider this form to
predict the effect of each connection before pre-training.

Based on equation 3, we define a data-dependent prior (PD) over connectivity as

Pθ∗(c) := N (c |0P , α2IP ). (4)

This distribution can be translated to a distribution over parameter by considering the distribution
of perturbed parameter (ψ := θ∗ + θ∗ ⊙ c): Pθ∗(ψ) := N (ψ | θ∗, α2diag(θ∗)2). We now define the
PAC-Bayes posterior over connectivity Q(c) as follows:

Qθ∗(c) := N (c|µQ,ΣQ) , (5)

µQ :=
ΣQJ

⊤
c (Y − f(X , θ∗))

σ2
=

ΣQdiag(θ
∗)J⊤

θ (Y − f(X , θ∗))
σ2

, (6)

ΣQ :=

(
IP
α2

+
J⊤
c Jc
σ2

)−1

=

(
IP
α2

+
diag(θ∗)J⊤

θ Jθdiag(θ
∗)

σ2

)−1

(7)

where Jc ∈ NK ×P is a concatenation of Jc(x,0P ) := Jθ(x, θ
∗)diag(θ∗) ∈ RK×P (i.e., Jacobian

of perturbed NN gpertθ∗ (x, c) w.r.t. c at input x and connectivity 0P ) along training input X . Indeed,
Qθ∗ is the posterior of Bayesian linear regression w.r.t. connectivity c. We refer to Appendix D for
detailed derivations. Again, it is equivalent to the posterior distribution over parameter Qθ∗(ψ) =
N
(
ψ|θ∗ + θ∗ ⊙ µQ, (diag(θ

∗)−2/α2 + J⊤
θ Jθ/σ

2
)−1

) where diag(θ∗)−2 := (diag(θ∗)−1)2 by as-
suming that all components of θ∗ are non-zero. This assumption can be easily satisfied by considering
the prior and posterior distributions of non-zero components of NNs only. Although we choose this
restriction for theoretical tractability, future works can relax it to achieve diverse predictions by
considering the distribution of zero coordinates.

In summary, a data-dependent PAC-Bayes bound can be computed with our PAC-Bayes distributions.
The validity of this data-dependent PAC-Bayes bound is ensured as follows: our PAC-Bayes prior
depends on the SP through θ∗, but independent to the SQ that measures the errors. Note that here a
two-phase training (i.e., pre-training with SP and fine-tuning with S) explained in Sec. 2.1 is used to
attain our PAC-Bayes posterior. Similar ideas of two-phase training with linearization were proposed
in the context of transfer learning in Achille et al. (2021); Maddox et al. (2021). In transfer learning,
there is a distribution shift between SP and SQ. Therefore, SP cannot be used for their fine-tuning
phase in contrast to our PAC-Bayes posterior.

Now we provide an invariance property of our prior and posterior distributions w.r.t. function-
preserving scale transformations as follows: The main intuition behind this proposition is that
Jacobian w.r.t. connectivity is invariant to the function-preserving scaling transformation, i.e.,
Jθ(x, T (θ∗))diag(T (θ∗)) = Jθ(x, θ

∗)diag(θ∗). Representative cases of T in Proposition 2.1 are
presented in Appendix E to highlight theoretical implications; these include the case of WD applied
to the general network, including BN.

Proposition 2.1 (Scale-invariance of PAC-Bayes prior and posterior). Let T : RP → RP is a
invertible diagonal linear transformation such that f(x, T (ψ)) = f(x, ψ) , ∀x ∈ RD,∀ψ ∈ RP .
Then, both PAC-Bayes prior and posterior are invariant under T :

PT (θ∗)(c)
d
= Pθ∗(c), QT (θ∗)(c)

d
= Qθ∗(c).

Furthermore, generalization and empirical errors are also invariant to T .

2.3 RESULTING PAC-BAYES BOUND

Now we plug in our prior and posterior into the modified PAC-Bayes generalization error bound
in equation 2. As a result, we obtain a novel generalization error bound, named PAC-Bayes-CTK,
which is guaranteed to be invariant to scale transformations (hence without the contradiction of FM
hypothesis mentioned in Sec. 1).

4
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Theorem 2.2 (PAC-Bayes-CTK and its invariance). Let us assume pre-trained parameter θ∗ with
data SP. By applying Pθ∗ and Qθ∗ to data-dependent PAC-Bayes bound (equation 2), we get

errD(Qθ∗) ≤ errSQ(Qθ∗) +

√√√√√√√√√
KL divergence︷ ︸︸ ︷

µ⊤
QµQ

4α2NQ︸ ︷︷ ︸
(average) perturbation

+

P∑
i=1

h (βi)

4NQ︸ ︷︷ ︸
sharpness

+
log(2

√
NQ/δ)

2NQ
(8)

where {βi}Pi=1 are eigenvalues of (IP + α2

σ2 J
⊤
c Jc)

−1 and h(x) := x− log(x)−1. This upper bound
is invariant to T for the function-preserving scale transformation by Proposition 2.1.

Note that recent works on FM contradiction focus only on the scale-invariance of sharpness metrics:
Indeed, their generalization bounds are not invariant to scale transformations due to the scale-
dependent terms (equation (34) in Tsuzuku et al. (2020) and equation (6) in Kwon et al. (2021)).
Specifically, these terms are proportional to the norm of pre-trained parameters. On the other hand, the
generalization bound in Petzka et al. (2021) (Theorem 11 in their paper) only holds for single-layer
NNs, whereas our bound has no restrictions for network structure. As a result, our PAC-Bayes bound
is the first scale-invariant PAC-Bayes bound to the best of our knowledge.

The following corollary explains why we name PAC-Bayes bound in Theorem 2.2 PAC-Bayes-CTK.
Corollary 2.3 (Relation between CTK and PAC-Bayes-CTK). Let us define empirical Connectivity
Tangent Kernel (CTK) of S as Cθ∗

X := JcJ
⊤
c = Jθdiag(θ

∗)2J⊤
θ ∈ RNK×NK by removing below

term. Note that empirical CTK has T (≤ NK) non-zero eigenvalues of {λi}Ti=1, then the followings
hold for {β}Pi=1 in Theorem 2.2: (i) βi = σ2/(σ2 + α2λi) < 1 for i = 1, . . . , T and (ii) βi = 1 for
i = T + 1, . . . , P . Since h(1) = 0, this means P − T terms of summation in the sharpness part of
PAC-Bayes-CTK vanish to 0. Furthermore, this sharpness term of PAC-Bayes-CTK is a monotonically
increasing function for each eigenvalue of empirical CTK.

Corollary 2.3 clarifies why
∑P
i=1 h(βi)/4NQ in Theorem 2.2 is called the sharpness term of PAC-

Bayes-CTK: A sharp pre-trained parameter would have large CTK eigenvalues (since eigenvalues
of CTK measure the sensitivity of output w.r.t. connectivity), increasing the sharpness term and the
generalization gap. Finally, Proposition 2.4 shows that empirical CTK is also scale-invariant.
Proposition 2.4 (Scale-invariance of empirical CTK). Let T : RP → RP be an function-preserving
scale transformation in Proposition 2.1. Then empirical CTK at parameter ψ is invariant under T :

CT (ψ)
xy := Cψ

xy , ∀x, y ∈ RD,∀ψ ∈ RP . (9)

Remark 2.5 (Connections to empirical NTK). The empirical CTK Cψ
xy resembles the existing empir-

ical Neural Tangent Kernel (NTK) at parameter ψ (Jacot et al., 2018): Θψxy := Jθ(x, ψ)Jθ(y, ψ)
⊤ ∈

RK×K . Note that the deterministic NTK in Jacot et al. (2018) is the infinite-width limiting kernel at
initialized parameters, while empirical NTK can be defined on any (finite-width) NNs. We focus on
empirical kernels for finite pre-trained parameters throughout the paper, and we leave deterministic
kernels defined for future studies. Comparing empirical kernels, the main difference between empiri-
cal CTK and the existing empirical NTK is in the definition of Jacobian. In CTK, Jacobian is computed
w.r.t. connectivity c while the empirical NTK uses Jacobian w.r.t. parameters θ. Therefore, another
PAC-Bayes bound can be derived from the linearization of f linθ∗ (x, δ) := f(x, θ∗) + Jθ(x, θ

∗)δ. As
this bound is related to the eigenvalues of Θθ

∗

X , we call this bound PAC-Bayes-NTK and provide
derivations in Appendix B. Note that PAC-Bayes-NTK is scale-variant as ΘT (ψ)

xy ̸= Θψxy in general.

2.4 COMPUTING APPROXIMATE BOUND IN REAL WORLD PROBLEMS

To verify that PAC-Bayes bound in Theorem 2.2 is non-vacuous, we compute it for real-world
problems. We use CIFAR-10 and 100 datasets (Krizhevsky, 2009), where the 50K training instances
are randomly partitioned into SP of cardinality 45K and SQ of cardinality 5K. We refer to Appendix
H for detailed experimental settings.

To compute equation 8, one needs (i) µQ-based perturbation term, (ii) Cθ∗

X -based sharpness term,
and (iii) samples from PAC-Bayes posterior Qθ∗ . µQ in equation 6 can be obtained by minimizing
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Table 1: Comparison between PAC-Bayes-CTK and PAC-Bayes-NTK for ResNet-18

CIFAR-10 PAC-Bayes-CTK PAC-Bayes-NTK

Parameter scale 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

Trace (×10−4) 1.91 ± 0.04 1.91 ± 0.04 1.91 ± 0.04 1.91 ± 0.04 8793.18 ± 227.31 2590.97 ± 62.10 1107.58 ± 20.64 766.26 ± 11.80
Perturbation 6.26 ± 0.15 5.72 ± 0.09 5.77 ± 0.08 5.84 ± 0.05 636.55 ± 12.16 564.38 ± 7.56 438.21 ± 10.73 288.24 ± 6.38
Sharpness 28.92 ± 0.21 28.96 ± 0.22 28.95 ± 0.22 28.95 ± 0.20 728.80 ± 2.69 602.17 ± 2.77 502.32 ± 2.32 441.91 ± 2.08

KL 17.59 ± 0.17 17.34 ± 0.15 17.36 ± 0.15 17.39 ± 0.13 682.68 ± 4.74 583.27 ± 2.88 470.27 ± 4.32 365.07 ± 2.96
Test err. (×102) 4.82 ± 0.12 4.78 ± 0.11 4.78 ± 0.11 4.77 ± 0.12 13.00 ± 0.53 8.26 ± 0.17 6.94 ± 0.09 6.25 ± 0.08

