

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO COOPERATE WITH EMERGENT REPUTATION VIA MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reputation, the aggregation of peer assessments diffused through social networks, is a pivotal mechanism for promoting cooperation in social dilemmas ubiquitous to distributed multi-agent systems comprising agents with limited perception and cognitive capabilities. Exploring efficient reputation systems, comprising reputation assessment rules and reputation-based policies, is a long-standing challenge. Previous work assumes predefined reputation assessment rules or models reputation as an intrinsic reward to learn policies, compromising the methods' ability for generalization and adaptation. To address this, we propose a distributed multi-agent reinforcement learning method **COOPER** (**COOP**eration with **E**mergent **R**eputation), which jointly learns reputation assessment rules and reputation-based policies entirely from environment rewards. Notably, leveraging the underlying mechanisms of reputation, we deliberately design the constituent modules of **COOPER** and the data flows among them, overcoming the latency and noise in the feedback signal, caused by the deep entanglement between reputation and policy. Experiments on the donation game and the coin game in grid world environments demonstrate that **COOPER** effectively adapts to various existing reputation systems and co-players. Furthermore, we observe the co-emergence of reputation norms and cooperation in self-play settings. These results hold robustly across diverse social network topologies, underscoring the generalizability and efficacy of our approach.

1 INTRODUCTION

Distributed multi-agent systems (MAS) have attracted considerable attention for their advantages in scalability, robustness, and efficiency when addressing complex real-world problems (Zhang et al., 2021; Ning & Xie, 2024; Maldonado et al., 2024). These systems leverage decentralized decision-making to harness the collective intelligence of multiple autonomous agents, enabling effective solutions across various domains (Oliehoek & Amato, 2016; Jin et al., 2025; Hady et al., 2025). However, agents' autonomy often implies their pursuit of self-interest. Coupled with limited perception (partial observation) and bounded cognitive capabilities, this can give rise to social dilemmas, where the individually optimal strategies conflict with the collective optimum (Axelrod & Hamilton, 1981; Hardin, 1998; Vlassis, 2007). For example, in unmanned aerial vehicle (UAV) formation tasks, multiple UAVs minimizing their own energy use may target the same position, thereby compromising the group's objective of covering all locations efficiently (Yun et al., 2022). Therefore, developing distributed multi-agent reinforcement learning (MARL) methods that effectively mitigate social dilemmas is of critical importance.

To tackle this problem, reputation mechanisms have emerged as a promising solution inspired by human societies (Nowak & Sigmund, 2005). In human interactions, an individual's reputation is an aggregation of others' assessments regarding that individual's behavior, and it is diffused on social networks via gossip (Nowak & Sigmund, 1998). Humans routinely tailor their interaction strategies based on the reputations of others, and the awareness of being judged incentivizes individuals to act in ways that preserve their own reputations for long-term benefit (Fehr & Fischbacher, 2004). Consequently, reputation systems help promote cooperation in social dilemmas by encouraging agents to forgo short-term gains in favor of sustained collective outcomes. However, existing MARL approaches incorporating reputation often rely on predefined reputation assessment rules (Anastasacos et al., 2021; Smit & Santos, 2024) or model reputation as an intrinsic reward signal (Ren et al.,

054 2025). By doing so, these approaches simplify the learning problem by assuming a pre-existing
 055 reputation norm, such as the desirability of a higher reputation or specific rules for reputation
 056 assignment. However, this simplification comes at a cost: such methods may lack adaptability in novel
 057 environments or when interacting with unfamiliar agents, and they fail to learn a reputation norm
 058 from scratch in a fully decentralized manner (Cordova et al., 2024). Actually, learning such a norm
 059 is challenging, particularly in self-play settings where no ground-truth standard exists to guide the
 060 emergence of reputation assignment rules that foster cooperation.

061 To conquer this challenge, we propose COOPER (COOPeration with Emergent Reputation), a novel
 062 MARL algorithm that jointly learns a reputation assignment rule and a reputation-based policy in
 063 a fully decentralized manner. COOPER comprises two key modules: (1) a reputation assignment
 064 module that dynamically integrates assessments from neighbors with direct interaction experiences
 065 to assess others and infer how one is perceived by the group; and (2) a reputation-based policy
 066 module that leverages reputation assessment for co-players and the estimation for self-reputation to
 067 guide actions. Our approach distinguishes itself through its sophisticated module and information
 068 flow design, which enables the simultaneous emergence of reputation norms and cooperative
 069 policies purely through environmental feedback, without relying on predefined reputation semantics or
 070 intrinsic rewards. This endows COOPER with strong adaptability to diverse reputation norms and
 071 co-players. Through extensive experiments in diverse matrix games and grid-world environments,
 072 we demonstrate COOPER’s effectiveness in achieving sustained cooperation across various network
 073 structures, its robustness in self-play scenarios, and its adaptation capabilities when interacting with
 074 agents with existing reputation norms. Furthermore, we provide a detailed analysis of the emergent
 075 reputation norms, offering insights that bridge MARL behaviors with theoretical models of
 076 reputation and cooperation. In summary, our key contributions are:
 077

- 078 • We introduce COOPER, a novel MARL algorithm that jointly learns a reputation assignment
 079 module and a reputation-based policy, enabling the emergence of reputation norm and
 080 cooperation without predefined reputation semantics or update rules.
- 081 • We empirically demonstrate that COOPER sustains cooperation across diverse network
 082 structures and successfully adapts to various co-players and pre-existing reputation norms.
- 083 • We provide a detailed analysis of the emerged reputation norms, bridging the gap between
 084 MARL behaviors and theoretical reputation models.

085 2 RELATED WORK

086 The fact that individuals help others based on their reputation is a powerful explanation for large-
 087 scale human cooperation (Nowak & Sigmund, 2005; Milinski, 2016). Seminal work like image
 088 scoring (Nowak & Sigmund, 1998), showed how simple reputation systems can promote cooperation,
 089 inspiring extensive research into reputation norms. A key finding is that higher-order norms,
 090 such as *standing* (Panchanathan & Boyd, 2003) and *judging* (Ohtsuki & Iwasa, 2004), which condition
 091 assessments on the co-player’s reputation, lead to more robust and widespread cooperation.
 092 This research culminated in the “leading eight” norms, a family of evolutionarily stable assessment
 093 rules (Ohtsuki & Iwasa, 2006). Beyond assessment rules, reputation propagation, often modeled
 094 as gossip (Wu et al., 2016; Ellwardt, 2019), and social network structures (Watts & Strogatz, 1998;
 095 Barabási & Bonabeau, 2003) further shape the efficiency and stability of cooperation. However,
 096 these models fail to establish a reputation norm and reputation-based cooperation from scratch.

