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ABSTRACT

We introduce an E'(n)-equivariant Transformer architecture for spatio-temporal
graph data. By imposing rotation, translation, and permutation equivariance
inductive biases in both space and time, we show that the Spacetime E(n)-
Transformer (SET) outperforms purely spatial and temporal models without
symmetry-preserving properties. We benchmark SET against said models on
the N-body problem, a simple physical system with complex dynamics. While
existing spatio-temporal graph neural networks focus on sequential modeling, we
empirically demonstrate that leveraging underlying domain symmetries yields
considerable improvements for modeling dynamical systems on graphs.

1 INTRODUCTION

Many problems that we wish to model with neural networks possess underlying geometric structure
with symmetries. Geometric Deep Learning, a term coined in the seminal work of Bronstein
et al.| (2021), is an Erlangen program for deep learning that systematizes inductive biases as group
symmetries G, arising through notions of invariance and equivariance.

Recent work, like S E(3)-Transformers|Fuchs et al.|(2020) and F(n)-Graph Neural Networks|Satorras
et al[(2022)), impose different notions of group equivariance on neural networks to inform architecture
choice. While these neural network architectures encode spatial inductive biases, they notably lack
a time component. Temporal Graph Networks Rossi et al.| (2020) proposed an efficient framework
that learns from dynamic graphs. However, this architecture assumes the topology of graphs changes
over time. In this paper, we discuss spatio-temporal graphs, which have a fixed topology with
changing features over discrete time steps. Recent works Jin et al.|(2023)), Marisca et al.| (2022), |Cini
et al.|(2023) have treated node features as time series and edges as the relationships between these
series. Such spatio-temporal graph neural networks (STGNNs) have a plethora of applications, from
simulating biomolecular interactions to modeling financial time series.

Similarly, while STGNNs improve representation learning of sequential graph data, minimal research
has been done on preserving group symmetries in a spatio-temporal fashion. In particular, sequential
models ought to preserve spatial group symmetries at each time step. Famously, Noether’s first
theorem formalizes the notion of infinitesimal symmetries of the so-called Lagrangian of a physical
system, in terms of perturbations with respect to both space and time, by determining conserved
quantities. Inspired by this intuition of temporal and spatial symmetry, we seek to derive a neural
network architecture that is equivariant in both temporal and spatial components.

Classical neural network architectures like RNNs are discrete approximations to continuous time-
domain signals, obeying a differential equation with respect to time. If an RNN is invariant to
time-warping, a monotonically increasing and differentiable function of time, it takes the form of
an LSTM [Bronstein et al.| (2021)), which unlike a vanilla RNN, captures long-term dependencies.
Similarly, the dynamics of classical physical systems satisfy the Euler-Lagrange equations, i.e. the
equations of motion. Hence, we use the N-body problem, as described in [Trenti & Hut| (2008)
and alluded to in[Satorras et al.[(2022), as an ideal candidate to test our hypothesis that preserving
G-equivariance ameloriates long-term spatio-temporal graph modeling. We will use a Transformer
for the temporal component of the architecture, preserving long-term dependencies and, hence,
invariance to time-warping. Each node of the graph will have features, coordinates, and velocities.
As such, the neural network should be equivariant under rotational and translational symmetries E(n)
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acting on coordinates. It should also be equivariant with respect to rotational symmetries SO(n)
acting on velocities. Lastly, the nodes should be permutation equivariant.

2 BACKGROUND

2.1 GEOMETRIC DEEP LEARNING

Following the insights of Geometric Deep Learning Bronstein et al.| (2021)), the input signals to
machine learning models have an underlying domain 2. Examples of such domains include grids,
graphs, and manifolds. The space of signals over (2 possesses a vector-space structure. That is
Bronstein et al.| (2021)):

Definition 2.1. The space of C-valued signals on 2 is
X(Q,C)={z:Q—C},
which is a vector space of functions.

The symmetry of the domain 2 will impose structure on the signal space X (2), thus inducing
structure on the space of interpolants

F(X(Q)) = {foco}

for fy a neural network. In what follows, we canonically refer to X'(2) as V' for brevity.

2.2  GROUP REPRESENTATIONS, INVARIANCE, AND EQUIVARIANCE

Definition 2.2. A representation of a group G on a vectorspace V over a field K is a homomorphism
p:G— GL(K,V)

such that p(gh) = p(g)p(h) forall g € G, h € G, where GL(K, V) is the general linear group
of automorphisms ¢ : V. =% V, i.e., the set of bijective linear transformations with function
composition as its binary operation.