Bound (×102) 9.21 ± 0.04 9.21 ± 0.02 9.21 ± 0.02 9.21 ± 0.03 39.00 ± 0.61 32.07 ± 0,25 28.24 ± 0.06 24.84 ± 0.11

CIFAR-100 PAC-Bayes-CTK PAC-Bayes-NTK

Parameter scale 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

Trace (×10−4) 2.33 ± 0.37 2.34 ± 0.37 2.33 ± 0.37 2.34 ± 0.37 5830.55 ± 532.26 1913.90 ± 244.05 1089.53 ± 104.06 955.05 ± 66.16
Perturbation 14.54 ± 0.25 14.32 ± 0.24 14.08 ± 0.20 13.84 ± 0.14 620.18 ± 6.83 569.16 ± 6.94 459.16 ± 2.86 329.29 ± 3.34
Sharpness 42.52 ± 5.26 42.53 ± 5.26 42.52 ± 5.27 42.53 ± 5.26 694.45 ± 8.67 580.20 ± 12.22 519.78 ± 7.89 504.74 ± 6.10

KL 28.53 ± 2.51 28.42 ± 2.52 28.30 ± 2.55 28.19 ± 2.56 657.31 ± 7.21 574.68 ± 8.95 489.47 ± 3.57 417.02 ± 3.98
Test err. (×102) 21.78 ± 0.14 21.82 ± 00.18 21.84 ± 0.19 21.86 ± 0.21 43.39 ± 0.64 37.06 ± 0.26 32.32 ± 0.32 28.37 ± 0.13

Bound (×102) 27.74 ± 0.37 27.76 ± 0.40 27.75 ± 0.42 27.75 ± 0.42 68.44 ± 0.82 59.96 ± 0.19 51.90 ± 0.04 44.80 ± 0.25

argminc∈RP L(c) = 1
2N ∥Y − f(X , θ∗) − Jcc∥2 + σ2

2α2N c
⊤c by first-order optimality condition.

Note that this problem is a convex optimization problem w.r.t. c, since c is the parameter of the
linear regression problem. We use Adam optimizer (Kingma & Ba, 2014) with a fixed learning
rate 1e-4 to solve this. For the sharpness term, we apply the Lanczos algorithm to approximate the
eigenspectrum of Cθ∗

X following Ghorbani et al. (2019). We use 100 Lanczos iterations based on their
setting. Lastly, we estimate empirical and test errors with 8 samples of CL/LL implementation of the
Randomize-Then-Optimize (RTO) framework (Bardsley et al., 2014; Matthews et al., 2017). The
pseudo-code and computational complexity of RTO implementation can be found in Appendix F.

Table 1 provides the bounds and related terms of PAC-Bayes-CTK (Theorem 2.2) and NTK (Theorem
B.1). First, we found that our estimated PAC-Bayes-CTK and NTK are non-vacuous (i.e., estimated
bounds are better than guessing at random) for ResNet-18 with 11M parameters. Note that deriving
non-vacuous bound is challenging in PAC-Bayes analysis: only a few PAC-Bayes works (Dziugaite
& Roy, 2017; Zhou et al., 2018; Perez-Ortiz et al., 2021) verified the non-vacuous property of their
bounds, and other PAC-Bayes works (Foret et al., 2020; Tsuzuku et al., 2020) did not. To check
the invariance property of PAC-Bayes-CTK, we scale the scale-invariant parameters in ResNet-18
(i.e., parameters preceding BN layers) for fixed constants {0.5, 1.0, 2.0, 4.0}. Due to BN layers,
these transformations do not affect the function represented by NN, and the error bounds should be
preserved for scale-invariant bounds. Table 1 shows that PAC-Bayes-CTK bound is stable to these
transformations. On the other hand, PAC-Bayes-NTK bound is very sensitive to the parameter scale.

2.5 CONNECTIVITY SHARPNESS AND ITS EFFICIENT COMPUTATION

Now, we focus on the fact that the trace of CTK is also invariant to the parameter scale by Proposition
2.4. Unlike PAC-Bayes-CTK and NTK, traces of CTK and NTK do not require onerous hyper-
parameter selection of δ, α, σ. Therefore, we simply define CS(θ∗) := tr(Cθ∗

X ) as a practical
sharpness measure at θ∗, named Connectivity Sharpness (CS) to detour the complex computation of
PAC-Bayes-CTK. This metric can be easily applied to find NNs with better generalization, similar
to other sharpness metrics (e.g., trace of Hessian), as shown in Jiang et al. (2020). We evaluate the
detecting performance of CS in Sec. 4.1. The following corollary shows how CS can explain the
generalization performance of NNs, conceptually.
Corollary 2.6 (Connectivity sharpness, Informal). Let us assume CTK and KL divergence terms of
PAC-Bayes-CTK as defined in Theorem 2.2. Then, if CS vanishes to zero or infinity, the KL divergence
term of PAC-Bayes-CTK also does so.

As traces of a matrix can be efficiently estimated by Hutchinson’s method (Hutchinson, 1989), one
can compute the CS without explicitly computing the entire CTK. We refer to Appendix F for detailed
procedures of computing CS. As CS is invariant to function-preserving scale transformations by
Proposition 2.4, it does not contradict the FM hypothesis.

3 BAYESIAN NNS WITH SCALE-INVARIANCE

In this section, we discuss a practical implication of our posterior distribution (equation 5) used in the
PAC-Bayes analysis. To this end, we first interpret our PAC-Bayes posterior as a modified result of
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Table 2: Correlation analysis of sharpness measures with generalization gap. We refer Sec. 4.1 for the details of
sharpness measures (row) and correlation metrics for sharpness-generalization relationship (column).

tr(H) tr(F) tr(Θθ∗ ) SO PO SM PM AS FR CS

τ (rank corr.) 0.706 0.679 0.703 0.490 0.436 0.473 0.636 0.755 0.649 0.837
network depth 0.764 0.652 0.978 -0.358 -0.719 0.774 0.545 0.756 0.771 0.978
network width 0.687 0.922 0.330 -0.533 -0.575 0.495 0.564 0.827 0.921 0.978
mini-batch size 0.976 0.810 0.988 0.859 0.893 0.909 0.750 0.829 0.685 0.905

learning rate 0.966 0.713 1.000 0.829 0.874 0.057 0.621 0.794 0.565 0.897
weight decay -0.031 -0.103 0.402 0.647 0.711 0.168 0.211 0.710 0.373 0.742
Ψ (avg.) 0.672 0.599 0.739 0.289 0.237 0.481 0.538 0.783 0.663 0.900

K (cond. MI) 0.320 0.243 0.352 0.039 0.041 0.049 0.376 0.483 0.288 0.539

LA (MacKay, 1992). Then, we demonstrate that this modification improves existing LA when WD is
applied to NNs with normalization layers (Proposition 3.1).

One can view the parameter space version of Qθ∗ as a modified version of LA posterior (equation 1)
by (i) substituting parameter-dependent damping (diag(θ∗)−2) for isotropic damping and (ii) adding
perturbation θ∗ ⊙ µQ to the mean of Gaussian distribution. Here, we focus on the effect of replacing
the damping term of LA in batch-normalized NNs in the presence of WD. We refer to Antoran et al.
(2021; 2022) for the discussion on the effect of adding perturbation to the LA with linearized NNs.

The main difference between the covariance terms of LA in equation 1 and equation 7 is the definition
of Jacobian (i.e., parameter or connectivity) similar to the difference between empirical CTK and
NTK in Remark 2.5. Therefore, we name pCL(ψ|S) ∼ N (ψ|θ∗,

(
diag(θ∗)−2/α2 + J⊤

θ Jθ/σ
2
)−1

)
as Connectivity Laplace (CL) approximated posterior.

To compare CL posteriors against existing LAs, we explain how WD with BN can produce unexpected
side effects of amplifying uncertainty. This side effect can be quantified if we consider linearized
NN for LA, called Linearized Laplace (LL; Foong et al. (2019)). Assuming σ2 ≪ α2, the predictive
distribution of LL and CL are

f linθ∗ (x, ψ)|pLA(ψ|S) ∼ N (f(x, θ∗), α2Θθ
∗

xx − α2Θθ
∗

xXΘθ
∗−1

X Θθ
∗

Xx) (10)

f linθ∗ (x, ψ)|pCL(ψ|S) ∼ N (f(x, θ∗), α2Cθ∗

xx − α2Cθ∗

xXCθ∗−1
X Cθ∗

Xx) (11)

for any input x ∈ Rd where X in subscript means concatenation. We refer to Appendix G for
the detailed derivations. The following proposition illustrates how WD with BN can increase the
prediction uncertainty of equation 10.
Proposition 3.1 (Uncertainty amplifying effect for LL). Let us assume that Wγ : RP → RP is a
WD on scale-invariant parameters (e.g., parameters preceding BN layers) by multiplying γ < 1 and
all the non-scale-invariant parameters are fixed. Then, the predictive uncertainty of LL is amplified
by 1/γ2 > 1 while the predictive uncertainty of CTK is preserved as

Varψ∼pLA(ψ|S)(f
lin
Wγ(θ∗)

(x, ψ)) = Varψ∼pLA(ψ|S)(f
lin
θ∗ (x, ψ))/γ

2

Varψ∼pCL(ψ|S)(f
lin
Wγ(θ∗)

(x, ψ)) = Varψ∼pCL(ψ|S)(f
lin
θ∗ (x, ψ))

where Var(·) is variance of random variable.

Since the primal regularization effect of WD actually occurs when combined with BN as experimen-
tally shown in Zhang et al. (2019), Proposition 3.1 describes a real-world issue. Recently, Antoran
et al. (2021; 2022) observed similar pitfalls in Proposition 3.1. However, their solution requires a more
complicated hyper-parameter search: independent prior selection for each normalized parameter
group. On the other hand, CL does not increase the hyper-parameter to be optimized compared to LL.
We believe this difference will make CL more attractive to practitioners.

4 EXPERIMENTS

Here we describe experiments demonstrating (i) the effectiveness of Connectivity Sharpness (CS)
as a generalization measurement metric and (ii) the usefulness of Connectivity Laplace (CL) as a
general-purpose Bayesian NN: With CS and CL, we can resolve the contradiction in the FM
hypothesis concerning the generalization of NNs and attain stable calibration performance for
various ranges of prior scales.
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Table 3: Test negative log-likelihood on two UCI variants (Hernández-Lobato & Adams, 2015; Foong et al.,
2019). We marked the best method among the four in bold and marked the best method among LL/CL in italics.

