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ABSTRACT

Large language models (LLMs) have transformed AI across diverse domains, with
prompting being central to their success in guiding model outputs. However, man-
ual prompt engineering is both labor-intensive and domain-specific, necessitating
the need for automated solutions. We introduce PromptWizard, a novel, fully
automated framework for discrete prompt optimization, utilizing a self-evolving,
self-adapting mechanism. Through a feedback-driven critique and synthesis pro-
cess, PromptWizard achieves an effective balance between exploration and ex-
ploitation, iteratively refining both prompt instructions and in-context examples to
generate human-readable, task-specific prompts. This guided approach systemati-
cally improves prompt quality, resulting in superior performance across 45 tasks.
PromptWizard excels even with limited training data, smaller LLMs, and various
LLM architectures. Additionally, our cost analysis reveals a substantial reduction in
API calls, token usage, and overall cost, demonstrating PromptWizard’s efficiency,
scalability, and advantages over existing prompt optimization strategies.

1 INTRODUCTION

Large language models (LLMs) like GPT-4 (OpenAI et al., 2024) have achieved remarkable per-
formance across diverse tasks (Colombo et al., 2024; Nguyen et al., 2023; Zhang et al., 2024). At
the core of this success is prompting—the process of providing input instructions to guide models
toward desired outputs. Studies have shown that prompting significantly influences LLM perfor-
mance, making prompt engineering—the design and refinement of prompts—critical for maximizing
accuracy (Wang et al., 2023c;b; Nori et al., 2023). However, crafting effective prompts remains a
labor-intensive and domain-specific task, requiring human expertise and subjective judgment. As
models evolve and tasks vary, the need to repeatedly design prompts raises an important question:
Can prompt engineering be automated to streamline this process and enhance scalability?

Automatically generating optimal prompts is a key challenge in the era of LLMs (Pryzant et al.,
2023; Zhou et al., 2023). Some approaches, such as gradient-based methods, have been used to
optimize prompts by leveraging token probabilities and model gradients (Deng et al., 2022; Zhang
et al., 2022a). However, these methods are limited to white-box (open-source) models, as they require
direct access to the model’s internal mechanics (Liu et al., 2023). The most powerful LLMs today,
like GPT-4 and Gemini, are typically black-box (closed-source) and accessible only through APIs,
making such techniques impractical and are often resource-intensive.

This necessitates gradient-free prompt optimization strategies. Recent methods have focused on enu-
merating diverse prompts or refining existing ones to optimize instructions for black-box LLMs (Zhou
et al., 2023; Lin et al., 2024; Chen et al., 2023; Fernando et al., 2023; Guo et al., 2024). These
strategies can be broadly classified into two types: continuous and discrete prompt optimization.
Continuous approaches, like InstructZero (Chen et al., 2023) and Instinct (Lin et al., 2024), convert
prompt optimization into a continuous problem by using soft prompts. These soft prompts are fed to
open-source LLMs to generate instructions, which are then evaluated by the target black-box LLM.
The feedback is used to train a Bayesian optimizer (BO) or neural network (NN) to predict better
instructions. However, these methods require additional training of NNs and their performance often
varies based on the open-source model and task complexity. For more complex tasks, learning the op-
timal prompt-performance mapping becomes challenging. On the other hand, discrete methods like
PromptBreeder (Fernando et al., 2023) and EvoPrompt (Guo et al., 2024) generate multiple prompt
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Figure 1: Overview of PromptWizard framework.

versions using evolutionary or self-referential strategies. While these methods expand exploration by
scoring prompts, they lack feedback mechanisms, leading to inefficient and suboptimal exploration.

In this paper, we propose PromptWizard (PW), a discrete prompt optimization framework for
black-box LLMs. PromptWizard employs a self-evolving mechanism where the LLM generates,
critiques, and refines its own prompts and examples, continuously improving through iterative
feedback and synthesis. This self-adaptive approach ensures holistic optimization by evolving both
the instructions and in-context learning examples for better task performance. PromptWizard
operates in two phases: (i) Prompt generation (one-time), where it processes a high-level problem
description and training samples, using LLMs to mutate, score, critique, synthesize, reason, and
validate prompts and examples; (ii) Inference (test-time), where the final optimized prompt and
examples are applied to test samples.

PW’s approach follows a structured strategy (See Figure 1): ➊ First, starting with a problem
description and initial prompt instruction, PW generates variations of the instruction by prompting
LLMs to mutate it. Based on performance, the best prompt is selected. Unlike uncontrolled evolutions
in prior methods (Fernando et al., 2023; Guo et al., 2024), PW incorporates a critique component
that provides feedback, thus guiding and refining the prompt over multiple iterations. ➋ Unlike other
discrete approaches, PW also optimizes in-context examples. PW selects a diverse set of examples
from the training data, identifying positive and negative examples based on their performance with
the modified prompt. Negative examples help inform further prompt refinements. ➌ Examples and
instructions are sequentially optimized, using the critique to generate synthetic examples that address
the current prompt’s weaknesses. These examples are integrated to further refine the prompt. ➍ PW
generates detailed reasoning chains via Chain-of-Thought (CoT), enriching the prompt’s capacity for
problem-solving. ➎ PW aligns prompts with human reasoning by integrating task intent and expert
personas, enhancing both model performance and interpretability.

Our work distinguishes itself from previous approaches in several key aspects: 1. Guided Explo-
ration: PromptWizard introduces a feedback-driven critique-and-synthesis mechanism, refining
prompts based on performance insights. This guided exploration systematically improves prompt
quality, overcoming the randomness and inefficiencies in methods like PromptBreeder (Fernando
et al., 2023), OPRO (Yang et al., 2024), and EvoPrompt (Guo et al., 2024)(Section 3.1). 2. Sequen-
tial Optimization of Instructions and Examples: PromptWizard dynamically and iteratively
optimizes both prompt instructions and in-context examples in tandem, outperforming methods that
optimize these components in isolation. This strategy allows deeper exploitation of task-specific
nuances, leading to superior prompt quality (Section 3.3). 3. Efficient Example Synthesis & Error
Analysis: PromptWizard enhances efficiency by utilizing a compact set of diverse examples (up
to 25) and leveraging error-driven self-reflection to generate synthetic examples. Combined with
Chain-of-Thought reasoning, this approach offers robust and scalable prompt refinement, setting it
apart from existing methods (Section 3.4).

We evaluate the effectiveness of PromptWizard on the widely-used Big Bench Instruction Induc-
tion (BBII), Big Bench Hard (BBH), and arithmetic reasoning datasets, covering over 45 tasks
ranging from general reasoning to domain-specific challenges (Section 4). As shown in Fig-
ure 2, PromptWizard consistently outperforms state-of-the-art approaches, including Instinct,
InstructZero, APE, PromptBreeder, and EvoPrompt on the BBII dataset.

Through extensive experimentation, we demonstrate that PromptWizard consistently outper-
forms SOTA baselines in both zero-shot and few-shot scenarios, while maintaining superior ef-
ficiency (Section 5.1). Our comprehensive cost analysis highlights the significant reduction in
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API calls, token usage, and overall expenses, showcasing PW’s ability to deliver high-quality
prompts with minimal computational cost (Section 5.2). Furthermore, we conduct numerous ex-
periments to showcase PromptWizard’s efficacy with limited training data and smaller LLMs,
along with ablation studies that assess its performance across different base LLMs (Section 6).
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Figure 2: Performance profile curve of
PromptWizard over other baselines
(Section 5.1, Appendix 11).

Our main contributions are: (i) we introduce
PromptWizard, a novel framework for automatic
discrete prompt optimization using a self-evolving,
self-adapting mechanism. Through feedback-driven
critique and synthesis process, PW strikes an effective
balance between exploration and exploitation, iteratively
refining both prompt instructions and in-context examples.
Thus generating human-readable, task-specific prompts,
(ii) we demonstrate PW’s superior performance and
efficiency across 45 tasks, outperforming SOTA methods.

2 RELATED WORK

Research in prompt optimization has increasingly shifted
toward automating prompt creation due to the limitations
of handcrafted prompts (Moradi & Samwald, 2021; Madaan & Yazdanbakhsh, 2022; Wei et al., 2022).
Recent work has introduced various techniques for automating prompt generation, broadly classified
into continuous and discrete (Yang et al., 2024; Guo et al., 2024). Below, we examine these methods,
their limitations, and how PromptWizard (PW) advances the field.

Continuous Prompt Optimization. Continuous methods, such as InstructZero (Chen et al., 2023)
and Instinct (Lin et al., 2024), treat prompt optimization as a continuous learning problem using soft
prompts—trainable vectors that fine-tune responses from open-source LLMs. These soft prompts are
used to generate responses, with feedback guiding the optimization through models like Bayesian
optimizers or neural networks. While flexible, these methods face several key limitations: (i) They
require additional neural network training, leading to high computational costs, (ii) Their adaptability
to complex tasks that need nuanced prompts is limited, as soft prompts are not human-interpretable
and struggle to capture the depth of task-specific reasoning, (iii) For more intricate tasks, such as
arithmetic reasoning, mapping the relationship between prompt structure and performance becomes
challenging, often leading to suboptimal or inconsistent results. Thus, while continuous methods
improve prompt generation, their scalability and interpretability in complex tasks remain non-trivial.

Discrete Prompt Optimization. Discrete methods focus on exploration by generating multiple
prompt versions and selecting the best among candidates. These methods rely on strategies like Monte
Carlo searches or evolutionary processes. For example, APE (Zhou et al., 2023) iteratively proposes
and selects optimal prompts through a Monte Carlo search, while PromptBreeder (Fernando et al.,
2023) mutates prompts using different thinking styles, evolving prompts in a self-referential manner.
Other methods, such as OPRO (Yang et al., 2024) and EvoPrompt (Guo et al., 2024), rely on prompt
mutations, evolutionary algorithms and evaluations on fixed training samples. However, discrete
methods have notable drawbacks: (i) They are often query-inefficient due to their reliance on local
search techniques, which fail to balance exploration and exploitation effectively, (ii) These methods
tend to explore the prompt space randomly or through mutations without a structured mechanism for
feedback, resulting in suboptimal and unguided refinement of prompts. Recent methods optimize
both instructions and examples in prompting, emphasizing the importance of example selection
through random or diversity-based or adversarial techniques (Do et al., 2024; Wan et al., 2024). In
contrast, PW uses a LLM to analyze and synthesize examples, dynamically enhancing prompt quality
and outperforming traditional fixed-criteria strategies.

Comparison and Motivation for PromptWizard. PromptWizard (PW) advances beyond these
limitations by introducing a self-evolving and self-adaptive mechanism that better balances explo-
ration and exploitation. Unlike prior methods, PW utilizes a feedback-driven critique-and-synthesis
process, which iteratively refines both prompt instructions and in-context examples. This feedback
loop, guided by performance insights, leads to more systematic and efficient exploration compared to
random or mutation-based strategies like those employed by PromptBreeder and EvoPrompt. Key
advantages of PW include: (i) Deeper Exploitation of Task Nuances: By optimizing prompts and
examples together, PW can capture the nuanced requirements of complex tasks that continuous
and discrete methods often miss, (ii) Human-Interpretable and Scalable: Unlike soft prompts, PW
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generates human-readable prompts that align with task intent, making it more interpretable and
easier to scale across diverse applications, (iii) Efficiency: PW is significantly cost-efficient, reducing
the number of API calls and token usage while delivering superior performance. Evaluated across
over 45 complex tasks, PW consistently outperforms state-of-the-art approaches, such as Instinct,
InstructZero, APE, EvoPrompt and PromptBreeder.

In summary, PW advances prompting by addressing the exploration-exploitation trade-off more
effectively than prior approaches, delivering higher-quality prompts with less computational overhead.

3 PROMPTWIZARD FRAMEWORK
We introduce PromptWizard (PW), a general-purpose framework designed to optimize prompts
through a self-evolving and self-adapting mechanism (see Figure 1). PW harnesses the capabilities of
LLMs to iteratively synthesize, critique, and refine both prompt instructions and in-context examples,
tailoring them to specific tasks across diverse domains. The five key steps are described next.

Problem Formulation. In our approach, we start with an initial prompt instruction P e.g., “Let’s
think step by step to arrive at the solution of this mathematical problem"), along with a problem
description and a set of training samples represented as (Q,A) = {(qi, ai)}Ni=1, where qi and ai are
input-output pairs (questions and answers). The LLM model L generates outputs with probabilities
pl(ai | qi, P, af , qf ), where qf and af are the few-shot examples. The goal of PromptWizard
is to iteratively optimize both the prompt and the few-shot examples to maximize task accuracy A,
which represents the model’s performance on the target task. The refined prompt P̂ should improve
the model’s ability to generate accurate outputs.

3.1 ITERATIVE REFINEMENT OF PROMPT INSTRUCTIONS

The first step of the PromptWizard framework focuses on refining prompt instructions through a
systematic, feedback-driven process. This ensures the prompt evolves in a targeted way, addressing
specific task needs while avoiding unnecessary changes (see Figure 3).

