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ABSTRACT

Kernel Point Convolution (KPConv) achieves cutting-edge performance on 3D
point cloud applications. Unfortunately, the large size of KPConv network lim-
its its usage in mobile scenarios. In addition, we observe that KPConv ignores
the kernel relationship and treats each kernel point equally when formulating
neighbor-kernel correlation via Euclidean distance. This leads to a weak represen-
tation power. To mitigate the above issues, we propose a module named Mobile
Attention Kernel Point Convolution (MAKPConv) to improve the efficiency and
quality of KPConv. MAKPConv employs a depthwise kernel to reduce resource
consumption, and re-calibrates the contribution of kernel points towards each
neighbor point via Neighbor-Kernel attention to improve representation power.
Furthermore, we capitalize Inverted Residual Bottleneck (IRB) to craft a design
space and employ a predictor-based Neural Architecture Search (NAS) approach
to automate the design of efficient 3D networks based on MAKPConv. To fully
exploit the immense design space via an accurate predictor, we identify the im-
portance of carrying feature engineering on searchable features to improve neural
architecture representations, and propose a Wide & Deep Predictor to unify dense
and sparse neural architecture representations for lower error in performance pre-
diction. Experimental evaluations show that our NAS-crafted MAKPConv net-
work uses 96% fewer parameters on 3D point cloud classification and segmenta-
tion benchmarks with better performance. Compared with state-of-the-art NAS-
crafted model SPVNAS, our NAS-crafted MAKPConv network achieves ∼1%
better mIOU with 83% fewer parameters and 78% fewer Multiply-Accumulates.

1 INTRODUCTION

3D applications such as object recognition (Wu et al., 2015), shape segmentation (Yu et al., 2004),
and indoor-scene segmentation (Armeni et al., 2016) are growing popularity thanks to the rise of 3D
acquisition technologies and the increasing amount of geometric data collected from 3D sensors.
Deep learning models are becoming one of the most common and promising ways to represent 3D
data, especially 3D point cloud data, thanks to its high performance (Zhou et al., 2020; Zhao et al.,
2020) and good efficiency (Cortinhal et al., 2020; Hu et al., 2020a).

Starting from PointNet (Qi et al., 2017a), point-based methods are becoming one of the most pop-
ular choices to extract features and make predictions for 3D input point clouds. Such an approach
typically learns an individual representation for each data point and aggregates different represen-
tations to formulate a signature for all global points, usually via end-to-end point convolutions (Xu
et al., 2018; Atzmon et al., 2018). Kernel point convolution (KPConv) (Thomas et al., 2019) is the
first work that maps the input points to the influence of kernel points via linear correlation, and then
further convolves the mapped features over the kernel points to compute weighted features.

Given a point yi, the kernel function g over neighbor points yi in KPConv carries g(yi) =∑
k<K h(yi, x̃k)@Wk to learn representations via K kernel points, with the neighbor-kernel corre-

lation h(yi, xk). However, KPConv results in very large model sizes for 3D point cloud recognition
due to inefficient local feature aggregation via point convolution over kernel weights Wk. As a re-
sult, KPConv takes up to ∼200G Multiply-Accumulates (MACs) to perform inference on a single
scene at the cost of ∼200ms on a TITAN XP GPU. Such resource consumption and inference cost
are too high for real-time execution in mobile scenarios. In addition, the above Neighbor-Kernel cor-
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relation function has a strong hidden assumption: the contribution of all kernel points are measured
equally towards the neighbor points. As a result of ignoring cross-kernel information from other
kernel points to accommodate the joint evolution of different kernel points, such an assumption fails
to enhance representation learning on important kernel points and thus yields sub-optimal results.

In this paper, we propose a novel 3D attention module, named Mobile Attention Kernel Point Con-
volution (MAKPConv), to address the above issues. MAKPConv employs two key design elements
to improve the performance and efficiency. First, we propose a depthwise kernel to split feature
extraction on point-wise features from channel-wise features during point convolution. Such design
allows significant savings in both parameter count and amount of computation, without performance
degradation. Second, we introduce Neighbor-Kernel attention (NK attention) to enable the kernel-
wise information exchange between different kernel points via learnable attention networks. The
joint evolution of all kernel points encourages representation learning on more important kernel
points while suppressing less important ones, thus benefits from a better learning adaptability of
kernel point contributions towards neighbor point distributions in KPConv networks.

Inspired by Sandler et al. (2018), we capitalize Inverted Residual Bottleneck (IRB) to encapsulate
MAKPConv module into MAKPConv block, and craft MAKPConv design space to explore a wider
range of choices in 3D models. As 3D architectures are usually high-dimensional, unstructured and
unordered, tailoring a good neural architecture to address such complex point cloud data requires
a delicate and precise evaluation protocol. This is difficult to achieve with weight-sharing one-
shot NAS (e.g., SPVNAS (Tang et al., 2020)) because co-adaptation between sub-networks may
degrade the quality of evaluation and lead to sub-optimal results. Thus, we pioneer the usage of
predictor-based Neural Architecture Search (NAS) (Wen et al., 2020) that utilizes a sample-based
mechanism to reduce evaluation noise and seek better models on 3D point cloud. Specifically,
we train a performance predictor based on exploitable samples, and probe the whole MAKPConv
design space to obtain the best NAS model based on predictive performance. We observe that
existing predictor-based methods adopt a fixed scheme (e.g., one-hot encoding) to encode different
types of features, leading to sub-optimal neural architecture representations with inaccurate priors.
This is because real-valued features (e.g., block width) and categorical features (e.g., optional NK
attention) have different priors and thus they should not be encoded in the same way. To address
this issue, we formulate dense representations for features that have quasi-linear priors on model
performance (e.g., depth, width), and formulate sparse representation for features that have non-
linear sophisticated priors on model performance (e.g., optional attention). Intuited by Cheng et al.
(2016), we devise a Wide & Deep predictor to interact dense and sparse representations such that
the combination of memorization and generalization reduces the prediction error.