097 Fostering cooperation in self-interested RL agents is a long-standing challenge, particularly in
 098 mixed-motive social dilemmas like the Iterated Prisoner’s Dilemma or Donation Game, where individual
 099 and collective interests are misaligned (Fatima et al., 2024; Jiang et al., 2024). While early
 100 work in two-agent settings identified strategies like tit-for-tat (Press & Dyson, 2012), scaling these
 101 to large populations is hindered by non-stationarity from simultaneous learning (Du et al., 2023).
 102 Recent methods often use centralized training (Leibo et al., 2021) or agent modeling (Rabinowitz
 103 et al., 2018), but their reliance on central coordination or reward engineering limits decentralization
 104 and adaptability.

105 Integrating reputation mechanisms into MARL is a promising avenue for addressing social dilemmas.
 106 A common approach is to **implement predefined reputation assignment rules** (e.g., image
 107 scoring or a norm from evolutionary theory) and provide reputation assessment as input to the agent’s
 108 policy. Studies by Anastassacos et al. (2021) and Ren & Zeng (2023) have demonstrated that agents

108 can learn effective strategies conditioned on such pre-defined reputation signals. Similarly, Smit
 109 & Santos (2024) showed that predefined reputation rules can foster not only cooperation but also
 110 fairness. Another line of work uses **reputation as an intrinsic reward** to guide agents toward co-
 111 operative behavior (Ren et al., 2025). This approach can be sensitive to the chosen reward function,
 112 requiring careful balancing between extrinsic and intrinsic rewards to avoid unintended behaviors.
 113

114 3 PROBLEM FORMULATION

115 We study a networked multi-agent system denoted by a static undirected graph $G = (N, E)$. Here,
 116 $N = \{1, \dots, n\}$ is the agent set. Every agent $i \in N$ maintains a private assessment of all agents'
 117 reputations, represented by $\xi_i = (\xi_{i \rightarrow 1}, \dots, \xi_{i \rightarrow n})$, where $j \in N$ and $\xi_{i \rightarrow j} \in [-1, 1]$, and this
 118 assessment is shared with i 's neighbors in the network, denoted as $\mathcal{N}_i = \{j \mid \{i, j\} \in E\}$. Each
 119 agent's reputation is defined and continuously updated by the collective assessments of its peers.
 120 Besides disseminating information, agents are randomly paired to play games and receive rewards.
 121 We denote agent i 's co-player at time t as $g^t(i)$.

122 An agent's assessment of others is constantly updated based on (1) reputational information shared
 123 by neighbors and (2) her observation in physical interaction with co-players. Meanwhile, agents
 124 also adjust their own behavior to maintain a favorable reputation for future benefits. We formalize
 125 this reputation-based sequential decision-making problem as a partially observable Markov game:
 126

$$127 \mathcal{MG} = (N, \mathcal{S}, \{\mathcal{A}_i\}_{i \in N}, \mathcal{T}, \{\mathcal{O}_i\}_{i \in N}, \{\Omega_i\}_{i \in N}, \{\mathcal{R}_i\}_{i \in N}, \{\xi_i\}_{i \in N}, \{\mathcal{H}_i\}_{i \in N}, \gamma)$$

128 More specifically, the state $s^t \in \mathcal{S}$ is defined as $s^t = (s_p^t, G)$ where s_p^t denotes the physical state, like
 129 the grid world observation, and G represents agents' social network status. At each timestep, agent i
 130 receives observation $o_i^t \in \mathcal{O}_i$ generated by the observation function $\Omega_i(o_i^t | s^t)$. Agent i takes action
 131 $a_i^t \in \mathcal{A}_i$ based on observation o_i^t , assessment for others ξ_i^t , and her neighbors' assessments $\xi_{\mathcal{N}_i}^t =$
 132 $\{\xi_j^t | j \in \mathcal{N}_i\}$. After joint action $\mathbf{a}^t = (a_1^t, \dots, a_n^t) \in \mathcal{A}_1 \times \dots \times \mathcal{A}_n$, state s^t transits to s^{t+1} with
 133 probability $\mathcal{T}(s^{t+1} | s^t, \mathbf{a}^t)$, and agent i receives reward $r_i^t = \mathcal{R}_i(s^t, \mathbf{a}^t)$. $\mathcal{H}_i^t = (\mathcal{H}_{i,1}^t, \dots, \mathcal{H}_{i,n}^t) \in$
 134 \mathcal{H}_i represents agent i 's interaction histories with the co-players.
 135

136 Through interaction, each agent i learns a reputation-based policy $\pi_i(a_i^t | o_i^t, \xi_i^t)$ and a reputation
 137 assignment function $u_i(\xi_i^{t+1} | \xi_i^t, \xi_{\mathcal{N}_i}^t, \mathcal{H}_i^t)$ together. The policy π_i is optimized to maximize a dis-
 138 counted return $G_{\pi_i} = \mathbb{E}_{\mathbf{a}^t \sim \pi, s^{t+1} \sim \mathcal{T}(s^t, \mathbf{a}^t)} [\sum_{t=0}^{\infty} \gamma^t \mathcal{R}_i(s^t, \mathbf{a}^t)]$ where $\gamma \in [0, 1]$ is the discounted
 139 factor. In addition, u_i is optimized to generate a more accurate evaluation for different co-players,
 140 which ultimately contributes to a higher return. We say that a reputation norm emerges in a multi-
 141 agent system if the individually learned reputation assignment functions $\{u_i | i \in N\}$ converge to-
 142 ward a consistent evaluation strategy, reflecting a shared assessment pattern across the population.
 143

144 4 METHODOLOGY

145 To promote cooperation and adapt to unknown scenarios in mixed-motive games, we propose a
 146 distributed MARL method named **COOPER** (*COOPeration with Emergent Reputation*), which
 147 *jointly* learns (i) a reputation norm implemented as differentiable reputation assignment rules and
 148 (ii) a reputation-based policy, *entirely* from extrinsic rewards. Unlike previous work that relies on
 149 predefined reputation assignment rules or uses reputation as an intrinsic reward, COOPER derives
 150 its learning signal from interaction rewards. This enables the co-emergence of the reputation norm
 151 and cooperation, making COOPER highly adaptable to diverse environments and co-players.
 152

153 As shown in Figure 1, COOPER consists of a reputation assignment module and a reputation-based
 154 policy. The reputation assignment module comprises two key components: the *gossip-based* reputa-
 155 tion assessment ψ that aggregates neighbors' opinions and the *interaction-based* reputation assess-
 156 ment ϕ that refines beliefs using direct interaction histories. This dual-component design captures
 157 the feature of human social reasoning and effectively balances social opinions with personal ex-
 158 periences, thereby enhancing the robustness and reliability of the reputation assessment. The reputa-
 159 tion-based policy π conditions on these assessments to implement farsighted behavior in mixed-motive
 160 games, where myopic strategies can exploit short-term gains at the expense of future cooperation.
 161 To achieve sustainable long-term cooperation, π leverages reputation assessments of co-players to
 adapt to heterogeneous opponents and leverages the estimation of one's own reputation to regulate
 its own behavior, guiding agents to account for the future consequences of current actions.