In this paper, we are interested in the group of rotational symmetries SO(n) and the group of
isometries E(n) of R™, as these are the naturally-induced symmetries of particles. Rotations are
distance, angle, and orientation preserving transformations. The group of rotations in n dimensions is

SO(n) ={Q € M,(R)|Q"Q = I and det Q = +1},

where M, (R) is the set of n x n matrices with entries in R. We represent a group element g € SO(n)
with p(g) € GL(R,R™), acting on x € R™ as p(g) : x — @x where @) € R"*"™ is an orthogonal
matrix (see Appendix [A] for more details). We restrict the notion of equivariance to functions of
Euclidean space, as will be the case for neural networks. In Appendix|A] we provide a more general
definition.

Definition 2.3. A function f : R™ — R"™ is SO(n)-equivariant if
Qf(x) = f(@x)

for all Q € R™*™ orthogonal and x € R".

The Euclidean group E(n) is the set of isometries of Eucliden space R", i.e. transformations
that preserve distance between points, represented as a rotation followed by a translation. More
precisely, E(n) = {p : R" — R"|p isometry}. We represent a group element g € E(n) with
p(g) € GL(R,R™), acting on x € R™ as p(g) : x — @Qx + b where Q € R™*™ is an orthogonal
rotation matrix and b € R"™ is a translation vector. Again, we provide a definition of equivariance
with respect to functions of Euclidean space.

Definition 2.4. A function f : R" — R" is E(n)-equivariant if

Qf(x) +b = f(@x+b)

for all ) € R™*™ orthogonal rotation matrices, b € R" translation vectors, and for all x € R™.
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3 METHOD

In this paper, we are interested in physical systems that can be modelled as a sequence of graphs
Gy = Vi, &) fort =1,..., L with nodes v;(t) € V; and edges e;;(t) € &. In particular, we seek
to model the dynamics of the /N-body problem [Trenti & Hut|(2008)). For this task, we assume a priori
that the graph is complete since a charged particle will interact with every other particle in a Van der
Waals potential under Coulomb’s law. Similarly, a mass will interact with every other charged particle
in a gravitational potential under Newton’s law of universal gravitation. In addition, we assume that
particles are neither created nor destroyed as the system evolves in time, so the nodes V; in the graph
remain the same. Let G := (G;)1<:<1, be a sequence of topologically-identical graphs with changing
features, known as a spatio-temporal graph. The task under consideration is learning a function that
predicts the associated features of graph. In particular, given G, we are interested in predicting the
positions and velocities of all masses in the system after H additional time steps where H >> L.

To equip the spatio-temporal model of mass interactions with the appropriate inductive biases, we
leverage both spatial and temporal notions of attention. For node ¢ at time step ¢ to attend to all the past
neighborhoods of that node, we need to (1) aggregate nodes spatially to obtain spatially-contextual
embeddings and (2) obtain temporally-contextual embeddings via temporal aggregation.

We fix a time slice ¢ such that the features derive from G; = (V;, ;). From the current features

hgl) (t) of node 7 at layer I, we form the next layer features hng) (t) by aggregating neighboring node
features. In particular,

WV () = | W), @ a0, 0)emP (1)) |, )
JEN;

where @ is a permutation-invariant function [Bronstein et al.| (2021), and a is a self-attention mecha-
nism, often a normalized softmax across neighbors.

3.1 E(n)-EQUIVARIANT SPATIAL ATTENTION

Satorras et al.|(2022)) introduced E'(n)-Equivariant Graph Neural Networks (EGNNs). Every node
in the graph G = (V, &) has features h; € R and coordinates x; € R”. In addition, we keep track
of each mass’s velocity v; € R™. The Equivariant Graph Convolutional Layer (EGCL) takes the

set of node embeddings h(Y) = {hgl), . ,hg\l,) } coordinate embeddings () = {xgl), . ,xg\l,) }

velocity embeddings v(!) = {vgl), e 7V§\l]) }, and edge information £ = (e;;) as input and produces

the embeddings of the next layer. That is, A1 2(H1) (41D — EGCL[L®, 2 v £], defined
as follows |Satorras et al.| (2022):

l l l l
my; = 6. (0" b, |x() = x|, a5)

Vit = 6, ) + 03 (D — x ), (my)

J#i
X§l+1) _ Xl(z) n V§l+1) 2)
m; = Zmij
J#

b = ¢, (0", m,)
where a;; are the edge attributes, e.g. the edge values e;;, and ¢, : R?¥2 — R" ¢, : R? — R,
Oy - R" - R, and bn - R+ 5 R4 are MLPs. In what follows, we assume d’ = d for clarity.