Original (Hernández-Lobato & Adams, 2015) GAP variants (Foong et al., 2019)

Deep Ensemble MCDO LL CL Deep Ensemble MCDO LL CL

boston_housing 2.90 ± 0.03 2.63 ± 0.01 2.85 ± 0.01 2.88 ± 0.02 2.71 ± 0.01 2.68 ± 0.01 2.74 ± 0.01 2.75 ± 0.01
concrete_strength 3.06 ± 0.01 3.20 ± 0.00 3.22 ± 0.01 3.11 ± 0.02 4.03 ± 0.07 3.42 ± 0.00 3.47 ± 0.01 4.03 ± 0.02
energy_efficiency 0.74 ± 0.01 1.92 ± 0.01 2.12 ± 0.01 0.83 ± 0.01 0.77 ± 0.01 1.78 ± 0.01 2.02 ± 0.01 0.90 ± 0.02

kin8nm -1.07 ± 0.00 -0.80 ± 0.01 -0.90 ± 0.00 -1.07 ± 0.00 -0.94 ± 0.00 -0.71 ± 0.00 -0.87 ± 0.00 -0.93 ± 0.00
naval_propulsion -4.83 ± 0.00 -3.85 ± 0.00 -4.57 ± 0.00 -4.76 ± 0.00 -2.22 ± 0.33 -3.36 ± 0.01 -3.66 ± 0.11 -3.80 ± 0.07

power_plant 2.81 ± 0.00 2.91 ± 0.00 2.91 ± 0.00 2.81 ± 0.00 2.91 ± 0.00 2.97 ± 0.00 2.98 ± 0.00 2.91 ± 0.00
protein_structure 2.89 ± 0.00 2.96 ± 0.00 2.91 ± 0.00 2.89 ± 0.00 3.11 ± 0.00 3.07 ± 0.00 3.07 ± 0.00 3.13 ± 0.00

wine 1.21 ± 0.00 0.96 ± 0.01 1.24 ± 0.01 1.27 ± 0.01 1.48 ± 0.01 1.03 ± 0.00 1.45 ± 0.01 1.43 ± 0.00
yacht_hydrodynamics 1.26 ± 0.04 2.17 ± 0.06 1.20 ± 0.04 1.25 ± 0.04 1.71 ± 0.03 3.06 ± 0.02 1.78 ± 0.02 1.74 ± 0.01

4.1 CONNECTIVITY SHARPNESS AS A GENERALIZATION MEASUREMENT METRIC

Based on the CIFAR-10 dataset, we evaluate three correlation metrics to determine whether CS is
more correlated with generalization performance than existing sharpness measures: (a) Kendall’s
rank-correlation coefficient (τ ; Kendall (1938)) (b) granulated Kendall’s coefficient and their average
(Ψ; Jiang et al. (2020)) (c) conditional independence test (K; Jiang et al. (2020)). In all correlation
metrics, a higher value indicates a stronger relationship between sharpness and generalization.

We compare CS to the following baseline sharpness measures: trace of Hessian (tr(H); Keskar et al.
(2017)), trace of empirical Fisher (tr(F); Jastrzebski et al. (2021)), trace of empirical NTK at θ∗,
Fisher-Rao (FR; Liang et al. (2019)) metric, Adaptive Sharpness (AS; Kwon et al. (2021)), and four
PAC-Bayes bound based measures: Sharpness-Orig. (SO), PAC-Bayes-Orig. (PO), Sharpness-Mag.
(SM), and PAC-Bayes-Mag. (PM), which are eq. (52), (49), (62), (61) in Jiang et al. (2020). We
compute granulated Kendall’s correlation by using five hyper-parameters (network depth, network
width, learning rate, weight decay, and mini-batch size) and three options for each. Thus, we train
models with 35 = 243 different training configurations. We vary the depth and width of NN based on
VGG-13 (Simonyan & Zisserman, 2015). Further experimental details can be found in Appendix H.

In Table 2, CS shows the best results for τ , Ψ, and K compared to all other sharpness measures.
Additionally, granulated Kendall of CS is higher than other sharpness measures for 3 out of 5
hyperparameters and competitive with other sharpness measures for the remaining hyperparameters.
The main difference between our CS and other sharpness measures is in the correlation with weight
decay/network width: We found that SO and PM can capture the correlation with weight decay,
and hypothesize that this is due to the weight norm term of SO/PO. As this weight norm term would
interfere in capturing the sharpness-generalization correlation related to the number of parameters
(i.e., width/depth), SO/PO fail to capture correlation with network width in Table 2. On the other
hand, CS/AS do not suffer from such a problem. Also, it is notable that FR weakly captures this
correlation despite its invariant property. For network width, we found that sharpness measures except
for CS, tr(F), AS/FR fail to capture a strong correlation. In summary, only CS/AS detect clear
correlations with all hyperparameters; among them, CS captures clearer correlations.

4.2 CONNECTIVITY LAPLACE AS AN EFFICIENT GENERAL-PURPOSE BAYESIAN NN

We evaluate CL’s effectiveness as a general-purpose Bayesian NN using the UCI and CIFAR datasets.
We refer to Appendix H for detailed experimental settings.

UCI regression We implement full-curvature versions of LL and CL and evaluate these to the 9 UCI
regression datasets (Hernández-Lobato & Adams, 2015) and its GAP-variants (Foong et al., 2019) to
compare calibration performance on in-between uncertainty. We measure test NLL for LL/CL and
2 baselines (Deep Ensemble (Lakshminarayanan et al., 2017) and Monte-Carlo DropOut (MCDO;
Gal & Ghahramani (2016))). Eight ensemble members are used in Deep Ensemble, and 32 MC
samples are used in LL, CL, and MCDO. Table 3 shows that CL performs better than LL on 6 of 9
datasets. Even though LL produces better calibration results on 3 of the datasets for both settings, the
performance gaps between LL and CL are not as severe as on the other 6 datasets.

Image classification. We evaluate the uncertainty calibration performance of CL on CIFAR-10
and 100. As baseline methods, we consider Deterministic network, Monte-Carlo Dropout (MCDO;
(Gal & Ghahramani, 2016)), Monte-Carlo Batch Normalization (MCBN; (Teye et al., 2018)), Deep
Ensemble (Lakshminarayanan et al., 2017), Batch Ensemble (Wen et al., 2020), and LL (Khan et al.,
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Table 4: Uncertainty calibration results on CIFAR-100 (Krizhevsky, 2009) for ResNet-18 (He et al., 2016)

CIFAR-100

NLL (↓) ECE (↓) Brier. (↓) AUC (↑)

Deterministic 1.5370 ± 0.0117 0.1115 ± 0.0017 0.3889 ± 0.0031 -
MCDO 1.4264 ± 0.0110 0.0651 ± 0.0008 0.3925 ± 0.0020 0.6907 ± 0.0121
MCBN 1.4689 ± 0.0106 0.0998 ± 0.0016 0.3750 ± 0.0028 0.7982 ± 0.0210

Batch Ensemble 1.4029 ± 0.0031 0.0842 ± 0.0005 0.3582 ± 0.0010 0.7887 ± 0.0115
Deep Ensemble 1.0110 0.0507 0.2740 0.7802

Linearized Laplace 1.1673 ± 0.0093 0.0532 ± 0.0010 0.3597 ± 0.0020 0.8066 ± 0.0120

Connectivity Laplace (Ours) 1.1307 ± 0.0042 0.0524 ± 0.0019 0.3319 ± 0.0005 0.8423 ± 0.0204
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Figure 1: Sensitivity to α. Expected calibration error (ECE), Negative Log-likelihood (NLL), and Brier score
results on corrupted CIFAR-100 for ResNet-18. Showing the mean (line) and standard deviation (shaded area)
across four different seeds.

2019). We use the Randomize-Then-Optimize (RTO) implementation of LL/CL in Appendix F. We
measure negative log-likelihood (NLL), expected calibration error (ECE; Guo et al. (2017)), and
Brier score (Brier.) for ensemble predictions. We also measure the area under receiver operating
curve (AUC) for OOD detection, where we set the SVHN (Netzer et al., 2011) dataset as an OOD.

Table 4 shows uncertainty calibration results on CIFAR-100. We refer to Appendix J for results on
other settings, including CIFAR-10 and VGGNet. Except for Deep Ensemble, CL shows better results
than baselines for all uncertainty calibration metrics. Deep Ensemble performs best in 3 out of 4
metrics, but each ensemble member requires full training. LL and CL, however, require only post-hoc
training on pre-trained NNs. Particularly noteworthy is that CL presents competitive results with
Deep Ensemble, even with much smaller computations.

Robustness to the selection of prior scale. Figure1 shows the uncertainty calibration results over
various α values for LL, CL, and Deterministic (Det.) baseline. As mentioned in previous works
(Ritter et al., 2018; Kristiadi et al., 2020), the uncertainty calibration results of LL are extremely
sensitive to the selection of α. Especially, LL shows severe under-fitting for large α (i.e., small
damping) regime. On the other hand, CL shows stable performance in the various ranges of α.

5 CONCLUSION

In this work, we proposed a new approach to enhance the robustness of generalization bound using
PAC-Bayes prior and posterior distributions. By separating scales and connectivities, our approach
achieved invariance to function-preserving scale transformations, which is not addressed by existing
generalization error bounds. As a result, our method successfully resolved the contradiction in the
FM hypothesis caused by general scale transformation. In addition, our posterior distribution for
PAC-Bayes analysis improved the Laplace approximation without significant drawbacks when dealing
with weight decay with BN. To further improve our understanding of NN generalization effects, future
research could explore extending prior and posterior distributions beyond Gaussian distributions to
more task-specific distributions. This could help bridge the gap between theory and practice.
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A NOTATIONS

Table 5: Notations used in the main paper

xn ∈ RD, yn ∈ RK ≜ training inputs/outputs
θ, ψ ∈ RP ≜ parameter of NNs

f(x, θ) ≜ output of NN given x, θ
f linθ∗ (x, δ) ≜ f(x, θ∗) + Jθ(x, θ

∗)δ (linearization of NN w.r.t. parameter)
glinθ∗ (x, c) ≜ f(x, θ∗) + Jθ(x, θ

∗)diag(θ∗)c (linearization of NN w.r.t. connectivity)
fpertθ∗ (x, δ), gpertθ∗ (x, c) ≜ Perturbed NN w.r.t. parameter/connectivity

0d ≜ zero vector with dimension d
Id ≜ identity matrix with dimension d× d

tr(A) ≜ a trace (i.e., sum of diagonal elements) of matrix A
diag(v) ≜ a diagonal matrix whose diagonal elements correspond to v

T : RP → RP ≜ a function-preserving scale transformation
D ≜ (true) data distribution
S ≜ i.i.d. sampled training dataset from S

SP,SQ ≜ randomly partitioned prior/posterior datasets from S
N,NP, NQ ≜ cardinality of S,SP,SQ