Figure 1: An overview of our method. **COOPER** agents promote cooperative behavior in multi-agent reinforcement learning by jointly learn a reputation-based policy π and a reputation assignment module which separately processes gossip-based reputation assignment (ψ) and interaction-based reputation assignment (ϕ). During rollouts, the execution order is $\psi \rightarrow \pi \rightarrow \phi$, and in optimization, the order is $\psi \rightarrow \phi \rightarrow \pi$ to facilitate the learning of an aligned reputation assignment rule and reputation-based policy.

More specifically, at time t , each agent i aggregates social information to generate post-gossip assessments $\bar{\xi}_i^t = \psi_{\theta_i}(\xi_i^t, \xi_{\mathcal{N}_i}^t)$. Given i 's current co-player $g^t(i)$, actions are then drawn from the reputation-based policy conditioned on the current observation and the post-gossip reputations: $a_i^t \sim \pi_{\theta_i}(\cdot | o_i^t, \bar{\xi}_i^t)$. After acting, the joint action $(a_i^t, a_{g^t(i)}^t)$ is appended to the history $\mathcal{H}_{i,g^t(i)}^t$, which, together with $\bar{\xi}_i^t$, feeds into ϕ . The interaction-based module ϕ updates agent i 's assessment for its co-player $g^t(i)$ as $\xi_{i \rightarrow g^t(i)}^{t+1} = \phi_{\theta_i}(\bar{\xi}_{i \rightarrow g^t(i)}^t, \mathcal{H}_{i,g^t(i)}^t)$ where $\xi_{i \rightarrow j}^{t+1} = \bar{\xi}_{i \rightarrow j}^t$ for all $j \neq g^t(i)$.

For brevity, when unambiguous we write $\xi_i^{t+1} = \phi_{\theta_i}(\bar{\xi}_i^t, \mathcal{H}_{i,g^t(i)}^t)$, though only the $g^t(i)$ -entry is updated. To summarize, agent i updates assessments for others by $u_i = \phi_{\theta_i}(\psi_{\theta_i}(\xi_i^t, \xi_{\mathcal{N}_i}^t), \mathcal{H}_i^t)$. The updated assessments then diffuse through the social network G .

The co-learning of the reputation assignment module and the reputation-based policy is challenging because these two are deeply interdependent. The policy depends on accurate reputation assessments (reflecting certain reputation norms) to make farsighted decisions, while the reputation assignment module requires policy outcomes (such as cooperation or defection) to assign accurate reputations. Without careful coordination, this can lead to unstable learning dynamics or failure to converge.

COOPER addresses this challenge through carefully designed modules that capture the fundamental principle of reputation, as well as an alternating optimization scheme that preserves end-to-end training guided by environment rewards. During rollouts, the policy π conditions on the pre-interaction assessments of the current co-player. During optimization, we reverse the flow: π is trained on the post-interaction assessments computed by ϕ , based on the latest (just-observed) interaction history. Hence, gradients from rewards and regularizers propagate through π into ϕ and ψ . By aligning updates with the most recent interactions, COOPER grounds training in the most relevant information, enabling more accurate decision-making. It also ensures that ψ and ϕ are trained to produce assessments that more accurately predict the co-player's behavior and improve future action selection. Concretely, we formulate the loss function to train $\pi_{\theta_i} \rightarrow \phi_{\theta_i} \rightarrow \psi_{\theta_i}$ as

$$\mathcal{L}(\theta_i) = \mathcal{L}_{\text{env}}(\theta_i) + \lambda_{\text{conf}} \mathcal{L}_{\text{conf}}(\theta_i) + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}}(\theta_i). \quad (1)$$

The first term, $\mathcal{L}_{\text{env}}(\theta_i)$ guides COOPER to jointly learn the reputation assignment module ψ, ϕ and the reputation-based policy π to maximize environmental rewards. It is formulated as

$$\mathcal{L}_{\text{env}}(\theta_i) = \mathbb{E} \left[\sum_{t=0}^T \left(-\hat{A}_i^t \log \pi_{\theta_i} \left(a_i^t | o_i^t, \phi_{\theta_i}(\psi_{\theta_i}(\xi_i^t, \xi_{\mathcal{N}_i}^t), \mathcal{H}_{i,g^t(i)}^t) \right) \right) \right]. \quad (2)$$

We write the policy input as $\phi_{\theta_i}(\psi_{\theta_i}(\xi_i^t, \xi_{\mathcal{N}_i}^t), \mathcal{H}_{i,g^t(i)}^t)$ to emphasize that the interaction-informed, post-gossip assessments drive action selection. In Equation 2, $\hat{A}_i^t = \sum_{t'=t}^{T-1} (\gamma \lambda)^{t'-t} (r_i^{t'} + \gamma V_{\omega_i}(o_i^{t'+1}, \xi_i^{t'+1}) - V_{\omega_i}(o_i^{t'}, \xi_i^{t'})) + r_i^T$ denotes the generalized advantage estimation where $\lambda \in [0, 1]$ balances variance and bias in value estimation. V_{ω_i} is the value function that predicts the return from the agent's current information state. Its parameters are learned by minimizing

$$\mathcal{L}_{\text{val}}(\omega_i) = \mathbb{E} \left[\sum_{t=0}^T \left(V_{\omega_i}(o_i^t, \xi_i^t) - \sum_{t'=t}^T \gamma^{t'-t} r_i^{t'} \right)^2 \right]. \quad (3)$$

The second term in Equation 1 is designed to regularize ψ toward neighborhood consensus weighted by $\lambda_{\text{conf}} \geq 0$, capturing the human tendency to consider peers' points of view Pan et al. (2024). Intuitively, if a group of agents shares similar evaluation criteria, their gossip becomes more informative and consistent. Thus, this alignment helps stabilize norm emergence. For agent i ,

$$\mathcal{L}_{\text{conf}}(\theta_i) = \mathbb{E} \left[\left\| \psi_{\theta_i}(\xi_i^t, \xi_{\mathcal{N}_i}^t) - \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \xi_j^t \right\|_2^2 \right]. \quad (4)$$

As shown in Equation 4, $\mathcal{L}_{\text{conf}}$ measures the distance between agent i 's assessments and its neighbors' average assessments for others. This term can be viewed as a graph-based smoothness prior over assessments, improving sample efficiency in sparse interactions without collapsing minority interaction evidence, since ϕ can override consensus using fresh interaction data.

The entropy loss $\mathcal{L}_{\text{ent}}(\theta_i) = -\mathbb{E} \left[\sum_{t=0}^T \sum_{a \in \mathcal{A}} \pi_{\theta_i}(a|o_i^t, \cdot) \log \pi_{\theta_i}(a|o_i^t, \cdot) \right]$ is added to encourage exploration (Haarnoja et al., 2017). We leave the pseudocode of COOPER in Appendix A.

5 EMPIRICAL RESULTS

To comprehensively validate the effectiveness of COOPER, we conduct extensive experiments in both matrix-form and extended mixed-motive games across various social networks. These experiments assess COOPER's capabilities in two key aspects: adaptation to the environment with existing reputation norms, and the co-emergence of reputation norms and cooperation in self-play settings.