By utilizing the Wide & Deep predictor to perform NAS under the MAKPConv design space, our
results on various benchmarks show promising results of the automatically discovered models in
terms of both performance and efficiency. In particular, our MAKPConv networks outperform the
original KPConv on both classification and semantic segmentation benchmarks with 92%∼93%
fewer parameters, thanks to the efficient design of MAKPConv block. Empowered by our Wide &
Deep predictor driven NAS, the NAS-crafted networks outperform the state-of-the-art NAS work,
SPVNAS, by ∼1 mIOU with 83% smaller size and 78% fewer MACs.

We highlight the contribution of this paper as follows:

• We propose Mobile Attention Kernel Point Convolution (MAKPConv) module that com-
bines depthwise kernel with Neighbor-Kernel attention to achieve efficient and high-
performing architectures dedicated to learning on 3D point clouds.

• We identify the importance of carrying feature engineering on neural architecture repre-
sentations to improve predictor-based NAS. Specifically, we encode different searchable
features with dense and/or sparse representations given their priors, and utilize a Wide &
Deep neural predictor to interact these representations for better accuracy prediction.

2 RELATED WORK

3D Point Convolution Networks. Point convolution networks (Xu et al., 2018; Hu et al., 2020a;
Lang et al., 2020) extends convolutional operations towards irregular point set grids to benefit from
learnable radial function and spherical harmonics in 3D point clouds. Later work (Thomas et al.,
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2019) performs point convolution over radius neighbors and aggregates convolved results to pro-
duce learned representation without additional intermediate operators. Recent work on point con-
volutions improves point sampling efficiency (Hu et al., 2020a; Lang et al., 2020), local feature
aggregations (Zhao et al., 2020; Lin et al., 2020), manual architecture fabrications (Hu et al., 2020b;
Lei et al., 2020a), and/or improved training protocols (Goyal et al., 2021) to seek higher model
performance and efficiency. However, these works neither simplify the structure of point networks
to improve model efficiency, nor specify an accurate neighbor-kernel correlation. Our work ex-
tends kernel point convolution (Thomas et al., 2019) and addresses the above caveats: we improve
the efficiency of local feature aggregation via a depthwise kernel on point convolution, and further
introduce Neighbor-Kernel attention to enhance the representation power of a depthwise kernel.

Predictor-based Neural Architecture Search. Predictor-based NAS (Wen et al., 2020; Dudziak
et al., 2020) is a popularized method that trains a performance predictor on limited exploitable
samples. The trained predictor serves as a surrogate model of the ground-truth performance and is
utilized to guide architecture search on the full design space. Existing achievements on predictor-
based NAS lies in improving sample efficiency (Dudziak et al., 2020) and augmenting architecture
samples (Liu et al., 2021), yet they overlook the importance of carrying feature engineering on
neural architecture features. Our work identifies the importance of improving neural architecture
representation, and assigns different priors to a wide set of searchable features and yield dense
representations and sparse representations. Our work further designs a Wide & Deep predictor to
leverage and interact these representations for better prediction quality on unseen architectures.

3 MOBILE ATTENTION KERNEL POINT CONVOLUTION

We start with the formulation of KPConv (Thomas et al., 2019). Given a center point X ∈ R3 and
its corresponding features F̂ ∈ RDin , a kernel point convolution (KPConv) function carries all N
neighbor points Xn = {x′ : ||x′ − x|| < r} ∈ RN×3 and their features F̄ ∈ RN×Din within
radius r over a set of K kernel points X̃ ∈ RK×3 and accompanying weights Wk. Specifically, a
correlation function: h : RN×Din → RK×Din maps the unordered neighbor point features F̄ to a
set of features F on kernel points. Usually, the correlation function is represented as H ∈ RN×K

and applied via F = HF̄ . The correlation function is followed by a kernel g : RK×Din → RDout

that convolves these features to obtain the aggregated output F ′. Here, Din denotes the dimension
of input, and Dout denotes the dimension of output. The original KPConv overlooks an important
opportunity to improve the efficiency by reducing the redundancy of kernel g that is due to the
simultaneously performed point-wise and channel-wise feature extractions. In addition, the original
KPConv adopts a linear function as correlation: it treats the impact of each kernel point equally
and ignores the adaptation of neighbor points towards kernel dispositions. For example, the center
kernel point usually attracts more centralized neighbor points with a higher density, and edge kernel
points perform critical jobs in recognizing boundary neighbor points with a lower density in the
radius sampling neighborhood. Thus, the original KPConv may have sub-optimal performance and
efficiency on 3D applications.
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Figure 1: MAKPConv module combines depthwise kernel with Neighbor-Kernel attention to craft
more efficient and high-performing 3D networks. Darker color indicates greater kernel contribution.
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To overcome the above limitations, we propose Mobile Attention Kernel Point Convolution (MAKP-
Conv) module as an in-place improvement of KPConv block to seek higher quality and efficiency.
Figure 1 provides an overview of MAKPConv. Specifically, we design a depthwise kernel to address
the computation cost: A depthwise kernel ĝ carries element-wise multiplication in place of matrix
multiplication between aggregated features and kernel weights, thus achieves memory and compu-
tation reduction. Considering a depthwise kernel has limited representation power, we introduce
Neighbor-Kernel attention (NK attention) as an improved correlation function ĥ to emphasize repre-
sentation learning on important depthwise kernels and fully utilize the capacity of kernel points. This
compensates for the reduced representation power: the joint evolution of kernel points via learnable
attention encourages effective representation learning on important depthwise kernels and best ex-
ploit their potential. As a result, the fusion of depthwise kernel and NK attention into MAKPConv
block has the potential to achieve high-performing yet efficient 3D models.