1. MutateComponent: PW starts with an initial problem description and generates prompt
variations using predefined cognitive heuristics or thinking styles. These heuristics guide the LLM
to create diverse perspectives on the problem, ensuring varied and rich prompt instructions. For
example, the thinking styles might encourage questions like "How can I simplify the problem?" or
"What alternative perspectives exist?" This targeted generation of mutations improves the diversity
of prompt instructions compared to random approaches. By using a single LLM call to generate
several mutated prompts, PW ensures computational efficiency. Figure 5 shows examples of
mutated prompts for an initial problem description on the GSM8K.

2. ScoringComponent: Next, PW employs a scoring mechanism to evaluate the performance of
the generated mutated prompts. The scoring is based on how well each prompt performs against
a mini-batch of 5 training examples with ground truth. The scoring mechanism can be either
using traditional metrics like F1 score or an LLM as an evaluator, PW supports both. This helps
systematically identify the most effective prompt while filtering out underperforming ones. The
use of multiple mini-batches ensures robustness in the evaluation. Examples of mutated prompts
with their scores are shown in Figure 3 and 5.

3. CritiqueComponent: Once the best-performing mutated prompt is selected, PW introduces
a unique feedback mechanism through its critique component. The critique reviews where the
prompt succeeded and failed by analyzing cases where the LLM struggled, such as interpreting
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TOP 3 MUTATED PROMPTS :
" Let's devise a step-by-step experiment to reach the solution of this mathematical problem."
" Let's simplify and tackle this mathematical problem step by step to make it easier to solve. " 
" Let's list out ideas and apply them one by one, thinking step by step, to solve mathematical
problems. "

"Provide question answering on mathematical school grade questions that require multi-step
reasoning. The problems should take between 2 and 8 steps to solve, and solutions
primarily involve performing a sequence of elementary calculations using basic arithmetic
operations (+ - / *) to reach the final answer.\nLets think step by step to arrive at the solution
of this mathematical problem",

TOP SCORED PROMPT:

Firstly, the instruction doesn't specify the need for the agent to understand the problem
context, such as interpreting relationships. Secondly, the instruction lacks clarity on the
agent's ability to handle percentages and real-world scenarios. Understanding sequences of
actions and their impact are crucial. Lastly, the instruction doesn't mention the agent's ability
to handle time conversions, such as converting an hourly rate to a per-minute rate.

CRITIQUE/FEEDBACK :

Provide question answering on mathematical school grade problems that require multi-step
reasoning and understanding of the problem's context. The problems should take between 2
and 8 steps to solve, and solutions primarily involve performing a sequence of elementary
calculations using basic arithmetic operations (+ - / *), handling percentages, and converting
them into numbers. The agent should be able to interpret real-world scenarios and
understand the implications of the problem, including handling time conversions. The agent
should also be able to follow a sequence of actions and their impact on the final answer. Let's
think step by step to arrive at the solution of this mathematical problem.

REFINED PROMPT:

Figure 5: Iterative Prompt Refinement.

[Question]: Albert is wondering how much pizza he can eat in one day. He buys 2
large pizzas and 2 small pizzas. A large pizza has 16 slices and a small pizza has 8
slices. If he eats it all, how many pieces does he eat that day?
[Answer]: He eats 32 from the largest pizzas because 2 x 16 = <<2*16=32>>32. He
eats 16 from the small pizza because 2 x 8 = <<2*8=16>>16. He eats 48 pieces
because 32 + 16 = <<32+16=48>>48. The answer is 48.

EXAMPLES:

This example is simple and straightforward, involving basic multiplication and addition.
It's relevant and relatable to students. However, it could be improved by adding a bit
more complexity, such as introducing fractions or percentages.\n\n

CRITIQUE/FEEDBACK :

[Question]: Albert buys a pizza that is cut into 8 slices. He eats 3 slices and gives 2
slices to his friend. He then buys another pizza that is cut into 12 slices and eats half of
it. How many slices of pizza does Albert have left?
[Answer]: From the first pizza, Albert has 8 - 3 - 2 = <<8-3-2=3>>3 slices left. From
the second pizza, Albert eats 12 / 2 = <<12/2=6>>6 slices, so he has 12 - 6 = <<12-
6=6>>6 slices left.\nIn total, Albert has 3 + 6 = <<3+6=9>>9 slices of pizza left. The
answer is 9.

SYNTHETIC EXAMPLES:

Figure 6: Synthetic Example Generation.
EXPERT IDENTITY :
You are a mathematics educator with a deep understanding of elementary and middle 
school mathematics. You are experienced in teaching multi-step problem-solving 
techniques and have a knack for breaking down complex problems into manageable 
steps. Your expertise lies in basic arithmetic operations such as addition, subtraction, 
multiplication, and division. You can provide clear, step-by-step solutions to 
mathematical problems that require multi-step reasoning. You are patient and thorough, 
ensuring that each step is clearly explained and understood. Your ability to simplify 
complex problems and guide students through the problem-solving process makes you 
an excellent resource for answering school-grade mathematical questions.

INTENT :Mathematical Reasoning, Multi-step Problem Solving, Basic Arithmetic
Operations, Data Analysis, Solution Verification

Figure 7: Task Intent and Expert Persona.

relationships or time conversions in GSM8k example. This targeted feedback is critical in refining
the prompt, as it provides insights into specific weaknesses, allowing for focused improvements
rather than general changes. Example of critique feedback on the mutated prompt are in Figure 5.

4. SynthesizeComponent: Finally, PW synthesize component uses the critique’s feedback to
refine the best prompt. It rephrases and enhances the instruction based on the critique, producing
a more task-specific and optimized prompt. For example, the feedback indicated issues with
interpreting specific relationships, the synthesized prompt would address that directly, leading to a
clearer, more effective instruction (see Figure 5).

By combining these steps—mutation, scoring, critique, and synthesis—PW ensures that the prompts
are not only diverse and creative but also highly tailored to the specific task at hand, outperforming
prior methods that lack this guided refinement process.

3.2 IDENTIFICATION OF DIVERSE EXAMPLES

Next, we focus on identifying a diverse set of candidate examples to enhance prompt effectiveness.
The choice of examples is critical, as diverse representations allow LLMs to better grasp various
aspects of the information presented (Rubin et al., 2022; Zhang et al., 2022b; Liu et al., 2022; Chen
et al., 2024). We begin by extracting candidate examples from the dataset and employ a scoring
mechanism to assess the current prompt’s effectiveness against these examples, classifying them into
positive and negative categories. Positive examples demonstrate where the prompt succeeds, while
negative examples highlight areas for improvement. We randomly select 25 examples and iterate
through them to find a targeted number of effective few-shot examples, typically taking five iterations.
If this process does not yield the desired count, we randomly select five examples from the initial 25.
This targeted approach maximizes efficiency by minimizing the need to evaluate the entire dataset,
ensuring that the chosen examples effectively contribute to refining the prompt. The use of both
positive and negative examples allows for comprehensive understanding and refinement of prompts.

3.3 SEQUENTIAL OPTIMIZATION OF PROMPT INSTRUCTIONS AND FEW-SHOT EXAMPLES

Most existing prompt optimization methods focus on either prompt instructions or few-shot examples.
In contrast, PromptWizard (PW) employs a sequential optimization approach that integrates both,
enhancing task performance by optimizing them in tandem.
Few-shot example optimization follows critique-and-synthesis process: (i)
CritiqueComponent: PW analyzes previously selected examples, utilizing critique to
provide detailed feedback. This feedback is based on error-driven self-reflection, that determines how
examples should evolve to be more diverse and task-relevant. (ii) SynthesizeComponent: This
incorporates feedback from the Critique to generate new synthetic examples that are more diverse,
robust, and task-relevant. Figure 6 demonstrates the critique’s feedback on a example alongside the
newly generated synthetic examples.
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Prompt optimization follows critique-and-synthesis process: (i) CritiqueComponent:
The newly generated synthetic examples are evaluated alongside the current prompt. The
CritiqueComponent identifies weaknesses and gaps that require addressing to further refine
the prompt instruction. (ii) SynthesizeComponent: This leverages feedback from the critique
to synthesize and refine the prompt instruction. This iterative feedback loop facilitates continuous
refinement of both the prompt and the synthetic few-shot examples, ensuring they remain aligned
with task-specific nuances.

3.4 SELF-GENERATED REASONING AND VALIDATION

With the optimized prompt and few-shot examples, we further enhance model performance by in-
corporating chain-of-thought (CoT) reasoning. Building on the hypothesis that reasoning chains
improve problem-solving abilities of the model (Wei et al., 2023; Wang et al., 2023a; Ye et al.,
2023). Specifically, we automatically generate a detailed reasoning chain for each selected few-shot
examples. (i) ReasoningComponent: This takes the selected few-shot examples and generates a
detailed reasoning chain for each example to facilitate problem-solving. (ii) ValidateComponent:
The validation component uses an LLM to check the coherence and relevance of examples (ques-
tions,reasoning). This process effectively filters out incorrect examples and/or hallucinated reasoning.

3.5 INTEGRATION OF TASK INTENT AND EXPERT PERSONA

To enhance task performance, PW integrates task intent and an expert persona into prompts (Figure 7).
(i) Task Intent: This ensures that the model stays aligned with task requirements, particularly
in specialized domains. By incorporating specific hints or keywords (Sun et al., 2023), derived
from the problem description, PW guides the model to apply relevant approaches. We generate
these cues using SynthesizeComponent, informed by initial problem description. (ii) Expert
Persona: To maintain consistency and relevance in LLM interactions, we incorporate an expert
persona into prompts (Xu et al., 2023). To maintain consistency, PW introduces an expert persona,
preventing response variability. This persona is generated based on the problem description and
ensures consistent, domain-relevant outputs. All PW components utilize LLMs, with their prompt
templates provided in Appendix 16 and algorithmic details in Appendix 14.

4 EXPERIMENTS AND IMPLEMENTATION DETAILS

We evaluate PromptWizard as a tool to generate instructions and examples that steer a black-box
LLM toward desired behavior for a given target task.

Tasks & Datasets. We assess the effectiveness of PromptWizard on the widely-used BIG-Bench
Instruction Induction (BBII) dataset, a benchmark for prompt optimization in recent works such as
Instinct (Lin et al., 2024), InstructZero (Chen et al., 2023), and APE (Zhou et al., 2023). The dataset
covers a diverse range of language understanding scenarios (Appendix 8).
In addition to BBII, we evaluate PromptWizard on three arithmetic reasoning datasets:
GSM8k(Cobbe et al., 2021), AQUARAT (Ling et al., 2017), and SVAMP (Patel et al., 2021),
as well as domain-specific tasks from BigBench Hard (BBH) (Suzgun et al., 2022), which includes
23 challenging tasks. This brings the total to 45 tasks (19 BBII, 23 BBH, 3 math tasks), covering both
general and domain-specific problem settings. Additional details of all datasets are in Appendix 9.

Baselines. We compare our PromptWizard with five representative SOTA discrete and con-
tinuous methods: Instinct (Lin et al., 2024), InstructZero (Chen et al., 2023), PromptBreeder
(PB) (Fernando et al., 2023), EvoPrompt (Guo et al., 2024), and APE (Zhou et al., 2023).

Implementation Details. We experiment with both ChatGPT (GPT3.5Turbo) and GPT-4 as the
black-box LLMs for prompt optimization in PromptWizard. All the individual components such as
mutate, score, critique, reason, synthesize and validate, rely on the same LLM either GPT3.5Turbo
or GPT-4, accordingly. For all experiments, we use only 25 examples from the training data to
optimize the prompts and in-context examples, with evaluations conducted on the full test dataset.
To ensure robustness, all reported results are averaged over three experimental runs. Details of the
hyperparameters used in the paper are provided in Appendix 10. Specifically, we restrict the number
of mutated prompts & mutation rounds to 3, diverse examples to 25, sequential optimization rounds
to 5. The anonymized source code of PromptWizard is available for reproducibility1.

1Anonymized source code: https://anonymous.4open.science/r/PromptWizard/
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Table 1: Average test accuracy achieved by best instruction generated by different SOTA algorithms.
InsZero: InstructZero, PB: PromptBreeder, EvoP: EvoPrompt, PW: PromptWizard (ours).