Satorras et al.| (2022) proved that this layer is equivariant to rotations and translations on coordinates
and equivariant to rotations on velocities:

B, Qx4+ b, Qv = EGCL, Qx{" + b, Qv(", €] 3)
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for @) € R™ "™ an orthogonal rotation matrix and b € R™ a translation vector. The EGCL is also
permutation equivariant with respect to nodes V.

The SchNet |Schiitt et al.|(2018) architecture uses continuous-filter convolutional layers to predict
chemical properties of molecules and materials. We use such a continuous filter to model the effect
of interactions of nodes on features, which is necessary due to the non-uniform topology of graphs in
the N-body problem. In layer [ of SchNet, for node-wise representations H', the interactions of a
particle ¢ is given by the convolution with neighboring particles:

N e1(x; —x;)
h(l""l) . (Hl % Wl) _ Zh(l) o W . )
i = = ; 0 :

= en(; = x)
where o is element-wise multiplication and we expand the distances in a Gaussian basis:
er(xj — %;) = exp(—y(I1x; — Xil2 — 1x)?) )

with centers ux, chosen between 0 and a cutoff radius [Schiitt et al.| (2018)). Moreover, Wé :R™ — R
is a filter-generating network, which is learned from the positional data, representing the effect of
interactions between nodes on features. It is parameterized as an MLP and takes the radial vectors
X; — X;, from node ¢ to j, as the input. Futhermore, since we use the Gaussian basis expansion, this
interaction convolution is F(n)-invariant (see Appendix B]) and, thus, the features are preserved
under the actions of E(n), as desired.

Since we have a sequence of graphs G = {G;}1<;<, for a time slice ¢, we apply K; such EGCL
and SchNet transformation layers to the graph G; € G:
W () = SchNet[h{" ™ (1), x{"™ (1), £(#)]

7 7

x ), vV (1) = BGCLI (1), x{" (1), v\ (1), (1)),

R

h(H—l) (t) ©)

for! =1,..., K;. Thus, we obtain spatially-contextual representations for node ¢ at time ¢ defined
as 0;(t) = W (1) e RY, &) = x5 (1) e R™, w;(t) = v 5 (t) e R fort = 1,..., L.

3.2 TEMPORAL ATTENTION FOR GRAPHS

The objective of this section is to obtain strong temporally-contextual representations of the spatial
graph embeddings. In the N-body problem, we are essentially solving the forward-time Euler-
Lagrange equations, a second-order partial differential equation. However, for a fixed node on the
spatio-temporal graph, the feature, position, and velocity form a time-series, for which RNN’s capture
short-term dependencies. It was shown in(Tallec & Ollivier| (2018)) that while vanilla RNNs are not
time-warping invariant, LSTMs are a class of such time-warping invariant functions modeling a
continuous time-domain signal. Employing this philosophy, the use of an attention-based Transformer
architecture to model spatio-temporal graph data merits investigation.

3.3 FE(n)-EQUIVARIANT ATTENTION-BASED TEMPORAL MESSAGE PASSING

We would like the temporal attention to retain the equivariant properties described in Section [3.1]
Namely, the Equivariant Temporal Attention Layer (ETAL) should be equivariant to the actions of
E(n) on coordinates and the actions of SO(n) on velocities. It should also be permutation equivariant
with respect to the actions of the symmetric group X on nodes.

