
Under review as a conference paper at ICLR 2022

PRACTICAL NO-BOX ADVERSARIAL ATTACKS WITH
TRAINING-FREE HYBRID IMAGE TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the adversarial vulnerability of deep neural networks (DNNs) has
raised increasing attention. Among all the threat models, no-box attacks are the
most practical but extremely challenging since they neither rely on any knowl-
edge of the target model or similar substitute model, nor access the dataset for
training a new substitute model. Although a recent method has attempted such
an attack in a loose sense, its performance is not good enough and the computa-
tional overhead of training is expensive. In this paper, we move a step forward
and show the existence of a training-free adversarial perturbation under the no-
box threat model, which can be successfully used to attack different DNNs in
real-time. Motivated by our observation that high-frequency component (HFC)
domains in low-level features and plays a crucial role in classification, we attack
an image mainly by manipulating its frequency components. Specifically, the per-
turbation is combined by the suppression of the original HFC and the adding of
noisy HFC. We empirically and experimentally analyze the requirements of ef-
fective noisy HFC and show that it should be regionally homogeneous, repeating
and dense. Extensive experiments on the ImageNet dataset demonstrate the effec-
tiveness of our proposed no-box method. It attacks ten well-known models with
a success rate of 98.13% on average, which outperforms state-of-the-art no-box
attacks by 29.39%. Furthermore, our method is even competitive to mainstream
transfer-based black-box attacks. Our code is available in our appendix.

1 INTRODUCTION

Deep neural networks (DNNs) are widely known to be vulnerable to adversarial examples (Szegedy
et al., 2013; Goodfellow et al., 2015), i.e., a human-imperceptible perturbation can lead to misclassi-
fication. In adversarial machine learning, the term threat model defines the rules of the attack, such
as the resources the attacker can access. Based on the threat model, the attacks are often divided into
white-box attacks and black-box attacks. In the white-box threat model (Szegedy et al., 2013; Good-
fellow et al., 2015; Madry et al., 2018a), the attacker has full knowledge of a target model, such as
the model weights and the whole training dataset. Recognizing the threat of these adversarial attacks,
a model owner is unlikely to leak a model’s information to the public. Thus, the white-box attack is
often used to evaluate the model robustness for revealing its weakest point (Madry et al., 2018a), but
often not considered as a practical attack method (Chen et al., 2017). To this end, numerous works
have investigated a more realistic threat model, where the attacker does not require full knowledge
of the target model, i.e., the backpropagation on the target model is prohibited. This threat model is
called black-box attack (Papernot et al., 2016; Tramèr et al., 2016; Papernot et al., 2017; Narodytska
& Kasiviswanathan, 2017; Chen et al., 2017; Brendel et al., 2017; Dong et al., 2019b; Yan et al.,
2019; Chen et al., 2020; Zhou et al., 2020). However, such a black-box threat model usually involves
a major concern of being resource-intensive in terms of query cost and time. In real-world attack
scenarios, even if we ignore such concerns, query-based black-box attack can still be infeasible, e.g.,
the model API is inaccessible to the attacker. Moreover, it might cause suspicion due to repeated
queries to the model with almost the same adversarial image. To alleviate this issue, another line of
black-box threat model (Dong et al., 2018; Xie et al., 2019b; Dong et al., 2019a; Wu et al., 2020;
Lin et al., 2020; Gao et al., 2020a; 2021) called transfer-based attack is proposed. In this threat
model, adversarial examples are crafted via the local available pre-trained substitute model, which
usually trains on the same training dataset as the target model. The resultant adversarial examples
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are expected to attack the target model. However, without the feedback from the target model, the
transferability heavily depends on how large the gap between the substitute model and target model.
In practice, this gap is large because the structure and the training technique of the target model are
usually not publicly available due to security and privacy concerns.

From the analysis above, we argue that both white-box and black-box attacks can hardly be consid-
ered as practical attacks. A practical attack should satisfy two criteria: (a) model-free, i.e., no de-
pendence on the pre-trained substitute model or the target model for either backward propagation or
only forward query; (b) data-free, i.e., no dependence on the dataset for training a substitute model.
We term it no-box attack. A recent work (Li et al., 2020a) is the first (to our knowledge) as well as
the only work to have attempted such an attack in a loose sense. Their threat model still requires
a small number of auxiliary samples, such as 20 images. Admittedly, collecting a small number of
samples might not be difficult in most cases, but might be still infeasible in some security-sensitive
applications. Specifically, their approach (Li et al., 2020a) attempts to train a substitute model by
adopting the classical auto-encoder model instead of the supervised classification model due to the
constraint of a small-scale dataset. Overall, to attack a certain sample, their approach consists of
three steps: (1) collecting a small number of images; (2) training a substitute model; (3) white-box
attack on the substitute model. If a new sample, especially from a different class, needs to be at-
tacked, the above process needs to be repeated. Thus, their approach is very resource-intensive.
Besides, their attack success rate is still significantly lower than existing black-box attacks.

OStrich: 88.08% Windsor tie: 10.50% OStrich: 96.11%

Figure 1: The confidence of a raw image (left), its low-
frequency component (middle) and high-frequency com-
ponent (right) on Inc-v3 (Szegedy et al., 2016).

By contrast, our approach does not
require any of the above three steps
and is even training-free. With the
help of visualization technique pro-
posed by (Zeiler & Fergus, 2014), we
observe that the high-frequency com-
ponent (HFC), e.g., the edge and tex-
ture features, is dominant in shallow
layers and the low-frequency compo-
nent (LFC), e.g., the plain areas in the
image, is paid less attention to be ex-
tracted. Combined with the insight
into the classification logic of DNNs in Sec. 3.1, we observe that HFC plays a crucial role in recog-
nition. As shown in Fig. 1, without LFC, the confidence of HFC is even higher than the raw image.
Although it does not hold true for all samples, it does demonstrate the importance of HFC.

Motivated by this, we take the idea of hybrid image (Oliva, 2013) and propose a novel Hybrid Im-
age Transformation (HIT) attack method to craft adversarial examples. Formally, it only needs
three steps but can effectively fool various DNNs without any training: First, due to the training-
free setting and inspired by the analysis from Sec. 3.2, we simply utilize matplotlib1 tool to draw
several geometric patterns which serve as the proto-patterns, and the resultant synthesized adver-
sarial patches are thus richer in regionally homogeneous, repeating and dense HFC. Second, we
extract the LFC of the raw image and HFC of the adversarial patch. Finally, we combine these two
pieces of components and clip them to the ε-ball of the raw image to get the resultant adversarial
hybrid example. Extensive experiments on ImageNet demonstrate the effectiveness of our method.
By attacking ten state-of-the-art models in the no-box manner, our HIT significantly increases the
average success rate from 68.74% to 98.13%. Notably, our HIT is even competitive to mainstream
transfer-based black-box attacks.

2 RELATED WORK

Adversarial Attack. Let x denote raw image without any perturbation, xadv and y denote the
corresponding adversarial example and true label respectively. In generally, we use l∞-norm to
measure the perceptibility of adversarial perturbations, i.e., ||xadv − x||∞ ≤ ε. In this paper, we
focus on non-targeted attacks (Dong et al., 2018; Xie et al., 2019b; Wu et al., 2020; Lin et al., 2020;
Gao et al., 2020a) which aim to cause misclassification of DNNs f(·), i.e., f(xadv) 6= y.