3.1 DEPTHWISE KERNEL

In original kernel function of KPConv, a regular kernel takes an input F ∈ RK×Din over K kernel
points and uses a weight kernel W ∈ RK×Din×Dout to simultaneously perform point-wise transfor-
mation and channel-wise transformation. A regular kernel g produces an output F ′ ∈ RDout :

F ′d = g(F,W ) =
∑
k∈K

∑
d∈Din

Fk,i ·Wk,i,d, (1)

where k is a kernel index, and d is a channel index. A regular kernel leads to K × Din × Dout

parameters andDin×Dout×K MACs during inference, and leads to large computation and memory
for the deep layers of the 3D architectures. To favor model efficiency, we design a depthwise kernel
ĝ that only performs point-wise feature extractions over input point clouds, see Figure 1(a). The
proposed depthwise kernel adopts learnable weightsW ∈ RK×Din , extracts point-wise information
on each channel, and obtains an output F ′ ∈ RDout as follows:

F ′d = ĝ(F,W ) =
∑
k∈K

Fk,d ·Wk,d, (2)

where k is a kernel index, and d is a channel index. Here, Dout = Din = D as a depthwise
kernel does not operate on channel-wise features. As a result, a depthwise kernel point convolution
only leads to K ×Din parameters and only Din ×K MACs during inference, and reduces Dout×
parameters and MACs during convolution compared to a regular kernel. The parameter saving from
a depthwise kernel is significant when Dout is large, especially in deeper layers of the network.

3.2 NEIGHBOR-KERNEL ATTENTION

Although depthwise kernel ĝ adds to model efficiency, such design lacks representation power to fit
complex point cloud structures due to inactive channel-wise communication. To compensate for the
loss, we propose Neighbor-Kernel attention (NK attention) ĥ : RN×Din → RK×Din that re-weights
the contribution of kernel points by learning a joint representation Ĥ ∈ RN×K on Neighbor-Kernel
distances (NK distance) via an attention network, see the lower part of Figure 1. Such representation,
when being applied to neighbor point features F̄ , can fully harness the capacity provided by different
kernel points, thus provide better aggregated features F for the depthwise kernel.

NK attention first adopts a linear function to transform NK distance into linear NK correlation,
and applies average pooling to obtain global neighborhood correlation. This global information
captures rich information over the statistics of the locations of neighbor points and thus gives a high-
level abstraction on the contribution of each kernel point towards the global neighborhood. Then,
the global neighborhood correlation is fed into a 2-layer attention network to enable cross-kernel
interaction and learn a good representation to quantify the contribution of kernel points, followed by
a sigmoid gating to normalize the learned representation. Unlike Squeeze-and-excitation (Hu et al.,
2018) , NK attention adopts a full-rank transformation to preserve the information needed towards
every kernel with marginal parameter cost. Finally, the learned representation is scaled to the original
NK linear correlation, followed by a bypass (i.e., addition) of the original linear NK correlation for
easier optimization. As a result, NK attention grasps a richer representation Ĥ that incorporates
the joint evolution of kernel points and encourages representation learning on important depthwise
kernels, This leads to concrete performance improvement on 3D point-cloud benchmarks.
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4 NERUAL ARCHITECTURE SEARCH WITH WIDE & DEEP PREDICTOR

In this section, we introduce a predictor-based Neural Architecture Search (NAS) driven by a novel
Wide & Deep predictor, see Figure 2. MAKPConv module provides efficient motifs for process-
ing point-wise features. To incorporate channel-wise feature extraction into MAKPConv module,
we exploit the design of Inverted Residual Bottleneck (IRB) (Sandler et al., 2018) and sandwich
MAKPConv module with 2 linear transformation to construct MAKPConv block. To design effi-
cient yet high performing 3D models, we utilize MAKPConv block as an architecture motif and
exploit predictor-based neural architectures with a wide set of features such as positional organiza-
tions, structural settings, and accessories. As formulating neural architecture representations from
these features is the key in predictor-based NAS, we identify the importance of carrying engineering
on searchable features. Thus, we assign different priors to these features to formulate dense archi-
tecture representations and sparse architecture representations, and propose a novel Wide & Deep
neural predictor to effectively interact different sets of neural architecture representations for accu-
rate predictions. Wide & Deep predictor trades-off generalization and memorization via dense deep
models and sparse wide embeddings, thus reduce prediction MSE on unseen architectures.
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Figure 2: (a) Design space based on MAKPConv blocks. (b) Wide & Deep predictor.

4.1 MAKPCONV BLOCK

Inspired by Sandler et al. (2018), we sandwich MAKPConv by 2 linear transformation layers to
derive MAKPConv block as a promising architecture motif to carry efficient and high performing
3D point cloud learning. It has a similar structure as Inverted Residual Bottleneck (IRB) and is
described by four key parameters: expansion factor E, kernel size K, output width W , and optional
choice of NK attention Atn. We follow the positional setting of MobileNetV2 to manually craft
a MAKPConv network as a hand-crafted baseline to verify its performance and efficiency. We
compare the performance and size between hand-crafted MAKPConv network and KPConv under
the native KPConv protocol in Table 1. Compared with KPConv, the hand-crafted MAKPConv
achieves on-par Overall Accuracy (OA) with at least 92% smaller size on ModelNet40, and achieves
0.4% higher mIOU with 93% smaller size on SemanticKITTI, even without NK attention. Such
advantage is attributed to the efficient depthwise kernel. With NK attention, MAKPConv yields
∼0.4% OA gain on classification and ∼0.5% mIOU gain on semantic segmentation with marginal
increase in parameter count. These results suggest that re-weighing the contribution of kernel points
via learnable attention network enhances depthwise kernels thus improves performance.

Table 1: Performance of hand-crafted MAKPConv vs KPConv on ModelNet40 and SemanticKITTI.

Architecture Cls. Seg. ModelNet40 SemanticKITTI
Params (M) Params (M) OA (%) mIOU (%)

KPConv (Our impl.) 14.9 14.8 92.3 59.2
MAKPConv (w.o. attention) 1.24 0.97 91.8 59.6

MAKPConv 1.25 0.98 92.2 60.1
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4.2 MAKPCONV DESIGN SPACE

We utilize MAKPConv blocks to construct a flexible network design space. Specifically, we divide
the overall 3D network into a stem KPConv for initial feature extraction, a head MLP for carrying
fine-grained classification/segmentation, and several searchable stages. In each searchable stage, we
jointly search for the optimal configuration of MAKPConv blocks, including the positional organi-
zations, structural settings, and accessories. We elaborate these searchable features below.