As the EGNN produces feature representations h; () that are F/(n)-invariant, we can apply key-query-
value self-attention and still preserve the E'(n)-invariance of features as follows. Define the node-wise
query q;(t) = Q;0;(t), key k;(t) = K;0;(t), and value v;(t) = V;0;(t) for Q;, K;, V; € R4, To
reduce memory usage, we share ), K, V' for all nodes. Then the temporally-contextual representation
is:

L
éi(t) = Zai(t,s)vi(s) @)
s=1

4
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where
exp(q;(t) "ki(s))

o exp(a; (1) Tki(s"))

Satorras et al. Satorras et al.[ (2022) showed that for a collection of points {¢;}Y, € R™, the
norm is a unique geometric identifier, such that collections separated by actions of E(n) form an
equivalence class. With this in mind, since we desire the attention mechanism for coordinates &;(t)
to be equivariant with respect to E(n), we can define the following layer:

a;(t,s) =

®)

m;(t,5) = Ve (0:(1), 0:(s), [1€:(t) — &:(s)]13)

G)=&M+ Y (&(t) —&(s)e(t,s)
sEN ()\{t} 9)

L
= &i(t) + ) (€i(t) — &i(s)) dune(my (1, 5))

s=1
s#£t

where N (t) is the temporal neighborhood of time t and, thus, m; (¢, s) is the message passed from
time s to ¢ for node i. We use an MLP to parameterize ¥, : R” x R” — R". Since there is no
explicit temporal adjacency matrix, we assume a fully connected temporal graph where a node ¢ at
time ¢ exchanges messages with every other time s. However, such a fully connected network does
not scale and, instead, we infer the edges of the temporal edges in our model. Hence, we use the
edge inference of [Satorras et al.| (2022), whereby @iy : RM — [0, 1] takes the edge embedding and
provides a soft estimation of its edge value e(t, s).

This is a generalized version of the neighborhood attention described in the S E(3)-Transformer
network |[Fuchs et al.| (2020) and Tensor Field Network layer [Thomas et al.| (2018), the intensity
function in|Zhang et al.|(2021)), and the invariant point attention in Jumper et al.| (2021)).

We define an SO(n)-equivariant attention layer for velocities w; (¢):

L
@i(t) ==Y Bilt, s)wi(s) (10)
s=1
where the weight is
()T ws
5i(t78) — wl(t) w’b<8) (11)

S5y exp(w;(t) Twi(s"))

In appendix [B] we show that the position attention function is E(n)-equivariant and the velocity
attention function is SO(n)-equivariant.

Following the insights of Jin et al.|(2023)), edges are relationships between time series and they should
evolve. Hence, while the adjacency matrix A € RV*¥ is constant in space when applying ECGL, it
should intuitively evolve in time when applying ETAL. That is, if we consider edges as representing
the interaction between particles, e.g. the strength of the force, then this must necessarily evolve in
time for a non-stationary point cloud system.

We define a key matrix K(t) = KA(t) € RV*N | query matrix Q(¢) = QA(t) € RV*Y  and
value matrix V(t) = VA(t) €e RNV>N fort = 1,...,Land K,Q,V € R¥*N_ Thus, to obtain a
temporally-contextual representation of the adjacency matrix at time ¢, we apply attention:

L
At) = 7(t,s)V(s) e RV (12)
where
I -1
m(t,s) = exp(Q(t) T K (s)) (Z eXp(Q(t)TK(S’))> . (13)
s'=1
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Algorithm 1 Spatiotemporal Attention (SpatiotempAttn)

Require: h, z, v, A > he REXNXA g gy ¢ REXNxn g ¢ REXNXN
Require: E : RVXN x RVxn _y RN*(N-1)x2
Require: WL XLy L] Z{1L] s WL ¢ REXNxd x[LL] ¢ REXNxn,

Y[l:L] c RLXNXTL, Z[l:L] c RLXNxN
Initialize MLPs fj : REXNXd _ REXNxd £, REXNXN _y RIXNXN
fort=1,...,Ldo
> Equivariant Spatial Attention Layer

R (t) < h(t) > (D (t) € RV*d
M (1) + x(t) >z (t) € RVxn
v (1) + v(t) > oM (t) € RV*"
E(t) « E(A(t),z(M (1)) > E(t) € RN*(N=1)x2

for/{=1,...,K —1do
R (£) = SchNet[h (1) (), 21 (1), £(1)]
RED (1), 2+ (1), 0+ D (1) = EGCL[RO (t), 2O (t), v (1), £(t)]

end for
0(t) « h5(t) > 0(t) € RVxd
£(t) « 2 (1) > £(t) € RN*n
w(t) « v (t) > w(t) € RVxn
end for
> Equivariant Temporal Attention Layer
pl:L] 0(1),...,0(L)) > QL] ¢ RLXNxd
€8 (¢(1), ..., &(L)) > €[] g REXNxn
W — (w(1),...,w(L)) > wlE] ¢ REXNxn
AL A > ALL] € RLXNXN

UL gl it AL — BTAL [o8) 1yl i) 4 X[ML] lit] | yui] glit] 4 gleL]
N

AL — £, (LN(ARL)) AL

return Q111 ¢L] GILL] - A[LL]

Furthermore, in Appendix|[C| we tensorize the feature, position, velocity, and adjacency components
of ETAL to efficiently compute these operations in both space ¢ = 1,..., N andtimet =1,...,L
dimensions.