5.1 ENVIRONMENTAL SETUP

As shown in Figure 1, our environment includes a social network where agents diffuse reputation assessment among neighbors, and game playing where agents are randomly paired to interact and receive rewards. We focus on three classic network structures: small-world, scale-free, and fully connected networks. A detailed introduction to these network structures is provided in Appendix C.

Regarding the game scenarios, we consider the **Donation Game** and the **Coin Game** on a grid world. In the donation game, one agent is the donor and the other is the recipient. The donor can choose to donate, incurring a cost of $c \geq 0$ and giving the recipient a benefit of $b > c$. If not, there is no cost or reward. Coin game is set in a 5×5 grid world with two agents of different colors. A randomly colored coin is placed randomly. Both agents can pick up the coin and receive a reward of 1. If the coin's color does not match the agent's color, the other agent incurs a penalty of -2 .

Each experiment has a population size of 10 and an episode length of 50. In each episode, all agents start with 0 reputation for each other. At each step, two agents are randomly paired to play a game. As for the interaction-based assessment update, we apply a “memory-two” setting, where agents rely on the previous two interactions to assign assessments. More concretely, $\mathcal{H}_{i,g^t(i)}^t = [a_{g^t(i)}^t, a_i^t, a_{g^t(i)}^{t_1}, a_i^{t_1}]$ contains agent i 's last two interactions with co-player $g^t(i)$.

Baselines: We compare our agent with **PPO** (Schulman et al., 2017) and existing reputation-based reinforcement learning agents. **LR2** (Ren et al., 2025) builds on PPO, using reputation as an intrinsic reward with $r_{\text{total}} = [\beta + (1 - \beta) \xi_{\mathcal{N}_i \rightarrow i}] \times r_i$, where $\beta = 0.5$ and $\xi_{\mathcal{N}_i \rightarrow i}$ is the average assessment of i assigned by its neighbors. **RR** (Smit & Santos, 2024) uses *Stern Judging*, a predefined reputation

270 assessment rule, to update reputation. **IR** (Anastassacos et al., 2021) relies on rule-based agents to
 271 foster the learning of reputation assignment rules and the reward is designed as $r_{\text{total}} = \alpha r_i + (1 -$
 272 $\alpha)S_i$, where S_i is calculated assuming the co-player uses a same strategy as i .
 273

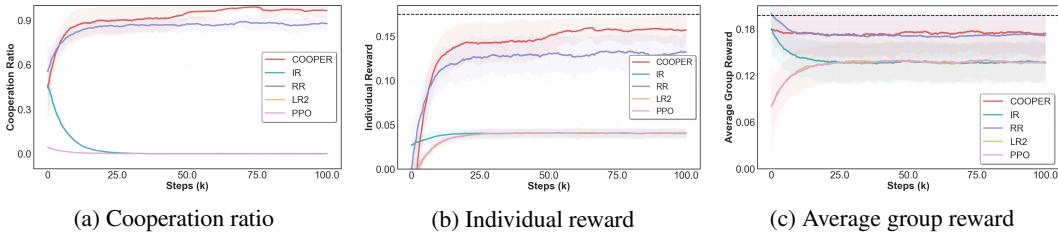
274 5.2 ADAPTATION

275 This subsection tests COOPER’s adaptability from three aspects: i) whether COOPER can recognize
 276 and adapt to unknown reputation norms and reputation-based policies? ii) whether COOPER can
 277 distinguish between different norms and reputation-based policies? iii) whether COOPER can lever-
 278 age the reputation mechanism to promote cooperation? To answer these questions, we introduce one
 279 COOPER agent into an environment with pre-defined reputation norms and policies.
 280

281 We augment three classic rule-based agents with reputation awareness (RA). The ALLC-RA agent
 282 cooperates if the co-player’s reputation is above a threshold (e.g., -0.5) and defects otherwise. The
 283 ALLD-RA agent defects by default but cooperates if the co-player’s reputation exceeds a threshold.
 284 The TFT-RA agent initially cooperates, then mirrors the co-player’s previous action, switching to
 285 defection if the co-player’s reputation falls below a threshold. All rule-based agents update their
 286 reputation assessments based on both social information from neighbors and game interaction.
 287

288 For gossip-based updates, rule-based agent i computes $\bar{\xi}_i^t$ by the average assessment updates of its
 289 neighbors: $\bar{\xi}_i^t = \min \left(1, \max \left(-1, \xi_i^t + \frac{\sum_{j \in \mathcal{N}_i} (\xi_j^t - \xi_j^{t-1})}{|\mathcal{N}_i|} \right) \right)$. After interaction, agent i adjusts the
 290 assessment by adding or subtracting $\delta = 0.25$ based on whether the co-player cooperates or defects:
 291 $\xi_{i \rightarrow g^t(i)}^{t+1} = \min \left(1, \max \left(-1, \bar{\xi}_{i \rightarrow g^t(i)}^t \pm \delta \right) \right)$.
 292

294 5.2.1 COOPER ADAPTS TO EXISTING REPUTATION NORM



301 Figure 2: COOPER achieves a high cooperation ratio and rewards compared to baselines when
 302 adapting to TFT-RA agents. The dashed line denotes the performance upper bound.
 303

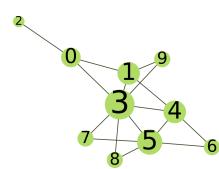
304 The background agents are TFT-RA with a threshold of 0.25. The social network G is modeled as a
 305 small-world network with size $n = 10$, average degree $k = 4$, and the rewiring probability $p = 0.2$.
 306 As shown in Figure 2a, COOPER quickly learns to cooperate with the TFT-RA agents. Based on its
 307 initial cooperation, COOPER earns a favorable reputation assessment from TFT-RA agents. Once
 308 its reputation surpasses TFT-RA’s cooperation threshold, TFT-RA stabilizes its own behavior into
 309 a cooperative mode. As a result, the interactions between COOPER and TFT-RA become mutual
 310 cooperation, which yields high payoffs for both agents as shown in Figure 2b and Figure 2c.
 311

313 5.2.2 COOPER STIMULATES COOPERATION

314 Here, a COOPER agent is placed into a population of ALLD-RA agents with
 315 a threshold of 0.5. The agents are embedded in a scale-free network with size
 316 $n = 10$, neighbor number $m = 2$. An example is shown in Figure 3 where the
 317 node size is proportional to its degree.

318 Although a homogeneous group of ALLD-RA agents (with a threshold of
 319 0.5) would converge to defection, COOPER learns to break this equilibrium.

320 As shown in Figure 4a, COOPER identifies the reputation-based strategy of Figure 3: Scale-free
 321 ALLD-RA and sustains a high cooperation rate to meet their threshold, in- network.
 322 centivizing them to switch to cooperation. This results in sustained cooperation, which is directly
 323 reflected in its high individual reward in Figure 4b.