Task APE InsZero PB EvoP Instinct PW Instinct PW
LLM: GPT3.5Turbo Zero-shot setting One-shot setting

antonyms 0.64 0.83 0.80 0.80 0.85 0.56 0.85 0.78
auto-categorization 0.25 0.26 0.22 0.26 0.25 0.28 0.30 0.40

cause and effect 0.57 0.81 0.75 0.83 0.59 0.88 0.63 0.92
common concept 0.07 0.09 0.10 0.12 0.21 0.10 0.25 0.19

diff 0.67 0.69 1.00 1.00 1.00 1.00 1.00 1.00
informal to formal 0.57 0.53 0.58 0.62 0.55 0.62 0.52 0.56

letters list 1.00 0.59 0.99 1.00 1.00 0.95 1.00 1.00
negation 0.75 0.78 0.77 0.79 0.82 0.73 0.86 0.84

object counting 0.36 0.36 0.34 0.12 0.34 0.60 0.36 0.52
odd one out 0.63 0.61 0.64 0.65 0.70 0.78 0.63 0.92

orthography starts with 0.46 0.51 0.56 0.60 0.67 0.75 0.67 0.92
rhymes 0.16 1.00 0.54 0.61 1.00 0.89 0.75 0.90

second word letter 0.75 0.43 0.57 0.41 0.10 0.93 0.24 0.99
sentence similarity 0.00 0.00 0.01 0.28 0.14 0.29 0.16 0.30

sum 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00
synonyms 0.36 0.28 0.36 0.14 0.31 0.37 0.37 0.44

taxonomy animal 0.35 0.72 0.72 0.72 0.86 0.92 0.90 0.94
word sorting 0.33 0.31 0.56 0.52 0.51 0.56 0.62 0.74

word unscrambling 0.44 0.55 0.61 0.60 0.63 0.52 0.58 0.58
#best performing tasks 1 2 3 4 8 13 7 16

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 PERFORMANCE ANALYSIS AGAINST VARIOUS PROMPTING BASELINES

Zero-shot accuracy. We evaluate the zero-shot test accuracy of ChatGPT (GPT3.5Turbo) using
instructions generated by five methods: APE, InstructZero, PromptBreeder, EvoPrompt, and Instinct.
Table 1 presents results on 19 challenging tasks from BIG-Bench Instruction Induction (BBII) dataset,
selected where the average test accuracy across all methods is below 0.8, following the evaluation pro-
tocol in Instinct (Lin et al., 2024). All experiments use the same black-box LLM (GPT3.5Turbo)
under a zero-shot setting, ensuring a fair and consistent comparison across methods.
PromptWizard outperforms the baselines, achieving the highest accuracy on 13 out of 19
tasks (68%), compared to Instinct’s 8 tasks (42%). This significant improvement demonstrates
PromptWizard ’s strength in tackling complex instruction induction tasks.

Overall Performance. Figure 2 shows the performance profile curve for the instruction induction
tasks from Table 1. The performance profile curve (Dolan & Moré, 2002) visualizes how frequently
different approaches’ performance is within a given distance of the best performance. In this curve,
the x-axis (τ ) represents the performance ratio relative to the best-performing method, and the y-axis
(p(τ)) reflects the fraction of tasks where a method’s performance is within this ratio. So for a given
method, the curve tells what percentage of the tasks are within τ distance to the best performance
(among different methods). PromptWizard consistently outperforms other methods across various
thresholds, maintaining the highest p(τ) values, indicating that it consistently performs near the best
possible accuracy across all tasks. Additional analysis is available in Appendix 11.

One-shot Accuracy. To evaluate the effectiveness of PW’s in-context example generation, we
compare the one-shot test accuracy of ChatGPT (GPT3.5Turbo) when using instructions gen-
erated by Instinct and PW. The results, presented in the last two columns of Table 1, show that
PromptWizard achieves the highest accuracy on 16 out of 19 tasks (84%), while Instinct performs
best on only 7 out of 19 tasks (36%). This improvement is largely attributed to the robust in-context
learning examples generated by PW, combined with its iterative prompt instruction optimization. By
refining both the prompt instructions and examples through multiple iterations, PW ensures that the
task-specific knowledge is effectively captured. The optimal prompts are in Appendix 15.

GPT-4 as Base model. Table 1 presents results using GPT3.5Turbo as the base model. In
additional experiments with GPT-4 as the base model on BBII, PW achieved the highest accuracy in
15 out of 19 tasks (79%), compared to Instinct’s 6 out of 19 (31%), demonstrating PW’s superior
performance even with a change in base models (Appendix 12 Table 12 has the detailed results).

Arithmetic Datasets. Table 2 compares performance of PW with Instinct and InstructZero on
three arithmetic reasoning tasks: GSM8k, AQUARAT, and SVAMP, all using GPT3.5Turbo in
a zero-shot setting. The results clearly show that PromptWizard consistently outperforms all
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Table 2: Perf. on arithmetic tasks.
Dataset GSM8k AQUARAT SVAMP
Approach Zero-shot with GPT3.5Turbo
InsZero 74.2 54.3 79.5
Instinct 74.5 54.7 81
PW 90 58.2 82.3

Table 3: Perf. on BBH.

Dataset BBH (23)
Approach Accuracy
APE 71.85
EvoP 75.03
PW 88.1

Table 4: Cost analysis.
API
calls

IO
Tokens

Total
tokens

Cost
($)

Instinct
InsZero 1730 67 115910 0.23

PB 18600 80 1488000 2.9
EvoP 5000 80 400000 0.8
PW 69 362 24978 0.05

baselines across these datasets, achieving significant gains in accuracy on arithmetic reasoning tasks.
These tasks, often requiring detailed multi-step reasoning, which PW addresses through its iterative
synthesis of prompts enriched with intermediate reasoning steps and examples.

Comparison with BBH tasks. In Table 3, we report the average accuracy across 23 tasks from
the BIG-Bench Hard (BBH) dataset. Due to the high cost and compute requirements involved in
evaluating all baselines on this extensive set of tasks, we limit the comparison to EvoPrompt and APE.
PromptWizard achieves a remarkable improvement, increasing the average accuracy by over 13%
compared to EvoPrompt and APE, underscoring its effectiveness in handling complex tasks.

5.2 COST ANALYSIS AGAINST VARIOUS PROMPTING BASELINES

While high accuracy is crucial, the efficiency of generating prompts is equally important. We present
a detailed cost analysis demonstrating that PW not only outperforms baselines in terms of task
accuracy but does so with minimal computational overhead. We conduct a comprehensive evaluation
by computing the total number of API calls, tokens processed, and the corresponding cost (Table 4).

Instinct and InstructZero. Instinct and InstructZero use a mix of white-box and black-box models
to continuously optimize soft prompts, with the number of API calls linked to the iterative process
needed for convergence. According to their respective papers, the best performance is typically
achieved after a maximum of 165 iterations. On average, across all tasks, we observed 1,730 API
calls to the black-box model per task, with approximately 67 input and output (IO) tokens per call
for the BBII dataset. Given the token billing structure of the GPT3.5Turbo API ($0.002 per
1,000 tokens), the total cost per task is estimated to be around $0.23. Detailed API call and token
breakdowns per task are provided in Appendix 13.2.

PromptBreeder (PB). PromptBreeder (PB) uses a discrete optimization approach through self-
referential improvement, evolving prompts over 20–30 generations with a population size of 20. This
results in significant API usage, with an estimated 18,600 API calls per task (30 generations × (20
mutations + 20×30 evaluations)) (Fernando et al., 2023). With an average of 80 input/output tokens
per call, the total cost per task for the BBII dataset is approximately $2.9, making PB one of the most
expensive methods among the baselines.

EvoPrompt. EvoPrompt, a discrete optimization method, uses evolutionary algorithms to find
optimal prompts. The number of API calls follows the formula: API calls = N (population size) × T
(iterations) × (1 + D (development size)). For BBII tasks, with a population size of 10, 10 iterations,
and a development set size of 50, this results in: API calls = 10×10×(1+50) = 5,000 API calls. With
an average of 80 input/output tokens per call, EvoPrompt incurs a total cost of $0.8 per task, which
is lower than PB but still considerable compared to other methods.

PromptWizard (PW). PW employs a discrete optimization, similar to PB and EvoPrompt, but
introduces key components- feedback-driven guided exploration, critique and synthesis process, and
sequential optimization of instruction and examples- that streamline prompt exploration and focus on
meaningful evolution. These innovations reduce unnecessary mutations, striking an effective balance
between exploration and exploitation. The API calls in PW are broken down into 48 for prompt
refinement, 5 for example selection, 12 for sequential optimizations, and 4 for reasoning, validation,
intent refinement, and expert identity (Algo. 1). This totals 69 API calls, substantially fewer than
PB’s 18,600 and EvoPrompt’s 5,000. The average input/output tokens per task is around 360, slightly
higher due to the addition of COT reasoning and expert identity during prompt optimization. Despite
this, PromptWizard costs just $0.05 per task with 5-60x reduction in overall tokens, significantly
lower than other techniques. Note that, during inference, PW’s average input tokens are ∼200, which
is comparable to other approaches. Appendix 13.2 shows the detailed task level computations.

PromptWizard’s efficiency is highlighted by being 5x cheaper than continuous methods like
Instinct and InstructZero, and 16-60x cheaper compared to discrete methods like EvoPrompt and
PromptBreeder, while achieving superior performance.
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Datasets 5 (eg) 25 (eg)
MMLU 80.4 89.5
GSM8k 94.0 95.4
Ethos 86.4 89.4
PubMedQA 68.0 78.2
MedQA 80.4 82.9
Average 81.9 87.0

Table 5: Perf. with 5 examples.

Datasets Ll-70B GPT-4
GSM8k 94.6 95.4
Ethos 89.2 89.4
Average 91.9 92.4

Table 6: Perf. with smaller
LLM for prompt generation.
Ll-70B: Llama-70B

Models With PW w/o PW
GPT-4 95.4 92
GPT3.5 75.6 57.1
Ll-70B 90.2 56.8

Table 7: Perf. with different
Base LLMs on GSM8k. Ll-
70B: Llama-70B

6 PROMPTWIZARD ABLATION STUDY

6.1 PROMPTWIZARD EFFICACY WITH FEWER TRAINING EXAMPLES

PromptWizard assesses prompt effectiveness using available training examples while also synthe-
sizing new few-shot examples. In real-world scenarios, where data may be scarce or tasks evolve
without curated datasets, generating effective prompts with minimal examples becomes essential. To
evaluate PromptWizard’s performance under data-constrained conditions, we simulate a few-shot
learning scenario by randomly selecting only 5 examples from each dataset as the training set (instead
of 25). PW utilizes these examples for all evaluations, critique feedback, and the generation of
diverse synthetic examples. This setup tests the framework’s ability to generalize and create robust,
task-relevant prompts with minimal data.

Table 5 showcases PromptWizard’s performance across five diverse datasets (see Appendix 9)
when trained with only 5 examples (5 eg) compared to 25 examples (25 eg). Despite the drastic
reduction in training data, PromptWizard demonstrates impressive resilience, exhibiting only a
marginal 5% drop in accuracy on average. This resilience underscores the model’s adaptability,
driven by two key mechanisms: (i) Synthetic Example Generation using critique-and-synthesize,
which produces diverse, high-quality examples from limited inputs, reducing the impact of data
scarcity; and (ii) Reasoning Chain Guidance, where structured reasoning chains enhance the LLM’s
ability to generate accurate, contextually relevant responses.

6.2 PROMPTWIZARD WITH SMALLER LLMS FOR PROMPT OPTIMIZATION

In prior experiments, GPT3.5Turbo was used for both prompt generation and optimization. In this
section, we explore the feasibility of employing a smaller LLM, such as Llama-70B, for prompt
generation while reserving a more capable model like GPT-4 for inference. This approach reduce
computational costs during prompt optimization by leveraging the efficiency of smaller models
while still maximizing task accuracy with powerful model during inference. This strategy offers
two key advantages: (i) Computational Efficiency: Smaller LLMs like Llama-70B require fewer
resources, making them ideal for generating prompts in resource-constrained environments. (ii) Task
Performance: Despite using a smaller model for prompt generation, inference benefits from the larger
GPT-4 model’s ability to interpret and execute the optimized prompt, ensuring minimal degradation.

Table 6 compares task accuracy across multiple datasets when Llama-70B is used for prompt
generation versus the default GPT-4. Impressively, the final prompts generated by PromptWizard
using Llama-70B show a negligible <1% drop in accuracy compared to those generated with
GPT-4, highlighting PromptWizard ’s effectiveness even with smaller models. While we ex-
perimented with smaller models like Llama-3-8B, they struggled to generate complex instructions,
leading to significant performance degradation. Thus, mid-sized LLMs like Llama-70B are rec-
ommended for prompt optimization, striking a balance between computational efficiency and task
performance. These findings demonstrate PromptWizard’s adaptability and its ability to maintain
high performance across different model sizes with minimal loss.

6.3 ASSESSING PERFORMANCE WITH DIFFERENT BASE LLMS

We perform two types of ablation analysis: (i) evaluating the effect of different base LLMs during
prompt optimization and inference, and (ii) measuring the contribution of each component within the
PromptWizard framework to overall performance.

Ablation on Different Base LLMs. To assess PromptWizard’s adaptability and efficacy across
various LLMs, we experiment with three settings: using GPT-4, GPT3.5Turbo, and Llama-70B
as both the base LLM for prompt optimization and during inference. The goal is to understand
whether the choice of base model impacts the performance gains achieved through PromptWizard.
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Table 7 summarizes the results for the GSM8k dataset. In case of without PW, we use few-shot
learning with Chain-of-Thought (COT) prompting (Touvron et al., 2023) as the baseline. We observe
substantial performance improvements across all models when optimized prompts are generated by
PW. Specifically, for GPT3.5Turbo, the task accuracy increases by +18%, while for Llama-70B,
the improvement is even more pronounced, reaching +33%. In contrast, models when not using PW
prompt show significant performance degradation, reaffirming the value of prompt optimization.