3.4 SPACETIME F(n)-EQUIVARIANT GRAPH TRANSFORMER

The full spatio-temporal attention module is presented in Algorithm|[I] It takes as input the node
features b € REXNX4 positions x € REXN X" velocities v € RL*N X" and adjacency matrices A €
REXNXN For a spatio-temporal graph G = (G;)1<¢<1,, we apply an equivariant spatial attention
layer in the form of EGCL to obtain spatially-contextual representations 8(t) € RN*? £(t) ¢
RNX" (t) € RNX" fort = 1,..., L. We share the same EGCL layer across all time steps
t=1,..., L. Thatis, we only learn one set of MLPs ¢, ¢,,, ¢, and ¢;, for each layer across time,
which is significantly more memory and parameter efficient.

Observe, at each time step, we apply a transformation £ : RN XN 5 RNXn _y RNX(N=1)X2 (5 the
adjacency matrix A(t) € RV*¥ and the coordinates x(t) € RV *" for G;. This will produce edge
attributes e;;(t) = (pipj, |[%;(t) — x;(¢)||3) that contain information about particle properties p, such
as charge or mass, and distance information for neighboring nodes. Since each graph is complete,
there are N x (N — 1) such edge attributes, which we store in the tensor £(t) € RN *(N-1)x2,

Then we apply equivariant temporal attention in the form of ETAL to the spatial representa-
tions O1L e REXNxd ¢[liL] ¢ RIXNxn gnd L] ¢ RLXNXn  Feed-forward networks
fo : REXNxd _y RIXNxd . REXNXN _y REXNXN with layer pre-normalization, defined
in Appendix [D] and residual connection are also applied to the respective feature and edge com-
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Algorithm 2 Spacetime F(n)-Transformer (SET)

Require: h, z,v, A >h e RIXNXd g g c REXNXn 4 ¢ RNXN

Sl1:L)
o,
€
NI
(o)

«~— h

— v

ARE (A A) > Al € REXNXN

(0)
form=1,...,M do

gl:L] 5[1 L] [L] - 4ILE] ) SpatiotempAttn( (m) ,E(m) , ot A[1 L])

m+1 ' S(m+1)? (m+1) (m+1 (m)
end for Lo
#(L+ H) = th Ean(®) > #(L+ H) € RNx»
f)(L+H):LZt 1W(M)(t) \>£%(L+H)€

return (L + H),o(L + H)

ponents of the graph. The sinusoidal positional encodings WEl € REXNxd x[1:L] ¢ RLxnxn,
YE ¢ REXNxn ZILL] ¢ REXNXN for the features, positions, velocities, and adjacency matrices

are defined in Appendix

As the design of spatio-temporal attention is modular, we can continue stacking this architecture as
we see fit (see Figure [I). In Algorithm [2] we apply spatio-temporal attention M/ times. Then we
take a mean of the resulting spatio-temporally contextual representations of positions and velocities
across the time dimension, which we use as the predicted masses’ coordinates (L + H) € RYxn

and velocities (L + H) € RN*™ at the horizon target t = L + H.

Figure 1: Spacetime F(n)-Transformer architecture.

The task is to predict both the positions and velocities of masses at time L + H, so we minimize the

following loss:
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L=|#L+H)—x(L+H)|%+alo(L+H)—v(L+H)|3

1 N n X
= WZZ(fij(L+H)—$ij(L+H))2 04
i=1 j=1
a N n

for @ € (0,1) a hyper-parameter.

4 RELATED WORK

Temporal graph learning has a plethora of real-world applications, like COVID-19 contact tracing
Chang et al.| (2021) [Holme| (2016)) Ding et al.| (2021) and misinformation detection |Choi et al.|(2021)
Song et al.|(2021)) Zhang et al.|(2021)).