In addition, when COOPER is positioned at the hub of a scale-free network, its high reputation and cooperative behavior are rapidly disseminated to the entire population via gossip. More importantly, after mutual cooperation, ALLD-RA is assigned a higher assessment by COOPER. This creates a positive feedback loop: the improved reputation of ALLD-RA agents encourages cooperation not only with COOPER but also among themselves. Consequently, COOPER acts as a “cooperation seed” that triggers a cascade of cooperation, leading the entire group to achieve a higher average reward compared to baseline methods, as shown in Figure 4c.

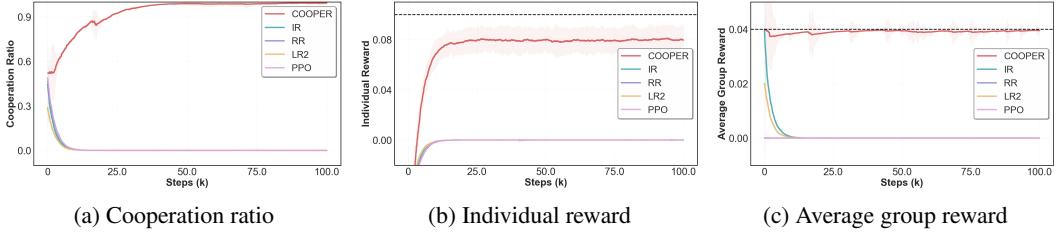


Figure 4: COOPER achieves a high reward compared to baselines and stimulates cooperation in ALLD-RA crowds. The dashed line denotes the performance upper bound.

5.2.3 COOPER IDENTIFIES DIFFERENT CO-PLAYERS AND PROMOTES COOPERATION

The background population consists of 2 ALLC agents without reputation sensitivity, 2 ALLD-RA agents with a threshold of 0.5, and 5 TFT-RA agents with a threshold of 0.25. The social network G is modeled as a scale-free network with network size $n = 10$, neighbor number $m = 2$.

In Figure 5b, COOPER sustains a high cooperation rate toward both ALLD-RA and TFT-RA to satisfy their thresholds, while slightly lowering its cooperation toward ALLC to exploit their unconditional cooperation. COOPER also recognizes that reputation propagates through the network and fully defecting ALLC will negatively affect its reputation. In Figure 5a, we can see that COOPER’s reputation management fosters widespread mutual cooperation, resulting in a higher average group reward. Furthermore, the results shown in Figure 5c indicate that COOPER learns to assign distinct reputations to the three types of agents, and thus can adopt different strategies accordingly, demonstrating its robustness in learning and adapting to heterogeneous reputation norms.

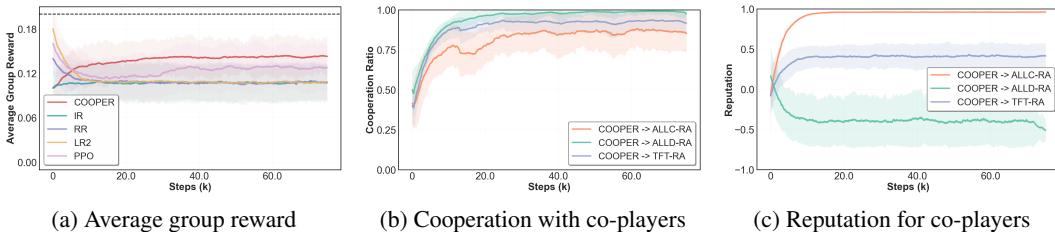


Figure 5: COOPER identifies different co-players and achieves a high reward compared to baselines.

5.3 SELF-PLAY

This subsection examines: i) whether COOPER can establish reputation-based cooperation from scratch; ii) what the emerging reputation norm is like; and iii) how the two reputation-assignment modules ψ and ϕ contribute to COOPER’s performance. Given that RR and IR require predefined reputation update rules, it would be inappropriate to compare COOPER’s self-play performance with these methods. Instead, we compare COOPER’s performance with PPO and LR2.

Figure 6a demonstrates COOPER’s capability to establish reputation-based cooperation across diverse network topologies. Compared to baselines, COOPER consistently performs the best across various social networks (additional results are shown in Appendix E). Specifically, networks with higher degree heterogeneity, i.e., the scale-free network, support the highest cooperation ratios, followed by small-world and then fully connected networks. This pattern aligns with established evolutionary game theory literature, which suggests that heterogeneous network structures can promote cooperation through hubs acting as cooperation anchors (Santos & Pacheco, 2005; Perc et al., 2017).

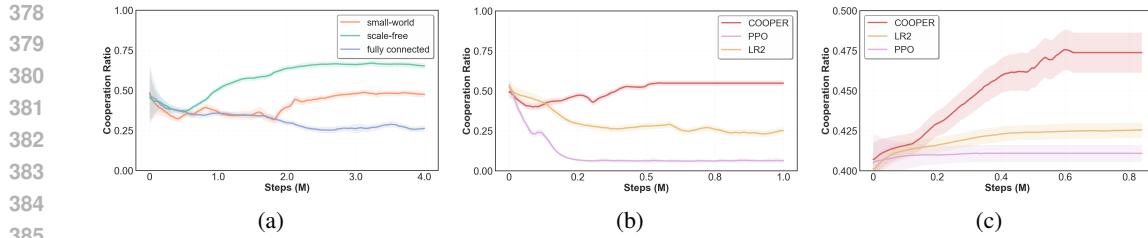


Figure 6: COOPER achieves high cooperation ratio in self-play. (a) shows the performance of COOPER in donation games $b = 0.5, c = 0.3$ with various social networks. (b) shows the cooperation ratio compared with baselines in the donation game with $b = 0.5, c = 0.1$ on fully connected networks. (c) depicts the performances in the grid world coin game on a scale-free network.

Notably, we employ a moderated social dilemma setting where cooperation costs $c = 0.1$ and benefits the recipient $b = 0.5$ for fair comparison with LR2, as LR2 struggles with more extreme dilemmas (we use $b = 0.5, c = 0.3$ in other experiments). Figure 6b shows the performance of the three approaches in fully connected networks. The results show that COOPER outperforms the baselines, while the PPO agents fail to establish cooperation and converge to defection.

Figure 6c illustrates the performance of the algorithms in the grid world coin game with population size $n = 10$. Agents are embedded on a scale-free network with average neighbor number $m = 2$. In this more complex environment, COOPER still exhibits cooperative behavior, though the improvement is moderate. This indicates that COOPER learns to cooperate using reputation information, but additional context should be provided to further enhance cooperation. Future work could explore incorporating more historical or reputational information to facilitate agents' decision-making.

