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Abstract
Parameter efficient finetuning methods like low-001
rank adaptation (LoRA) aim to reduce the com-002
putational costs of finetuning pretrained Lan-003
guage Models (LMs). Enabled by these low-004
rank settings, we propose an even more effi-005
cient optimization strategy: Fast Forward, a006
simple and effective approach to accelerate007
large segments of SGD training. In a Fast For-008
ward stage, we repeat the most recent optimizer009
step until the loss stops improving on a tiny010
validation set. By alternating between regu-011
lar optimization steps and Fast Forward stages,012
Fast Forward provides up to an 87% reduc-013
tion in FLOPs over standard SGD with Adam.014
We validate Fast Forward by finetuning vari-015
ous models on different tasks and demonstrate016
that it speeds up training without compromising017
model performance. Additionally, we analyze018
when and how to apply Fast Forward.019

1 Introduction020

Modern optimizers provide a spectacular array of021

tweaks to stabilize training trajectories and accel-022

erate learning. Dynamic learning rates allow us to023

adjust step size according to the duration of training.024

Momentum-based methods and their descendants025

such as Adam modify the step size of individual026

units to reflect optimizer confidence. Meta learning027

approaches can adjust every aspect of the optimizer028

flexibly based on historical training data. Yet even029

with every optimization hack in the modern ma-030

chine learning toolkit, the expense of training accu-031

mulates. In this paper, we ask: what if we just keep032

going in the same direction until it stops helping?033

Applying this exceedingly simple approach to034

low-rank training, which we call Fast Forward, we035

see enormous speedups over standard optimiza-036

tion. We alternate between Adam SGD training for037

burn-in and accelerating by line search with a tiny038

validation set, which provides an ad-hoc optimal039

step size much larger than that determined by the040

learning rate. (See Figure 1.)041
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Figure 1: Fast Forward algorithm. We alternate between
SGD and Fast Forward, exiting the Fast Forward stage
when the loss on a tiny validation set stops improving.

We experiment with Fast Forward on three fine- 042

tuning tasks and multiple language models ranging 043

from 1.4 to 6.9 billion parameters. In all cases, we 044

find consistent high computation gains with Fast 045

Forward, reaching the performance of regular low- 046

rank finetuning 41–87% faster. 047

While Fast Forward works incredibly well in 048

low-rank finetuning, it fails to improve full-rank 049

fine-tuning. We investigate possible causes, show- 050

ing that the low-rank loss surface is smooth and that 051

Fast Forwarding along a given direction reduces 052

the role of that direction later in training. 053

2 Background: Low rank adaptors 054

Low rank adaptation (LoRA) (Hu et al., 2021) is a 055

parameter-efficient fine-tuning method that freezes 056

the LM weights and injects trainable low-rank de- 057

compositions into each updated matrix, reducing 058

the number of trainable parameters. Given a pre- 059

trained parameter setting W0 ∈ Rd×k, LoRA up- 060

dates the weight with a low-rank decomposition 061

W = W0 +BA, (1) 062

where B ∈ Rd×r, A ∈ Rr×k with the low-rank 063

dimension r ≪ d, k. Following Hu et al. (2021), 064

LoRA only updates the attention matrices. 065
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(a) LoRA (b) DoRA

Figure 2: The percentage of FLOPs saved during LoRA (a) and DoRA (b) fine-tuning with Fast Forward to match
regular training test loss. Fast Forward saves 41–87% FLOPS.