1https://matplotlib.org/
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(a) Raw image (c)  Shallow layer representations of adversarial example 

crafted by our HIT with circle patch 

(b) Shallow layer representations of (a)

Figure 2: The visualization for the shallow layer (“activation 2”) feature maps of Inception-
v3 (Szegedy et al., 2016) w.r.t the input (a) and its corresponding adversarial example crafted by
our HIT.

Competitors. Transferability is an important property for adversarial examples. With it, the
resultant adversarial example crafted via one model may fool others. For the black-box threat
model, Goodfellow et al. (2015) argue that the vulnerability of DNNs is their linear nature, and
generate adversarial examples efficiently by performing FGSM which is a single-step attack. Pa-
pernot et al. (2017) train a local model with many queries to substitute for the target model. Dong
et al. (2018) integrate a momentum term into I-FGSM Kurakin et al. (2017) to stabilize the update
direction during the attack iterations. Xie et al. (2019b) apply diverse input patterns to improve the
transferability of adversarial examples. Dong et al. (2019a) propose a translation-invariant attack to
mitigate the effect of different discriminative regions between models. Gao et al. (2020a) introduce
patch-wise perturbation by amplifying the step size and reuse the cut noise to perturb more informa-
tion in discriminative regions. For the no-box threat model, Li et al. (2020a) attempt to attack the
target model without any model query or the accessible pre-trained substitute model. In their work,
with a limited amount of data, they try different mechanisms (with or without supervised technique)
to train the substitute model, and then utilize this substitute model to craft transferable adversarial
examples. Different from these approaches, our method does not depend on transferability since
we do not need any substitute model. In this paper, we craft the adversarial examples from the
perspective of the classification logic of DNNs.

Frequency Perspective on DNNs. Our approach is highly inspired by existing works which explain
the generalization and adversarial vulnerability of DNNs from the frequency perspective. The fact
that DNNs have good generalization while being vulnerable to small adversarial perturbations has
motivated (Jo & Bengio, 2017; Wang et al., 2020) to investigate the underlying mechanism, sug-
gesting that surface-statistical content with high-frequency property is essential for the classification
task. From the perspective of texture vs. shape, Geirhos et al. (2019); Wang et al. (2020) reveal
that DNNs are biased towards texture instead of shape. Since the texture content is considered to
have high-frequency property, their finding can be interpreted as the DNN being biased towards
HFC. On the other hand, adversarial perturbations are also known to have the high-frequency prop-
erty and various defense methods have also been motivated from this insight (Aydemir et al., 2018;
Das et al., 2018; Liu & JaJa, 2019; Xie et al., 2019a). Nonetheless, it remains unknown whether
manually designed high-frequency patterns are sufficient for attacking the network.

3 METHODOLOGY

Although many adversarial attack methods (Papernot et al., 2016; Dong et al., 2018; Gao et al.,
2020a; Li et al., 2020a) have achieved pretty high success rates in both black-box and no-box cases,
they all need training, especially for query-based (Papernot et al., 2016; Zhou et al., 2020) and no-
box adversarial perturbations (Li et al., 2020a) whose training is usually time-consuming. Then
a natural question arises: Is it possible to generate robust adversarial perturbations without any
training? In the following subsections, we will give our answer and introduce our design.

3.1 MOTIVATION

To better understand the role of HFC and LFC for the classification results of DNNs, we split the
information of raw images into these two pieces via Gaussian low-pass filter (defined in Eq. 1).
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Figure 3: The average accuracy of HFC
and LFC obtained by different Gaussian
kernel. We show the visualization and con-
fidence for kernel length 17 in Fig. 1.

As illustrated in Fig. 3, when the kernel size is small,
i.e., the cutoff frequency is high, the average accuracy
of LFC on ten state-of-the-art models is close to 100%.
However, if we continue to increase the kernel size,
the average accuracy of HFC begins to exceed LFC
one. To our surprise, for several specific raw images,
e.g., left image of Fig. 1, the true label’s confidence of
HFC which is mostly black is even higher than the raw
image.

To explain the above phenomenon, we turn to the per-
spective of feature space. Inspired by recent interme-
diate feature-based attacks (Zhou et al., 2018; Gane-
shan & Babu, 2019; Inkawhich et al., 2019), we argue
low-level features are critical to the classification. In-
terestingly, as shown in Fig. 2, most2 feature maps in
the shallow layers generally extract the edge and texture features (typical ones are highlighted by
red boxes), i.e., HFC, and pay less attention to plain areas in images, i.e., LFC. Therefore, if a per-
turbation can effectively manipulate the HFC of an image, totally different low-level features will be
extracted and may lead to misclassification.

3.2 EFFECTIVE ADVERSARIAL HFC

However, what kind of training-free noisy HFC can effectively fool DNNs is still unknown because
the performance of any other raw image’s HFC is unsatisfactory (see Appendix Sec. A.8). Zhang
et al. (2020) have demonstrated that the effectiveness of adversarial perturbation lies in the fact that
it contains irrelevant features. The features of perturbation dominate over the features in the raw
image, thus leading to misclassification. Inspired by their finding, we intend to design adversarial
HFC with strong irrelevant features, and we conjecture that the following properties are essential.

Regionally Homogeneous. Several recent works (Li et al., 2020b; Gao et al., 2020a; Dong et al.,
2019a; Gao et al., 2020b) have demonstrated that adversarial perturbations with regionally homo-
geneous (or patch-wise (Gao et al., 2020a)) property can enhance the transferability of adversarial
examples. Inspired by that the raw image is a composite of homogeneous patterns, the reason might
be attributed to that this perturbation tend to form irrelevant features recognizable by the DNNs.

Repeating. Nguyen et al. (2015) observe that extra copies of the repeating element do improve the
confidence of DNNs. From the perspective of strengthening the irrelevant features, it is expected
that repeating the content is beneficial.

Dense. Analogous to the above repeating property that performs global repeating, i.e., increases
the amount of irrelevant features globally, we can also perform local repeating to strengthen its
adversarial effect further. For term distinction, we term this property dense.

To verify the effect of the above properties, we conduct the ablation study in Sec. 4.1, and results
support our conjecture. Besides, the analysis in Appendix Sec. A.9 also show that our HIT has
potential to become a targeted attack.

3.3 HYBRID IMAGE TRANSFORMATION

Motivated by the above discussion, we take the idea of hybrid image (Oliva, 2013) to apply our
no-box attacks. Specifically, Oliva (2013) replaces the HFC of one image with the HFC of another
carefully picked image and craft hybrid images with two different interpretations: one that appears
when the image is viewed up-close, and the other that appears from afar (see Fig.5 of Oliva (2013)).
However, confusing human’s vision system (without ε constrain) cannot guarantee the misclassifica-
tion of DNNs since adversarial examples are constrained by the maximum perturbation. Therefore,
we propose a novel Hybrid Image Transformation (HIT) attack method which reduces3 original

2see quantitative analysis in Appendix Sec. A.2.
3Due to the ε constraint, we can not completely replace HFC with others
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HFC, and meanwhile, adds well-designed noisy ones to attack DNNs. Our method only needs three
steps but can generate robust training-free adversarial perturbations in real time:

concentric circle concentric square concentric rhombus

Figure 4: Three simple geometric patterns serve as proto-patterns.