Positional Organizations. The block width and depth of MAKPConv has a direct impact on the
latency of MAKPConv models by affecting both computation-bounded operations (e.g., linear trans-
formation) and memory-bounded operations (e.g., indexing). As deeper and wider architectures lead
to better performance in 3D point cloud classification and segmentation following the Pareto fron-
tiers, positional organizations have a positive quasi-linear impact towards performance and take
continuous values on any positive integers.

Structural Settings. The expansion ratio affects the inner-structure of MAKPConv block that has
a positive quasi-linear correlation with performance. However, co-adaption of expansion factor
towards block width may induce challenges when learning a mapping rule to accurately predict
architectures in the search space. Structural settings take continuous values on any positive integers.

Accessories. We mark the search of optional attentions and kernel size as accessories in the MAKP-
Conv search space. Accessories have sophisticated impact on model performance. For example, as
kernel point convolution utilize different dispositions for different number of kernels, it is unclear
whether the change in the number of kernel points affects the quality of kernel disposition and the
model performance. Both accessories can only take categorical values.

Considering the high variance in 3D point cloud tasks and the robustness to noisy evaluations, we
adopt predictor-based NAS to explore MAKPConv design space. However, MAKPConv design
space is prohibitively large: a total of 11 stages and 7 searchable features within each stage leads a
total search space size of 1.8×1019 possible architectures. Such a large and complex search space
calls for a high-performing predictor-based NAS to accurately model the design space.

4.3 WIDE & DEEP PREDICTOR

Neural architecture representation is the key in the performance of predictor-based NAS due to its
strong connection with predictor performance. Specifically, better neural architecture representation
links searchable features towards priors that are more reflective to the final performance, and thus
increases the chance to discover high-performing NAS models.

To improve neural architecture representations, We focus on carrying feature engineering to dis-
tinguish searchable features with different priors. Motivated by the aforementioned relationship
between searchable features and the model performance, we assign different priors to a wide set of
searchable features and craft dense and sparse neural architecture representations for corresponding
features. Specifically, we formulate dense neural architecture representation for searchable features
that can take continuous values (e.g., positional organizations, structural settings), and formulate
sparse neural architecture representation for searchable features that can only take discrete values
(e.g., accessories). With dense and sparse neural architecture representations, we follow the idea of
Wide and Deep Models (Cheng et al., 2016) to design a Wide & Deep predictor that trades-off mem-
orization and generalization in performance prediction, see Figure 2. Wide & Deep model adopts a
separate MLP to obtain high-level dense outputs based on each of the 2 dense representations, and
adopts an embedding table to convert sparse representations to continuous sparse outputs. To interact
dense and sparse outputs, we leverage the DotProduct block in DLRM (Naumov et al., 2019) to fuse
learned dense representations and sparse representations. Specifically, given a dense representation
D ∈ RB×dim and a sparse representation S ∈ RB×N×dim, DotProduct carries cross-representation
communication by carrying the following transformation:

X = [vec−1B,1,dim(D);S], DotProduct(D,S) = Triu(XXT ) (3)
where dim represents the dimension of both dense and sparse representations,N denotes the number
of sparse inputs, and B denotes the batch size. Eq. (3) first vectorizes the dense tensor D to have
the same dimension as the sparse tensor S, and extracts the upper triangular matrix upon self matrix
factorization. We carry 2 DotProducts on 2 separate pairs of dense and sparse representations to
encourage the learning of independent interactions. This is because positional organizations and
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Table 2: Wide & Deep Predictor achieves best prediction quality over SemanticKITTI.

Predictor Rank Loss? Feats? Pretraining? MSE (10−2) Kendall τ
Random Forest Dense / Sparse 3.75±0.30 0.240±0.044

GPR Dense / Sparse 4.29±0.41 0.144±0.042
XGBoost Dense / Sparse 4.24±0.40 0.210±0.037
NGBoost Dense / Sparse 3.90±0.33 0.255±0.047
LGBoost Dense / Sparse 4.03±0.36 0.236±0.033

Deep Dense 3.07±0.33 0.379±0.050
Wide Sparse 2.87±0.21 0.400±0.047

Wide & Deep Dense + Sparse 2.80±0.23 0.408±0.044
structural settings may not necessarily have the same influence over the choice over accessories.
After fusing dense and sparse representations via DotProduct, we utilize a MLP to learn predictions
based on the fused representations in the Wide & Deep predictor.

4.4 TRAINING AND EVALUATION OF THE WIDE & DEEP PREDICTOR

Architecture Sampling. We randomly sample ∼1K architectures on both ModelNet40 and Se-
manticKITTI. Following the common NAS pipeline, we split the training dataset of Model-
Net40/SemanticKITTI into mini-train and mini-val. We train the sampled architectures on mini-train
until convergence, and evaluate these architectures on mini-val to obtain architecture performance.

Predictor Training. Mean-Squared Error (MSE) is the training objective of the Wide & Deep Pre-
dictor on 1K sampled architectures. To ensure a consistent comparison of predictor performance
over multiple benchmarks, we carry optimization on predictors with normalized performance rang-
ing from 0 to 1. Since the Wide & Deep Predictor can perform gradient-based optimization, we
incorporate predictor pretraining on MACs (Dai et al., 2021) and rank loss (Dudziak et al., 2020).

We conduct extensive experiments on various top-performing NAS predictors collected from
NASBench-301 (Siems et al., 2020). To justify that interacting dense and sparse representations
benefits predictor performance, we establish “Wide” as a MLP Predictor that accepts sparse neural
architecture representations transformed from categorical encoding of features, and establish “Deep”
as a MLP predictor that accepts dense neural architecture representations transformed from real-
valued encoding features. These two predictors also leverage rank loss (Dudziak et al., 2020) and
predictor pretraining (Dai et al., 2021), thus are utilized as strong baselines for gradient-based NAS
predictors to justify the significance of dense-sparse feature interaction. We list the supported train-
ing heuristics and compare the performance (i.e., MSE and Kendall τ ) of Wide & Deep Predictor
over various NAS predictors under 10 different runtimes. Compared with all non-gradient predic-
tors (Chen & Guestrin, 2016; Ke et al., 2017; Duan et al., 2020), Wide & Deep predictor achieves
lower MSE and higher Kendall τ in accuracy prediction, thanks to the potential of ranking-aware
training and predictor pretraining via gradient-based optimization. Compared to gradient-based pre-
dictors using either dense or sparse features, Wide & Deep predictor achieves better prediction qual-
ity thanks to better architecture representation. Such improvement in predictor precision eventually
yields the discovery of better NAS models, see the elaborations in Section 6.2.