Learning on continuous-time dynamic graphs was introduced by Rossi et al.[(2020), which proposed
Temporal Graph Networks (TGNs) with a memory module, acting as a summary of what the model
has seen so far for each node. Causal Anonymous Walks [Wang et al.|(2022) is another branch of
temporal graph learning, which extracts random walks between edges; however, this is not our focus.
Other work like Jin et al.|(2023)) and (Cini et al.|(2023) treat node features as time series and edges
as correlations between the series. Under this framework, message passing must be able to handle
sequences of data from the neighborhood of each node, with RNNs |Seo et al.| (2016), attention
mechanisms [Marisca et al.| (2022), and convolutions Wu et al.| (2019).

The Dynamic Graph Convolutional Network (DynGCN) [Choi et al.|(2021) and DyGFormer |Yu et al.
(2023)) are similar to our method. DynGCN processes each of the graph snapshots with a graph
convolutional network to obtain structural information and then applies an attention mechanism to
capture temporal information. Similarly, DyGFormer |Yu et al.[|(2023)) learns from historical first-hop
neighborhood interactions and applies a Transformer architecture to historical correlations between
nodes. However, unlike our paper, DynGCN and DyGFormer do not take into account the inductive
biases of the underlying modeling task. Recent work of |[Wu et al.|(2024) presents one of the first
spatio-temporally equivariant architectures for graphs, arguing that such an inductive bias allows for
the capturing of non-Markovian dynamics of physical systems. Unlike our method, they do not use a
continuous convolution for feature extraction. Moreover, they do not consider velocity and assume a
static adjacency matrix on which they extract information in the frequency domain by performing a
discrete Fourier Transform.

E(n)-Equivariant Graph Neural Networks (EGNN) [Satorras et al.| (2022) defines a model equivariant
to the Euclidean group E(n) and, unlike previous methods, does not rely on spherical harmonics
such as the S F(3)-Transformer [Fuchs et al.[(2020) and Tensor Field Networks Thomas et al.|(2018).
The S FE(3)-Transformer paper briefly alludes to incorporating equivariant attention with an LSTM
for temporal causality; however, this is not the primary focus of their work. LieConv |Finzi et al.
(2020) proposes a framework that allows one to construct a convolutional layer that is equivariant
with respect to transformations of a Lie group, equipped with an exponential map. However, the
EGNN is simpler and more applicable to problems with point clouds like the N-body problem [Trenti
& Hut (2008)) we consider.

As we concern ourselves with modeling a dynamical system, the works of Lagrangian Neural
Networks (LNNs) |Cranmer et al.| (2020) and Hamiltonian Neural Networks (HNNs) |Greydanus
et al.|(2019) are pertinent. HNNs parameterize the Hamiltonian of a system, but require canonical
coordinates, which makes it inapplicable to systems where such coordinates cannot be deduced.
LLNs parameterize arbitrary Lagrangians of dynamical systems with neural networks, from which it
is possible to solve the forward dynamics of the system; however, this requires an additional step of
integration, which is cumbersome.



Under review as a conference paper at ICLR 2025

5 EXPERIMENTS & RESULTS

5.1 DATASET: CHARGED PARTICLES

Adapting the charged N-body system dataset from Satorras et al.[(2022), we sample 16k trajectories
for training, 2k trajectories for validation, and 2k trajectories for testing. Each trajectory has a
horizon length of H = 10k and a sequence length of L. = 10, sampled 10 apart. The task is to
predict the positions of particles at time L + H. The point cloud consists of N = 5 particles,
where at each time step, positions (x1(t),...x5(t)) " € R5*3, velocities (v1(t),...v5(t))" € R5*3,

as well as charges ¢1,...,¢c5 € {—1,+1} are known. The edges between charged particles is
eij(t) = (cicj, |[xi(t) — x;(t)||3). We input these known values into SET with features chosen as
hi(t) = ||vi(t)]]2 fori =1,...,5. We conducted a hyper-parameter optimization with 30 trials and

selected the best model settings, as per Appendix [E]

5.2 ABLATION STUDY: EQUIVARIANCE, ADJACENCY, AND ATTENTION

Furthermore, we conduct an ablation study on SET, shown in Table|l} which compares the use of
equivariance, temporal attention for the adjacency matrix as per Section[3.3] spatial attention, and
temporal attention. By selecting the best model on the validation set, we find that incorporating
equivariance, spatial attention, and temporal attention enhances performance, whereas using adjacency
diminishes it. We hypothesize that the insignificance of temporal adjacency is due to the fact the edge
attribute contains information about charges, which does not evolve in time, and information about
the distance between particles, which already implicitly exists in the coordinate information.