First, we provide an adversarial patch xp to generate noisy HFC. Unlike the traditional way that
needs training, here we use the matplotlib tool to draw it. Inspired by the observation in Sec. 3.2, we
consider three simple regionally homogeneous proto-patterns (to avoid cherry-picking) as our basic
adversarial patches: concentric circles, concentric squares, and concentric rhombus in Fig. 4. The
effect of concentric pattern is to make the resultant HFC dense. Then we repeat these adversarial
patches.

Second, we extract the LFC of the raw image and the HFC of the adversarial patch. Note that several
methods can be utilized to extract the HFC and LFC of an image, e.g., Fourier transformation. In this
paper, we use an approximated yet simple Gaussian low-pass filterGwhose size is (4k+1)×(4k+1)
to get LFC, which can be written as:

Gi,j =
1

2πσ2
e(−

i2+j2

2σ2
), (1)

where σ = k determines the width of our G. In general, the larger σ is, the more HFC is filtered
out. We are not going to introduce a new high-pass filter here for simplicity and just get HFC byG.
More specifically, we obtain HFC by subtracting the LFC of the adversarial patch.

Finally, we can synthesize these two part components to generate our adversarial hybrid image
xadv:

xadv = clipx ,ε(x ∗G+ λ · (xp − xp ∗G)), (2)

where “*” denotes convolution operation, λ is a weight factor to balance the LFC and HFC, and
clipx,ε(·) restricts the resultant adversarial examples within the ε-ball of the raw image in l∞ space.
Therefore, our method is different from adversarial patch attacks (Brown et al., 2017; Liu et al.,
2020) which replace a subregion of the image with a well-design patch.

As illustrated in Fig. 2(c), our HIT can effectively reduce relevant HFC and add many other irrelevant
noisy ones, e.g., highlighted yellow boxes in (c) cannot find any obvious HFC associated with “cat”
at all. As a result, the target model can not extract correct features to make a reasonable prediction,
thus leading to misclassification. Besides, our adversarial examples are less perceptible than those
of our competitors (See Appendix Sec. A.4).

4 EXPERIMENTS

Networks. Here we consider ten well-known classification models: VGG19 (Simonyan & Zisser-
man, 2015), Inception-v3 (Inc-v3) (Szegedy et al., 2016), ResNet-152 (ResNet) (He et al., 2016),
DenseNet-121 (Dense) (Huang et al., 2017), WideResNet (WRN) (Zagoruyko & Komodakis, 2016),
SENet (Hu et al., 2018), PNASNet (PNA) (Liu et al., 2018), ShuffleNet-v2 (Shuffle) (Ma et al.,
2018), SqueezeNet (Squeeze) (Iandola et al., 2017) and MobileNet-v2 (Mobile) (Sandler et al.,
2018) as our target models. All the models are available in the Torchvision4, except for PNA and
SENet which are obtained from Github5. We also perform our attack on a real-world recognition
system in Appendix Sec. A.6.

4https://github.com/pytorch/vision/tree/master/torchvision/models
5https://github.com/Cadene/pretrained-models.pytorch
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Dataset. To make our method more convincing and avoid cherry-picking, we choose 10,000 images
(each category contains about 10 images which are resized to 299 × 299 × 3 beforehand) from the
ImageNet validation set (Russakovsky et al., 2015) which are classified correctly by all ten networks
we consider. We also discuss our methods on other classification tasks in Appendix Sec. A.5.

Parameters. In our experiments, we use l∞-norm to measure the perceptibility of adversarial
noises, unless specified, the maximum perturbation ε is set to 16 (results with a smaller ε can be
found in Appendix Sec. A.7). For our HIT, the size of Gaussian kernel G is 17 × 17 (i.e. k = 4),
weight factor λ is set to 1.0 (the discussion about λ is shown in Appendix Sec. A.3), and density
of proto-pattern is set to 12. For tile-size, unless specified, we set to 50 × 50, i.e., tile-scheme is
6× 6. For no-box methods, we follow the same setting as (Li et al., 2020a). For black-box methods,
the iteration T is set to 10 and the step size α is 1.6. For MI-FGSM (Dong et al., 2018), we adopt
the default decay factor µ = 1.0. For DI2-FGSM (Xie et al., 2019b), we set the transformation
probability to 0.7. For TI-FGSM (Dong et al., 2019a), the length of Gaussian kernel is 15. For
PI-FGSM (Gao et al., 2020a), the length of project kernel is 3, the amplification factor β and project
factor γ are 10.0 and 16.0, respectively. Different from PI-FGSM, β and γ for PI-MI-DI2-FGSM
and PI-TI-DI2-FGSM (Gao et al., 2020a) is 2.5 and 2.0.
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Figure 5: The average attack success rates (%) of ten models w.r.t the strength of semi-random noise
Nsr and random noise Nr (left), tile-schemes (middle) and densities (right). “blur” denotes using
Gaussian kernel to smooth the image (constrained by maximum perturbation ε).

4.1 ABLATION STUDY

In this section, we conduct a series of ablation study for our HIT. Specifically, we investigate the
effectiveness of regionally homogeneous pattern, repeating pattern and dense pattern in Sec. 4.1.1,
Sec. 4.1.2 and Sec. 4.1.3, respectively. Besides, we also analyze the effect of perturbation size on
the performance in Sec. 4.1.4. For the result of HIT without reducing HFC beforehand is shown in
Appendix Tab. A.12.

4.1.1 THE EFFECT OF REGIONALLY HOMOGENEOUS PATTERN

To the best of our knowledge, regionally homogeneous perturbations (Dong et al., 2019a; Gao
et al., 2020a;b; Li et al., 2020b) are mostly based on the gradient to craft, thereby training is neces-
sary. However, whether arbitrary noise can benefit from the homogeneous property remains unclear.
Therefore, we compare random noises with semi-random ones to check it:

Random noise: For a given random location pair set L, we callNr ∈ RH×W×C random noise if it
meets the following formula:

Nr[i, j, c] =

{
ε · random(−1, 1), (i, j, c) ∈ L
0, else

(3)

Semi-random noise: Different from the random noise, semi-random noise has some regularity.
Let S denotes a semi-random location pair set, and here we take H-dimension random noise as an
example. Nsr can be written as:

Nsr[i, :, :] =

{
ε · random(−1, 1), i ∈ S
0, else

(4)
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where random(-1, 1) returns 1 or -1 randomly. As depicted in Fig. 5, the success rates ofNsr are con-
sistently higher than those of Nr. As the number of perturbed pixels increases, the margin between
them also increases. This demonstrates that training-free noise can also benefit from regionally ho-
mogeneous property. To exploit this conclusion further, in Fig. 4, we extend semi-random noise to
other more complex “continuous” patterns, e.g., circle.
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Figure 6: The attack success rates (%) of circle patches (left), square patches (middle) and rhom-
buses patches (right) w.r.t maximum perturbation ε.