GSM8k Ethos
All 95.4 89.4
No Mutation and Scoring 95.2 87.1
No Critique and Synthesize 90.9 86.9
No intent & Expert 95 88.7
No Reasoning 45.9 87.6

Table 8: Abaltion Study

Effectiveness of different stages of PromptWizard. We
conducted an ablation study to assess the contribution of each
stage in the PW pipeline, using the GSM8k and Ethos datasets.

Table 8 presents the results of this ablation study: (i) Mutation
and Scoring: The initial stage of iterative prompt refinement
alone yields an accuracy boost of 1-2%, demonstrating the
baseline value of exploring prompt variations. (ii) Critique
Feedback and Refinement: Adding structured feedback via the
critique mechanism improves accuracy by 3-5 highlighting the impact of targeted refinement on
prompt quality. (iii) Task Intent and Expert Persona Modeling: Tailoring prompts to task-specific
nuances contributes an additional 0.5-1% improvement. Although smaller, this step plays a crucial
role in aligning the prompt with task-specific behavior. (iv) Reasoning on Few-shot Examples: This
emerges as one of the most significant contributors, indicating that generating detailed reasoning
chains for few-shot examples is critical for task accuracy. This ablation study underscores the
significance of individual components within the PromptWizard, as they work collectively to
enhance prompt and model performance.

7 CONCLUSIONS

This work introduces PromptWizard, a general-purpose framework for automating prompt and
example synthesis. By striking a balance between exploration and exploitation through a feedback-
driven critique and synthesis process, PW systematically refines prompts and in-context examples
to enhance task performance.Extensive evaluations across diverse datasets show it consistently out-
performs state-of-the-art methods, demonstrating strong efficacy even with limited training data and
smaller LLMs, with only a marginal drop in accuracy. Ablation studies highlight the importance
of each stage in refining prompts, generating diverse examples, and improving reasoning. Our
comprehensive cost analysis highlights significant reductions in API calls, token usage, and overall
expenses, showcasing PW’s cost-effectiveness—it is 5x cheaper than continuous optimization meth-
ods and 16-60x cheaper than discrete methods, all while delivering superior performance. This work
democratizes access to effective prompt engineering, enabling more efficient and accurate utilization
of LLMs across various domains and applications. Future work will focus on refining the validation
of synthetic examples and applying PW to real-world, resource-constrained environments.
Limitations: While we have conducted extensive experiments across a diverse set of tasks, careful
validation is required for new tasks to ensure adaptability. Prompt response testing is essential before
real-world deployment to verify effectiveness. Additionally, while PromptWizard automates prompt
engineering, human expertise remains indispensable in guiding and refining the optimization process.
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APPENDIX

8 BIG BENCH INSTRUCTION INDUCTION (BBII) DATASET DETAILS

Table 9 describes the numerous tasks in BBII dataset along with the description of the task. This is
a popular dataset and the selected tasks cover many facets of language understanding and includes
all nine such problems from the BigBench-Hard Subset. In particular, it includes emotional under-
standing, context-free question answering, reading comprehension, summarization, algorithms, and
various reasoning tasks (e.g., arithmetic, commonsense, symbolic, and other logical reasoning tasks).
We selected tasks for which the data was publicly available.

Table 9: Big Bench Instruction Induction Dataset

Task Description
antonyms Make the pairs of words opposite.
auto categorization Create a list of things that the input could be associated with, and the

output would be the category that the input belongs to
cause and effect identify the sentence that is the cause of the effect in the input sentence

pair
common concept ”involve” the objects mentioned in the input, so the answer would be

”involve oscillations” for the input ”guitars, pendulums”
diff Find the difference between the two numbers
informal to formal convert the input sentence into an output sentence that is grammatically

correct and idiomatic in English
letters list output the input with a space after each letter
negation make the output false by adding the word ”not” to the input
object counting output the number of objects in the input list
odd one out find the word that is most dissimilar to the others in the group
orthography starts with output the word that starts with the letter that was inputted
rhymes output the first word that appeared in the input text
second word letter takes a string as input and returns the first character that is a vowel.
sentence similarity Find the difference between the two sentences and the output was 4 -

almost perfectly
sum add the numbers of the two input numbers
synonyms create a list of words that could be used in the same way as the original

words
taxonomy animal output the name of an animal that starts with the letter
word sorting sort the input words alphabetically
word unscrambling output the word that is formed by rearranging the letters of the given

word

9 DATASET DETAILS: TRAIN/TEST SPLIT FOR DATASETS & FEW-SHOT COUNT

Below are the details of the datasets used for evaluation.
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Datasets Test dataset size Few-shot count

GSM8k 1319 5

AQUARAT 254 0

SVAMP 254 0

Ethos 799 3

PubMedQA 500 5

MedQA 1273 5

CSQA 1140 5

SQA 224 5

BBH [’snarks’, ’penguins in a table’, ’causal judgement’] 153, 121, 162 3

BBH all except [’snarks’, ’penguins in a table’, ’causal judgement’] 225 3

MMLU [clinical knowledge, college biology, college medicine, anatomy, medical genetics, professional medicine] 65, 144, 173, 135, 100, 272 5

Table 10: Train/Test split for datasets & Few-shot count

GSM8K: This dataset contains 8.5K high-quality, linguistically diverse grade school math word
problems created by human problem writers. The final answer is an integer value.

AQUARAT: A large-scale dataset consisting of approximately 100,000 algebraic word problems. The
solution to each question is explained step-by-step using natural language. The test data includes 254
questions.

SVAMP: SVAMP (Simple Variations on Arithmetic Math word Problems) dataset is a one-unknown
arithmetic word problems with grade level up to 4 by applying simple variations over word problems
in an existing dataset.

Ethos: This hate speech detection dataset is built from YouTube and Reddit comments. It includes
two tasks: binary classification and multi-label classification. We evaluate our approach on the binary
classification task, which consists of 998 questions. The final answer is either "yes" or "no."

MedQA: This dataset includes multiple-choice questions similar to those in the Medical Licensing
Examination. We use the English subset with 11,450 training and 1,273 test questions, styled like the
United States Medical Licensing Exam (USMLE). The final answer is the correct option from the
available choices.

MMLU: Measuring Massive Multitask Language Understanding (MMLU) includes multiple-choice
exam questions from 57 domains. We use 6 medical datasets, viz., Clinical knowledge, Medical
genetics, Anatomy, Professional Medicine, College Biology, and College Medicine.

BBH: BIG-Bench Hard (BBH) includes 23 tasks from different domains. Answers can be in the form
of multiple-choice questions, boolean, or string responses.

For all the datasets, in PromptWizard we randomly select only 25 samples from available training
data. We do not use entire training dataset in training-phase. Test dataset size for each dataset is
specified below. However for the baseline approaches, we follow their train/test splits. Table 10
provides details of the test set along with the few-shots used in each dataset.

10 HYPER PARAMETERS

PW relies on several parameters to control the level of exploration and evolution at each stage. We
now provide comprehensive details of all parameters and associated values (see Table 11).

11 PERFORMANCE PROFILE CURVE - ADDITIONAL DETAILS

In Section 5.1 we presented the Performance Profile Curve comparing PromptWizard’s perfor-
mance against all baselines across all tasks in BBII dataset.

The performance profile curve Dolan & Moré (2002) visualizes how frequently different approaches’
performance is within a given distance of the best performance. In this curve, the x-axis (τ ) represents
the performance ratio relative to the best-performing method, and the y-axis (p(τ)) reflects the
fraction of tasks where a method’s performance is within this ratio. PromptWizard consistently
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Hyper-
parameter

Description Default Value

mutate_refine
rounds

Number of rounds of call to MutateComponent fol-
lowed by refinement over best prompt among generated
by MutateComponent in previous step.

3

mutate_rounds Number of times MutateComponent would be called. 3
style_variation Number of variations MutateComponent generates in

a single call. i.e. one variation corresponding to each
thinking style provided.

3

min_example
correct_count

Minimum number of questions the
ScoringComponent should answer correctly
for a prompt to get qualified for next stage.

3

max_example
count

Maximum number of attempts/questions the
ScoringComponent would be asked asked to
answer.

6

max_seq_iter Number of rounds of call to CritiqueComponent fol-
lowed by call to SynthesizeComponent

5

few_shot_count Total number of few shot examples to be provided in
prompt.

Defined in Ta-
ble 10

ex_critique Number of LLM calls made by CritiqueComponent
for getting critique for improving examples passed as few-
shots.

1

synthesize Number of LLM calls made by
SynthesizeComponent to generate synthetic
examples.

1

inst_critique Number of LLM calls made by CritiqueComponent
for getting critique for improving instruction passed as
few-shots.

1

synthesize Number of LLM calls made by
SynthesizeComponent to created improved
version of instruction.

1

reasoning +
validation

Number of LLM calls made
by ReasoningComponent and
ValidateComponent respectively.

2

intent + per-
sona

Number of LLM calls made to get keywords that express
the intent and to generate expert persona respectively.

2

Table 11: Description for hyper parameters and their default values

outperforms other methods across various thresholds, maintaining the highest p(τ) values, indicating
that it consistently performs near the best possible accuracy across all tasks.

In this curve, the x-axis (τ ) represents the performance ratio relative to the best-performing method,
and the y-axis (p(τ)) reflects the fraction of tasks where a method’s performance is within this ratio.
It is a suitable measure for the performance of methods over a large number of tasks. To draw the
performance profile curve for a method, for each task i, we check whether the performance of this
method in task i is within τ distance to the best performance (among different methods) in task i, and
define an indicator function I(). Next, we average this indicator function across all np tasks, which
yields a value p(τ) (equation 1). Finally, the performance profile curve for this method is obtained by
varying the value of τ and calculating the corresponding p(τ).

ρ(τ) =

∑np

i=1 I (Best performance of task i− Performance of the approach on task i ≤ τ)

np
(1)

For example at τ = 0.0, the values of p(τ) are approximately 0.05 (APE), 0.105 (InstructZero), 0.157
(PromptBreeder), 0.210 (EvoPrompt), 0.421 (INSTINCT), 0.68 (PromptWizard). This shows that
PromptWizard is the best performing method, betting all the other methods at 68% of the tasks.
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Table 12: Average test accuracy achieved by best instruction generated by Instinct and PW using
GPT4 as base model on BBII dataset.

Task Instinct PromptWizard
LLM: GPT4 Zero-shot setting
antonyms 0.79 0.77
auto categorization 0.3 0.38
cause and effect 0.96 0.88
common concept 0.2 0.15
diff 1 1
informal to formal 0.6 0.75
letters list 1 1
negation 0.7 0.85
object counting 0.6 0.82
odd one out 0.54 0.87
orthography starts with 0.75 0.92
rhymes 1 0.88
second word letter 0.57 0.97
sentence similarity 0.3 0.43
sum 0.99 1
synonyms 0.3 0.42
taxonomy animal 0.9 1
word sorting 0.5 0.65
word unscrambling 0.54 0.77
# best performing tasks 6 15

Algorithm 1 Total LLM Calls Calculation

1: Calculation: Input: Hyperparameters, Result: Total LLM Calls
2: refine_instructions_component ← mutate_refine_rounds × (mutate_rounds ×

style_variations + min_example_correct_count + critique + synthesize)
3: seq_iter_component ← max_seq_iter × (ex_critique + ex_synthesize + inst_critique +

inst_synthesize)
4: other_components← max_example_count + reasoning + validation + intent + persona
5: Total LLM Calls ← refine_instructions_component + seq_iter_component +

other_components
6: Total LLM calls =

{
3 ×

(
(3 × 3) + 5 + 1 + 1

)}
+
{
5
}
+
{
3 ×

(
(1 + 1) + (1 + 1)

)}
+
{
1 +

1
}
+
{
1 + 1

}
= 48 + 5 + 12 + 2 + 2

7: Prompt_refinement = 48; example_selection = 5; seq_opt = 12;
8: reason+validate = 2; intent+expert = 2
9: Total LLM calls = 69

12 ADDITIONAL RESULTS: BBII DATASET

Table 12 shows additional experiments with GPT-4 as the base model, PW achieved the highest
accuracy in 15 out of 19 tasks, compared to Instinct’s 6 out of 19, demonstrating PW’s superior
performance even with a change in base models.

13 COST ANALYSIS: ADDITIONAL DETAILS

13.1 PROMPTWIZARD LLM API CALLS CALCULATION

We compute the total LLM calls made by PromptWizard during prompt generation (one-time),
which derives the most effective prompt and few-shot examples. The algorithm provides more
details: Algorithm 1 describes the total LLM calls made by PromptWizard during preprocessing
(one-time), which derives the most effective prompt and few-shot examples (see Appendix 10.for
parameter description). Note that during inference, each query uses only the default one LLM call.
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Table 13: Cost analysis of Instinct and PromptWizard on BBII dataset with GPT3.5Turbo as the
base model.