We next analyze the fundamental reasons behind COOPER's superior performance compared to the baselines. Consider the scenario where an agent cooperates but its co-player defects, which is common during the early stages of norm formation. In this case, the agent receives an environment reward $r_i = -c$. Under LR2's reward formulation, $r_{\text{total}} = \beta \cdot r_i + (1 - \beta) \cdot \xi_{N_i \rightarrow i} \cdot r_i$. For an agent with higher reputation ($\xi_{N_i \rightarrow i} \rightarrow 1$), r_{total} is closer to r_i , meaning that the negative environmental reward is **amplified** (positive rewards are also scaled, but the negative ones create disincentive to cooperate), creating a perverse incentive where *higher reputation leads to greater punishment for unilateral cooperation*. This design flaw provides **misaligned learning signals** that discourage cooperative behavior in challenging scenarios. COOPER avoids this pitfall by jointly learning a reputation assignment module and a reputation-based policy without relying on extra reputational rewards. It is also worth noting that the PPO agent, lacking reputation modules, fails to develop farsighted strategies and sustained cooperation in these mixed-motive environments.

5.3.1 EMERGED NORM

In a fully connected network with $n = 10$, all agents converge to the same reputation norm, whereas in a scale-free network with population size $n = 10$ and average neighbor $m = 2$ shown in Figure 3, hub and leaf agents develop different behavior patterns. Since reputation assignment modules and reputation-based policy are learned distributively, the interpretation of reputation values can vary among agents (e.g., one may regard $\xi_{i \rightarrow j} = 0.7$ as favorable, another may not). To quantify and compare agents' reputation norms, we visualize how agents update and subsequently utilize reputation in decision-making using an experience-to-action heatmap. The x-axis represents the most recent joint action, where 'CC' denotes mutual cooperation, 'CD' indicates that the opponent cooperated while the focal agent defected, and so on for 'DC' and 'DD'. The y-axis shows the previous interaction. Each cell indicates the probability of cooperation in the next encounter with the same opponent, given the past two interactions. For example, in Figure 7, the upper right cell shows the agent will cooperate if the previous sequence was $[D, D, C, C]$.

Take agent 1's reputation-based cooperation pattern shown in Figure 7 as an example (see Appendix F for other agents' emerged behavioral pattern). In fully connected networks, agents tend to defect against partners with whom they previously cooperated, while cooperating with those they

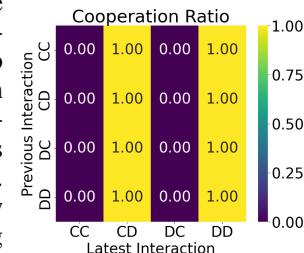
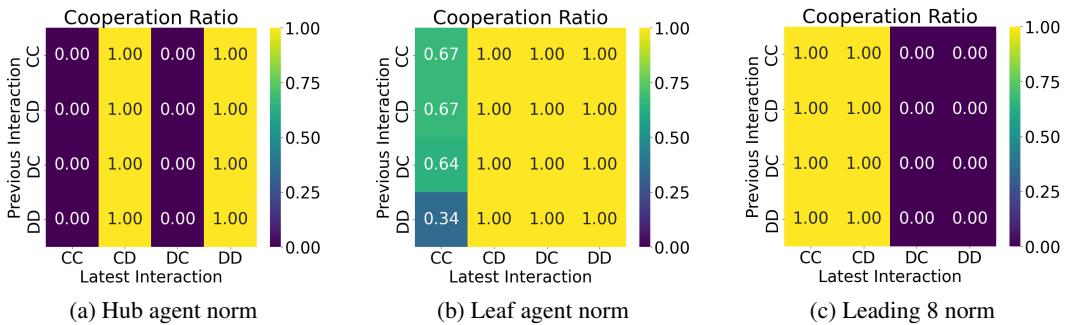


Figure 7: Norm example. The heatmap shows the probability of cooperation in the next encounter with the same opponent, given the past two interactions. The x-axis represents the 'Latest Interaction' and the y-axis represents the 'Previous Interaction'. The color scale indicates the probability from 0.00 (dark purple) to 1.00 (yellow). The data shows a clear pattern where cooperation is high when the previous two interactions were the same (CC, CC; CD, CD; DC, DC; DD, DD) and low when they were different (CC, CD; CD, CC; CC, DC; DC, CC; CD, DC; DC, CD; CC, DD; DD, CC).

432 previously defected. In scale-free networks, a more complex norm emerges. Hub agent, as presented
 433 in Figure 8a, with their numerous connections, develop strategies similar to those in the fully connected
 434 networks. In contrast, leaf agents with limited connections exhibit a more nuanced pattern
 435 shown in Figure 8b: they always cooperate unless mutual cooperation (CC) in the latest interaction,
 436 in which case they cooperate probabilistically. The diverged behavioral norms can be explained by
 437 agents’ structural positions. Hub agents, owing to their high connectivity, are exposed to multiple
 438 information sources in gossip that approximate a well-mixed environment. Leaf agents with limited
 439 connections, on the other hand, depend heavily on localized information and direct experience. This
 440 constraint leads them to adopt more cautious and generally more cooperative strategies.

441 The “leading eight” norms proposed by Ohtsuki & Iwasa (2006), have been pivotal in reputation
 442 study, providing a foundational framework for understanding how simple rules can drive cooperative
 443 behavior. We plot the “leading eight” norms with the initial self-assessment $\xi_{i \rightarrow i}$ set to 1
 444 in Figure 8c for comparison. The rule-based reputation norms generally play cooperation if the
 445 co-player cooperated in the latest interaction and defection otherwise. In contrast, our method can
 446 develop flexible reputation norms that are related to the network structure, which further leverages
 447 reputation norms as well as the network structural features to promote cooperation.



448
 449 Figure 8: Hub agent and leaf agent in the scale-free network learn different patterns. (c) presents the
 450 “leading eight” norms where the initial self-assessment $\xi_{i \rightarrow i}$ is 1¹.
 451
 452

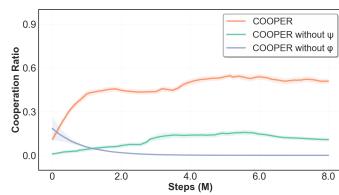
453 5.3.2 ABLATION STUDY

454 In this section, we conduct an ablation study in a 10-agent donation
 455 game self-play setting on a scale-free network with $m = 2$.
 456 Specifically, we evaluate two ablated versions of COOPER: 1)
 457 COOPER without ψ , which lacks the gossip-based reputation
 458 assessment and relies solely on interaction experiences, and 2)
 459 COOPER without ϕ , which removes the interaction-based as-
 460 sessment module and depends exclusively on social gossip.

461 In Figure 9, the removal of either module leads to a noticeable
 462 decline in cooperation ratio. The absence of the gossip module
 463 ψ results in a significant drop in cooperation, a finding consistent with theoretical work on the
 464 co-evolutionary relationship between gossip and reputation-based cooperation (Pan et al., 2024).
 465 This decline occurs because, without social information sharing, agents are limited to their own
 466 interactions, thereby slowing the spread of reputation assessment and hindering reputation-based
 467 cooperation. When the interaction-based module ϕ is removed, cooperation fails to emerge entirely.
 468 The reason is that without interaction-based assessments, reputation updates remain unanchored and
 469 fail to provide reliable guidance for action.