4.1.2 THE EFFECT OF REPEATING PATTERN

In this section, we show the experimental results of our proposed HIT w.r.t different tile-sizes. Here
we consider seven different tile-schemes including 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6 and
7× 7, and the tile-sizes thereby are 300× 300, 150× 150, 100× 100, 75× 75, 60× 60, 50× 50,
42 × 42, respectively. We will resize back to 299 × 299 × 3 to match the size of raw images. The
visualizations of these patches can be found in Appendix Sec. A.11.

In Fig. 5, we report the average attack success rates of ten models. The success rates increase very
quickly at first and then keep stable after 4× 4 tile-scheme. If we continue to increase the tile-size,
the attack success rates may go down. The main reason might be that the distortion caused by the
resizing operation. It indirectly blurs resultant tiled adversarial patches, thus reducing the available
HFC. Compared to the other two geometric patterns, we find that circle patches always perform the
best. For example, the success rate is up to 88.67% when tile-size is 6× 6. This result demonstrates
that the attack ability of training-free perturbations can benefit from repeating property.

4.1.3 THE EFFECT OF DENSE PATTERN

To validate the effect of dense pattern, we analyze the average attack success rates w.r.t densities.
Since the trends of different patterns are similar, we only discuss the results of circle patch whose
tile-scheme is 6 × 6. Here we control the density from 1 to 12. For example, “2” denotes only two
circles in the proto-pattern, and more visualizations can be found in Appendix Sec. A.11.

As shown in Fig. 5, the success rates increase rapidly at the beginning, then remain stable after
the density exceeds 8, and reach the peak at 12. This experiment demonstrates the effectiveness of
dense pattern. Therefore, we set the default density of each proto-pattern to 12 in our paper.

4.1.4 THE SIZE OF PERTURBATION

In this section, we study the influence of the maximum perturbation ε on the performance of our HIT.
The result of Fig. 6 depicts the growth trends of each model under different adversarial patches. No
matter what the adversarial patch is, the performance proliferates at first, then remains stable after
ε exceeds 16 for most models. Besides, the circle patch (curve-like) always performs best while
the performance of the other two adversarial patches (straight-like) is similar. For example, when
ε = 16 and the target model is VGG19, the attack success rate of circles patch is 94.75% while the
square patch and rhombuses patch ones are 81.52% and 83.63%, respectively. This demonstrates
that DNNs are more vulnerable to curve-like perturbations than straight-like ones (we also analyze
the reasons for this in Appendix Sec. A.10).
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Another observation from this result is that our HIT can serve as a universal attack, although not in
a strict sense. As demonstrated in Fig. 6, when ε = 10 which is the common constraint for universal
adversarial perturbations (Mopuri et al., 2017; Moosavi-Dezfooli et al., 2017; Mopuri et al., 2018;
Reddy Mopuri et al., 2018; Liu et al., 2019; Hashemi et al., 2020), our HIT with circle patch can
achieve a success rate of 63.23% on average. Notably, it can be up to 89.74% on Squeeze.

Table 1: The comparison of attack success rates (%) between state-of-the-art no-box attacks and
ours with the maximum perturbation ε = 25.5 (Sup. means supervised mechanism).

Attack VGG19 Inc-v3 ResNet DenseNet WRN SENet PNA Shuffle Squeeze Mobile Avg.

Naı̈ve‡ w/o Sup. (Li et al., 2020a) 54.08 36.06 39.36 43.52 41.20 34.46 26.86 - - 62.24 42.22
Jigsaw w/o Sup. (Li et al., 2020a) 68.46 49.72 53.76 57.62 48.76 40.94 37.68 - - 74.76 53.96

Rotation w/o Sup. (Li et al., 2020a) 68.86 51.86 52.60 58.74 49.28 41.80 40.06 - - 74.00 54.65

Naı̈ve† w/ Sup. (Li et al., 2020a) 23.80 19.14 16.24 21.06 15.84 13.00 13.04 - - 27.56 18.71
Prototypical w/ Sup. (Li et al., 2020a) 80.22 63.54 62.08 70.84 62.72 55.44 51.42 - - 82.22 66.06
Prototypical∗ w/ Sup. (Li et al., 2020a) 81.26 66.32 65.28 73.94 66.86 57.64 54.98 - - 83.66 68.74

Beyonder w/ Sup. (Li et al., 2020a) 75.04 48.88 69.40 72.88 66.06 56.22 48.20 - - 72.98 63.71

HIT w/ Square (Ours) 95.94 91.67 89.58 94.09 91.72 87.67 84.85 98.40 98.86 97.71 93.05
HIT w/ Rhombus (Ours) 96.77 91.92 91.51 96.54 88.83 86.86 78.24 99.27 99.18 99.40 92.85

HIT w/ Circle (Ours) 99.30 98.92 98.55 98.69 96.53 93.61 97.02 99.56 99.63 99.52 98.13

Table 2: The comparison of attack success rates (%) on normally trained models between black-
box attacks (“*” denotes white-box attack) and our no-box attacks with the maximum perturbation
ε = 16.0.

Model Attack VGG19 Inc-v3 ResNet Dense WRN SENet PNA Squeeze Shuffle Mobile Avg.

VGG19

MI-FGSM 99.96* 23.92 30.82 54.54 28.94 36.81 32.86 69.87 47.15 58.50 42.60
DI2-FGSM 99.96* 14.29 27.80 47.95 24.53 32.93 23.19 40.08 27.90 53.01 32.41
PI-FGSM 99.95* 36.22 36.46 55.39 39.40 35.28 50.84 81.24 60.26 69.89 51.66

PI-MI-DI2-FGSM 99.96* 47.23 59.01 80.39 57.05 65.17 55.25 83.20 63.92 83.49 66.08

Inc-v3

MI-FGSM 42.58 99.92* 33.95 42.30 33.43 27.57 41.93 68.34 51.22 53.05 43.82
DI2-FGSM 33.91 99.33* 24.34 32.69 21.83 19.18 30.39 35.90 29.35 34.87 29.16
PI-FGSM 51.77 99.91* 35.56 50.44 38.67 31.78 52.07 78.34 58.96 62.53 51.12

PI-MI-DI2-FGSM 68.27 99.76* 56.64 70.09 57.53 51.52 61.86 80.76 67.26 74.01 65.33

ResNet

MI-FGSM 63.75 41.71 99.98* 72.93 85.27 49.99 46.56 75.86 65.63 72.40 63.79
DI2-FGSM 76.90 41.22 99.95* 82.16 88.35 60.23 44.73 58.88 60.24 76.22 65.44
PI-FGSM 64.88 48.16 99.98* 68.92 79.49 45.23 61.37 82.94 71.18 76.32 66.50

PI-MI-DI2-FGSM 92.71 77.90 99.99* 96.04 97.80 86.09 78.00 90.75 86.76 93.51 88.84

Dense

MI-FGSM 76.89 46.00 69.86 99.98* 67.76 53.05 48.69 78.55 69.63 78.42 65.43
DI2-FGSM 81.14 35.96 69.39 99.98* 64.64 48.53 40.03 60.50 55.68 73.03 58.77
PI-FGSM 74.55 52.09 61.22 99.98* 63.12 49.84 60.09 85.79 74.74 82.37 67.09