Weight Decomposed Low-Rank Adaptation066

(DoRA) (Liu et al., 2024) decomposes the pre-067

trained weight matrix into magnitude and direction,068

then updates the direction matrix using LoRA.069

3 Fast Forward070

Our proposal, Fast Forward, is a procedure for ac-071

celerating training at regular intervals. Following072

warmup, we apply Fast Forward every Tinterval = 6073

optimizer steps, as seen in Figure 1. During a Fast074

Forward stage, for each trainable parameter, the075

difference between weights in the current and pre-076

vious timesteps is calculated:077

∆W = Wt −Wt−1 (2)078

The direction ∆W is used to iteratively update Wt.079

In the τ -th Fast Forward step, the updated weight080

matrix is given by Wt + τ∆W. The recursive up-081

dates continue until the model’s loss on a small082

validation set L(Xval) no longer shows improve-083

ment. Once the loss on this validation set ceases084

to decrease, the Fast Forward stage concludes, and085

regular optimization resumes for the next Tinterval086

steps before reapplying Fast Forward.087

3.1 Related approaches088

Intermittent optimizer schedulers are common in089

optimization, including popular approaches like the090

Alternating Direction Method of Multipliers. In091

contrast with our approach of increasing the learn-092

ing rate as much as possible at regular intervals,093

Lialin et al. (2023) improve their low rank training094

by instead dropping the learning rate repeatedly.095

Our work is not the first to train a neural network096

using line search (Vaswani et al., 2019; Truong and097

Nguyen, 2018) or its dual form, trust region opti-098

mization (Sherborne et al., 2023). Coordinate de-099

scent (Wright, 2015), which identifies a coordinate100

system for the surface and line searches repeatedly 101

along each coordinate, is similar to our approach 102

but does not apply Adam SGD intervals to select 103

new directions. By retaining historical gradients 104

from the prior SGD interval, we can escape saddle 105

points that would trap coordinate descent. 106

4 Experiments 107

Models and data. We perform evaluations on 108

three finetuning tasks. For each task, we hold out 109

1K samples as test and 32 examples as the tiny val- 110

idation set that decides when to stop Fast Forward. 111

• Medical-domain Tuning: We train on 37,000 112

examples from the Clinical Guidelines corpus 113

(Chen et al., 2023). 114

• Instruction Tuning: We train on 109,000 ex- 115

amples from the decontaminated Evol dataset 116

(Luo et al., 2023) comprising pairs of code 117

instructions and corresponding outputs. 118

• Chat Tuning: We train on 208,000 examples 119

from HuggingFace’s filtered ultrachat dataset 120

(Ding et al., 2023) of dialogues generated by 121

ChatGPT on various conversational topics. 122

Our models include the open-source Llama-3 123

8b model (AI@Meta, 2024) as well as the 1.4 bil- 124

lion, 2.8 billion, and 6.9 billion parameter models 125

from the Pythia suite (Biderman et al., 2023), a 126

family of autoregressive transformer language mod- 127

els trained on the Pile dataset (Gao et al., 2020). 128

We train these models using the next token predic- 129

tion objective for each finetuning corpus. For the 130

instruction tuning task, the loss criterion is only 131

based on response completion. 132

Training and Evaluation Procedure For a given 133

model and dataset pair, we initially finetune the 134

model using standard training for 5 epochs. Upon 135

completion, we record the final loss LWf
(Xtest) 136

2



and the total number of floating point operations137

(FLOPs) performed during training. We assume a138

1:2 ratio of FLOPs between forward and backward139

passes (Kaplan et al., 2020; Hoffmann et al., 2022).140

We then retrain the model with intermittent Fast141

Forward steps until it reaches a test loss within142

ϵ = 0.0001 of LWf
(Xtest). During this stage, we143

record the total number of FLOPs from all compu-144

tation, including Adam SGD updates, inference on145

the small validation set during Fast Forward, and146

setting model parameters.147

Figure 3: Training Pythia-6.9b on the chat tuning task,
with other models in Appx A. Red dots represent SGD
steps and green dots represent Fast Forward steps. The
blue line shows vanilla Adam SGD training.

5 Results148

Fast Forward accelerates training across low rank149

methods, in all three datasets and all four models.150

As Figure 2a shows, Fast Forwarding LoRA cuts151

41–66% of finetuning FLOPs for our largest model152

(Lllama-3 8B) and 65–86% for our smallest (Pythia153

1.4B). Fast Forwarding DoRA, meanwhile, cuts 42–154

69% of finetuning FLOPs for Lllama-3 8B and 66–155

85% for Pythia 1.4B (Figure 2b). Although Fast156

Forward is more effective on Pythia than Llama,157

we see no clear trend as to whether it is generally158

more effective at smaller scales.159

As seen in Figure 3, Fast Forward accelerates160

segments of training by simulating predicted SGD161

steps. Although it requires more total steps than162

vanilla training (counting SGD interval steps and163

simulated Fast Forward steps), the efficiency of164

Fast Forward leads to substantial reductions in com-165

putation cost—and Appendix C suggests that we166

could see even greater gains from Fast Forwarding167

even more often. Fast Forward is more effective168

earlier in training (see Appendix B for details), but169

below we find that even after training converges,170

we see substantial savings.171

Figure 4: Test loss on the plane intersecting the pre-
trained model W0 and the models trained with Adam
SGD WSGD, and with Fast Forward WFF. Axis scale
corresponds to the norm of differences ∥WFF −W0∥2.