Instinct PromptWizard
Dataset API Calls IO Tokens API Calls IO Tokens
antonyms 2200 39 69 334
auto-categorization 1740 86 69 341
cause and effect 1352 61 69 390
common concept 639 94 69 386
diff 1820 58 69 381
informal to formal 880 90 69 271
letters list 2240 58 69 256
negation 2180 60 69 305
object counting 1340 69 69 470
odd one out 840 50 69 372
orthography starts with 1800 82 69 339
rhymes 1920 41 69 391
second word letter 1840 48 69 257
sentence similarity 2140 78 69 626
sum 2180 66 69 367
synonyms 2100 51 69 452
taxonomy animal 1900 72 69 225
word sorting 1680 110 69 426
word unscrambling 2060 58 69 306
Average 1729 67 69 362

13.2 COMPARISON OF API CALLS, NUMBER OF TOKENS FOR BBII DATASET

Table 13 shows the comparison of API calls, number of tokens for BBII dataset for both Instinct and
PromptWizard using GPT3.5Turbo model. We can see that PW has significant lower number
of API calls compared to Instinct, thus resulting in 5x reduction in overall tokens per task. Similar
trends with the API calls, number of tokens used, were seen when the base model in Instinct and PW
was changed to GPT-4.

14 PROMPTWIZARD ALGORITHM

Algorithm 2 provides pseudo code for entire PromptWizard framework. Algorithm 3 provides
pseudo code for mutating prompt instruction and further refining the best prompt instruction among
all the mutated prompt instructions. i.e. Section 3.1. Algorithm 4 and 5 provide pseudo code for
Sections 3.2 and 3.3 respectively.

Algorithm 2 PromptWizard Framework

1: Input: L: large language model; D: problem description; S: set of training samples
{(qi, ai)}Ni=1; T : thinking styles; N : mutate_refine_rounds; k: few-shot count ; N1:
max_seq_iter

2: Output: Optimized prompt P̂opt and few-shot examples {(qfi , afi)}ki=1
3: procedure PROMPTWIZARD(L, D, S, T , k, N , N1)
4: Initialize P ← initial prompt instruction
5: P̂ ← RefineInstructions(L, D, S, T , N )
6: Ediverse = {(qdi

, adi
)}ki=1← DiverseExampleSelection(L, D, S, P̂ )

7: P̂opt, Esyn = {(qsi , asi)}ki=1← SequentialOptimization(L, P̂ , Ediverse, N1)
8: Esyn,r ← ReasoningComponent (Esyn) ▷ generate reasoning chains
9: {(qfi , afi)}ki=1← ValidateComponent (Esyn,r) ▷ validate examples

10: τintent ← SynthesizeComponent (D) ▷ generate task intent
11: πexpert ← SynthesizeComponent (D) ▷ generate expert persona
12: return πexpert, P̂opt, {(qfi , afi)}ki=1, τintent
13: end procedure
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Algorithm 3 RefineInstructions Procedure

1: Input: L: large language model; D: problem description; S: set of training samples
{(qi, ai)}Ni=1; T : thinking styles; N : mutate_refine_rounds; b: batch size (default: 5); v:
number of thinking styles to select; M : mutate_rounds

2: Output: Optimized prompt P̂
3: procedure REFINEINSTRUCTIONS(L, D, S, T , N , b, v, M )
4: Initialize P ← initial prompt instruction
5: Optimized prompt P̂ ← P
6: for refinement_round = 1 to N do
7: T1 ← RandomlySelect(v, T ) ▷ Select v thinking styles from T
8: F ← ∅
9: for m = 1 to M do

10: M← MutateComponent(D,P, T1)
11: for p ∈M do
12: s← ScoringComponent(p, S, b)
13: if s > 0.5 then
14: F ← F ∪ {(p, s)}
15: end if
16: end for
17: end for
18: top_scored_prompt← argmaxp∈F{s(p)}
19: feedback← CritiqueComponent(top_scored_prompt)
20: P̂ ← SynthesizeComponent(top_scored_prompt, feedback)
21: end for
22: return P̂
23: end procedure

Algorithm 4 DiverseExampleSelection Procedure

1: Input: L: large language model; D: problem description; S: training dataset {(qi, ai)}Ni=1; k:
few-shot count

2: Output: Selected diverse examples Ediverse = {(qdi , adi)}ki=1
3: procedure DIVERSEEXAMPLESELECTION(L, D, S, k)
4: S′ ← RandomSample(S, 25)
5: Ediverse ← ∅
6: count← 0
7: for (q, a) ∈ S′ do
8: apred ← L(q) ▷ LLM’s answer for q
9:

10: if apred ̸= a then
11: Ediverse ← Ediverse ∪ {(q, a)}
12: count← count + 1
13: end if
14: if count = k then
15: break
16: end if
17: end for
18: if count < k then ▷ Sample Random Correct Examples
19: Ediverse ← Ediverse ∪ random.sample(S, k − count)
20: end if
21: return Ediverse
22: end procedure
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Algorithm 5 SequentialOptimization Procedure

1: Input: L: large language model; D: problem description; P̂ : optimized prompt; Ediverse =
{(qdi

, adi
)}ki=1: diverse examples; n: max_seq_iter

2: Output: Final optimized task instruction P̂opt and synthetic few-shot examples Esyn =

{(qsi , asi)}ki=1

3: procedure SEQUENTIALOPTIMIZATION(L, P̂ , Ediverse, n)
4: Esyn ← Ediverse
5: for round = 1 to n do
6: feedback← CritiqueComponent (P̂ , Esyn) ▷ Examples optimization step
7: Esyn = {(qsi , asi)}ki=1← SynthesizeComponent (Ediverse, feedback)
8:
9: feedback← CritiqueComponent (P̂ , Esyn) ▷ Prompt optimization step

10: P̂ ← SynthesizeComponent (P̂ , Esyn, feedback)
11: end for
12: return P̂opt ← P̂ , Esyn
13: end procedure

15 BEST PROMPTS FOR BBII TASKS

Below are the best prompt obtained using PromptWizard for some of the tasks in BBII dataset.

antonyms Your task is to provide an antonym for each word presented to you, keeping in mind
that the opposite word can often be formed by using prefixes or suffixes. If it’s not possible to do
so without altering the root word, choose a standalone antonym that widely resonates the opposite
meaning in common contexts. The aim here is not to rule out standard methods of forming antonyms
or to seek context-free opposites, but rather to find straightforward, widely accepted opposites based
on every day usage and understanding. Regarding adverbs, note that some can have more than
one antithesis depending on context, so provide the most generally applicable one. Ensure that the
antonyms offered reflect commonly understood oppositions, without venturing into less accepted or
contextually delicate nuances. Remember, the focus here is on providing clear, generally suitable
opposites rather than unusual or highly situational counterparts.

For each input word present the reasoning followed by the correct word. Wrap only your final answer,
without reason for each question separately between <ANS_START> and <ANS_END>.

negation Initiate text inversion by transforming the sentiment of the input sentence to its exact
reverse, while maintaining syntactic and grammatical accuracy and ensuring the output clearly
communicates the opposing sentiment. Stick to input sentences that express opinions, feelings, or
subjective judgments instead of factual, real-world information or historical events.

If the sentence contains an auxiliary verb, add the negation ’not’ immediately after it. For sentences
without an auxiliary, add ’not’ before the main verb. If the input sentence includes a negative term,
eliminate it to achieve the reverse sentiment.

Examine any clauses with modal verbs closely, keeping in mind to switch ’can’ to ’can’t’ and so
forth to reverse meaning. Be cautious while altering relative clauses, indirect speech, or idiomatic
expressions. Their sentiment inversion should be handled carefully while still preserving linguistic
coherence.

Consider implicit sentiments such as rhetorical questions, forms of irony, or sarcasm. Remember,
altering these doesn’t merely mean skewing negative to positive or vice versa. The key is to ensure
clarity and comprehension of the reversed sentiment.

Avoid changing the truth value of objective facts or historical events, and if the main verb of a sentence
doesn’t carry the sentiment, consider implementing changes to other parts of the sentence—like
the subject or object—to successfully reverse the meaning. Regularly assess the result of your
modifications for precision and understanding."

For each input sentence, negate the meaning by adding ’not’ to the input sentence. Wrap only your
final answer, without reason for each question separately between <ANS_START> and <ANS_END>.
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second word letter For the provided word, your task is to specifically output the second letter.

For each input word, output only the extracted letter (only single letter) wrapped between
<ANS_START> and <ANS_END> tags.

sentence similarity For each input, you will find two sentences (Sentence 1 and Sentence 2). Your
task is to evaluate their similarity based on two elements: overall meaning and specific numerical or
factual details.

The importance of each element is weighted as follows: 70% overall meaning and 30% numerical/-
factual details.

The evaluation scale is now:

0 - Definitely not: The sentences not only differ in overall meaning but also show significant
discrepancies in factual details. 1 - Probably not: There are minor similarities in meaning, but
significant differences in factual details are prevalent. 2 - Possibly: The sentences share some
elements of meaning but show differences in certain details or numerical data. 3 - Probably: The
sentences express largely similar meanings but have noticeable differences or discrepancies in specific
details or numerical data. 4 - Almost perfectly: The sentences are very similar in meaning with only
slight discrepancies in factual or numerical details. 5 - Perfectly: The sentences are identical in terms
of overall meaning and factual/numerical details.

In case of conflicts between overall meaning and factual details, the weighting system will guide your
evaluation. Resultant rating should be separated with " - " for clarity, and should be accompanied by
a brief textual description of your rating.

Provide your rating and brief textual description for each pair of sentences from the 6 options. (0 -
Definitely not, 1 - Probably not, 2 - Possibly, 3 - Probably, 4 - Almost perfectly, 5 - Perfectly) Wrap
only your final answer, without reason for each question separately between <ANS_START> and
<ANS_END> tags.

synonyms Your assignment involves identifying a list of synonyms for a provided word. These
synonym should not only share the same basic meaning with the given word, but should also be able
to replace the original word in most of its use cases without resulting in loss of meaning or causing
the sentence to sound strange. For example, "report" could be a synonym for "account" as both can
be used in similar business and financial situations while preserving the essence of the original use.
Pay attention to the part of speech; a suitable synonym for a noun should also be a noun. Beware of
false friends that evoke similar themes but are not true synonyms; "rest" seems related to "pillow," but
one is a tangible object and the other an action or state, making them non-interchangeable. Prioritize
synonyms that maintain the semantic richness of the original term, employ them regularly in similar
contexts, and ensure they have the same connotation. Simplify your task by rejecting words that have
only a minor relationship or those that are broader in meaning.

For each input word, output a list of synonym words. Wrap only your final answer, without reason
for each question separately between <ANS_START> and <ANS_END> tags.

word sorting Given a series of words in the task, your assignment is to reorder them in alphabetical
order, prioritizing by the first letter of every word. Think step-by-step and consider the most efficient
way to sort the words. Wrap the list of sorted words between <ANS_START> and <ANS_END>.

16 PROMPT TEMPLATES

The prompt template for MutateComponent is: <problem description> <thinking
style pool> <#style_variation_number> < instruction>, where < instruction>
guides MutateComponent to generate new mutated prompts by combining the problem description
with thinking styles.

The prompt template for ScoringComponent is: <mutated/improved prompts>
<mini batch examples> < instruction>, where < instruction> guides
ScoringComponent to evaluate all mutated prompts against the examples in the mini-batch.
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The prompt template for CritiqueComponent to get critique over prompt instruction is: <best
mutated prompt> <selected mini batch examples> < instruction>, where
< instruction> guides CritiqueComponent to provide feedback on how to improve the prompt
instruction based on the selected examples.

The prompt template for SynthesizeComponent to refine prompt instruction is: <best
mutated prompt> <critique feedback> < instruction>, where < instruction>
guides SynthesizeComponent to generate an improved prompt using the critique feedback.

The prompt template for CritiqueComponent to get critique over few-shot examples is: The
prompt template for CritiqueComponent is structured as follows: <negative examples> <im-
proved prompt> < instruction>. This guides the CritiqueComponent to provide detailed feed-
back for improving examples. For SynthesizeComponent, the prompt template is <synthesized
examples> <improved prompt> < instruction>, aiding in the synthesis and refinement of new exam-
ples.

The prompt template for CritiqueComponent follows this structure: <synthesized examples>
<improved prompt> < instruction>, guiding the CritiqueComponent to provide detailed feed-
back for prompt improvement. For SynthesizeComponent, the prompt template is <synthesized
examples> <improved prompt> < instruction>, assisting in the synthesis and refinement of new
optimized prompts for the synthetic examples. Figure 6 demonstrates the critique feedback on the
prompt alongside the refined optimized prompt. Prompt Templates used by different components are
shown in Fig. 8

17 BEST PROMPTS

Best prompt found for each dataset are shown below:

17.1 GSM8K PROMPT

1 <the optimized prompt instruction>
2

3 Analyze the given real-world mathematical problem step-by-step,
identifying key information, relationships between different pieces
of data, and the context. Understand the structure of the problem,
whether it involves a sequence of events or a comparison between
different quantities. Keep track of all variables and quantities
mentioned in the problem. Use appropriate mathematical operations and
formulas, including addition, subtraction, multiplication, division,
and more complex operations if required. Understand and handle

indirect relationships and different units of measurement. Apply
specific rules or conditions given in the problem. Make assumptions
when information is not explicitly provided. Consider the order of
operations when performing calculations. Understand the structure and
properties of the data in the problem. Finally, verify your answer

against the original problem to ensure it is logical and accurate.