PI-MI-DI2-FGSM 94.46 74.76 90.88 99.99* 89.42 80.99 73.86 91.00 85.34 93.93 86.07

-
HIT w/ Square (Ours) 81.52 59.84 58.75 71.13 64.13 55.51 53.71 93.78 90.04 89.51 71.79

HIT w/ Rhombus (Ours) 83.63 61.69 65.12 77.03 62.32 54.58 49.80 95.10 94.76 96.20 74.02
HIT w/ Circle (Ours) 94.75 90.37 87.62 88.81 79.26 70.31 82.12 98.31 97.34 97.81 88.67

4.2 COMPARISON OF HIT WITH NO-BOX ATTACKS

In this section, we compare the performance of our no-box HIT with state-of-the-art no-box at-
tacks (Li et al., 2020a). Note that Li et al. (2020a) need to pay 15,000 iterations at most to train a
substitute model, and then runs extra 200 iterations baseline attacks and 100 iterations ILA (Huang
et al., 2019), which is extremely time-consuming. Significantly different from Li et al. (2020a), our
HIT is training-free which does not require any auxiliary images to train a substitute model, thus
achieving real-time attack.

The experimental results are reported in Tab. 1. A first glance shows that our HIT outperforms Li
et al. (2020a) by a large margin. No matter what the adversarial patches are, our HIT can consistently
achieve a success rate of over 92% on average. By contrast, the best performance of Li et al. (2020a),
i.e., Prototypical∗ w/ Sup, is only 68.74% on average. Notably, our HIT with circle patch remarkably
outperforms Li et al. (2020a) by 29.39% on average and 42.04% at most when attacking PNA.

4.3 COMPARISON OF HIT WITH BLACK-BOX ATTACKS

In this section, we compare our no-box HIT with mainstream transfer-based attacks. For MI-FGSM,
DI2-FGSM, PI-FGSM and their extensions PI-MI-DI2-FGSM, we utilize VGG19, Inc-v3, ResNet

8



Under review as a conference paper at ICLR 2022

and Dense to iteratively (ten forward & backward propagation) craft adversarial examples and use
them to attack the rest of black-box models. As for our proposed HIT, we do not need any substitute
model or training process. The results are summarized in Tab. 2, where the models in the leftmost
column are substitute models, and the bottom block shows the results of our HIT.

As demonstrated in Tab. 2, our HIT is even on par with state-of-the-art PI-MI-DI2-FGSM. Specifi-
cally, on average, the best performance of PI-MI-DI2-FGSM is 88.84%, and our HIT based on circle
patch can get up to 88.67%. However, the transferability of adversarial examples largely depends
on the substitute model. For example, when adversarial examples are crafted via Inc-v3, the per-
formance of PI-MI-DI2-FGSM is limited and our HIT can remarkably outperform it by 23.34%
on average. Besides, when the target model is in lightweight models, e.g., Shuffle, our method
consistently outperforms these mainstream transfer-based attacks by a large margin.

Table 3: The comparison of attack success rates (%) on defense models between black-box attacks
(adversarial examples are crafted via an ensemble of VGG19, Inc-v3, ResNet and Dense) and our
no-box attacks with the maximum perturbation ε = 16.0.

Model Attack Inc-v3ens3 Inc-v3ens4 IncResens Res152B Res152D ResNeXtDA Avg.

- Raw 2.68 3.11 0.84 14.52 11.50 8.72 6.90

VGG19, Inc-v3,
ResNet, Dense

TI-FGSM 22.69 22.62 16.35 16.77 13.09 11.16 17.11
DI2-FGSM 18.38 15.90 9.30 15.42 12.13 9.45 13.43
PI-FGSM 34.21 33.66 22.29 17.25 13.62 11.19 22.04

PI-TI-DI2-FGSM 70.04 69.43 56.37 18.47 14.58 12.33 40.20

-
HIT w/ Square (Ours) 40.54 38.74 34.36 20.07 15.97 13.52 27.20

HIT w/ Rhombus (Ours) 47.93 42.06 36.02 20.60 16.23 13.41 29.38
HIT w/ Circle (Ours) 61.13 61.86 47.72 20.68 16.45 13.64 36.91

Since adversarial training technique (Madry et al., 2018b; Tramèr et al., 2018; Awasthi et al., 2021)
can effectively defend against adversarial examples, we conduct an extra experiment on several de-
fense models to demonstrate the effectiveness of our method. The additional target models includ-
ing three ensemble adversarial training models (EAT) (Tramèr et al., 2018): Inc-v3ens3, Inc-v3ens4

and IncRes-v2ens, and three feature denoising models (FD) (Xie et al., 2019a): ResNet152 Base-
line (Res152B), ResNet152 Denoise (Res152D) and ResNeXt101 DenoiseAll (ResNeXtDA). As
demonstrated in previous works(Guo et al., 2019; Sharma et al., 2019), low-frequency perturbations
are more effective for attacking defense models. Motivated by it, we change the tile-schemes to
smaller ones (i.e., 2 × 2 for EAT and 1 × 1 for FD) and other parameters stay the same (see more
details in Appendix Sec. A.12). As observed in Tab. 3, our HIT is effective even for defense mod-
els. Notably, HIT based on circle patch can successfully attack Inc-v3ens4 by 61.86%. Besides,
for more robust FD, even crafting adversarial examples via an ensemble of VGG19, Inc-v3, ResNet
and Dense, transfer-based PI-TI-DI2-FGSM is still inferior to our HIT. This experimental result re-
veals that current defenses have not achieved real security, which is even vulnerable to training-free
adversarial examples.

5 CONCLUSION

In this paper, we rethink the classification logic of deep neural networks with respect to adversarial
examples. We observe that HFC domains in low-level features and plays a crucial role in clas-
sification. Besides, we demonstrate that DNNs are vulnerable to training-free perturbations with
regionally homogeneous, repeating, dense property through empirically and experimentally anal-
ysis. Motivated by these observations, we propose a novel Hybrid Image Transformation (HIT)
attack method by combining the LFC of raw images with the HFC of our well-designed adversarial
patches to destroy the useful features and add strong irrelevant noisy ones. Extensive experiments
on the ImageNet dataset demonstrate the effectiveness of the proposed method. Surprisingly, our
simple method outperforms existing no-box attacks by a significant margin and is even on par with
transfer-based black-box attacks that require the substitute model to craft adversarial examples.

In another aspect, since most models are vulnerable to our method, it implies that our adversarial
examples may capture the common “blind spots” of them. Therefore, a defense can improve the
robustness and stability by covering these “blind spots”, i.e., applying data augmentation technique
using our adversarial examples.
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A APPENDIX

A.1 SETUP

Networks. Here we consider ten well-known classification models: VGG19 Simonyan & Zisser-
man (2015), Inception-v3 (Inc-v3) Szegedy et al. (2016), ResNet-152 (ResNet) He et al. (2016),
DenseNet-121 (Dense) Huang et al. (2017), WideResNet (WRN) Zagoruyko & Komodakis (2016),
SENet Hu et al. (2018), PNASNet (PNA) Liu et al. (2018), ShuffleNet-v2 (Shuffle) Ma et al. (2018),
SqueezeNet (Squeeze) Iandola et al. (2017) and MobileNet-v2 (Mobile) Sandler et al. (2018) as our
target models.