5 EXPERIMENTS

In this section, we evaluate MAKPConv over classification (ModelNet40 (Wu et al., 2015)) and
semantic segmentation (SemanticKITTI (Behley et al., 2019)) benchmark.

5.1 SEARCH CONFIGURATION

MAKPConv Design Space. Each block can choose from kernel size {5, 7, 13} to perform MAKP-
Conv operation. Each block has up to 3 different choices for block depth, block width, and expansion
factors. In addition, each block has the choice of an optional NK attention to balance performance
and efficiency. We describe other details of the MAKPConv design space in Appendix.

Regularized Evolution. Following Real et al. (2019), we employ regularized evolution and our
Wide & Deep predictor to effectively probe the MAKPConv design space. Given a candidate ar-
chitecture A with predicted performance P̂ and MACs M , we use S(A) = P̂ − β × logM as our
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search objective, and empirically set β to 0.5 to balance performance and resource consumption on
both ModelNet40 and SemanticKITTI. We use a population of 200 and sample size of 150 to carry
regularized evolution with 360 rounds over MAKPConv design space to craft NAS models.

5.2 EVALUATION ON 3D BENCHMARKS

We use our Wide & Deep predictor to automate the design of MAKPConv blocks and discover
promising models on ModelNet40 and SemanticKITTI 3D applications. To ensure a fair comparison
with larger models on SemanticKitti, we apply width scaling (Sandler et al., 2018) on the NAS-
crafted models and attach a m× suffix to denote the application of a m× width multiplier. We
compare the performance and efficiency metrics such as parameter count and MACs.

Table 3: Overall Accuracy (OA) on ModelNet40.
∗: Use native protocol instead of SimpleView
RSCNN evaluation protocol.

Architecture Params OA
(M) (%)

SPH3D-GCN∗ (Lei et al., 2020b) 0.8 92.1
FPConv∗ (Lin et al., 2020) 2.1 92.5
RSCNN (Liu et al., 2019) 1.3 92.5

DGCNN (Wang et al., 2019) 1.8 92.8
KPConv (Thomas et al., 2019) 14.9 92.9

SimpleView (Goyal et al., 2021) 0.80 93.2
PointNet++ (Qi et al., 2017b) 1.48 93.3

MAKPConv, hand-crafted 1.25 92.6
MAKPConv + NAS 0.56 93.1

MAKPConv + NAS, 2× 1.21 93.4

ModelNet40. We follow the RSCNN protocol
in SimpleView (Goyal et al., 2021) and show
the evaluation results on the testing dataset of
ModelNet40 in Table 3. For fair comparison,
we report the mean accuracy across 5 runs and
observe a 0.2% OA variance. Compared to KP-
Conv, the hand-crafted MAKPConv achieves
on-par OA with∼92% fewer parameters thanks
to the proposed MAKPConv module. Our
NAS approach explores more efficient model
designs: the NAS-crafted MAKPConv achieves
0.5% higher OA than hand-crafted counterpart
while being 55% smaller. Compared with effi-
cient 3D models (Lei et al., 2020b; Goyal et al.,
2021; Lin et al., 2020; Liu et al., 2019; Wang et al., 2019), NAS-crafted MAKPConv achieves on-
par performance with ∼30% fewer parameters. By further scaling up the model, our NAS-crafted
MAKPConv outperforms its hand-crafted counterpart by 0.8% OA with a similar parameter count.

SemanticKITTI. Table 4 shows the mIOU comparison on sequence 08 of the SemanticKITTI
dataset. Our hand-crafted MAKPConv outperforms point-based, projection-based and voxel-based
methods by at least 0.9%, 1.1% and 1.2% mIOU respectively, with significant parameter and MAC
reduction. The NAS-crafted MAKPConv achieves ∼ 1% higher mIOU than the state-of-the-art
SPVNAS while saving 83% parameters and 78% MACs. Applying width multiplier on NAS-crafted
model further boosts the performance. We elaborate on the latency comparison in Appendix A.7.

Table 4: mIOU on sequence 08 (validation split) of SemanticKITTI. Latency is measured with
NVIDIA TITAN X Pascal on a single SemanticKITTI scene containing ∼60K points. Here, red
numbers denote computation time and blue numbers denote processing time. +: Results from Zhou
et al. (2021). ∗: Results from Tang et al. (2020).

Architecture Method Params MACs Latency mIOU
(M) (G) (ms) (%)

RandLANet (Hu et al., 2020a) Point-based 1.24 - 103 57.1
KPConv-rigid (our impl.) Point-based 14.8 60.9 221 (164 + 57) 59.2

PolarNet (Zhang et al., 2020) Projection-based 13.6 135.0* 62∗ 58.2+

SalsaNext (Cortinhal et al., 2020) Projection-based 6.7 62.8* 71∗ 59.0+

MinkowskiNet (Choy et al., 2019) Voxel-based 5.5 28.5∗ 294∗ 58.9
MAKPConv, hand-crafted Point-based 0.97 4.7 160 (103 + 57) 60.1

SPVNAS (Tang et al., 2020) Voxel-based 3.3 20.0 158 61.5
7.0 34.7 175 63.5

MAKPConv + NAS Point-based 0.57 4.4 169 (112 + 57) 62.4
MAKPConv + NAS, 2× 1.36 11.0 206 (149 + 57) 64.1

6 ABLATION STUDIES

In this section, we first demonstrate how NK attention re-calibrates the contribution of each kernel
point by visualizing the relationship between NK attention and NK linear correlation. Then, we dis-
cuss the relationship between predictor MSE reduction and quality improvement of the discovered
NAS models to demonstrate the importance of predictor design in predictor-based NAS.