X ,Y/XP,YP/XQ,YQ ≜ concatenated inputs and outputs of all instances of S/SP/SQ.
Jθ(x, θ

∗),Jc(x, θ
∗) ∈ RK×P ≜ Jacobian of outputs w.r.t parameter/connectivity given x, θ∗

f(X , θ) ∈ RNK×P ≜ concatenated outputs of NN along X
Jθ,Jc ∈ RNK×P ≜ concatenated Jacobian w.r.t. parameter/connectivity along X

Pθ∗(c),Qθ∗(c) ≜ our PAC-Bayes prior/posterior
errD(Q), errS(Q) ≜ generalization/empirical error of PAC-Bayes posterior

α ≜ standard deviation of our PAC-Bayes prior
σ ≜ scale (standard deviation) of observational noise

µQ ∈ RP ,ΣQ ∈ RP×P ≜ mean and covariance of our PAC-Bayes posterior
Θψxx′ ,C

ψ
xx′ ∈ R ≜ empirical NTK/CTK of NN given ψ and input pair x, x′ ∈ RD

ΘψX ,C
ψ
X ∈ RN×N ≜ empirical NTK/CTK of NN for training inputs (X ) given ψ

{λi}Pi=1 ≜ eigenvalues of empirical CTK
{βi}Pi=1 ≜ eigenvalues of (IP + α2

σ2 J
⊤
c Jc)

−1

h(x) ≜ x− log(x)− 1 (non-negative convex function w.r.t. βi. See Fig. 2)
(h ◦ s)(x) ≜ non-negative concave function w.r.t. λi. See Fig. 2)

B PROOFS

B.1 PROOF OF PROPOSITION 2.1

Proof. Since the prior Pθ∗(c) is independent to the parameter scale, Pθ∗(c)
d
= PT (θ∗)(c) is trivial.

For Jacobian w.r.t. parameters, we have

JT (θ)(x, T (ψ)) =
∂f(x, T (ψ))

∂T (θ)
=
∂f(x, ψ)

∂T (θ)
=
∂f(x, ψ)

∂θ

∂θ

∂T (θ)
= Jθ(x, ψ)T −1

Then, the Jacobian of NN w.r.t. connectivity at T (ψ) holds

Jθ(x, T (ψ))diag(T (ψ)) = Jθ(x, ψ)T −1T diag(ψ) (12)
= Jθ(x, ψ)diag(ψ) (13)
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where the first equality holds from the above one and the fact that T is a diagonal linear transformation.
Therefore, the covariance of posterior is invariant to T .(

IP
α2

+
diag(T (θ∗))J⊤

θ (X , T (θ∗))Jθ(X , T (θ∗))diag(T (θ∗))

σ2

)−1

=

(
IP
α2

+
diag(θ∗)J⊤

θ (X , θ∗)Jθ(X , θ∗)diag(θ∗)
σ2

)−1

=

(
IP
α2

+
diag(θ∗)J⊤

θ Jθdiag(θ
∗)

σ2

)−1

Moreover, the mean of posterior is also invariant to T .

ΣQdiag(T (θ∗))J⊤
θ (X , T (θ∗)) (Y − f(X , T (θ∗)))

σ2

=
ΣQdiag(T (θ∗))J⊤

θ (X , T (θ∗)) (Y − f(X , θ∗))
σ2

=
ΣQdiag(θ

∗)J⊤
θ (X , θ∗) (Y − f(X , θ∗))

σ2

=
ΣQdiag(θ

∗)J⊤
θ (Y − f(X , θ∗))
σ2

Therefore, equation 6 and equation 7 are invariant to function-preserving scale transformations. The re-
maining part of the proposition is related to the definition of function-preserving scale transformation
T . For generalization error, the following holds

errD(QT (θ∗)) = E(x,y)∼D,ψ∼QT (θ∗)
[err(f(x, ψ), y)]

= E(x,y)∼D,c∼QT (θ∗)
[err(gpertθ∗ (x, c), y)]

= E(x,y)∼D,c∼Qθ∗ [err(g
pert
θ∗ (x, c), y)]

= E(x,y)∼D,ψ∼Qθ∗ [err(f(x, ψ), y)]

= errD(Qθ∗)

WLOG, this proof can be extended to the empirical error errSQ .

B.2 PROOF OF THEOREM 2.2

Proof. (Construction of KL divergence) To construct PAC-Bayes-CTK, we need to arrange KL
divergence between posterior and prior as follows:

KL[Q∥P] = 1

2

(
tr
(
Σ−1

P (ΣQ + (µQ − µP)(µQ − µP)
⊤)
)
+ log |ΣP| − log |ΣQ| − P

)
=

1

2
tr(Σ−1

P (µQ − µP)(µQ − µP)
⊤)) +

1

2

(
tr(Σ−1

P ΣQ) + log |ΣP| − log |ΣQ| − P
)

=
1

2
(µQ − µP)

⊤Σ−1
P (µQ − µP) +

1

2

(
tr(Σ−1

P ΣQ)− log |Σ−1
P ΣQ| − P

)
=

µ⊤
QµQ

2α2︸ ︷︷ ︸
perturbation

+
1

2

(
tr(Σ−1

P ΣQ)− log |Σ−1
P ΣQ| − p

)
︸ ︷︷ ︸

sharpness

where the first equality uses the KL divergence between two Gaussian distributions, the third equality
uses trace property (tr(AB) = tr(BA) and tr(a) = a for scalar a), and the last equality uses the
definition of PAC-Bayes prior (Pθ∗(c) = N (c|0P , α2IP )). For sharpness term, we first compute the
Σ−1

P ΣQ term as

Σ−1
P ΣQ =

(
IP +

α2

σ2
J⊤
c Jc

)−1
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Since α2, σ2 > 0 and J⊤
c Jc is positive semi-definite, the matrix Σ−1

P ΣQ have non-zero eigenvalues
of {βi}Pi=1. Since a trace is the sum of eigenvalues and the log-determinant is the sum of the log of
eigenvalues, we have

KL[Q∥P] =
µ⊤
QµQ

2α2
+

1

2

P∑
i=1

(βi − log(βi)− 1) =
µ⊤
QµQ

2α2
+

1

2

P∑
i=1

h(βi)

where h(x) = x− log(x)− 1. By plugging this KL divergence into the equation 2, we get equation 8.

(Eigenvalues of Σ−1
P ΣQ) To show the scale-invariance of PAC-Bayes-CTK, it is sufficient to show that

the KL divergence between posterior and prior is scale-invariant: log(2
√
NQ/δ)/2NQ is independent

to KL PAC-Bayes prior/posterior. We already show the invariance property of empirical/generalization
error term in Proposition 2.1.

To show the invariance property of KL divergence, let us write a singular value decomposition of
Jacobian w.r.t. connectivity Jc ∈ RNK×P as Jc = UΣV ⊤, where U ∈ RNK×NK and V ∈ RP×P

are orthogonal matrices and Σ ∈ RNK×P is a rectangular diagonal matrix with descending order for
singular values. Then, the following holds for Σ−1

P ΣQ

Σ−1
P ΣQ =

(
IP +

α2

σ2
J⊤
c Jc

)−1

=

(
IP +

α2

σ2
V Σ⊤ΣV ⊤

)−1

= V

(
IP +

α2

σ2
Λ

)−1

V ⊤

where Λ = Σ⊤Σ ∈ RP×P is a diagonal matrix with λi := Λii = 0 for i ≥ NK. Therefore,
eigenvalues of Σ−1

P ΣQ are 1
1+α2λi/σ2 = σ2

σ2+α2λi
. Now, we consider Connectivity Tangent Kernel

(CTK) as defined in equation 2.3:

Cθ∗

X := JcJ
⊤
c = Jθdiag(θ

∗)2J⊤
θ ∈ RNK×NK .

Similar to J⊤
c Jc, CTK can be expressed as follows

Cθ∗

X = JcJ
⊤
c = UΣV ⊤V Σ⊤U⊤ = UΣΣ⊤U⊤ = UΛ′U⊤

where Λ′ = ΣΣ⊤ ∈ RNK×NK . As the smallest (P −NK) eigenvalues of Λ = Σ⊤Σ are just zeros,
Λ′ is just a reduced diagonal matrix of Λ with these eigenvalues removed. As a result, {λi}NKi=1 are
eigenvalues of CTK.

(Scale invariance of CTK) The scale-invariance property of CTK is a simple application of equa-
tion 13:

CT (ψ)
xy = JT (θ)(x, T (ψ))diag(T (ψ)2)JT (θ)(y, T (ψ))⊤

= Jθ(x, ψ)T −1T diag(ψ)diag(ψ)T T −1Jθ(x, ψ)
⊤

= Jθ(x, ψ)diag(ψ)diag(ψ)Jθ(x, ψ)
⊤

= Cψ
xy , ∀x, y ∈ RD,∀ψ ∈ RP .

Therefore, CTK is invariant to any function-preserving scale transformation T and so do its eigen-
values. This guarantees the invariance of Σ−1

P ΣQ and its eigenvalues. In summary, we showed the
scale-invariance property of the sharpness term of KL divergence. Now all that remains is to show the
invariance of the perturbation term. However, this is already proved in the proof of Proposition 2.1.
Therefore, we show PAC-Bayes-CTK is invariant to any function-preserving scale transformation.

B.3 PROOF OF COROLLARY 2.3

Proof. In proof of Theorem 2.2, we showed that eigenvalues of Σ−1
P ΣQ can be represented as

σ2

σ2 + α2λi
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Figure 2: Functions used in proofs

where {λi}Pi=1 are eigenvalues of Λ = Σ⊤Σ. By SVD of Jacobian w.r.t. connectivity, λi = Λii =
Σ2
ii ≥ 0. Therefore, eigenvalues of CTK are squares of singular values of Jc and so λi ≥ 0,∀i. As a

result, βi ≤ 1 for all i = 1, . . . , P for eigenvalues {βi}Pi=1 of Σ−1
P ΣQ and equality holds for λi = 0

(i.e., i ≥ NK). Now all that remains is to show that the sharpness term of PAC-Bayes-CTK is a
monotonically increasing function on each eigenvalue of CTK. To show this, we first keep in mind
that

s(x) :=
σ2

σ2 + α2x

is a monotonically decreasing function for x ≥ 0 and h(x) := x − log(x) − 1 is a monotonically
decreasing function for x ∈ (0, 1]. Since the sharpness term of KL divergence is

P∑
i=1

h(βi)

4NQ
=

P∑
i=1

(h ◦ s)(λi)
4NQ

This is a monotonically increasing function for x ≥ 0 since s(x) ≤ 1 for x ≥ 0. For your information,
we plot y = h(x) and y = (h ◦ s)(x) in Figure 2.