Ablation Model Params Val MSE Test MSE MSE Ratio
. Equiv=True, Adj=False, SATT=True, TATT=True 796,058 1.21e-10 1.25e-10 —
Equivariance
Equiv=False, Adj=False, SATT=True, TATT=True = 796,244  1.96e-10 2.03e-10 1.57x
Adjacency Equiv=True, Adj=True, SATT=True, TATT=True 810,458 1.12e-09 1.29e-10 8.96 x

Attention Equiv=True, Adj=False, SATT=True, TATT=False 796,049  2.73e-10 3.57e-10 2.86x

Table 1: Ablation study of equivariance, adjacency, and attention for N = 20. We present the model
settings, parameter counts, validation & test MSE, and the MSE ratio, which is the ratio of the
ablation model’s test MSE divided by the best performing model’s test MSE.

5.3 BASELINES & SCALING N

We compare our best performing SET model with optimized LSTM, EGNN, MLP and Linear
baselines (see Appendix [E]for implementation details). SET outperforms all baselines for N = 5, as
seen in Table 2l

Model Params Test MSE
SET 796,058  1.25e-10
LSTM 826,313  2.03e-08
EGNN 100,612  2.05e-06
MLP 67,718 3.48e-06
Linear 3 3.04

Table 2: Baselines for N = 5.

Since the N = 5 system is seemingly too simple a task, we scale the dataset to N = 20 and N = 30.
As shown in Figure[2] test MSE remains consistent for all models regardless of the number of charged
particles N, which is a desirable property. Per Figure 2| the number of model parameters remains
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constant for the EGNN, MLP and Linear baselines. Fortunately, the number of parameters in SET
also remains constant for all /V; this is an artifact of the attention layers only being functions of the
feature and coordinate dimensions. However, the adjacency attention layer is a function of /N, which
is turned off. Note, the number of parameters in the LSTM increases from 8.2e5 to 1.8e6, which is
an undesirable property. Further results are included in Appendix [E]

o seT o sET
o 5T o tsTM

Figure 2: Left: Model test MSE versus V. Right: Number of model parameters versus N.

We include in Appendix [Hresults for applying SET to the N-body problem with celestial gravitational
masses. This demonstrates an example in which the temporal equivariance inductive bias is not
appropriate.

6 CONCLUSIONS

The imposition of group symmetries on graph neural networks is a promising area of research,
demonstrating remarkable real-world results like AlphaFold2 Jumper et al. (2021). However, most
research has been centered on spatial equivariance for representational learning on static graphs.
For dynamical graph systems, little research has centered on preserving group symmetries across
time. We close this gap with the Spacetime F(n)-Transformer and show promising results for the
N-body problem. It will be interesting to see our method applied to harder tasks, such as sequential
bio-molecular generation.

Although we chose a graph as the domain of interest, it is plausible to extend notions of spatio-
temporal G-equivariance to other domains like grids and manifolds. Furthermore, while we leveraged
the symmetries of the problem a priori, it may not always be possible to find a simple group for a
general problem. Hence, in future work, it would be interesting to learn a group symmetry from
underlying data and impose equivariance using methods like LieConv |Finzi et al.| (2020), which is
equivariant to the actions of Lie groups, i.e. the continuous group representation of infinitesimal
transformations. Noether’s first theorem implies a possible connection to conserved quantities, which
was discussed in|Alet et al.| (2021)).

6.1 ETHICS

While we only employed simulated datasets, graph neural networks have historically been used in
medical and biological applications. In such settings, careful consideration of ethical and responsible
data collection is of utmost importance. For instance, in the setting of drug discovery, the way in
which we administer synthetically-created drugs on humans and other species must be carefully
approached.

6.2 REPRODUCIBILITY STATEMENT

All experiments conducted in this paper have been seeded. We selected the best-performing models
using Optuna’s Bayesian-based hyper-parameter sweep. All relevant hyper-parameters are included
in Appendices [E| and [F] We have included a zipped file containing the codebase, which provides
details necessary to re-run the results shown in the paper.
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