8
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6.1 KERNEL CONTRIBUTION VIA NK ATTENTION

Empirical evaluations reflect that NK attention leads to 0.4% OA gain and 0.5% mIOU gain on 3D
object classification and semantic segmentation. To verify the source of improvement of MAKP-
Conv over its non-attention counterpart and justify the re-calibration of kernel points, we plot the
learned NK attention on 7 kernel points in Figure 3 and identify the contribution of each ker-
nel via the slope. We observe that the learned attention for each kernel point has a strong rela-
tionship with kernel dispositions (i.e., 1-4-2 groups among symmetrical axis) in the Octahedron.

K6

K5

Figure 3: Visualization of learned NK attention
matches the octahedron disposition of kernels.

The two vertices that are the most distant from
the center point shows the most contribution to-
wards neighbor points. This is because these
kernel points are involved in addressing the
boundary effects of input point clouds for more
robust recognition results. We also observe that
the 4 vertices connecting the square plane has
the least contribution, illustrating that such high
concentration of kernels causes redundancy and
suggests a future direction in optimizing kernel
location to fully capitalize the kernel points to
improve representation power. The center ker-
nel point admits most information from central-
ized neighbor points, thus co-adapts to global
neighbor information and yields an moderate contribution towards neighbor points.

6.2 EFFECTIVENESS OF WIDE & DEEP PREDICTOR

We show that even marginal MSE reduction (i.e., 0.07×10−2) leads to significant quality improve-
ment of NAS-crafted models, which justifies the importance of feature and architecture engineering
in predictors. We establish random search baseline by selecting the top-5 models from the outcome
of 1K random samples, and establish predictor-based NAS baseline by selecting top-5 models us-
ing the top-performing Wide NN predictor in Table 5. All models are evaluated on classification
and segmentation benchmarks using the same 100-epoch training pipeline. We report the mean and
standard deviation of performance on ModelNet40 and SemanticKITTI in Table 5.

Table 5: Comparison of various predictor-based NAS methods with Random Search baseline. Re-
sults are derived from the top-5 NAS models discovered by each method.

Search Method ModelNet40 OA (%) SemanticKITTI mIOU (%)
mean std max min mean std max min

Random 90.96 0.47 91.5 90.2 53.54 1.19 54.68 51.96
Predictor-based + Wide 91.14 0.23 91.5 90.9 54.90 0.49 55.28 54.2

Predictor-based + Wide & Deep 91.22 0.16 91.4 91.1 56.10 0.85 56.83 54.87

Results demonstrate that: (1) without introducing extra architecture samples, predictor-based NAS
can outperform random search by up to 1.4% mIOU on SemanticKITTI. (2) Even with 0.07×10−2
lower MSE, the NAS-crafted models via Wide & Deep predictor can outperform NAS-crafted mod-
els via Wide predictor by a large margin (i.e., up to 1.2% mIOU on SemanticKITTI). The above
results emphasize the need to improve predictor-based NAS via a delicate neural predictor design.

7 CONCLUSION

In this work, we present MAKPConv module to improve both efficiency and performance of KP-
Conv. MAKPConv employs depthwise KPConv that separates point-wise feature extraction from
channel-wise feature extraction to reduce computation cost and memory consumption, and NK at-
tention that re-weighs the contribution of different kernel points via interactions of neighbor-kernel
correlation through an learnable attention network. We further incorporate the IRB design to con-
struct MAKPConv block and propose a new predictor-based NAS driven Wide & Deep predictor to
automate the model design. Experiments and ablation study over 3D classification and 3D semantic
segmentation benchmarks verify the effectiveness of MAKPConv.
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8 REPRODUCIBILITY STATEMENT.

We make tremendous efforts to ensure reproducibility of our proposed method. Specifically, we
mention the detailed configuration of predictor-based NAS in Section 5.1, introduce the design of
hand-crafted MAKPConv design in Appendix A.1/A.2, describe the detailed configuration of Wide
& Deep predictor in Appendix A.3, show the transferability of searched architecture in Appendix
A.4, cover the training protocols in Appendix A.5, and use Appendix A.6 to justify orthogonal
contribution of our improving performance predictor and other line of research in improving search
algorithms. In addition, we use Appendix A.7 to give an analysis on the latency breakdown of
searched models and points an direction on further improving the efficiency of MAKPConv kernel
to seek higher efficiency in 3D point cloud applications. Code that covers other details of this work
is available via this link.
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A APPENDIX

In this appendix, we elaborate the detailed structure of hand-crafted MAKPConv via MAKPConv
blocks. We also verify the transferability of NAS discovered architecture on S3DIS (Armeni et al.,
2016) indoor scene segmentation benchmark. Furthermore, we discuss detailed hyperparameter
settings for training and evaluating 3D architectures on ModelNet40, S3DIS, and SemanticKITTI
benchmarks, and visualize the optimization curve in the search process for both vanilla predictor-
based NAS (i.e., via Wide Predictor) and our improved predictor-based NAS (i.e., via Wide & Deep
predictor). We also discuss the latency breakdown of our searched models and propose some future
work in improving the efficiency of MAKPConv series models.

A.1 HAND-CRAFTED MAKPCONV NETWORK

Table 6: Structure of hand-crafted MAKPConv. ”1/2”
strides means upsampling by 2×. Note that stage 1∼7 is
utilized to perform classification, and stage 8∼11 is utilized
to perform semantic segmentation.

Stage Depth Stride In Out E KWidth Width
1 1 1 16 16 1 7
2 2 2 16 24 3 7
3 3 2 24 32 3 7
4 4 2 32 64 3 7
5 3 1 64 96 3 7
6 3 2 96 160 3 7
7 1 1 160 320 3 7
8 1 1/2 416 160 3 7
9 1 1/2 160 96 3 7
10 1 1/2 96 64 3 7
11 1 1/2 64 32 3 7

Table 6 illustrates the detailed archi-
tecture of our hand-crafted MAKP-
Conv. The hand-crafted MAKPConv
contains a total of 17 MAKPConv
blocks for classiciation, and 4 ad-
ditional MAKPConv blocks for se-
mantic segmentation. The positional
setting (i.e., depth, block width) of
hand-crafted MAKPConv strictly fol-
lows MobileNetV2, which is con-
sidered as the state-of-the-art hand-
crafted model with remarkable effi-
ciency. For structural settings, we
employ an expansion factor of 3 for
all MAKPConv layers. In addition,
we leverage a kernel size of 7 for
each MAKPConv block for design
efficiency. As a result, MAKPConv

serves as a strong baseline to compare with when evaluating the performance of NAS-crafted
MAKPConv models.