Dataset. To make our method more convincing and avoid cherry-picking, we choose 10,000 im-
ages (each category contains about 10 images) from the ImageNet validation set Russakovsky et al.
(2015) which are classified correctly by all ten networks we consider. Besides, all images are resized
to 299× 299× 3 beforehand.

Parameters. In our experiments, we use l∞-norm to measure the perceptibility of adversarial
noises, the maximum perturbation ε is set to 16. For our HIT, the size of Gaussian kernel G is
17× 17 (i.e. k = 4), weight factor λ is set to 1.0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Time

Equal   

LFC    
dominant

HFC    
dominant

Figure 7: We compare the average responses of HFC with LFC for each feature map. “HFC domi-
nant” means the average responds of HFC is higher than LFC, and “LFC dominant” is vice versa.

A.2 QUANTITATIVE ANALYSIS ABOUT HFC AND LFC

To quantitatively analyze whether HFC or LFC is dominant in the feature map of shallow layer, we
conducted this experiment. Considering that the size of each shallow-layer feature map in Fig. 2(b)
is 147, we first resize the Fig. 2(a) (299× 299) to 147× 147, and denote the resultant image by xr.
Then we get the xH

r (HFC of xr) by:

xH
r = xr − xr ∗G. (5)

To quantitatively compare the response of HFC and LFC, we calculate the average response of
each feature map φ(x) in low-frequency regions versus that in the other HFC regions. To that end,
we generate two masks to distinguish the two regions. More specific, the mask of high-frequency
regionsMH can be written as:

MH
i,j =

{
1, |xH

r(i,j)| > τ

0, else
, (6)

where τ = 20 is the pre-set threshold which applied to filter out low response. After getting the
MH , the mask of LFCML can be easy derivated:

ML = 1−MH . (7)
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Therefore, the average response of HFC aH and the average response of LFC aL can be expressed
as:

aH =

∑
i,jM

H � φ(x)∑
i,jM

H
, (8)

aL =

∑
i,jM

L � φ(x)∑
i,jM

L
. (9)

In this paper, if a feature map meets aH > aL, we call it “HFC dominant”, otherwise we call it
“LFC dominant”. As demonstrate in Fig. 7, most feature maps are focus on HFC, and the “HFC
dominant” to “LFC dominant” ratio is 3:1.

A.3 THE EFFECT OF WEIGHT FACTOR λ

In this section, we discuss the effect of different weight factors λ on the experimental results. We
tune λ from 0.1 to 10, and the results are shown in Fig. 8. When λ ≤ 1, the attack success rate
increases rapidly at the beginning and then remains stable. However, further increasing λ from 1 to
10 does not improve the performance. Actually, the success rates keep stable with a slight drop.

Apparently, a larger λ leads to more perturbations (i.e., increase the average perturbation of all
pixels), and our reported results are a little inconsistent with linear assumption (Goodfellow et al.,
2015). It probably because our HIT is completely independent of any prior information (e.g. the
gradient of any model or data distribution). So it is not the larger the noise is, the farther the deviation
from the true label will be. Besides, we notice that the activation functions of these victim’s models
are all Relu, which may be another reason for this phenomenon. More specifically, Relu is defined
as

Relu(z) =

{
0, z < 0.

z, else.
(10)

where z is the intermediate output before activation layer. If the intermediate adversarial perturba-
tion is large enough, i.e., δ′ ≤ −z, then Relu(z+ δ′) will return 0. But for a misclassification label
yadv 6= y, positive activation which is different from the original z may be more helpful than 0.
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Figure 8: The average attack success rates (%) of different adversarial patches against NTs w.r.t
weight factors.

A.4 QUALITATIVE COMPARISON FOR ADVERSARIAL EXAMPLES

To better reflect the advantages of our approach, in this section we compare the visual quality of the
generated adversarial examples. Specifically, we consider state-of-the-art black-box PI-FGSM (Gao
et al., 2020a) and no-box attack (Li et al., 2020a) as our competitor. As depicted in Fig. 9, both
PI-FGSM (Gao et al., 2020a) and no-box attack (Li et al., 2020a) will cause more perceptible dis-
tortions. In contrast, the adversarial perturbation crafted by our HIT is much more imperceptible.

A.5 ATTACK OTHER CLASSIFICATION TASKS

To highlight the practical property of our HIT, in this section we apply our HIT for other clas-
sification tasks. Specifically, we consider three well-known fine-grained classification including
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Raw images

Li et al. Prototypical w/ Sup.

PI-FGSM

Ours HIT w/ 6×6 Circle

Figure 9: Qualitative comparison for adversarial examples crafted by different methods. The maxi-
mum perturbation ε is 16.

CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause et al., 2013) and FGVC Aircraft (Maji
et al., 2013) and the victim model is trained via DCL (backbone: Res-50) (Chen et al., 2019). The
resolution of inputs is 448× 448. Therefore, we set the ”tile size = 448 / tile scheme”. For example,
if the tile-scheme is 4 × 4, then the tile-size is 112. To ensure our defaulting setting (i.e., λ and
tile-scheme) for HIT is applicable, we conduct two experiments in the following.

Table 4: Average attack success rates of HIT (w/ Circle) w.r.t tile-schemes. The maximum pertur-
bation ε = 16.

Attacks CUB-200-2011 Standford Cars FGVC aircraft

1×1 30.07 28.46 43.81
2×2 38.87 54.11 55.47
3×3 51.22 81.08 73.16
4×4 55.19 80.18 74.04
5×5 59.23 84.94 70.95
6×6 67.30 88.25 76.71
7×7 70.19 88.46 74.69

Discussion on tile scheme. We first report the average attack success rates (%) of our HIT w/
Circle w.r.t tile-scheme in Tab. 4. From the result, we can observe that our HIT is also effective for
attacking other datasets. Notably, our HIT can fool DCL with about 90% success rate on Stanford
Cars dataset. Besides, a relatively smaller tile-size is also helpful in improving the success rate of
the attack, which is consistent with the conjecture given in Sec. 3.2.

Discussion on λ. We then report the average attack success rate (%) of our HIT w/ Circle w.r.t λ in
Tab. 5. Although set λ = 1.0 is not optimal, the gap between the best results and the results of is
very small. Therefore, our default setting for HIT is still applicable.

A.6 ATTACK REAL-WORLD RECOGNITION SYSTEM
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Table 5: Average attack success rates of HIT (w/ Circle) w.r.t λ. The maximum perturbation ε = 16.
λ CUB-200-2011 Standford Cars FGVC aircraft

0.2 51.90 63.72 37.92
0.4 67.18 83.92 64.03
0.6 68.31 87.55 71.96
0.8 67.97 88.36 75.34
1.0 67.26 88.25 76.73
1.2 66.54 87.99 76.77
1.4 66.13 87.66 76.41
1.6 65.88 87.28 76.28
1.8 65.46 87.06 76.08
2.0 65.22 86.93 75.76

Clean image Adversarial example

Figure 10: The results for attack Google Cloud Vision API.
The maximum perturbation ε is 16.