1 <synthesized examples + reasoning chain>
2

3 [Question] Tim rides his bike back and forth to work for each of his 5
workdays. His work is 20 miles away. He also goes for a weekend
bike ride of 200 miles. If he can bike at 25 mph how much time
does he spend biking a week?

4 [Answer] 1. Identify the key pieces of information: Tim bikes to work and
back for 5 days, his work is 20 miles away, he goes for a 200-mile

bike ride on the weekend, and his biking speed is 25 mph.
5 2. Understand that the problem involves a sequence of events: Tim’s daily

commute to work and back, and his weekend bike ride.
6 3. Calculate the total distance Tim bikes to work and back in a week: 20

miles to work * 2 (for the return trip) = 40 miles per day. Multiply
this by 5 days: 40 miles/day * 5 days = 200 miles.

7 4. Add the distance of Tim’s weekend bike ride to the total distance he
bikes to work: 200 miles (work) + 200 miles (weekend) = 400 miles.
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CriticAgent for few shot examples:
  
You are an expert example selector who can help in selection of right 
in-context examples to help the most suitable agent solve this problem.
You are also given the prompt instruction which is used to solve this task

[Prompt]: <agent instruction>
You are given the task description of the task:
[Task Description]: <problem description>
I'm trying to write a few shots prompt using <few_shot_count> 
in-context examples to effectively solve any questions of the above task.
My current <few_shot_count> in-context examples set are: {examples}
Think of analysing, understanding and creating examples of task on the 
criteria of diversity of types of examples, complexity of the 
nature/characteristics of the examples and relevance/compatibility to the 
whole example set in total.
Output all the suggestions/ improvement which could be made to 
improve each individual example of the whole example selection set.

CriticAgent for instruction:

I'm trying to write a zero-shot instruction that will help the most capable and 
suitable agent to solve the task.
My current prompt is: "<agent instruction>"
But this prompt gets the following examples wrong: <negative examples>
Provide detail feedback which identifies reasons where the instruction could 
have gone wrong.
Wrap each reason with <START> and <END>

Generate keywords that express human intent:

You are given an instruction along description of task labelled as [Task 
Description]. For the given instruction, list out 3-5 keywords in comma 
separated format as [Intent] which define the characteristics or properties 
required by the about the most capable and suitable agent to solve the task 
using the instruction.
 
[Task Description]: <problem description>
[Instruction]: <agent instruction>
 
[Intent]:

Generate expert persona:
For each instruction, write a high-quality description about the most capable and suitable agent 
to answer the instruction. In second person perspective.
 
[Instruction]:  Make a list of 5 possible effects of deforestation
[Agent Description]: You are an environmental scientist with a specialization in the study of 
ecosystems and their interactions with human activities. You have extensive knowledge about 
the effects of deforestation on the environment, including the impact on biodiversity, climate 
change, soil quality, water resources, and human health. Your work has been widely recognized 
and has contributed to the development of policies and regulations aimed at promoting 
sustainable forest management practices. You are equipped with the latest research findings, 
and you can provide a detailed and comprehensive list of the possible effects of deforestation, 
including but not limited to the loss of habitat for countless species, increased greenhouse gas 
emissions, reduced water quality and quantity, soil erosion, and the emergence of diseases. 
Your expertise and insights are highly valuable in understanding the complex interactions 
between human actions and the environment.
...

  [Instruction]: <problem description>
  [Agent Description]:

SynthesizeAgent for generating examples:

You are an expert example selector who can help in selection of right in-context examples to 
help the agent solve this problem.
You are also given the prompt instruction which is used to solve this task

[Prompt]:  <improved prompt>
You are given the description of the task:
[Task Description]: <problem description>
I'm trying to write a few shots prompt using <few_shot_count> in-context examples to 
effectively solve any questions of the   above task
My current <few_shot_count> in-context examples set are: <synthesized examples>
You are also given a set of suggestions/improvements which could be made to improve each 
individual example of the whole example selection set:
[SUGGESTION/IMPROVEMENT]: <critic feedback>
Based on the above information, use all of it smartly and diligently to carefully create new set 
of <few_shot_count>, which follow these suggestion and improvements.
Make sure to output each example wrapped with <START> and <END>.
 
New examples should follow this format strictly:
 
[Question] followed by question part of the example
[Answer] followed by the all the steps of logic reasoning statements related to answer. The 
final answer as "<ANS_START>[answer]<ANS_END>"
 
For Example: <START>
<original example>
<END>
 
[New Examples]:

MutateAgent:
You are given a task description and a prompt instruction and different 
styles known as meta prompts:
[Task Description]: <problem description>
[Meta Prompt]: <thinking style pool>
Now you need to generate <few_shot_count> variations of following 
Instruction adaptively mixing meta prompt while keeping similar semantic 
meaning.
Make sure to wrap each generated prompt with <START> and <END>
[Prompt Instruction]: <agent instruction>
[Generated Prompts]:

SynthesizeAgent for refining instruction:

I'm trying to write a zero-shot instruction that will help the most capable 
and suitable agent to solve the task.
My current prompt is: "<agent instruction>"
But this prompt gets the following examples wrong: <negative 
examples>
On carefully analysing these examples, following are the critiques 
related to prompt <critic feedback>
Use the critique smartly, refine the current prompt to make sure we don’t 
get these examples wrong.
Based on the above information, Now I want you to write a different 
improved prompts.
Each prompt should be wrapped with <START> and <END>.
[Refined Prompts]:

Generate reasoning behind the answer:

You are given a task description and instruction followed by a set of correct examples of the task.
[Task Description]: <problem description>
[Instruction]: <agent instruction>

Each example has a question denoted by question [Question] and a final answer [Answer] .
[Question]: <question>
[Answer]: <answer>
 
Now your task is to generate a reasoning chain that contains the steps, logical pathway followed to 
arrive at the correct answer,   assuming the necessary domain knowledge is present as part of the 
question and task description.
Make sure it is specific, non-ambiguous, complete, and specifies all the logic and steps required to 
reach the final answer.
 
[Improved Reasoning Chain]:

Figure 8: Prompt Templates for different components of PromptWizard.
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8 5. Understand that the problem asks for the total time Tim spends biking
in a week, and that time can be calculated by dividing distance by
speed.

9 6. Calculate the total time Tim spends biking in a week: 400 miles / 25
mph = 16 hours.

10 7. Verify that the answer is logical: Tim spends 16 hours biking in a
week, which is reasonable given the distances and speed provided.

11 8. The final answer is 16 hours. <ANS_START>16<ANS_END>
12

13

14 [Question] Tobias is buying a new pair of shoes that costs $95. He has
been saving up his money each month for the past three months. He
gets a $5 allowance a month. He also mows lawns and shovels driveways
. He charges $15 to mow a lawn and $7 to shovel. After buying the
shoes, he has $15 in change. If he mows 4 lawns, how many driveways
did he shovel?

15 [Answer] 1. Identify the total amount of money Tobias had before buying
the shoes. This is given by the cost of the shoes plus the change he
has left, which is $95 + $15 = $110.

16 2. Calculate the total amount of money Tobias earned from his allowance.
He gets $5 a month and has been saving for three months, so he earned
$5 * 3 = $15 from his allowance.

17 3. Calculate the total amount of money Tobias earned from mowing lawns.
He charges $15 to mow a lawn and he mowed 4 lawns, so he earned $15 *
4 = $60 from mowing lawns.

18 4. Subtract the money Tobias earned from his allowance and mowing lawns
from the total amount of money he had before buying the shoes. This
will give us the amount of money he earned from shoveling driveways.
So, $110 - $15 - $60 = $35 is the amount he earned from shoveling
driveways.

19 5. Finally, divide the total amount of money Tobias earned from shoveling
driveways by the amount he charges to shovel one driveway. This will
give us the number of driveways he shoveled. So, $35 / $7 = 5

driveways. <ANS_START>5<ANS_END>
20

21 [Question] Bella bought stamps at the post office. Some of the stamps had
a snowflake design, some had a truck design, and some had a rose

design. Bella bought 11 snowflake stamps. She bought 9 more truck
stamps than snowflake stamps, and 13 fewer rose stamps than truck
stamps. How many stamps did Bella buy in all?

22 [Answer] 1. Identify the quantities given in the problem: Bella bought 11
snowflake stamps.

23 2. Understand the relationships between the different types of stamps:
She bought 9 more truck stamps than snowflake stamps, and 13 fewer
rose stamps than truck stamps.

24 3. Calculate the number of truck stamps: The number of truck stamps is 11
(snowflake stamps) + 9 = 20.

25 4. Calculate the number of rose stamps: The number of rose stamps is 20 (
truck stamps) - 13 = 7.

26 5. Add up all the stamps: The total number of stamps Bella bought is 11 (
snowflake stamps) + 20 (truck stamps) + 7 (rose stamps) = 38.

27 6. Verify the answer: Check that the total number of stamps (38) matches
the sum of the individual quantities of each type of stamp (11
snowflake stamps, 20 truck stamps, 7 rose stamps). The answer is
correct. <ANS_START>38<ANS_END>

28

29 [Question] Tina makes $18.00 an hour. If she works more than 8 hours per
shift, she is eligible for overtime, which is paid by your hourly

wage + 1/2 your hourly wage. If she works 10 hours every day for 5
days, how much money does she make?

30 [Answer] 1. Identify the key information: Tina’s hourly wage is \$18.00,
she works 10 hours a day for 5 days, and overtime is calculated as
the hourly wage plus half the hourly wage for hours worked over 8
hours in a shift.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

31 2. Calculate the regular pay: Tina works 10 hours a day, but only 8 hours
are considered regular hours. So, for 5 days, she works 8 hours/day

* 5 days = 40 hours.
32 3. Multiply the regular hours by the hourly wage to get the regular pay:

40 hours * $18.00/hour = $720.00.
33 4. Calculate the overtime hours: Tina works 10 hours a day, so she has 10

hours/day - 8 hours/day = 2 hours/day of overtime. Over 5 days, this
is 2 hours/day * 5 days = 10 hours of overtime.

34 5. Calculate the overtime wage: The overtime wage is the hourly wage plus
half the hourly wage, so $18.00/hour + 0.5 * $18.00/hour = $27.00/

hour.
35 6. Multiply the overtime hours by the overtime wage to get the overtime

pay: 10 hours * $27.00/hour = $270.00.
36 7. Add the regular pay and the overtime pay to get the total pay: $720.00

+ $270.00 = $990.00.
37 8. Verify the answer: Tina makes $990.00 if she works 10 hours a day for

5 days, with overtime pay for hours worked over 8 hours in a shift.
This is logical and matches the original problem. <ANS_START>990<
ANS_END>

38

39 [Question] Samanthas last name has three fewer letters than B o b b i e s
last name. If Bobbie took two letters off her last name, she would

have a last name twice the length of J a m i e s . J a m i e s full name
is Jamie Grey. How many letters are in Samanthas last name?

40 [Answer] 1. Start by identifying the key pieces of information from the
problem: Samanthas last name has three fewer letters than
B o b b i e s last name, and if Bobbie took two letters off her last
name, she would have a last name twice the length of J a m i e s .
J a m i e s full name is Jamie Grey.

41 2. From the information given, we know that Jamie’s last name is Grey,
which has 4 letters.

42 3. Since Bobbie’s last name, after removing two letters, is twice the
length of Jamie’s last name, we can set up the equation: (Bobbie’s
last name length - 2) = 2 * Jamie’s last name length.

43 4. Substituting the known value of Jamie’s last name length (4) into the
equation gives: (Bobbie’s last name length - 2) = 2 * 4, which
simplifies to Bobbie’s last name length - 2 = 8.

44 5. Solving for Bobbie’s last name length gives: Bobbie’s last name length
= 8 + 2 = 10.

45 6. We know that Samanthas last name has three fewer letters than
B o b b i e s last name. So, we can set up the equation: Samantha’s last
name length = Bobbie’s last name length - 3.

46 7. Substituting the known value of Bobbie’s last name length (10) into
the equation gives: Samantha’s last name length = 10 - 3.

47 8. Solving for Samantha’s last name length gives: Samantha’s last name
length = 7.

48 9. Therefore, Samantha’s last name has 7 letters. <ANS_START>7<ANS_END>

1 <human intent>
2

3 Mathematical Reasoning, Multi-step Problem Solving, Basic Arithmetic
Operations, Data Analysis, Solution Verification

4

5 <expert persona>
6

7 You are a mathematics educator with a deep understanding of elementary
and middle school mathematics. You are experienced in teaching multi-
step problem-solving techniques and have a knack for breaking down
complex problems into manageable steps. Your expertise lies in basic
arithmetic operations such as addition, subtraction, multiplication,
and division. You can provide clear, step-by-step solutions to
mathematical problems that require multi-step reasoning. You are
patient and thorough, ensuring that each step is clearly explained
and understood. Your ability to simplify complex problems and guide
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students through the problem-solving process makes you an excellent
resource for answering school-grade mathematical questions.