A.2 MAKPCONV DESIGN SPACE

We present the detailed settings of the MAKPConv design space in Table 7. Despite the search of
block depth, block width, expansion factor and kernel size, we also incorporate the search of optional
attention into MAKPConv design space to trade-off the overhead in Neighbor-Kernel Attention and
its performance gain.

Table 7: Configuration of the MAKPConv design space. ”1/2” strides means upsampling by 2×.
Hierarchy Stage Strides Depth Kernel Size (K) Expansion (E) Width

1 1 1 5, 7, 13 1 16
2 2 2, 3 5, 7, 13 2, 3, 4 16, 24

Classification 3 2 2, 3, 4 5, 7, 13 2, 3, 4 24, 32

Backbone 4 2 3, 4, 5 5, 7, 13 2, 3, 4 24, 32, 40
5 1 2, 3, 4 5, 7, 13 2, 3, 4 40, 56, 72
6 2 3, 4, 5 5, 7, 13 2, 3, 4 64, 80, 96
7 1 1 5, 7, 13 2, 3, 4 160
8 1/2 1 5, 7, 13 2, 3 64, 80, 96

Segmentation 9 1/2 1 5, 7, 13 2, 3 40, 56, 72
Head 10 1/2 1 5, 7, 13 2, 3 24, 32, 40

11 1/2 1 5, 7, 13 2, 3 16, 24

A.3 DESIGN OF WIDE & DEEP PREDICTOR

We configure the architectural hyperparameters of our wide & deep predictor via intuition without
delicate architecture engineering. Specifically, we employ a 3-layer MLP with 64-128-256 layers
as the dense architecture to extract dense neural architecture representations for both positional

14



Under review as a conference paper at ICLR 2022

organizations and structural settings. The overall architecture that is responsible for processing fused
features after dense-sparse interaction is a 2-layer MLP with 256-256 layers. We utilize ReLU as the
activation function and apply Dropout of 0.5 before the final regression head to mitigate overfitting.
To ensure fair comparison, both the Wide predictor and the Deep predictor also adopt a 2-layer MLP
with 256-128 units to keep the same maximum projection dimension as the Wide & Deep predictor.

A.4 ARCHITECTURE TRANSFERABILITY ON S3DIS

We further verify the transferability of NAS-crafted MAKPConv architectures on S3DIS to evaluate
its performance on indoor scene segmentation. Following the established protocols in 3D point
cloud segmentation, we report both 6-fold cross-validation mIOU across all Area 1∼Area 6 splits,
see Table 8. By convention, we also report the validation mIOU and mIOU per class on Area
5 to compare with existing methods on 3D point cloud, see Table 9. Though our NAS-crafted
model is not optimized in S3DIS dataset, it shows a significant margin on S3DIS 6-fold cross-
validation benchmark compared with existing approaches such as Qiu et al. (2021); Zhao et al.
(2020) and achieves 74.5 mIOU, a new state-of-the-art result using only 1.35M parameters. On Area
5 of the S3DIS dataset, we observe that: (1) Our NAS-crafted MAKPConv achieves 1.8% higher
mIOU than original KPConv with 11× parameter efficiency. (2) Our NAS-crafted MAKPConv
achieves competitive performance over different classes on S3DIS indoor semantic segmentation
and demonstrate ∼1% higher mIOU over 9 out of 13 classes compared to existing approaches.
Thus, our NAS-crafted models have a good transferability towards alternative benchmarks, and our
NAS approach can be further incorporated into other 3D point cloud tasks such as nuScenes (Caesar
et al., 2019), KITTI (Geiger et al., 2013) to improve the current state-of-the-art models.

Table 8: 6-fold cross-validation results on S3DIS.
Architecture mIOU (%) mAcc(%) OA(%) Params (M)

RandLANet (Hu et al., 2020a) 70.0 82.0 88.0 1.24
KPConv (Thomas et al., 2019) 70.6 79.1 - 14.8

RPNet (Ran et al., 2021) 70.8 - - -
SCF-Net (Fan et al., 2021) 71.6 82.7 88.4 -

BAAF-Net (Qiu et al., 2021) 72.2 83.1 88.9 1.23
PointTransformer (Zhao et al., 2020) 73.5 81.9 90.2 4.9

MAKPConv + NAS, 2× 74.4 82.1 90.3 1.35

Table 9: mIoU per class on S3DIS Area-5.
Methods mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet (Qi et al., 2017a) 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
Eff 3D Conv (Zhang et al., 2018) 51.8 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1

RNN Fusion (Ye et al., 2018) 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
KPConv (Thomas et al., 2019) 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1

MAKPConv + NAS, 2× 67.2 93.6 98.3 81.6 0.0 32.2 51.5 73.2 90.7 82.5 73.3 64.7 71.6 60.0

A.5 HYPERPARAMETER SETTINGS

The implementation of our work is based upon the official PyTorch repository of KPConv (Thomas
et al., 2019). We follow the exact evaluation protocol in this repo to produce our validation results.
For training, we demonstrate the detailed hyperparameter settings on 3 different benchmarks (i.e.,
ModelNet40 (Wu et al., 2015), SemanticKITTI (Behley et al., 2019) and S3DIS (Armeni et al.,
2016)) in the following context.