To further demonstrate the practical
property of our HIT, in this section we
apply our HIT (w/ Circle) to attack
a real-world recognition system, i.e.,
Google Cloud Vision API6. Differ-
ent from existing works (Chen et al.,
2017; Brendel et al., 2017) which
need a large number of queries for
optimization, we directly apply our
HIT with the default setting (i.e., tile-
scheme is 6×6 and λ = 1.0). As illus-
trated in Fig. 10, our no-box HIT with
ε = 16 can effectively change top-k
labels. For example, the top-5 label
of “fish” is “Fish”, “Fin”, “Seafood”,
“Ray-finned fish” and “Marine biol-
ogy”, while our adversarial example is
“Reptile”,“Turtle”, “Terrestrial Animal”, “Pattern” and “Art”. Notably, there is no overlap on top-k
labels between clean image and our adversarial example, which also demonstrate the effectiveness
of our no-box HIT.

A.7 RESULTS FOR SMALLER PERTURBATION

In this experiment, we report the average success rates (%) between state-of-the-art black-box at-
tacks (further add Ghost Network algorithm (Li et al., 2020c) as our competitor) and our proposed
no-box attack with a smaller perturbation ε = 8.

As demonstrated in Tab. 6, our proposed methods are still competitive to mainstream transfer-based
black-box attacks, even though they combine many effective techniques. Remarkably, our no-box
attack can significantly outperform Ghost Networks (+MI-FGSM). Although Ghost Networks (+PI-
MI-DI-FGSM) is much more powerful, our no-box attack can surpass it in some cases. For example,
when fooling Shuffle, our HIT (w/ Circle) can outperform Ghost Networks (+PI-MI-DI-FGSM) by
about 8%.

A.8 RAW IMAGE FOR ATTACK

To highlight the effectiveness of our design for adversarial patches, here we conduct the experiment
where raw images (shown in Fig. 11) serve as “adversarial patch”. More specially, we utilize the
HFC of these raw images (like Din et al.) to manipulate adversarial examples. However, even the
HFC of texture-rich raw images (e.g., “Grifola frondosa” and “Capitulum”) do not achieve a good
result. As demonstrated in Tab. 8, the average attack success rates are all less than 40%. By contrast,
our well-designed adversarial patches can significantly achieve a success rate of nearly 90%, which
demonstrates the effectiveness of our design.

6https://cloud.google.com/vision/docs/drag-and-drop
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Robin Grifola frondosaNorfolk terrier Capitulum

Figure 11: We randomly selected four raw images from ImageNet dataset Russakovsky et al. (2015)
to replace our adversarial patches, then test the attack performance by our HIT.

Table 6: The comparison of attack success rates (%) on normally trained models between black-box
attacks and our no-box attacks with maximum perturbation ε = 8. For black-box attacks, adversarial
examples are crafted via Inc-v3.

Attacks VGG19 ResNet DenseNet WRN SENet PNA Shuffle Squeeze Mobile AVG.

MI-FGSM 21.26 15.63 20.47 14.45 11.58 23.36 24.13 32.61 25.64 21.01
Ghost Networks (+MI-FGSM) 27.12 17.45 22.31 14.92 13.43 28.63 30.08 40.80 33.67 25.38

DI-FGSM 18.41 11.24 16.44 10.19 8.28 17.59 15.03 18.40 18.20 14.86
PI-FGSM 24.12 14.98 22.91 15.38 12.21 27.32 25.93 39.20 27.29 23.26

PI-MI-DI2-FGSM 40.88 31.02 41.34 29.70 25.56 38.46 36.79 46.70 42.38 36.98
Ghost Networks (+PI-MI-DI2-FGSM) 63.56 43.59 55.21 40.91 40.33 54.73 63.48 81.98 73.46 57.47

HIT w/ 6× 6 Circle 37.64 36.21 40.80 30.82 21.36 37.63 71.45 79.34 69.90 47.24
HIT w/ 6× 6 Square 13.40 17.50 25.85 21.99 13.79 18.31 53.03 61.61 50.88 30.71

HIT w/ 6× 6 Rhombus 17.24 19.95 27.65 22.00 12.85 18.91 58.84 63.49 57.90 33.20

A.9 DISCUSSION ON TARGETED ATTACK

(a) Adversarial Patch (b) Label ID: 794 (“shower curtain”)

Figure 12: We show (a) our adversarial patch and (b) some
images which classified as shower curtain from ImageNet
dataset. The bottom row is their HFC extracted by Eq. 1.

Although we do not explicitly force
the resultant adversarial examples to
be misclassified as a specific targeted
label, we observe that our HIT tends to
implement a targeted attack due to the
frequency domain operation and clas-
sification logic of DNNs. In Tab. 7,
we report the top-5 prediction labels
of our adversarial examples, which are
crafted by 6× 6 concentric circle pat-
tern. A first glance shows that al-
most all models tend to misclassify ad-
versarial examples generated by our
HIT as several specific labels, e.g., 794
(“shower curtain”). Furthermore, this
phenomenon is more obvious for Mo-
bile and ResNet whose ratio is up to
47.69% and 75.75% respectively.

To better understand this phenomenon, we show several clean images whose labels are “shower cur-
tain” from the ImageNet dataset and our adversarial patch in Fig. 12. We observe that the HFC of
“shower curtain” is somehow aligned with our adversarial patch, i.e., they all show similar certain
repetitive circles. We suspect this phenomenon might be because our proposed perturbation domi-
nates the overall features of the image, and instead, the original features of the image become noise.
Since existing algorithms are not effective yet and simply replacing our adversarial patch with a
clean targeted image does not achieve an effective targeted attack (as demonstrated in Sec. A.8), we
will further study the selection and generation of adversarial patches, e.g., fusing the shallow texture
information of targeted distribution to guide the resultant adversarial examples towards the targeted
category.
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Table 7: The top-5 label IDs that appear in classification results (range from 0 to 999) after HIT
attack (tile-size is 50 × 50, proto-pattern is concentric circle). The top row is victim’s models,
ratio (%) represents the proportion of a specific prediction label to the total number of misclassified
adversarial examples.

VGG19 Inc-v3 ResNet DenseNet WRN SENet PNA Shuffle Squeeze Mobile

Label Ratio Label Ratio Label Ratio Label Ratio Label Ratio Label Ratio Ratio Label Ratio Label Ratio Label Ratio Label

Top-1 815 27.86 794 34.02 794 75.75 84 38.97 815 27.04 794 13.64 794 33.83 879 20.55 455 35.11 794 47.69
Top-2 646 25.21 862 16.07 109 3.31 794 17.34 549 9.90 109 8.85 862 19.70 893 12.42 794 25.26 109 19.73
Top-3 506 16.50 750 8.23 854 3.06 884 4.63 721 5.83 721 8.65 549 5.93 721 9.92 109 9.11 885 11.57
Top-4 794 10.75 911 4.78 646 2.56 862 4.30 862 3.38 750 5.25 815 3.97 794 8.37 753 7.05 884 4.21
Top-5 868 3.15 109 4.65 750 2.11 506 3.46 921 3.37 549 4.15 700 2.95 109 7.20 854 4.42 854 3.24

Table 8: The comparison of attack success rates (%) w.r.t raw images
Attack VGG19 Inc-v3 ResNet Dense WRN SENet PNA Shuffle Squeeze Mobile Avg.