8

9 <prompt guidelines for desired output format>
10

11 You need to answer each of the questions separately. Arabic numeral
should be at the end in the format Wrap your only the final answer,
without reason for each question separately between <ANS_START> and <
ANS_END> tags.

17.2 ETHOS PROMPT

1 <the optimized prompt instruction>
2

3 Carefully examine the provided text and determine if it constitutes hate
speech. Hate speech is defined as language that is derogatory,
offensive, or discriminatory towards a specific group of people based
on their race, gender, or other characteristics, with the intent to

harm or degrade. Even if the statement appears factual or sarcastic,
if it uses aggressive language or personal attacks aimed at a
specific group, it should be classified as hate speech.

1 <synthesized examples + reasoning chain>
2

3 [Question] While I appreciate the hard work of some immigrants, others
are just here to exploit our system and take our jobs.

4 [Answer] 1. Start by reading the provided text to understand its content.
5 2. The task requires identifying if the text contains hate speech.

According to the task description, hate speech is language that is
derogatory, offensive, or discriminatory towards a specific group of
people based on their race, gender, or other characteristics, with
the intent to harm or degrade.

6 3. The text states, "While I appreciate the hard work of some immigrants,
others are just here to exploit our system and take our jobs."

7 4. This statement is making a generalization about a specific group of
people, in this case, immigrants. It suggests that some immigrants
are exploiting the system and taking jobs, which is a negative
stereotype.

8 5. Even though the text acknowledges the hard work of some immigrants, it
still uses derogatory language towards others, implying they are

here to exploit the system.
9 6. This statement can be seen as offensive and discriminatory towards

immigrants, as it negatively stereotypes them and can potentially
harm or degrade them.

10 7. Therefore, according to the task description and instruction, this
text can be classified as hate speech.\newline

11 8. As per the task instruction, if the text contains hate speech, the
output should be 1.

12 9. Hence, the final answer is 1. <ANS_START>1<ANS_END>
13

14 [Question] I’ve noticed that female politicians are more corrupt and only
care about their own interests.\newline

15 [Answer] 1. Start by reading the provided text: "I’ve noticed that female
politicians are more corrupt and only care about their own interests

."
16 2. Identify the subject of the text: The subject is "female politicians."
17 3. Analyze the language used in the text: The language used is derogatory

and offensive, as it generalizes all female politicians as being "
more corrupt" and only caring about their own interests.

18 4. Determine if the language is discriminatory: The language
discriminates against a specific group, in this case, female
politicians, by making a negative generalization about them.
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19 5. Check if the language has the intent to harm or degrade: The language
used seems to degrade the reputation of female politicians by
portraying them as corrupt and self-interested.

20 6. Based on the task description and instruction, the text is considered
hate speech if it is derogatory, offensive, or discriminatory towards
a specific group of people with the intent to harm or degrade.

21 7. Since the text meets all these criteria, it is classified as hate
speech.

22 8. According to the task instruction, if the text contains hate speech,
the output should be 1.

23 9. Therefore, the final answer is 1. <ANS_START>1<ANS_END>
24

25 [Question] I don’t get why we have to accept people who choose to be
transgender. It’s unnatural and against our values.

26 [Answer] 1. Start by reading the provided text.
27 2. Identify the subject of the text. In this case, the subject is "people

who choose to be transgender."
28 3. Analyze the language used in the text. The text uses phrases like "It’

s unnatural" and "against our values," which are derogatory and
offensive.

29 4. Determine if the language is aimed at a specific group. Here, the
language is targeted towards transgender people, a specific group.

30 5. Check if the language is intended to harm or degrade the specific
group. The text implies that being transgender is unnatural and
against societal values, which can be seen as an attempt to degrade
or harm the transgender community.\newline

31 6. Since the text uses offensive language against a specific group with
the intent to harm or degrade, it can be classified as hate speech.

32 7. Therefore, the correct answer is 1, indicating that the text contains
hate speech. <ANS_START>1<ANS_END>

1 <human intent>
2

3 Text Analysis, Hate Speech Identification, Discriminatory Language
Detection, Offensive Content Recognition, Derogatory Language
Classification

4

5 <expert persona>
6

7 You are a machine learning engineer with a specialization in natural
language processing and text analysis. You have developed and trained
algorithms to detect and classify different types of text, including
hate speech. Your algorithm can analyze the given text, identify

patterns, and determine whether it contains hate speech or not. You
are equipped with a deep understanding of the nuances of language,
and you can differentiate between offensive language, strong
criticism, and actual hate speech. Your algorithm is designed to be
fair and unbiased, and it respects the principles of freedom of
speech while also recognizing the harm caused by hate speech. Your
expertise in text analysis and machine learning is highly valuable in
moderating online content and creating a safer digital environment.

8

9 <prompt guidelines for desired output format>
10 You need to answer each of the questions separately with 1 if its a hate

speech and 0 if its not a hate speech. Wrap your only the final
answer, without reason for each question separately between <
ANS_START> and <ANS_END> tags.

17.3 PUBMEDQA PROMPT

1 <the optimized prompt instruction>
2

3 Carefully read the abstract and identify the key points that directly
address the biomedical research question. Based on these key points,
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provide a clear and concise answer in a "Yes" or "No" format,
followed by a brief explanation that correlates the research question
with the findings in the abstract.

1 <synthesized examples + reasoning chain>
2

3 [Question] Does the process of photosynthesis under varying light
intensities and temperature play a significant role in the growth of
different species of algae?\newline

4 [Abstract] : Photosynthesis is a process used by plants and other
organisms to convert light energy into chemical energy that can later
be released to fuel the organisms’ activities. This study

investigates the impact of varying light intensities and temperature
on the photosynthetic process in different species of algae. The
algae were exposed to different light intensities and temperatures,
and their growth rate was monitored over a period of time. The
results showed a direct correlation between light intensity,
temperature and the growth rate of algae.

5 [Answer] 1. The question asks whether the process of photosynthesis under
varying light intensities and temperature plays a significant role

in the growth of different species of algae.
6 2. The abstract provides information about a study that investigates the

impact of varying light intensities and temperature on the
photosynthetic process in different species of algae.

7 3. The abstract mentions that the algae were exposed to different light
intensities and temperatures, and their growth rate was monitored
over a period of time.\newline

8 4. The results of the study, as mentioned in the abstract, showed a
direct correlation between light intensity, temperature and the
growth rate of algae.

9 5. This direct correlation indicates that the process of photosynthesis
under varying light intensities and temperature does indeed play a
significant role in the growth of different species of algae.

10 6. Therefore, based on the information provided in the abstract, the
answer to the question is "Yes". <ANS_START>yes<ANS_END>

11

12

13 [Question] Is the use of antiviral drugs effective in treating influenza,
a common viral infection?

14 [Abstract] : Antiviral drugs are medicines used to prevent and treat
viral infections. Influenza, on the other hand, is a viral infection.
This study investigates the effectiveness of antiviral drugs in

treating influenza. The study involved patients suffering from
influenza who were treated with antiviral drugs. The results showed
significant improvement in the condition of the patients.

15 [Answer] 1. The question asks about the effectiveness of antiviral drugs
in treating influenza, a common viral infection.

16 2. The abstract provides information about a study that investigates the
effectiveness of antiviral drugs in treating influenza.

17 3. The study involved patients suffering from influenza who were treated
with antiviral drugs.\newline

18 4. The results of the study showed significant improvement in the
condition of the patients after they were treated with antiviral
drugs.

19 5. Therefore, based on the results of the study mentioned in the abstract
, it can be concluded that the use of antiviral drugs is effective in
treating influenza.

20 6. Hence, the answer to the question is "Yes". <ANS_START>yes<ANS_END>
21

22

23 [Question] Are intensive care units more beneficial than general wards
for the treatment of severe pneumonia in children with underlying
health conditions?

24 [Abstract] : Pneumonia is a common illness in children that can become
severe if not properly treated. Intensive care units (ICUs) provide
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specialized care for patients with severe or life-threatening
illnesses. This study examines the impact of ICU treatment on
children with severe pneumonia and underlying health conditions. The
study compared the recovery rates of children treated in ICUs with
those treated in general wards. The results showed a higher recovery
rate in children with underlying health conditions treated in ICUs.\
newline

25 [Answer] 1. The question asks whether intensive care units (ICUs) are
more beneficial than general wards for the treatment of severe
pneumonia in children with underlying health conditions.

26 2. The abstract provides information about a study that examined the
impact of ICU treatment on children with severe pneumonia and
underlying health conditions.\newline

27 3. The study compared the recovery rates of children treated in ICUs with
those treated in general wards.

28 4. The results of the study showed a higher recovery rate in children
with underlying health conditions treated in ICUs.

29 5. Therefore, based on the results of the study presented in the abstract
, the answer to the question is "Yes". ICUs are more beneficial than
general wards for the treatment of severe pneumonia in children with
underlying health conditions. <ANS_START>yes<ANS_END>

30

31 [Question] Is the blood glucose level a more reliable marker than HbA1c
for diagnosing Diabetes?

32 [Abstract] : Diabetes is a chronic disease that affects the body’s
ability to process sugar. Blood glucose levels and HbA1c are commonly
used markers for diagnosing diabetes. This study investigates the

reliability of blood glucose levels and HbA1c as markers for
diagnosing Diabetes. The study involved patients diagnosed with
Diabetes and their blood glucose and HbA1c levels were measured. The
results showed a significant correlation between high blood glucose
levels and Diabetes diagnosis, but not with HbA1c levels.

33 [Answer] 1. The question asks whether blood glucose level is a more
reliable marker than HbA1c for diagnosing Diabetes.\newline

34 2. The abstract provides information about a study that investigates the
reliability of blood glucose levels and HbA1c as markers for
diagnosing Diabetes.

35 3. The abstract mentions that the study involved patients diagnosed with
Diabetes and their blood glucose and HbA1c levels were measured.

36 4. The key point in the abstract is the results of the study, which
showed a significant correlation between high blood glucose levels
and Diabetes diagnosis, but not with HbA1c levels.

37 5. This indicates that blood glucose levels are a more reliable marker
for diagnosing Diabetes than HbA1c levels, according to the study.

38 6. Therefore, based on the information provided in the abstract, the
answer to the question is "Yes". <ANS_START>yes<ANS_END>

39

40

41 [Question] Can regular strength training reduce the risk of osteoporosis
in adults over 60?

42 [Abstract] : Osteoporosis is a major health issue globally, especially in
adults over 60. Regular strength training is known to have various

health benefits, including improving bone health. This study
investigates the impact of regular strength training on the risk of
osteoporosis in adults over 60. The study involved participants who
engaged in regular strength training and their bone health was
monitored over a period of time. The results showed a lower incidence
of osteoporosis in participants who engaged in regular strength

training.
43 [Answer] 1. The question asks whether regular strength training can

reduce the risk of osteoporosis in adults over 60.
44 2. The abstract provides information about a study that investigates the

impact of regular strength training on the risk of osteoporosis in
adults over 60.
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45 3. The abstract mentions that regular strength training is known to have
various health benefits, including improving bone health.

46 4. The study involved participants who engaged in regular strength
training and their bone health was monitored over a period of time.

47 5. The results of the study, as mentioned in the abstract, showed a lower
incidence of osteoporosis in participants who engaged in regular

strength training.
48 6. Therefore, based on the results of the study mentioned in the abstract

, it can be concluded that regular strength training can reduce the
risk of osteoporosis in adults over 60.

49 7. Hence, the answer to the question is "Yes". <ANS_START>yes<ANS_END>

1 <human intent>
2 Biomedical Research Understanding, Abstract Analysis, Key Point

Identification, Concise Answering, Explanation Correlation
3

4 <expert persona>
5

6 You are a biomedical researcher with a deep understanding of medical and
scientific literature. You have a strong background in reading and
interpreting scientific abstracts, and you are skilled at extracting
key information from complex texts. You can accurately answer
biomedical research questions based on the information provided in
the corresponding abstracts. Your expertise in biomedical research
allows you to understand the nuances and implications of the findings
presented in the abstracts, and you can provide clear, concise, and

accurate answers to the questions. Your ability to critically analyze
and interpret scientific literature makes you an invaluable resource
in the field of biomedical research.

7

8 <prompt guidelines for desired output format>
9

10 You need to answer each of the questions separately with yes/ no/ maybe.
Wrap your only the final answer, without reason for each question
separately between <ANS_START> and <ANS_END> tags.