ModelNet40. A single training batch in ModelNet40 contains 16 sub-sampled point clouds. We
adopt a similar training pipeline following the original KPConv (Thomas et al., 2019) paper yet
incorporates SimpleView (Goyal et al., 2021) RSCNN training protocol for fair comparison. Specif-
ically, the SimpleView-RSCNN protocol adopts random scaling & translation for data augmentation,
employ cross-entropy loss to optimize, and utilize a voting scheme on the best test model to best
exploit the potential of searched model. We train our NAS-crafted model for 250 epochs with an
initial learning rate of 0.02 and cosine learning rate schedule (Loshchilov & Hutter, 2016). To com-
bat overfitting, we also adopt a dropout rate of 0.5, a L2 weight decay of 3e-4 and employ early
stopping to select the best model for testing.

S3DIS. A single training batch in S3DIS contains 8 sub-sampled point clouds. We use a downsample
rate of dl0 = 0.04m following the original KPConv paper (Thomas et al., 2019). Specifically, we
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train our best model for 250 epochs with an initial learning rate of 0.04 and cosine learning rate
schedule (Loshchilov & Hutter, 2016). To combat overfitting, We also adopt a L2 weight decay of
3e-4 and the default data augmentation in KPConv paper.

SemanticKITTI. A single training batch in SemanticKITTI contains 10 sub-sampled point clouds.
On SemanticKITTI, we measure Multiply-Accumulates (MACs) over a scene with an average of
∼12.3K points, which gives similar MAC count for KPConv architecture as is shown in (Tang et al.,
2020). We use a downsample rate of dl0 = 0.06m following the original KPConv paper (Thomas
et al., 2019). Specifically, we train our best model for 250 epochs with an initial learning rate of
0.04 and cosine learning rate schedule (Loshchilov & Hutter, 2016). To combat overfitting, We also
adopt a L2 weight decay of 3e-4 and the default data augmentation in KPConv paper.

A.6 OPTIMIZATION CURVE ON DIFFERENT PREDICTORS

In this section, we demonstrate that the improvements of the proposed predictors has no interference
over the improvements in search algorithms. More specifically, our contribution towards lever-
aging a better neural architecture representation is orthogonal to the contribution in introducing a
better search algorithm. We apply 3 popular search algorithms: Random Search, Regularized Evolu-
tion (Real et al., 2019) and Reinforcement-Learning via Proximal Policy Optimization (PPO) (Zoph
& Le, 2016; Schulman et al., 2017) on both Wide predictor and Wide & Deep predictor, and plot
the normalized performance for visualization, see Figure 4. Despite the greater complexity of Wide
& Deep predictor that may potentially formulate a curvy performance surface, we observe that the
superiority of EA on Wide predictor is successfully preserved on Wide & Deep predictor. This indi-
cates that the improvement of Wide & Deep predictor is consistent with the evaluation of different
search algorithm, and sets up a new direction of improving the design of neural predictors to enhance
predictor-based NAS.

Figure 4: Left: Normalized prediction scores using Wide predictor (donated as W), Right: Normal-
ized prediction scores using Wide & Deep predictor (donated as W&D).

A.7 LATENCY ANALYSIS OF MAKPCONV KERNEL

In Table 4, we notice that our NAS-crafted MAKPConv model is 24% faster than original KPConv
model despite of its higher mIOU. However, we also observe that the latency reduction is less sig-
nificant compared to MAC reduction of MAKPConv models, especially compared to voxel-based
methods. This is because voxel-based methods (e.g., SPVNAS (Tang et al., 2020)) benefit from 1)
reduced overhead in point-based neighboring mechanisms 2) mature software-hardware co-design
that enables inference with high throughput. To dive deep into this issue, we profile the latency
breakdown of the NAS-crafted MAKPConv model and demonstrate the profiling result in Table 10.

Here, the preprocessing operations (including radius sampling, grid sub-sampling etc.) consumes
33.7% of the inference cost, neighbor gathering contributes to the memory-bounded operation (i.e.,
aten :: gather), which takes 10% of the total inference latency. Computation-bounded parts in
KPConv such as depthwise convolution (i.e., aten :: mul and aten :: sum), MLPs (i.e., aten :: bmm)
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Table 10: Operator-level latency breakdown of our searched model. We list the critical operators
here and categorize less important operator as ’Other’. In column Type, C denotes computation-
bounded operation and M denotes memory-bounded operation.

Operator Type Latency (ms) Latency (%)
Preprocessing (CPU) - 57.015 33.73

aten :: sub C 23.396 13.84
aten :: bmm C 20.236 11.97

aten :: gather M 18.115 10.72
aten :: mul C 12.487 7.39
aten :: sum C 9.887 5.85
aten :: addmm C 7.292 4.31

aten :: threshold C 4.444 2.63
aten :: copy M 2.912 1.72
aten :: sqrt C 2.256 1.33

Other - 11.00 6.51

and point-wise local neighborhood movement (i.e., aten :: sub) contribute to ∼50% of the total
inference cost. Although radius sampling still consumes moderate cost in MAKPConv, there is
still a need to leverage design automation algorithm (e.g., our proposed MAKPConv algorithm) to
perform optimization on the overall architecture on MAKPConv and seek better inference efficiency
by improving computation-bounded operations.

Besides the optimization of architecture, we also discover some potential improvements that har-
nesses the hardware-software co-design to improve efficiency of MAKPConv blocks, such as yet
not limited to:

• Efficient radius sampling implementation. The current implementation lies in CPU and
is not optimal for parallelization. A possible CUDA version of the radius sampling can
speedup the inference speed of MAKPConv networks.

• The current MAKPConv does not utilize a fused version of convolution that aggregates the
feature outputs on each kernel point efficiently. Instead, the output features on each kernel
point is firstly computed via aten :: bmm and then aggregated via aten :: sum.

• The current process of moving points towards their local neighborhoods controlled by
aten :: sub is far from efficient and consumes ∼ 20% latency. Thus, a specialized hard-
ware for efficient batch points movement is potentially beneficial for efficient inference on
point-based networks.

• As lower radius leads to more efficient sampling, we consider incorporating the choice of
radius for each MAKPConv layer into the design space and harness such option to discover
more efficient point-based 3D networks.

As such, with heavy optimization on MAKPConv design, we can reduce the uncertainty and/or
complexity in profiling MAKPConv blocks and thus push forward latency-aware search for better
hardware specialization. We leave this as our future work to improve the design efficiency of 3D
architectures on processing point cloud data.
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