5.1 FF does not harm long-term accuracy. 172

Many efficiency methods accelerate training until 173

a fixed threshold accuracy, but ultimately harm 174

final performance. We find that Fast Forward has 175

no such disadvantage. To check, we finetune the 176

Pythia 1.4B model on the medical domain dataset 177

until the loss stopped improving on the test set. 178

We permanently switch to standard Adam SGD 179

after Fast Forward fails to improve the loss on the 180

tiny validation set L(Xval) three times in a row— 181

though only 6 SGD steps remain after this point. 182

Fast Forward converges to a slightly better loss, 183

allowing us to save 56% of FLOPs. 184

6 When does Fast Forward work? 185

Our proposed method alternates between conven- 186

tional Adam SGD and line search, a classic opti- 187

mization technique. This approach is not only ef- 188

fective, but exceptionally straightforward—so why 189

is it, to our knowledge, undiscovered and unused in 190

modern neural networks? Both line search and in- 191

termittent optimizer schedules are well-understood. 192

Why aren’t similar approaches standard practice? 193

The answer may lie in the recent rise of low- 194

rank methods such as LoRA: Fast Forward is of 195

little use in full-rank training. Even one simulated 196

step increases loss, wasting any compute used for 197

inference on the validation set. The remainder of 198

this section focuses on why our method only works 199

with low rank training. 200

6.1 Why can’t we Fast Forward at full rank? 201

Fast Forward takes advantage of a relatively simple 202

loss surface structure that does not rely on nonlin- 203

ear paths around barriers. The LoRA loss surface 204

shown in Figure 4 is roughly convex on the plane 205

that intersects both Fast Forward and SGD direc- 206

tions. Although SGD travels a similar distance, 207

Fast Forward finds a flatter point central to its basin. 208

Given these conditions, which limit interactions 209
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Figure 5: The cosine similarity between gradients in
different time steps, in regular training and training with
Fast Forward. At each timestep, we measure similarity
between the current gradient and all previous saved
gradients (shown individually in transparent lines). Fast
Forward leads to lower average similarity (shown in
opaque lines) with previous gradients.

Figure 6: The total number of FLOPs consumed during
training Pythia 1.4b on the clinical finetuning task for
different LoRA ranks. Highlighted area is the percent-
age saved with Fast Forward.

between bases, Fast Forward accelerates to a persis-210

tently good value for some direction on the surface.211

As shown in Figure 5, once we Fast Forward in212

a particular direction, subsequent optimizer steps213

become less similar to previous steps; because Fast214

Forward accelerates learning for a specific direc-215

tion, future optimization steps no longer need to216

search in that direction.217

We consider several more explanations, but re-218

ject each hypothesis in turn. We find evidence219

against the notion that Fast Forward benefits de-220

cline with higher rank or that Fast Forward is en-221

abled by limiting training to the attention modules.222

Fast Forward works better as we increase the223

rank of LoRA. Because Fast Forward fails on224

full-rank training, we might assume that it gener-225

ally degrades with increased rank. In other words,226

as we add dimensions to LoRA, Fast Forward227

would become less effective until it stops working—228

explaining its failure in full-rank training. To the229

contrary, Figure 6 illustrates that the efficiency230

Figure 7: Test loss for full-rank finetuning restricted
to attention layers. Each time we Fast Forward, loss
increases immediately at the first simulated step.

gains from Fast Forward increase monotonically 231

with rank between 1 and 64 dimensions. Therefore, 232

we cannot confirm the hypothesis that Fast Forward 233

fails at full rank training because of the dimension. 234

Fast Forward doesn’t work in full rank settings 235

even when restricted to the attention layer. Can 236

we be sure that Fast Forward requires the low- 237

dimensional subspace of LoRA? LoRA doesn’t 238

only reduce the dimension of training, but also re- 239

stricts weight movements to the attention layers. 240

We therefore consider, but ultimately reject, the 241

hypothesis that Fast Forward takes advantage of 242

this module constraint rather than low dimension- 243

ality. As seen in Figure 7, Fast Forward performs 244

poorly when full-rank tuning even when restricting 245

updates to the attention matrices. 246

7 Conclusions and Future Work 247

We have presented Fast Forward, a simple approach 248

to accelerating low-rank finetuning. Our method re- 249

duces cost by 41–87% FLOPs in matching 5-epoch 250

Adam SGD loss and 56% at loss convergence. 251

A variety of tweaks on our approach are likely to 252

convey further benefits. Rather than using a fixed 253

tiny validation set throughout training, we might 254

introduce new ways of sampling that introduce lit- 255

tle overhead but avoid the possibility of overfitting. 256

Other future work may schedule the SGD interval 257

lengths dynamically or predict the optimal duration 258

for Fast Forward, reducing the required number of 259

inference runs on the validation set. 260

One reading of our findings is that current opti- 261

mizers like Adam are poorly designed for low-rank 262

approaches. Future optimizers might improve these 263

standard approaches by aligning momentum with 264

the known low-rank basis or applying other meth- 265

ods that select better step sizes at low dimensions. 266
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Limitations267