B.4 PROOF OF PROPOSITION 2.4

We refer to Scale invariance of CTK part of the proof of Theorem 2.2. This is a direct application of
the scale-invariance property of Jacobian w.r.t. connectivity.

B.5 PROOF OF COROLLARY 2.6

Proof. Since CS is a trace of CTK, it is a sum of the eigenvalues of CTK. As shown in the proof
of Corollary 2.3, eigenvalues of CTK are square of singular values of Jacobian w.r.t. connectivity c.
Therefore, the eigenvalues of CTK are non-negative and vanish to zero if CS vanishes to zero.

P∑
i=1

λi = 0 ⇒ λi = 0 ⇒ βi = s(λi) = 1 ⇒ h(βi) = 0, ∀i = 1, . . . , P

This means the sharpness term of KL divergence vanishes to zero. Furthermore, singular values of
Jacobian w.r.t. c also vanish to zero in this case. Therefore, µQ vanishes to zero, also. Similarly, if CS
diverges to infinity, this means (at least) one of the eigenvalues of CTK diverges to infinity. In this
case, the following holds

λi → ∞ ⇒ βi = s(λi) → 0 ⇒ h(βi) → ∞, ∀i = 1, . . . , P

Therefore, the KL divergence term of PAC-Bayes-CTK also diverges to infinity.
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B.6 PROOF OF PROPOSITION 3.1

Proof. By assumption, we fixed all non-scale invariant parameters. This means we exclude these
parameters in the sampling procedure of CL and LL. In terms of predictive distribution, this can be
translated as

f linθ∗ (x, ψ)|pLA(ψ|S) ∼ N (f(x, θ∗), α2Θ̂θ
∗

xx − α2Θ̂θ
∗

xX Θ̂θ
∗−1

X Θ̂θ
∗

Xx)

f linθ∗ (x, ψ)|pCL(ψ|S) ∼ N (f(x, θ∗), α2Ĉθ∗

xx − α2Ĉθ∗

xX Ĉθ∗−1
X Ĉθ∗

Xx)

where Θ̂ψxx′ :=
∑
i∈P

∂f(x,ψ)
∂θi

∂f(x′,ψ)
∂θi

and Ĉψ
xx′ :=

∑
i∈P

∂f(x,ψ)
∂θi

∂f(x′,ψ)
∂θi

(ψi)
2 for scale-invariant

parameter set P . Thereby, we mask the gradient of the non-scale-invariant parameters as zero.
Therefore, this can be arranged as follows

Θ̂ψxx′ = Jθ(x, ψ)diag(1P)Jθ(x, ψ)
⊤, Ĉψ

xx′ = Jθ(x, ψ)diag(ψ)diag(1P)diag(ψ)Jθ(x, ψ)
⊤

where 1P ∈ RP is a masking vector (i.e., one for included components and zero for excluded
components). Then, the WD for scale-invariant parameters can be represented as

Wγ(ψ)i =

{
γψi, if ψi ∈ P.
ψi, if ψi ̸∈ P.

Therefore, we get

Θ̂
Wγ(ψ)
xx′ = Jθ(x,Wγ(ψ))diag(1P)Jθ(x,Wγ(ψ)))

⊤

= Jθ(x, ψ)W−1
γ diag(1P)W−1

γ Jθ(x, ψ)
⊤

= Jθ(x, ψ)diag(1P/γ
2)Jθ(x, ψ)

⊤

= 1/γ2Jθ(x, ψ)diag(1P)Jθ(x, ψ)
⊤

= 1/γ2Θ̂ψxx′

for empirical NTK and

Ĉ
Wγ(ψ)
xx′ = Jθ(x,Wγ(ψ))diag(Wγ(ψ))diag(1P)diag(Wγ(ψ))Jθ(x,Wγ(ψ)))

⊤

= Jθ(x, ψ)W−1
γ Wγdiag(ψ)diag(1P)diag(ψ)WγW−1

γ Jθ(x, ψ)
⊤

= Jθ(x, ψ)diag(ψ)diag(1P)diag(ψ)Jθ(x, ψ)
⊤

= Ĉψ
xx′

for empirical CTK. Therefore, we get

f linWγ(θ∗)
(x, ψ)|pLA(ψ|S) ∼ N (f(x, θ∗), α2/γ2Θ̂θ

∗

xx − α2/γ2Θ̂θ
∗

xX Θ̂θ
∗−1

X Θ̂θ
∗

Xx)

f linWγ(θ∗)
(x, ψ)|pCL(ψ|S) ∼ N (f(x, θ∗), α2Ĉθ∗

xx − α2Ĉθ∗

xX Ĉθ∗−1
X Ĉθ∗

Xx)

This gives us

Varψ∼pLA(ψ|S)(f
lin
Wγ(θ∗)

(x, ψ)) = Varψ∼pLA(ψ|S)(f
lin
θ∗ (x, ψ))/γ

2

Varψ∼pCL(ψ|S)(f
lin
Wγ(θ∗)

(x, ψ)) = Varψ∼pCL(ψ|S)(f
lin
θ∗ (x, ψ))

B.7 DERIVATION OF PAC-BAYES-NTK

Theorem B.1 (PAC-Bayes-NTK). Let us assume pre-trained parameter θ∗ with data SP. Let us
assume PAC-Bayes prior and posterior as

P′
θ∗(δ) := N (δ|0P , α2IP ) (14)

Q′
θ∗(δ) := N (δ|µQ′ ,ΣQ′) (15)

µQ′ :=
ΣQ′J⊤

θ (Y − f(X , θ∗))
σ2

(16)

ΣQ′ :=

(
IP
α2

+
J⊤
θ Jθ
σ2

)−1

(17)
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By applying P′
θ∗ ,Q′

θ∗ to data-dependent PAC-Bayes bound (equation 2), we get

errD(Q′
θ∗) ≤ errSQ′ (Q′

θ∗) +

√√√√√√√√√
KL divergence︷ ︸︸ ︷

µ⊤
Q′µQ′

4α2NQ′︸ ︷︷ ︸
(average) perturbation

+

P∑
i=1

h (β′
i)

4NQ′︸ ︷︷ ︸
sharpness

+
log(2

√
NQ′/δ)

2NQ′
(18)

where {β′
i}Pi=1 are eigenvalues of (IP + α2

σ2 J
⊤
θ Jθ)

−1 and h(x) := x− log(x)− 1. This upper bound
is not scale-invariant in general.

Proof. The main difference between PAC-Bayes-CTK and PAC-Bayes-NTK is the definition of
Jacobian: PAC-Bayes-CTK uses Jacobian w.r.t connectivity and PAC-Bayes-NTK uses Jacobian w.r.t.
parameter. Therefore, Construction of KL divergence of proof of Theorem 2.2 is preserved except

Σ−1
P′ ΣQ′ = (IP +

α2

σ2
J⊤
θ Jθ)

−1

and β′
i are eigenvalues of Σ−1

P′ ΣQ′ . Note that these eigenvalues satisfy

β′
i =

σ2

σ2 + α2λ′i

where λ′i are eigenvalues of J⊤
θ Jθ.

Remark B.2 (Function-preserving scale transformation to NTK). In contrast to the CTK, the scale
invariance property is not applicable to the NTK due to the Jacobian w.r.t. parameter:

Jθ(x, T (ψ)) =
∂

∂T (ψ)
f(x, T (ψ)) =

∂

∂T (ψ)
f(x, ψ) = Jθ(x, ψ)T −1

If we assume all parameters are scale-invariant (or equivalently masking the Jacobian for all non-
scale-invariant parameters as in the proof of Proposition 3.1), the scale of NTK is proportional to the
inverse scale of parameters.

C DETAILS OF SQUARED LOSS FOR CLASSIFICATION TASKS

For the classification tasks in Sec. 4.2, we use the squared loss instead of the cross-entropy loss since
our theoretical results are built on the squared loss. Here, we describe how we use the squared loss to
mimic the cross-entropy loss. There are several works (Lee et al., 2020; Hui & Belkin, 2021) that
utilized the squared loss for the classification task instead of the cross-entropy loss. Specifically, Lee
et al. (2020) used

L(S, θ) = 1

2NK

∑
(xi,yi)∈S

∥f(xi, θ)− yi∥2

where C is the number of classes, and Hui & Belkin (2021) used

ℓ((x, c), θ) =
1

2K

k(fc(x, θ)−M)2 +

K∑
i=1,i̸=c

fi(x, θ)
2


for single data loss, where ℓ((x, c), θ) is sample loss given input x, target c and parameter θ, fi(x, θ) ∈
R is the i-th component of f(x, θ) ∈ RK , k and M are dataset-specific hyper-parameters.

These works used the mean for reducing the vector-valued loss into a scalar loss. However, this
can be problematic when the number of classes is large. When the number of classes increases, the
denominator of the mean (the number of classes) increases while the target value remains 1 (one-hot
label). As a result, the scale of a gradient for the target class becomes smaller. To avoid such an
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unfavorable effect, we use the sum for reducing vector-valued loss into a scalar loss instead of taking
the mean, i.e.,

ℓ((x, c), θ) =
1

2

(fc(x, θ)− 1)2 +

K∑
i=1,i̸=c

fi(x, θ)
2


This analysis is consistent with the hyper-parameter selection in Hui & Belkin (2021). They used larger
k and M as the number of classes increases (e.g., k = 1,M = 1 for CIFAR-10 (Krizhevsky, 2009),
but k = 15,M = 30 for ImageNet (Deng et al., 2009)) which results in manually compensating the
scale of the gradient to the target class label.

D DERIVATION OF PAC-BAYES POSTERIOR

Derivation of Qθ∗(c)

For Bayesian linear regression, we compute the posterior of β ∈ RP

yi = xiβ + ϵi, for i = 1 . . . ,M

where ϵi ∼ N (0, σ2) is i.i.d. sampled and the prior of β is given as β ∼ N (0P , α
2IP ). By

concatenating this, we get

y = Xβ + ε

where y ∈ RM ,X ∈ RM×p are concatenation of yi, xi, respectively and ε ∼ N (0M , σ
2IM ). It is

well known (Bishop, 2006; Murphy, 2012) that the posterior of β for this problem is

β ∼ N (β|µ,Σ)

µ :=
ΣX⊤y

σ2

Σ :=

(
IP
α2

+
X⊤X

σ2

)−1

.