HIT w/ Robin 27.37 19.78 16.62 18.72 17.07 11.73 25.70 37.34 48.77 33.47 25.66
HIT w/ Norfolk terrier 33.01 28.06 21.87 27.94 24.88 19.39 34.57 42.70 59.34 39.45 33.12

HIT w/ Grifola frondosa 37.93 29.25 25.38 33.02 28.36 19.78 41.77 46.10 61.30 43.17 36.61
HIT w/ Capitulum 46.54 26.82 29.00 37.18 30.49 30.14 41.77 41.00 55.78 51.36 39.01

A.10 WHY CIRCLE PATTERN IS USUALLY BETTER?

Here we attempt to provide an insight into the performance gap between Circle and the other two
patterns by analyzing the intermediate feature response. Without loss of generality, we set the layer
index to “depth of each DNN” / 2 and report the average cosine similarity of the features between
10,000 raw images and their adversarial examples. The result from Tab. 9 shows that Circle consis-
tently leads to lower cosine similarity than other patterns. Consequently, the features that feed to the
deep layer are more featureless, thus leading to misclassification.

A.11 VISUALIZATION OF OUR ADVERSARIAL PATCHES

In this section, we first visualize the concentric circle with respect to densities in Fig. 13. Here we
control the density from 1 to 12, e.g., “2” denotes only two circles in the proto-pattern. With the
increase of density, the distance between any two circles will also be reduced.

Then we list our adversarial patches with respect to tile-schemes in Fig. 14. More specifically, we
first crop the 600 × 600 × 3 proto-patterns to 300 × 300 × 3 adversarial patches, then resize them
into different tile-sizes (e.g., 150 × 150 × 3) and tile them to 300 × 300 × 3, finally resize back to
299×299×3 to match the size of raw images. As we can see, if we decrease the tile-size, distortion
is inevitable.

A.12 THE EFFECT OF REPEATING PATTERN FOR DEFENSES
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Tile-schemes
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Figure 16: The average attack success rates (%) of different
adversarial patches against EAT (left) and FD (right) w.r.t
tile-schemes.

In this section, we further con-
sider six additional well-known
defense models, which including
three ensemble adversarial train-
ing models (EAT) (Tramèr et al.,
2018): Inc-v3ens3, Inc-v3ens4

and IncRes-v2ens,7 and three fea-
ture denoising models (FD) (Xie
et al., 2019a): ResNet152 Baseline
(Res152B), ResNet152 Denoise
(Res152D), ResNeXt101 De-
noiseAll (ResNeXtDA),8 to discuss
the effect of repeating pattern.

7https://github.com/tensorflow/models/tree/archive/research/adv_
imagenet_models

8https://github.com/facebookresearch/ImageNet-Adversarial-Training
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Table 9: The cosine similarity comparison for different patterns.
Model Attack VGG19 Inc-v3 ResNet Dense WRN SENet PNA Squeeze Shuffle Mobile Avg.

-
HIT w/ Square (Ours) 0.6215 0.7419 0.7638 0.8090 0.7599 0.5838 0.7437 0.6940 0.6704 0.4838 0.6872

HIT w/ Rhombus (Ours) 0.6218 0.7458 0.7448 0.7853 0.7280 0.6258 0.7672 0.6738 0.6461 0.4005 0.6746
HIT w/ Circle (Ours) 0.5472 0.6685 0.7306 0.7779 0.7223 0.5613 0.6747 0.6643 0.6062 0.3617 0.6314

Density:7 Density:8 Density:9 Density:10 Density:11 Density:12

Density:1 Density:2 Density:3 Density:4 Density:5 Density:6

Figure 13: We visualize our proto-patterns w.r.t densities. Here we take concentric circles as an
example.

Generally, a smaller tile-scheme can generate a more perceptible perturbation. As shown in Fig. 15,
the area of each regionally homogeneous (i.e. continues) line in adversarial examples crafted by
1× 1 patches is bigger than 6× 6 ones. Different from the trends on NTs, smaller tile-schemes are
more effective for attacking defense models. As demonstrated in Tab. 16, when attacking EAT, 2×2
adversarial patches perform best, and further increasing the tile-scheme will significantly degrade
performance, e.g., 7 × 7 rhombuses only successfully attack EAT by 6.61% on average. The trend
of FD is similar to that of EAT, except that 1×1 adversarial patches work best. The reason might be
that thin regionally homogeneous lines are more easily to filter out by the denoising block of (Xie
et al., 2019a). Therefore, in our paper, we use 2× 2 and 1× 1 adversarial patches to attack EAT and
FD, respectively.

Table 10: Average attack success rates of HIT (w/ Circle) w.r.t tile-schemes. “w/ LF” means adding
our perturbations on LFC (i.e., reducing the HFC beforehand) and “w/o LF” means adding pertur-
bations on benign samples. The maximum perturbation ε = 16.0.

Vgg19 Inc-v3 ResNet DenseNet WRN SENet PNA Shuffle Squeeze Mobile Avg.

1x1 w/o LF 68.48 52.17 49.82 58.79 49.70 41.67 73.00 63.34 72.80 59.33 58.91
1x1 w/ LF 73.95 59.94 54.39 64.38 56.33 50.16 73.53 68.28 80.15 66.52 64.76

2x2 w/o LF 91.32 72.74 67.21 76.79 68.48 54.61 83.54 78.27 88.46 88.31 76.97
2x2 w/ LF 92.89 77.33 71.29 80.42 72.80 60.17 85.21 82.45 91.54 90.32 80.44

3x3 w/o LF 91.40 81.11 71.19 78.58 71.08 66.64 83.24 88.78 92.12 94.14 81.83
3x3 w/ LF 92.55 85.42 76.44 82.84 76.03 70.80 86.64 91.95 94.10 95.17 85.19

4x4 w/o LF 92.91 83.89 76.02 83.78 69.55 63.68 82.18 91.62 94.82 95.89 83.43
4x4 w/ LF 93.97 88.28 82.69 88.34 76.85 69.27 86.18 94.93 96.65 96.81 87.40

5x5 w/o LF 92.36 85.64 79.48 84.78 70.70 63.58 80.26 93.69 96.45 97.19 84.41
5x5 w/ LF 94.42 89.81 85.92 89.44 78.40 69.15 84.95 96.67 97.75 97.97 88.45

6x6 w/o LF 92.99 85.86 81.49 83.41 71.82 65.92 76.43 95.00 97.36 96.96 84.72
6x6 w/ LF 94.75 90.37 87.62 88.80 79.26 70.31 82.12 97.34 98.31 97.81 88.67
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1x1 2x2 3x3 4x4 5x5 6x6 7x7

Figure 14: We visualize our adversarial patches w.r.t tile-schemes.

Raw image Adversarial examples with 1 × 1 patches Adversarial examples with 6 × 6 patches

Figure 15: The visualization for resultant adversarial examples w.r.t tile-schemes.
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