Our approach, as discussed, does not appear to ac-268

celerate full-rank training and therefore may not269

be usable as-is when training from scratch. Al-270

though our experiments are limited to finetuning,271

low-rank pretraining methods like GaLoRe (Zhao272

et al., 2024) might also benefit from this type of273

acceleration.274

Fast Forward is highly efficient, but serialized.275

In order to improve its parallelization, further work276

is needed. While we do not focus on this efficiency277

improvement, other optimizers that search differ-278

ent subspaces at regular intervals have been paral-279

lelized (Wei and Ozdaglar, 2012), and we believe280

Fast Forward could also be.281

To measure compute, we use FLOPs, a metric282

that does not always reflect caching and other over-283

head elements and does not take into account par-284

allelization.285

All experiments are conducted on English lan-286

guage datasets with conventional autoregressive287

LLMs. Our results are also limited to next token288

prediction finetuning objectives.289

Potential Risks290

Our work adds to the body of literature on effi-291

cient approaches for LLMs finetuning. We do not292

foresee major risks associated with this work. How-293

ever, a malicious actor with bad intentions could294

use our method to train an LLM with undesirable295

characteristics.296
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A Loss throughout training on all models 382

Figure 8 shows that all models exhibit a similar pat- 383

tern wherein the simulated steps briefly accelerate 384

the drop in loss between each SGD interval. 385

(a) Pythia 1.4b

(b) Pythia 2.8b

(c) LLama-3 8b

Figure 8: Training each model on the chat tuning task.
Red dots represent SGD steps and green dots represent
Fast Forward steps. The blue line shows vanilla Adam
SGD training.

B How long can we Fast Forward? 386

Figure 9 illustrates that the loss is convex under 387

Fast Forward, meaning that we can identify a vertex 388

by searching linearly until loss begins to rise on our 389

tiny validation set. The vertex along a particular 390

update direction is that direction’s locally optimal 391
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Figure 9: Test loss for the first Fast Forward on the chat
tuning task, run for a duration of 100 simulated steps.
Within this range, the resulting loss curves are convex
with respect to the number of Fast Forward steps.

Figure 10: The optimal number of Fast Forward steps
performed as a function of the Fast Forward stage dur-
ing training. Darker points represent stages earlier in
training. As training continues, the number of Fast For-
ward steps performed decreases.

step size—that is, the step size that leads to the392

greatest immediate decrease in loss.393

At each step during normal training, the394

gradient—and consequently the change in weights395

∆W between steps—is modified by Adam and396

other optimizer components. We consider a number397

of possible factors determining the optimal number398

of simulated steps before the loss begins to increase,399

τ∗ = argmaxτ Wt+τ∆W. As seen in Figure 10,400

τ∗ declines over the course of training, meaning401

that Fast Forward becomes less productive.402

Although we consider some possible factors de-403

termining the optimal Fast Forward duration in404

Figures 11a and 11b, neither the norm nor the405

condition number of the gradient provide predic-406

tive power beyond knowing the current training407

timestep. While both are clearly correlated, that 408

correlation appears to be much more related to a 409

confounder with both factors: the duration of train- 410

ing. 411

(a) The number of Fast Forward steps performed as a function
of the gradients’ norm. The norms are of the gradients right
before a new Fast Forward stage is performed.

(b) The number of Fast Forward steps performed as a function
of the gradients’ condition number. The condition numbers
are of the gradients right before a new Fast Forward stage is
performed.

Figure 11: Potential factors in determining the opti-
mal Fast Forward step count. Darker points represent
stages earlier in training, whereas lighter points repre-
sent stages later in training. The experiment was per-
formed on the Pythia 1.4b model on medical finetuning
task.

C How soon can we Fast Forward? 412

How long should we train for in between Fast For- 413

wards? Here, we identify the point in training at 414

which a conventional optimizer has temporarily 415

settled into a consistent direction which can be ex- 416

trapolated without damaging performance. The 417

more Fast Forward steps we can take, the more 418

effective Fast Forward is at a given point in time. 419
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Figure 12: Optimal number of Fast Forward steps per-
formed at the second Fast Forward stage, as a function
of the number of SGD steps performed in the interval
since the last Fast Forward stage. (One step is equiva-
lent to extending the previous FF stage.)

We set different values for Tinterval, from 1 to 10,420

and measured the number of Fast Forward steps421

performed in that point of training. Experiment422

was performed on the Pythia 1.4b model on the423

medical fine-tuning task.424

Figure 12 illustrates the relationship between the425

duration of the SGD interval stage and the duration426

of the subsequent Fast Forward stage. Before the427

second Fast Forward stage, training for an interval428

of up to 4 SGD steps extends the optimal number of429

Fast Forward steps. Continuing to run the default430

optimizer further begins to limit Fast Forward.431

Note that we can start benefiting from Fast432

Forward—that is, loss decreases a nonzero433

amount—immediately after running a pair of SGD434

interval steps. We might therefore save even more435

compute, depending on the setting, by running436

SGD for even less time early in training.437
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