Similarly, we define the Bayesian linear regression problem as

yi = f(xi, θ
∗) + Jθ(xi, θ

∗)diag(θ∗)c+ ϵi, for i = 1 . . . , NK

where M = NK and the regression coefficient is β = c in this case. Thus, we treat yi − f(xi, θ
∗) as

a target and Jθ(xi, θ
∗)diag(θ∗) as an input of linear regression problem. By concatenating this, we

get

Y = f(X , θ∗) + Jcc+ ε⇒ (Y − f(X , θ∗)) = Jcc+ ε.

By plugging this into the posterior of the Bayesian linear regression problem, we get

Qθ∗(c) := N (c|µQ,ΣQ)

µQ :=
ΣQJ

⊤
c (Y − f(X , θ∗))

σ2
=

ΣQdiag(θ
∗)J⊤

θ (Y − f(X , θ∗))
σ2

ΣQ :=

(
IP
α2

+
J⊤
c Jc
σ2

)−1

=

(
IP
α2

+
diag(θ∗)J⊤

θ Jθdiag(θ
∗)

σ2

)−1

Derivation of Qθ∗(ψ) We define perturbed parameter ψ as follows

ψ := θ∗ + θ∗ ⊙ c.

Since ψ is affine to c, we get the distribution of ψ as

Qθ∗(ψ) := N (ψ|µψQ,Σ
ψ
Q)

µψQ := θ∗ + θ∗ ⊙ µQ

ΣψQ := diag(θ∗)ΣQdiag(θ
∗) =

(
diag(θ∗)−2

α2
+

J⊤
θ Jθ
σ2

)−1
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E REPRESENTATIVE CASES OF FUNCTION-PRESERVING SCALING
TRANSFORMATIONS

Activation-wise rescaling transformation (Tsuzuku et al., 2020; Neyshabur et al., 2015a) For
NNs with positive homogeneous (e.g., ReLU) activations, following holds for ∀x ∈ Rd, γ > 0:
f(x, θ) = f(x,Rγ,l,k(θ)), where rescale transformation Rγ,l,k(·)2 is defined as

(Rγ,l,k(θ))i =

γ · θi , if θi ∈ {param. subset connecting as input edges to k-th activation at l-th layer}
θi/γ , if θi ∈ {param. subset connecting as output edges to k-th activation at l-th layer}
θi , for θi in the other cases

(19)

Note that Rγ,l,k(·) is a finer-grained rescaling transformation than layer-wise rescaling transformation
(i.e., common γ for all activations in layer l) discussed in Dinh et al. (2017). Dinh et al. (2017) showed
that even layer-wise rescaling transformations can sharpen pre-trained solutions in terms of the trace of
Hessian (i.e., contradicting the FM hypothesis). This contradiction also occurs in previous PAC-Bayes
bounds (Tsuzuku et al., 2020; Kwon et al., 2021) due to the scale-dependent term.

For example, let us assume a linear NN as

f(x, (θ1, θ2, θ3, θ4)) = (θ3, θ4)
⊤
(
θ1
θ2

)
x = θ1θ3x+ θ2θ4x

Then, the Jacobian of this NN would be

Jθ(x, θ) =

(
θ3x θ4x
θ1x θ2x

)
From above discussion, (0.5, 1, 2, 1) = R2,1,1 ((1, 1, 1, 1)) would change the Jacobian while main-
taining the predictions. To show this,

f(x, (0.5, 1, 2, 1)) = f(x, (1, 1, 1, 1)) = x+ x = 2x

for all x ∈ R. However,

Jθ(x, (0.5, 1, 2, 1)) =

(
2x x
0.5x x

)
̸=
(
x x
x x

)
= Jθ(x, (1, 1, 1, 1))

in general. Therefore, we verified that the activation-wise rescaling transformation R2,1,1 is a valid
function-preserving scale transformation.

WD with BN layers (Ioffe & Szegedy, 2015) For parameters W ∈ Rnl×nl−1 preceding BN layer,

BN((diag(γ)W )u) = BN(Wu) (20)

for an input u ∈ Rnl−1 and a positive vector γ ∈ Rnl
+ . This implies that scaling transformations

on these parameters preserve function represented by NNs for ∀x ∈ Rd, γ ∈ Rnl
+ : f(x, θ) =

f(x,Sγ,l,k(θ)), where scaling transformation Sγ,l,k(·) is defined for i = 1, . . . , P

(Sγ,l,k(θ))i =
{
γk · θi , if θi ∈ {param. subset connecting as input edges to k-th activation at l-th layer}
θi , for θi in the other cases

(21)

Note that the WD (Loshchilov & Hutter, 2019; Zhang et al., 2019) can be implemented as a
realization of Sγ,l,k(·) (e.g., γ = 0.9995 for all activations preceding BN layers). Therefore, thanks
to Proposition 2.1 and Theorem 2.4, our CTK-based bound is invariant to WD applied to parameters
before BN layers. We also refer to (Van Laarhoven, 2017; Lobacheva et al., 2021) for the optimization
perspective of WD with BN.

For example, let us assume a BN layer with single activation as BN(θx) where x, θ ∈ R and batch of
input is given as 0, 0, 2, 2. Then, the Jacobian of NN would be

Jθ(x, θ) =
x

|θ|
2For a simple two layer linear NN f(x) := W2σ(W1x) with weight matrix W1,W2, the first case of

equation 19 corresponds to k-th row of W1 and the second case of equation 19 corresponds to k-th column of
W2.
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as f(x, θ) = θx
|θ| and the denominator is detached from backpropagation computation for auto-

differentiation packages (e.g., TensorFlow, Pytorch, and JAX). From the above discussion, 0.9995 =
S0.9995,1,1(1) would change the Jacobian while maintaining the predictions. To show this,

f(x, 1) = f(x, 0.9995) = x

for all inputs. On the other hand,

Jθ(x, 0.9995) =
x

0.9995
̸= x = Jθ(x, 1).

Therefore, we showed that the WD with BN layer S0.9995,1,1 is a valid function-preserving scale
transformation.

F IMPLEMENTATIONS

F.1 RTO IMPLEMENTATION OF CONNECTIVITY LAPLACE

Algorithm 1 Connectivity Laplace RTO

Require: training data S, pre-trained parameter θ∗, number of samples M , prior scale α, observa-
tional noise scale σ
for m = 1, . . . ,M do

Sample parameter noise cm0 ∼ N (c0|0P , α2IP ) and label noise εm ∼ N (ε|0NK , σ2INK)
for t = 1, . . . , T do

Randomly draw a mini-batch B from S.
Define glinθ∗ (XB, c

m) = f(XB, θ
∗) + Jθ(XB, θ

∗)diag(θ∗)cm for mini-batch input XB.
Define L(cm) = 1

2|B|σ2 ∥YB + εmB − glinθ∗ (XB, c
m)∥22 + 1

2|B|α2 ∥cm − cm0 ∥22.
Compute backpropagation of L(cm) w.r.t. connectivity cm.
Update cm with SGD optimizer.

end for
end for
return Samples from Connectivity Laplace {cm}Mm=1.

To estimate the empirical/generalization bound in Sec. 2.4 and calibrate uncertainty in Sec. 4.2, we
need to sample c from the posterior Qθ∗(c). For this, we sample perturbations δ in connectivity space

δ ∼ N

(
δ|0P ,

(
IP
α2

+
J⊤
c Jc
σ2

)−1
)

so that c = µQ+δ for equation 6. To sample this, we provide a novel approach to sample from LA/CL
without curvature approximation. To this end, we consider the following optimization problem

argmin
c
L(c) := argmin

c

1

2Nσ2
∥Y − f(X , θ∗)− Jcc+ ε∥2 + 1

2Nα2
∥c− c0∥22

where ε ∼ N (ε|0NK , σ2INK) and c0 ∼ N (c0|0P , α2IP ). By first-order optimality condition, we
have

N∇cL(c) = −J⊤
c (Y − f(X , θ∗)− Jcc

∗ + ε)

σ2
+
c∗ − c0
α2

= 0P .

By arranging this w.r.t. optimizer c∗, we get

c∗ =

(
J⊤
c Jc +

σ2

α2
IP

)−1(
J⊤
c (Y − f(X , θ∗)) + σ2

α2
c0 + Jcε

)
=

(
J⊤
c Jc +

σ2

α2
IP

)−1

J⊤
c (Y − f(X , θ∗)) +

(
J⊤
c Jc +

σ2

α2
IP

)−1(
σ2

α2
c0 + Jcε

)
=

(
IP
α2

+
J⊤
c Jc
σ2

)−1
J⊤
c (Y − f(X , θ∗))

σ2︸ ︷︷ ︸
Deterministic

+

(
IP
α2

+
J⊤
c Jc
σ2

)−1(
c0
α2

+
J⊤
c ε

σ2

)
︸ ︷︷ ︸

Stochastic
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Since both ε and c0 are sampled from independent Gaussian distributions, we have

z :=

(
c0
α2

+
J⊤
c ε

σ2

)
∼ N

(
z|0P ,

IP
α2

+
J⊤
c Jc
σ2

)
Therefore, optimal solution of randomized optimization problem argminc L(c) is

c ∼ N

(
c
∣∣∣ (IP

α2
+

J⊤
c Jc
σ2

)−1
J⊤
c (Y − f(X , θ∗))

σ2
,

(
IP
α2

+
J⊤
c Jc
σ2

)−1
)

= N (c|µQ,ΣQ)

Similarly, sampling from CL can be implemented as the following optimization problem.

argmin
c
L(c) := argmin

c

1

2Nσ2
∥Jcc− ε∥2 + 1

2Nα2
∥c− c0∥22

where ε ∼ N (ε|0NK , σ2INK) and c0 ∼ N (c0|0P , α2IP ). Since we sample the noise of
data/perturbation and optimize the perturbation, this can be interpreted as a Randomize-Then-
Optimize implementation of Laplace approximation and Connectivity Laplace (Bardsley et al.,
2014; Matthews et al., 2017). In Algorithm 1, we provide a pseudo-code for the RTO implementation
of CL. Note that both time and memory complexity of computing linearized NN for mini-batch B
is comparable to a forward propagation as shown in Novak et al. (2022) with jax.jvp function in
JAX (Bradbury et al., 2018). Therefore, the time/memory complexity of mini-batch JVP would be
O(|B|LW 2)/O(|B|W + LW 2 +NK) for MLPs with width W and depth L.