470 6 CONCLUSION

471 We propose **COOPER**, a reinforcement learning algorithm that jointly learns reputation assignment
 472 modules and policies without pre-defined rules or additional reward shaping. Extensive experiments
 473 show that COOPER can adapt to existing norms and develop emergent reputation norms to promote
 474 cooperation in decentralized multi-agent systems. See Appendix H for discussion of future work.



475 Figure 9: Ablation study

476
 477
 478
 479
 480
 481
 482
 483
 484
 485
¹To plot the leading eight heatmap, the initial self-assessment is either Good $\xi_{i \rightarrow i} = 1$ or Bad $\xi_{i \rightarrow i} = -1$.

486 ETHICS STATEMENT
487488 We confirm that our research, which focuses on designing a novel MARL algorithm and evaluating
489 within a simulated environment, does not raise any ethical concerns. This work does not involve
490 human subjects, personal data, or real-world deployments. It therefore poses no risks to privacy,
491 safety, or well-being. We have designed the study in accordance with principles of scientific rigor,
492 transparency, and reproducibility, and affirm that it aligns with the ethical guidelines set forth by
493 ICLR.494
495 REPRODUCIBILITY STATEMENT
496497 We have included detailed descriptions of our method and experimental setup in the main text and
498 appendix to facilitate reproducibility. Section 4, along with Appendices A and B, elaborates on our
499 proposed algorithm and implementation specifics, including critical hyperparameters and computa-
500 tional resources utilized for training. As for the experimental environment setting, we thoroughly
501 presented the background population’s setup and reward structures in Section 5.1 and Appendix D.
502 In our experiments, all reported results are averaged over 6 independent runs with different random
503 seeds, and the corresponding standard deviations are provided. We plan to release the full source
504 code, along with configuration files and scripts for reproducing all experiments, upon publication.505
506 REFERENCES
507508 Nicolas Anastassacos, Julian García, Stephen Hailes, and Mirco Musolesi. Cooperation and reputa-
509 tion dynamics with reinforcement learning. *arXiv preprint arXiv:2102.07523*, 2021.510 Robert Axelrod and William D Hamilton. The evolution of cooperation. *science*, 211(4489):1390–
511 1396, 1981.513 Albert-László Barabási and Eric Bonabeau. Scale-free networks. *Scientific american*, 288(5):60–69,
514 2003.515 Carmengelys Cordova, Joaquin Taverner, Elena Del Val, and Estefania Argente. A systematic review
516 of norm emergence in multi-agent systems. *arXiv preprint arXiv:2412.10609*, 2024.518 Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation
519 in multi-agent learning. *arXiv preprint arXiv:2312.05162*, 2023.520 Juan Agustin Duque, Milad Aghajohari, Tim Cooijmans, Razvan Ciuca, Tianyu Zhang, Gauthier
521 Gidel, and Aaron Courville. Advantage alignment algorithms. *arXiv preprint arXiv:2406.14662*,
522 2024.524 Lea Ellwardt. Gossip and reputation in social networks. *The Oxford handbook of gossip and repu-*
525 *tation*, 435:457, 2019.527 Shaheen Fatima, Nicholas R Jennings, and Michael Wooldridge. Learning to resolve social dilem-
528 mas: a survey. *Journal of Artificial Intelligence Research*, 79:895–969, 2024.529 Ernst Fehr and Urs Fischbacher. Social norms and human cooperation. *Trends in Cognitive Sciences*,
530 8(4):185–190, 2004.532 Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
533 Mordatch. Learning with opponent-learning awareness. *arXiv preprint arXiv:1709.04326*, 2017.534 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
535 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
536 PMLR, 2017.538 Mohamad A Hady, Siyi Hu, Mahardhika Pratama, Zehong Cao, and Ryszard Kowalczyk. Multi-
539 agent reinforcement learning for resources allocation optimization: a survey. *Artificial Intelli-
gence Review*, 58(11):354, 2025.

540 Garrett Hardin. Extensions of “the tragedy of the commons”. *Science*, 280(5364):682–683, 1998.
 541

542 Jiechuan Jiang, Kefan Su, and Zongqing Lu. Fully decentralized cooperative multi-agent reinforce-
 543 ment learning: A survey. *arXiv preprint arXiv:2401.04934*, 2024.

544 Weiqiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A com-
 545 prehensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
 546 and perspectives. *arXiv preprint arXiv:2503.13415*, 2025.

547

548 Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
 549 Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable eval-
 550 uation of multi-agent reinforcement learning with melting pot. In *International conference on
 551 machine learning*, pp. 6187–6199. PMLR, 2021.

552

553 Diego Maldonado, Edison Cruz, Jackeline Abad Torres, Patricio J Cruz, and Silvana del Pilar Gam-
 554 boa Benitez. Multi-agent systems: A survey about its components, framework and workflow.
 555 *IEEE Access*, 12:80950–80975, 2024.

556

557 Manfred Milinski. Reputation, a universal currency for human social interactions. *Philosophical
 558 Transactions of the Royal Society B: Biological Sciences*, 371(1687):20150100, 2016.

559

560 Zepeng Ning and Lihua Xie. A survey on multi-agent reinforcement learning and its application.
 561 *Journal of Automation and Intelligence*, 3(2):73–91, 2024.

562

563 Martin A Nowak and Karl Sigmund. Evolution of indirect reciprocity by image scoring. *Nature*,
 564 393(6685):573–577, 1998.

565

566 Martin A Nowak and Karl Sigmund. Evolution of indirect reciprocity. *Nature*, 437(7063):1291–
 567 1298, 2005.

568

569 Hisashi Ohtsuki and Yoh Iwasa. How should we define goodness?—reputation dynamics in indirect
 570 reciprocity. *Journal of theoretical biology*, 231(1):107–120, 2004.

571

572 Hisashi Ohtsuki and Yoh Iwasa. The leading eight: social norms that can maintain cooperation by
 573 indirect reciprocity. *Journal of theoretical biology*, 239(4):435–444, 2006.

574

575 Frans A Oliehoek and Christopher Amato. *A concise introduction to decentralized POMDPs*.
 576 Springer, 2016.

577

578 Xinyue Pan, Vincent Hsiao, Dana S Nau, and Michele J Gelfand. Explaining the evolution of gossip.
 579 *Proceedings of the National Academy of Sciences*, 121(9):e2214160121, 2024.

580

581 Karthik Panchanathan and Robert Boyd. A tale of two defectors: the importance of standing for
 582 evolution of indirect reciprocity. *Journal of theoretical biology*, 224(1):115–126, 2003.

583

584 Matjaž Perc, Jillian J Jordan, David G Rand, Zhen Wang, Stefano Boccaletti, and Attila Szolnoki.
 585 Statistical physics of human cooperation. *Physics Reports*, 687:1–51, 2017.

586

587 William H Press and Freeman J Dyson. Iterated prisoner’s dilemma contains strategies that dominate
 588 any evolutionary opponent. *Proceedings of the National Academy of Sciences*, 109(26):10409–
 589 10413, 2012.

590

591 Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
 592 Botvinick. Machine theory of mind. In *International conference on machine learning*, pp. 4218–
 593 4227. PMLR, 2018.