17.4 MEDQA PROMPT

1 <the optimized prompt instruction>
2

3 Analyze the patient’s age, symptoms, duration and onset of symptoms,
history of present illness, lifestyle factors, physical examination
findings, and any diagnostic test results presented in the Medical
Licensing Examination question. Use your knowledge of medicine to
identify the most likely diagnosis or appropriate treatment. Consider
the progression, severity, and duration of the patient’s symptoms in
relation to the answer options. Eliminate incorrect answer options

based on your medical knowledge and ensure your final choice is the
most appropriate given the specifics of the question. Validate your
answer by ensuring it aligns with all the information provided in the
question, including the patient’s age, lifestyle factors, and

specific diagnostic test results.

1 <synthesized examples + reasoning chain>
2

3 [Question] A 50-year-old man with a history of hypertension and type 2
diabetes presents with a 3-day history of chest pain radiating to the
left arm. He also reports shortness of breath and fatigue. Physical

examination reveals a blood pressure of 150/90 mmHg, heart rate of
90/min, and an irregular pulse. An ECG shows ST-segment elevation in
leads II, III, and aVF. Which of the following is the most
appropriate initial treatment?

4 Options:
5 A: Aspirin and clopidogrel
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6 B: Metformin
7 C: Lisinopril
8 D: Atorvastatin
9

10 [Answer] 1. Start by analyzing the patient’s age, symptoms, and medical
history. The patient is a 50-year-old man with a history of
hypertension and type 2 diabetes. He presents with chest pain
radiating to the left arm, shortness of breath, and fatigue. These
symptoms are indicative of a cardiovascular event.

11 2. Consider the physical examination findings. The patient has a blood
pressure of 150/90 mmHg, heart rate of 90/min, and an irregular pulse
. These findings further support the likelihood of a cardiovascular
event.

12 3. Review the diagnostic test results. The ECG shows ST-segment elevation
in leads II, III, and aVF. This is a classic sign of an ST-segment

elevation myocardial infarction (STEMI), a type of heart attack.
13 4. Given the diagnosis of STEMI, consider the most appropriate initial

treatment. The options are Aspirin and clopidogrel (A), Metformin (B)
, Lisinopril (C), and Atorvastatin (D).

14 5. Eliminate incorrect answer options based on medical knowledge.
Metformin (B) is a medication for diabetes, Lisinopril (C) is an
antihypertensive medication, and Atorvastatin (D) is a cholesterol-
lowering medication. While these medications may be part of the
patient’s long-term management, they are not the most appropriate
initial treatment for a STEMI.

15 6. Aspirin and clopidogrel (A) are antiplatelet medications. They work by
preventing blood clots, which is crucial in the initial management

of a STEMI to restore blood flow to the heart muscle.
16 7. Therefore, the most appropriate initial treatment for this patient,

given his symptoms, physical examination findings, and ECG results,
is Aspirin and clopidogrel (A). This aligns with all the information
provided in the question and is the most appropriate given the
specifics of the question.

17 8. Validate the final choice (A) as it is the most appropriate initial
treatment for a patient presenting with a STEMI. <ANS_START>A<ANS_END
>

18

19

20 [Question] A 6-month-old girl is brought to the physician by her mother
because of a 2-day history of fever and irritability. She also has a
rash on her cheeks. Physical examination reveals a temperature of
38.5 C (101.3 F ), a heart rate of 120/min, and a respiratory rate
of 30/min. Examination of the skin shows erythema of the cheeks with
sparing of the nasal bridge and perioral area. Which of the following
is the most likely diagnosis?

21 Options:
22 A: Measles
23 B: Fifth disease
24 C: Roseola
25 D: Scarlet fever
26

27 [Answer] 1. Start by analyzing the patient’s age, symptoms, duration and
onset of symptoms, and physical examination findings. The patient is
a 6-month-old girl with a 2-day history of fever and irritability.
She also has a rash on her cheeks. Her temperature is 38.5 C (101.3
F ), a heart rate of 120/min, and a respiratory rate of 30/min. The

skin examination shows erythema of the cheeks with sparing of the
nasal bridge and perioral area.

28 2. Use your medical knowledge to identify the most likely diagnosis. The
symptoms presented are indicative of a viral exanthem, a rash that
appears due to a viral infection.

29 3. Consider the answer options. The options are Measles, Fifth disease,
Roseola, and Scarlet fever. All of these are diseases that can
present with a rash.
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30 4. Eliminate incorrect answer options based on your medical knowledge.
Measles typically presents with a rash that starts at the hairline
and moves down, along with Koplik spots in the mouth, which are not
mentioned in the question. Scarlet fever typically presents with a
sandpaper-like rash and a strawberry tongue, which are also not
mentioned. Roseola typically presents with a high fever that suddenly
drops as a rash appears, which does not match the patient’s symptoms

.
31 5. The remaining option is Fifth disease, also known as erythema

infectiosum. This disease is common in children and presents with a "
slapped cheek" rash, fever, and irritability, which aligns with the
patient’s symptoms.

32 6. Validate your answer by ensuring it aligns with all the information
provided in the question. The patient’s age, symptoms, and physical
examination findings all align with a diagnosis of Fifth disease.

33 7. Therefore, the correct answer is B: Fifth disease. <ANS_START>B<
ANS_END>

34

35

36 [Question] A 70-year-old man presents with a 1-year history of
progressive memory loss, difficulty finding words, and getting lost
in familiar places. Neurologic examination shows impaired recall and
disorientation to time and place. MRI of the brain shows cortical
atrophy and enlarged ventricles. Which of the following is the most
likely diagnosis?

37 Options:
38 A: Alzheimer’s disease
39 B: Vascular dementia
40 C: Lewy body dementia
41 D: Frontotemporal dementia
42

43 [Answer] 1. Start by analyzing the patient’s age, symptoms, duration and
onset of symptoms, and the results of the physical examination and
diagnostic tests. The patient is a 70-year-old man with a 1-year
history of progressive memory loss, difficulty finding words, and
getting lost in familiar places. The neurologic examination shows
impaired recall and disorientation to time and place. The MRI of the
brain shows cortical atrophy and enlarged ventricles.

44 2. Consider the progression, severity, and duration of the patient’s
symptoms. The symptoms have been progressing over a year, which
indicates a chronic condition.

45 3. Use your medical knowledge to identify the most likely diagnosis. The
symptoms of progressive memory loss, difficulty finding words, and
getting lost in familiar places, along with impaired recall and
disorientation to time and place, are characteristic of a
neurodegenerative disease.

46 4. Look at the answer options and eliminate incorrect ones based on your
medical knowledge. Vascular dementia (Option B) typically presents
with stepwise deterioration of cognitive function, which is not the
case here. Lewy body dementia (Option C) is usually accompanied by
visual hallucinations, parkinsonism, or fluctuating cognition, none
of which are mentioned in the question. Frontotemporal dementia (
Option D) often presents with changes in personality and behavior,
which is also not mentioned in the question.

47 5. The remaining option is Alzheimer’s disease (Option A), which is a
neurodegenerative disease that commonly presents with progressive
memory loss, difficulty finding words, and getting lost in familiar
places, especially in older adults. The MRI findings of cortical
atrophy and enlarged ventricles are also consistent with Alzheimer’s
disease.

48 6. Validate your answer by ensuring it aligns with all the information
provided in the question. Alzheimer’s disease fits with the patient’s
age, the chronic and progressive nature of the symptoms, the

neurologic examination findings, and the MRI results.
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49 7. Therefore, the correct answer is A: Alzheimer’s disease. <ANS_START>A<
ANS_END>

50

51

52 [Question] A 35-year-old woman presents with a 2-week history of severe
headache, fever, and photophobia. She also reports a rash on her
lower extremities. Physical examination reveals a temperature of 38.2
C (100.8 F ), a heart rate of 110/min, and a petechial rash on her

lower extremities. Lumbar puncture shows increased white blood cells
with a predominance of lymphocytes, increased protein, and normal
glucose. Which of the following is the most appropriate
pharmacotherapy?

53 Options:
54 A: Ceftriaxone and vancomycin
55 B: Acyclovir
56 C: Amphotericin B
57 D: Doxycycline
58

59 [Answer] 1. Start by analyzing the patient’s symptoms: severe headache,
fever, photophobia, and a petechial rash on her lower extremities.
These symptoms suggest a systemic infection, possibly involving the
central nervous system given the presence of headache and photophobia
.

60 2. Consider the patient’s age and duration of symptoms. A 35-year-old
woman with a 2-week history of these symptoms suggests an acute
infection rather than a chronic condition.

61 3. Review the physical examination findings and diagnostic test results.
The patient has a fever and tachycardia, further supporting the
presence of a systemic infection. The lumbar puncture results show
increased white blood cells with a predominance of lymphocytes,
increased protein, and normal glucose. These findings are indicative
of viral meningitis.

62 4. Evaluate the answer options in relation to the most likely diagnosis.
Viral meningitis is typically caused by enteroviruses, herpes simplex
virus, or arboviruses.

63 5. Option A (Ceftriaxone and vancomycin) is used to treat bacterial
meningitis, which is not consistent with the lumbar puncture results.
Eliminate this option.

64 6. Option B (Acyclovir) is an antiviral medication used to treat
infections caused by herpes viruses, including herpes simplex virus
meningitis. This option aligns with the diagnosis.

65 7. Option C (Amphotericin B) is an antifungal medication, which is not
consistent with the diagnosis of viral meningitis. Eliminate this
option.

66 8. Option D (Doxycycline) is an antibiotic used to treat bacterial
infections, including certain types of bacterial meningitis, but it
is not the first-line treatment for viral meningitis. Eliminate this
option.

67 9. Validate the final choice (Option B: Acyclovir) by ensuring it aligns
with all the information provided in the question, including the
patient’s age, symptoms, physical examination findings, and specific
diagnostic test results.

68 10. Therefore, the correct answer is B: Acyclovir. <ANS_START>B<ANS_END>
69

70

71 [Question] A 40-year-old man with a history of alcohol abuse presents
with a 1-day history of severe abdominal pain, nausea, and vomiting.
Physical examination reveals a distended abdomen, decreased bowel
sounds, and tenderness to palpation in the upper abdomen. Laboratory
tests show an elevated serum amylase and lipase. Which of the
following is the most likely diagnosis?

72 Options:
73 A: Acute pancreatitis
74 B: Peptic ulcer disease
75 C: Gastric cancer
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76 D: Gastroenteritis
77

78 [Answer] 1. Start by analyzing the patient’s age, symptoms, duration and
onset of symptoms, history of present illness, lifestyle factors,
physical examination findings, and any diagnostic test results
presented in the question. The patient is a 40-year-old man with a
history of alcohol abuse. He has been experiencing severe abdominal
pain, nausea, and vomiting for 1 day. His abdomen is distended, bowel
sounds are decreased, and there is tenderness in the upper abdomen.

His serum amylase and lipase levels are elevated.
79 2. Use your knowledge of medicine to identify the most likely diagnosis.

The patient’s history of alcohol abuse, the sudden onset and severity
of his symptoms, and his physical examination findings are all

indicative of a pancreatic condition. The elevated serum amylase and
lipase levels further support this, as these enzymes are produced by
the pancreas and their levels increase in the blood when the pancreas
is inflamed or damaged.

80 3. Consider the answer options in relation to the patient’s symptoms and
test results. Acute pancreatitis, peptic ulcer disease, gastric
cancer, and gastroenteritis are all potential diagnoses.

81 4. Eliminate incorrect answer options based on your medical knowledge.
Peptic ulcer disease typically presents with a burning pain in the
middle or upper stomach between meals or at night, not with a
distended abdomen and decreased bowel sounds. Gastric cancer usually
develops slowly over many years, and its symptoms often only appear
in the advanced stages of the disease. Gastroenteritis, while it can
cause abdominal pain, nausea, and vomiting, does not typically result
in a distended abdomen, decreased bowel sounds, or elevated serum

amylase and lipase levels.
82 5. The remaining option, acute pancreatitis, aligns with all the

information provided in the question. The patient’s history of
alcohol abuse is a common risk factor for acute pancreatitis. The
sudden onset and severity of his symptoms, his physical examination
findings, and his elevated serum amylase and lipase levels are all
characteristic of this condition.

83 6. Therefore, the most likely diagnosis for this patient is acute
pancreatitis, making option A the correct answer. <ANS_START>A<
ANS_END>

1

2 <human intent>
3 Medical Knowledge, Analytical Skills, English Proficiency, Reasoning

Skills, Attention to Detail
4

5 <expert persona>
6 You are a medical professional with extensive experience in the field and

a deep understanding of the United States Medical Licensing Exam (
USMLE). You have successfully passed the USMLE and have a thorough
understanding of the format and style of the questions. You are well-
versed in a wide range of medical topics, from anatomy and physiology
to pathology and pharmacology. You have the ability to analyze

complex medical scenarios, apply your knowledge, and make informed
decisions. You can accurately interpret the questions and the
provided options, and select the correct answer based on your medical
knowledge and reasoning. Your expertise and experience make you

highly capable of answering these questions correctly and efficiently
7

8 <prompt guidelines for desired output format>
9 You need to output the correct option among [A/B/C/D] for each question

separately using your medical knowledge and reasoning. Wrap your only
the final answer, without reason for each question separately

between <ANS_START> and <ANS_END> tags.
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