F.2 COMPUTING CONNECTIVITY SHARPNESS

Algorithm 2 Hutchison’s method for computing Connectivity sharpness

Require: training data S, pre-trained parameter θ∗, number of samples M
xB = 0
for m = 1, . . . ,M do

Sample zm ∼ N (ε|0NK , σ2INK)
for t = 1, . . . , T do

Sequentially draw a mini-batch B from S.
Compute vector-Jacobian product vmB = zmB Jθ(X , θ∗)diag(θ∗).
Compute xB = xB + ∥vmB ∥22/T

end for
end for
return Estimated Connectivity Sharpness xB

It is well known that empirical NTK or Jacobian is intractable in the modern architecture of NNs
(e.g., ResNet (He et al., 2016) or BERT (Devlin et al., 2018)). Therefore, one might wonder how
Connectivity Sharpness (CS) can be computed for these architectures. One can compute CS with
Hutchison’s method (Hutchinson, 1989; Meyer et al., 2021) as it is defined as a trace of empirical
CTK. According to Hutchison’s method, trace of a matrix A ∈ Rm×m is

tr(A) = tr(AIp) = tr(AEz[zz⊤]) = Ez[tr(Azz⊤)] = Ez[tr(z⊤Az)] = Ez[z⊤Az]
where z ∈ Rm is a random variable with cov(z) = Im (e.g., standard normal distribution or
Rademacher distribution). Since A = Cθ∗

X = JcJ
⊤
c ∈ RNK in our case, we further use mini-

batch approximation to compute z⊤Az: (i) Sample zmB ∈ RMK from Rademacher distribution for
mini-batch M with size M and (ii) compute vmB := Jc(XB,0p)

⊤zmB ∈ RP with vector-Jacobian
product of JAX (Bradbury et al., 2018) (or it can simply computed using standard backprop) and
(iii) compute xmB = ∥vmB ∥22. Then, the sum of xmB for all mini-batch in the training dataset is a
Monte-Carlo approximation of CS with sample size 1. Empirically, we found that this approximation
is sufficiently stable to capture the correlation between sharpness and generalization as shown in
Sec. 4.1. In Algorithm 2, we provide a pseudo-code for the implementation. Note that both time and
memory complexity of computing vmB is comparable to a backward propagation as shown in Novak
et al. (2022) with jax.vjp function in JAX (Bradbury et al., 2018). Therefore, the time/memory
complexity of mini-batch VJP would be O(|B|LW 2)/O(|B|LW + LW 2 +NKW ) for MLPs with
width W and depth L.
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G PREDICTIVE UNCERTAINTY OF CONNECTIVITY/LINEARIZED LAPLACE

In this section, we derive predictive uncertainty of Linearized Laplace (LL) and Connectivity Laplace
(CL). By matrix inversion lemma (Woodbury, 1950), the weight covariance of LL is

(Ip/α
2 + Jθ(X , θ∗)⊤Jθ(X , θ∗)/σ2)−1 = α2Ip − α2Jθ(X , θ∗)⊤(

σ2

α2
INk +Θθ

∗

XX )−1Jθ(X , θ∗).

Therefore, if σ2/α2 → 0, then the weight covariance of LL converges to

α2Ip − α2Jθ(X , θ∗)⊤Θθ
∗−1

XX Jθ(X , θ∗).

With this weight covariance and linearized NN, the predictive uncertainty of LL is

f linθ∗ (x, θ)|pLA(θ|S) ∼ N (f(x, θ∗), α2Θθ
∗

xx − α2Θθ
∗

xXΘθ
∗−1

XX Θθ
∗

Xx).

Similarly, the predictive uncertainty of CL is

f linθ∗ (x, θ)|Qθ∗(θ) ∼ N (f(x, θ∗), α2Cθ∗

xx − α2Cθ∗

xXCθ∗−1
XX Cθ∗

Xx).

H DETAILED EXPERIMENTAL SETTINGS

H.1 BOUND ESTIMATION

We pre-train ResNet-18 (He et al., 2016) with a mini-batch size of 1K on SP with SGD of initial
learning rate 0.4 and momentum 0.9. We use cosine annealing for learning rate scheduling (Loshchilov
& Hutter, 2016) with a warmup for the initial 10% training step. We fix δ = 0.1, α = 0.1, and
σ = 1.0 to compute equation 8. These values are chosen so that the PAC-Bayes-CTK and NTK
bounds fall within the non-vacuous range. We use 3 random seeds to compute the standard errors.
Additional results on few pre-training data with NP = 5, 000 and NQ = 45, 000 are presented in
Appendix I.

H.2 CONNECTIVITY SHARPNESS

Table 6: Configuration of hyper-parameter

network depth 1, 2, 3
network width 32, 64, 128
learning rate 0.1, 0.032, 0.001

WD 0.0, 1e-4, 5e-4
mini-batch size 256, 1024, 4096

To verify that the CS has a better correlation with generalization performance compared to existing
sharpness measures, we evaluate the three metrics: (a) Kendall’s rank-correlation coefficient τ
(Kendall, 1938) which considers the consistency of a sharpness measure with generalization gap
(i.e., if one has higher sharpness, then so has higher generalization gap) (b) granulated Kendall’s
coefficient (Jiang et al., 2020) which examines Kendall’s rank-correlation coefficient w.r.t. individual
hyper-parameters to separately evaluate the effect of each hyper-parameter to generalization gap (c)
conditional independence test (Jiang et al., 2020) which captures the causal relationship between
measure and generalization.

Three metrics are compared with the following baselines: trace of Hessian (tr(H); (Keskar et al.,
2017)), trace of Fisher information matrix (tr(F); (Jastrzebski et al., 2021)), trace of empirical NTK
at θ∗ (tr(Θθ∗)), and four PAC-Bayes bound based measures, sharpness-orig (SO), PAC-Bayes-orig
(PO), 1/α′ sharpness mag (SM), and 1/σ′ PAC-Bayes mag (PM), which are eq. (52), (49), (62), (61)
in Jiang et al. (2020).

For the granulated Kendall’s coefficient, we use 5 hyper-parameters: network depth, network width,
learning rate, WD and mini-batch size, along with 3 options for each hyper-parameters as in Table 6.
We use the VGG-13 as a base model and we adjust the depth and width of each conv block. We add
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Table 7: Example of network configuration with respect to the depth 1, width 128 in (Simonyan &
Zisserman, 2015)-style.

ConvNet Configuration

input (224 × 224 RGB image)

Conv3-128
BN

ReLU

MaxPool

Conv3-256
BN

ReLU

MaxPool

Conv3-512
BN

ReLU

MaxPool

Conv3-1024
BN

ReLU

MaxPool

Conv3-1024
BN

ReLU

MaxPool

FC-4096
ReLU

FC-4096
ReLU

FC-1000

BN layers after the convolution layer for each block. Specifically, the number of convolution layers
of each conv block is the depth and the number of channels of convolution layers of the first conv
block is the width. For the subsequent conv blocks, we follow the original VGG width multipliers
(×2, ×4, ×8). An example with depth 1 and width 128 is depicted in Table 7.

We use an SGD optimizer with momentum of 0.9. We train each model for 200 epochs and use cosine
learning rate scheduler (Loshchilov & Hutter, 2016) with 30% of initial epochs as warm-up epochs.
The standard data augmentations (padding, random crop, random horizontal flip, and normalization)
for CIFAR-10 are used for training data. For the analysis, we only use models with above 99%
training accuracy following Jiang et al. (2020). As a result, we use 200 out of 243 trained models for
our correlation analysis. For every experiment, we use 8 NVIDIA RTX 3090 GPUs.

H.3 BNN EXPERIMENTS

UCI regression We train MLP with a single hidden layer. We fix σ = 1 and choose α from {0.01, 0.1,
1, 10, 100} using log-likelihood of validation dataset since the optimal α varies for each regression
dataset. We use 8 random seeds to compute the average and standard error of the test negative
log-likelihoods.

Image classification task We pre-train models for 200 epochs CIFAR-10/100 dataset (Krizhevsky,
2009) with ResNet-18(He et al., 2016) as mentioned in Section 2.4. We choose ensemble size M as 8
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except Deep Ensemble (Lakshminarayanan et al., 2017) and Batch Ensemble (Wen et al., 2020). We
use 4 ensemble members for Deep Ensemble and Batch Ensemble due to computational cost. We
used 4 random seeds to compute the standard errors except for Deep Ensemble, which ensembles the
NNs from 4 different random seeds.

For evaluation, we define a prediction of single-member as the one-hot representation of network out-
put with label smoothing. We select the label smoothing coefficient as 0.01 for CIFAR-10 and 0.1 for
CIFAR-100. We define ensemble prediction as an averaged prediction of single-member predictions.
For OOD detection, we use the variance of prediction in output space, which is competitive to recent
OOD detection methods (Ren et al., 2019; Van Amersfoort et al., 2020). We use 0.01 for σ and select
the best α with cross-validation. For every experiment, we used 8 NVIDIA RTX 3090 GPUs.
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I ADDITIONAL RESULTS ON BOUND ESTIMATION

Table 8: Results for experiments on PAC-Bayes-CTK/NTK estimation with NP = 5, 000 and NQ = 45, 000.
We use 4 random seeds to compute error bars.

CIFAR-10 PAC-Bayes-CTK PAC-Bayes-NTK

Parameter scale 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

Trace (×10−4) 1.30 ± 0.13 1.31 ± 0.13 1.31 ± 0.13 1.31 ± 0.13 541.36 ± 32.58 139.50 ± 9.06 54.50 ± 0.63 48.86 ± 0.90
Perturbation 335.02 ± 9.57 338.85 ± 9.39 337.21 ± 9.47 335.87 ± 8.39 202.53 ± 3.14 315.99 ± 2.75 447.97 ± 3.75 549.35 ± 7.64
Sharpness 13.48 ± 0.63 13.49 ± 0.63 13.49 ± 0.63 13.49 ± 0.63 64.70 ± 0.55 52.55 ± 0.58 44.25 ± 0.11 42.30 ± 0.20

KL 174.25 ± 5.03 176.17 ± 4.94 175.35 ± 4.99 174.68 ± 4.46 133.61 ± 1.48 184.27 ± 1.24 246.11 ± 1.86 295.83 ± 3.82
Test err. (×102) 23.75 ± 0.17 23.87 ± 0.19 23.94 ± 0.22 23.94 ± 0.22 31.33 ± 0.30 27.99 ± 0.20 26.15 ± 0.22 25.64 ± 0.20

Bound (×102) 27.71 ± 0.15 27.82 ± 0.17 27.84 ± 0.17 27.85 ± 0.17 33.59 ± 0.25 30.59 ± 0.10 29.66 ± 0.14 29.98 ± 0.18

CIFAR-100 PAC-Bayes-CTK PAC-Bayes-NTK

Parameter scale 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

Trace (×10−4) 2.22 ± 0.14 2.22 ± 0.14 2.22 ± 0.14 2.22 ± 0.14 655.76 ± 23.48 167.02 ± 5.78 57.01 ± 3.92 50.57 ± 4.71
Perturbation 447.86 ± 12.50 447.86 ± 8.47 445.76 ± 7.75 446.95 ± 8.08 399.66 ± 10.44 622.17 ± 27.92 790.63 ± 46.70 823.06 ± 55.58
Sharpness 17.11 ± 0.40 17.10 ± 0.40 17.11 ± 0.40 17.11 ± 0.40 66.36 ± 0.27 54.13 ± 0.25 44.47 ± 0.59 42.64 ± 0.79

KL 232.49 ± 6.18 232.48 ± 4.16 231.43 ± 3.79 232.03 ± 3.94 233.01 ± 5.26 338.15 ± 13.96 417.55 ± 23.06 432.85 ± 27.41
Test err. (×102) 65.07 ± 0.33 65.15 ± 0.38 65.21 ± 0.39 65.22 ± 0.39 69.92 ± 0.50 69.03 ± 0.38 68.37 ± 0.49 68.63 ± 0.50

Bound (×102) 70.98 ± 0.35 71.04 ± 0.38 71.07 ± 0.38 71.10 ± 0.39 71.10 ± 0.27 69.71 ± 0.59 71.44 ± 0.62 73.61 ± 0.49

J ADDITIONAL RESULTS ON IMAGE CLASSIFICATION

Table 9: Uncertainty calibration results on CIFAR-10 (Krizhevsky, 2009) for ResNet-18 (He et al., 2016).

CIFAR-10

NLL (↓) ECE (↓) Brier. (↓) AUC (↑)

Deterministic 0.3135 ± 0.0088 0.0350 ± 0.0014 0.0875 ± 0.0026 -
MCDO 0.2845 ± 0.0148 0.0157 ± 0.0012 0.1056 ± 0.0062 0.9172 ± 0.0074
MCBN 0.2922 ± 0.0074 0.0325 ± 0.0010 0.0838 ± 0.0022 0.9431 ± 0.0033

Batch Ensemble 0.2740 ± 0.0030 0.0286 ± 0.0005 0.0814 ± 0.0009 0.9376 ± 0.0036
Deep Ensemble 0.1753 0.0067 0.0594 0.8527

Linearized Laplace 0.2077 ± 0.0032 0.0180 ± 0.0009 0.0816 ± 0.0010 0.8991 ± 0.0198

Connectivity Laplace (Ours) 0.2089 ± 0.0023 0.0120 ± 0.0019 0.0720 ± 0.0011 0.9705 ± 0.0098

Table 10: Uncertainty calibration results on CIFAR-10 (Krizhevsky, 2009) for VGG-13 (Simonyan & Zisserman,
2015).

CIFAR-10

NLL (↓) ECE (↓) Brier. (↓) AUC (↑)

Deterministic 0.4086 ± 0.0018 0.0490 ± 0.0003 0.1147 ± 0.0005 -
MCDO 0.3889 ± 0.0049 0.0465 ± 0.0009 0.1106 ± 0.0015 0.7765 ± 0.0221
MCBN 0.3852 ± 0.0012 0.0462 ± 0.0002 0.1108 ± 0.0003 0.9051 ± 0.0065

Batch Ensemble 0.3544 ± 0.0036 0.0399 ± 0.0009 0.1064 ± 0.0012 0.9067 ± 0.0030
Deep Ensemble 0.2243 0.0121 0.0776 0.7706

Linearized Laplace 0.3366 ± 0.0013 0.0398 ± 0.0004 0.1035 ± 0.0003 0.8883 ± 0.0017

Connectivity Laplace (Ours) 0.2674 ± 0.0028 0.0234 ± 0.0011 0.0946 ± 0.0010 0.9002 ± 0.0033
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Table 11: Uncertainty calibration results on CIFAR-100 (Krizhevsky, 2009) for VGG-13 (Simonyan & Zisser-
man, 2015).

CIFAR-100

NLL (↓) ECE (↓) Brier. (↓) AUC (↑)

Deterministic 1.8286 ± 0.0066 0.1544 ± 0.0010 0.4661 ± 0.0018 -
MCDO 1.7439 ± 0.0089 0.1363 ± 0.0008 0.4456 ± 0.0017 0.6424 ± 0.0099
MCBN 1.7491 ± 0.0075 0.1399 ± 0.0010 0.4488 ± 0.0015 0.7039 ± 0.0197

Batch Ensemble 1.6142 ± 0.0101 0.1077 ± 0.0020 0.4143 ± 0.0027 0.7232 ± 0.0021
Deep Ensemble 1.2006 0.0456 0.3228 0.6929

Linearized Laplace 1.5806 ± 0.0054 0.1036 ± 0.0004 0.4127 ± 0.0010 0.6893 ± 0.0221

Connectivity Laplace (Ours) 1.4073 ± 0.0039 0.0703 ± 0.0028 0.3827 ± 0.0012 0.7254 ± 0.0136

K TRANSPOSED TABLE 3

Table 12: Transposed Table

boston_housing concrete_strength energy_efficiency kin8nm naval_propulsion power_plant protein_structure wine yacht_hydrodynamics

Original

Deep Ensemble 2.90 ± 0.03 3.06 ± 0.01 0.74 ± 0.01 -1.07 ± 0.00 -4.83 ± 0.00 2.81 ± 0.00 2.89 ± 0.00 1.21 ± 0.00 1.26 ± 0.04
MCDO 2.63 ± 0.01 3.20 ± 0.00 1.92 ± 0.01 -0.80 ± 0.01 -3.85 ± 0.00 2.91 ± 0.00 2.96 ± 0.00 0.96 ± 0.01 2.17 ± 0.06

LL 2.85 ± 0.01 3.22 ± 0.01 2.12 ± 0.01 -0.90 ± 0.00 -4.57 ± 0.00 2.91 ± 0.00 2.91 ± 0.00 1.24 ± 0.01 1.20 ± 0.04
CL 2.88 ± 0.02 3.11 ± 0.02 0.83 ± 0.01 -1.07 ± 0.00 -4.76 ± 0.00 2.81 ± 0.00 2.89 ± 0.00 1.27 ± 0.01 1.25 ± 0.04

GAP variants

Deep Ensemble 2.71 ± 0.01 4.03 ± 0.07 0.77 ± 0.01 -0.94 ± 0.00 -2.22 ± 0.33 2.91 ± 0.00 3.11 ± 0.00 1.48 ± 0.01 1.71 ± 0.03
MCDO 2.68 ± 0.01 3.42 ± 0.00 1.78 ± 0.01 -0.71 ± 0.00 -3.36 ± 0.01 2.97 ± 0.00 3.07 ± 0.00 1.03 ± 0.00 3.06 ± 0.02

LL 2.74 ± 0.01 3.47 ± 0.01 2.02 ± 0.01 -0.87 ± 0.00 -3.66 ± 0.11 2.98 ± 0.00 3.07 ± 0.00 1.45 ± 0.01 1.78 ± 0.02
CL 2.75 ± 0.01 4.03 ± 0.02 0.90 ± 0.02 -0.93 ± 0.00 -3.80 ± 0.07 2.91 ± 0.00 3.13 ± 0.00 1.43 ± 0.00 1.74 ± 0.01

Table 13: First 5 columns of transposed table

boston_housing concrete_strength energy_efficiency kin8nm naval_propulsion

Original

Deep Ensemble 2.90 ± 0.03 3.06 ± 0.01 0.74 ± 0.01 -1.07 ± 0.00 -4.83 ± 0.00
MCDO 2.63 ± 0.01 3.20 ± 0.00 1.92 ± 0.01 -0.80 ± 0.01 -3.85 ± 0.00

LL 2.85 ± 0.01 3.22 ± 0.01 2.12 ± 0.01 -0.90 ± 0.00 -4.57 ± 0.00

CL 2.88 ± 0.02 3.11 ± 0.02 0.83 ± 0.01 -1.07 ± 0.00 -4.76 ± 0.00

GAP variants

Deep Ensemble 2.71 ± 0.01 4.03 ± 0.07 0.77 ± 0.01 -0.94 ± 0.00 -2.22 ± 0.33
MCDO 2.68 ± 0.01 3.42 ± 0.00 1.78 ± 0.01 -0.71 ± 0.00 -3.36 ± 0.01

LL 2.74 ± 0.01 3.47 ± 0.01 2.02 ± 0.01 -0.87 ± 0.00 -3.66 ± 0.11

CL 2.75 ± 0.01 4.03 ± 0.02 0.90 ± 0.02 -0.93 ± 0.00 -3.80 ± 0.07

Table 14: Last 4 columns of transposed table

power_plant protein_structure wine yacht_hydrodynamics

Original

Deep Ensemble 2.81 ± 0.00 2.89 ± 0.00 1.21 ± 0.00 1.26 ± 0.04
MCDO 2.91 ± 0.00 2.96 ± 0.00 0.96 ± 0.01 2.17 ± 0.06

LL 2.91 ± 0.00 2.91 ± 0.00 1.24 ± 0.01 1.20 ± 0.04
CL 2.81 ± 0.00 2.89 ± 0.00 1.27 ± 0.01 1.25 ± 0.04

GAP variants

Deep Ensemble 2.91 ± 0.00 3.11 ± 0.00 1.48 ± 0.01 1.71 ± 0.03
MCDO 2.97 ± 0.00 3.07 ± 0.00 1.03 ± 0.00 3.06 ± 0.02

LL 2.98 ± 0.00 3.07 ± 0.00 1.45 ± 0.01 1.78 ± 0.02

CL 2.91 ± 0.00 3.13 ± 0.00 1.43 ± 0.00 1.74 ± 0.01
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L EIGENSPECTRUMS OF EMPIRICAL CTK AND NTK
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Figure 3: Eigenspectrums of CTK and NTK for CIFAR datasets

In this section, we follow Algorithm 1 of Ghorbani et al. (2019) to visualize the eigenvalue densities
of empirical CTK and NTK. We use 100 Lanczos iterations (Appendix F) with 4 realizations and fix
the bandwidth of the RBF kernel as the difference between the maximum and minimum eigenvalue
following the implementation of Ghorbani et al. (2019). We present the results in Figure 3.

Figure 3 shows that empirical CTKs have positively skewed (i.e., right-tailed) eigenspectrums with
modes close to 0. In other words, many of the non-zero eigenvalues of CTK are close to zero.
Therefore, the corresponding h(βi) for these eigenvalues are also close to zero, as shown in Corollary
2.3 (See Fig. 2b for the visualization). As with empirical CTKs, the empirical NTKs are positively
skewed, but their eigenvalue scales are much larger than CTKs. In summary, our empirical study
demonstrates that although an empirical CTK can have up to NK non-zero eigenvalues, only a few
eigenvalues are critical to the scale of

∑P
i=1 h(βi).
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