594

595 Tianyu Ren and Xiao-Jun Zeng. Reputation-based interaction promotes cooperation with reinforce-
 596 ment learning. *IEEE Transactions on Evolutionary Computation*, 28(4):1177–1188, 2023.

597

598 Tianyu Ren, Xuan Yao, Yang Li, and Xiao-Jun Zeng. Bottom-up reputation promotes cooperation
 599 with multi-agent reinforcement learning. In *Proceedings of the 24th International Conference on
 600 Autonomous Agents and Multiagent Systems*, pp. 1745–1754, 2025.

601

602 Francisco C Santos and Jorge M Pacheco. Scale-free networks provide a unifying framework for
 603 the emergence of cooperation. *Physical review letters*, 95(9):098104, 2005.

594 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
595 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
596

597 Martin Smit and Fernando P Santos. Learning fair cooperation in mixed-motive games with indi-
598 rect reciprocity. In *Proceedings of the Thirty-Third International Joint Conference on Artificial*
599 *Intelligence*, pp. 220–228, 2024.

600 Nikos Vlassis. *A concise introduction to multiagent systems and distributed artificial intelligence*.
601 Number 2. Morgan & Claypool Publishers, 2007.
602

603 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. *nature*, 393
604 (6684):440–442, 1998.
605

606 Junhui Wu, Daniel Balliet, and Paul AM Van Lange. Reputation, gossip, and human cooperation.
607 *Social and Personality Psychology Compass*, 10(6):350–364, 2016.
608

609 Won Joon Yun, Soohyun Park, Joongheon Kim, MyungJae Shin, Soyi Jung, David A Mohaisen, and
610 Jae-Hyun Kim. Cooperative multiagent deep reinforcement learning for reliable surveillance via
611 autonomous multi-uav control. *IEEE Transactions on Industrial Informatics*, 18(10):7086–7096,
612 2022.
613

614 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Decentralized multi-agent reinforcement learning
615 with networked agents: Recent advances. *Frontiers of Information Technology & Electronic*
616 *Engineering*, 22(6):802–814, 2021.
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A ALGORITHM
649650 **Algorithm 1 COOPER (COOPeration with Emergent Reputation)**

651 Initialize policy network π_i with parameters θ_i , value function V_i with parameters ω_i , gossip
652 module ψ_i , interaction module ϕ_i ; replay buffer $\mathcal{B}_i \leftarrow \emptyset$ for each agent $i \in N$.
653 Initialize all reputations $\xi_{i \rightarrow j} \leftarrow 0$, $\forall i, j \in N$.
654 **for** episode = 1 to T **do**
655 Reset environment, get initial observations o_i^0 and initial reputations ξ_i^0 for all agents.
656 **for** timestep $t = 0$ to $T_{\max} - 1$ **do**
657 **for** each agent i **do**
658 $\bar{\xi}_i^t \leftarrow \psi_i(\xi_i^t, \xi_{N_i}^t)$ ▷ Gossip-based update
659 $a_i^t \sim \pi_i(o_i^t, \bar{\xi}_i^t)$ ▷ Sample action (with $\xi_{i \rightarrow g^t(i)}$ and $\xi_{N \rightarrow i}$)
660 **end for**
661 Execute joint action a^t , observe rewards r^t , next observations o^{t+1} .
662 **for** each agent i **do**
663 $\xi_i^{t+1} \leftarrow \phi_i(\bar{\xi}_i^t, \mathcal{H}_{i, g^t(i)}^t)$ ▷ Interaction-based update
664 Store $(o_i^t, \bar{\xi}_i^t, a_i^t, r_i^t, o_i^{t+1}, \xi_i^{t+1})$ in \mathcal{B}_i
665 **end for**
666 **end for**
667 **Update Phase:**
668 **for** each agent i **do**
669 Sample minibatch \mathcal{M}_i from \mathcal{B}_i
670 Compute generalized advantage estimates \hat{A}_i^t using V_{ω_i} .
671 Compute \mathcal{L}_{env} , conformity loss $\mathcal{L}_{\text{conf}}$, and entropy regularization \mathcal{L}_{ent} . Then, update θ_i by
672 minimizing $\mathcal{L}(\theta_i) = \mathcal{L}_{\text{env}} + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}} + \lambda_{\text{conf}} \mathcal{L}_{\text{conf}}$.
673 Update ω_i by minimizing \mathcal{L}_{val} .
674 **end for**
675 **end for**
676

677 B IMPLEMENTATION DETAILS

678 Our agent’s policy module is implemented based on PPO algorithm Schulman et al. (2017). We
679 adopt Adam optimizer for all modules training. The assessment module ϕ updates the reputation
680 based on the action sequence and current reputation. It takes these inputs, concatenates them, and
681 passes them through a series of fully connected layers with Tanh activations to produce an updated
682 reputation value. The communication module ψ processes the combined representation of neighbor
683 reputation and the agent’s own reputation. It consists of two separate processing branches for
684 neighbor and RL reputation, respectively. These branches are concatenated and passed through
685 additional layers to produce an output vector representing the integrated reputation information. In
686 coin game, we add an observation processor that processes the coin game observation using
687 convolutional layers. The input observation is first permuted to match the channel-first format required
688 by convolutional layers. The network consists of two convolutional layers followed by flattening
689 and fully connected layers, ultimately producing a processed observation that matches the original
690 observation size.
691 **Parameter Design**
692 As for parameter design, the learning rate for the optimizer, set to 2.5e-4. The discount factor for
693 the reward, set to 0.99. The lambda value for Generalized Advantage Estimation (GAE), set to
694 0.95. The clipping coefficient for the PPO (Proximal Policy Optimization) algorithm, set to 0.3. The
695 entropy coefficient, set to 0.05. This parameter encourages exploration by adding an entropy term to
696 the loss function. The value function coefficient, set to 0.5. The maximum norm for gradient clipping,
697 set to 0.5. The number of mini-batches used for updating the policy, set to 4.

698 In practice, we tune λ_{conf} empirically. In self-play settings, where agents learn from scratch, con-
699 formity is less critical, so we set $\lambda_{\text{conf}} = 0$. In adaptation settings, where agents interact with
700 rule-based agents with existing reputation norms, we set $\lambda_{\text{conf}} = 0.5$ to encourage alignment with

702 the existing norms. For a given environment, the best coefficient value can be selected via grid search
 703 over simulations. As for the rule-based reputation update introduced in Section 5.2, the parameter
 704 $\delta = 0.25$ is chosen empirically as a moderate step size that allows meaningful but not overwhelming
 705 reputation adjustments per interaction (given that the reputation is ranging from -1 to 1).

706 **Experiments Computer Resources** CPU:13th Gen Intel(R) Core(TM) i9-13900KF;Total mem-
 707 ory:64.0 GB;GPU:NVIDIA GeForce RTX 4090;Memory per GPU:55.9 GB.
 708

710 C SOCIAL NETWORKS

712 In our model, reputation information diffuses on a social network and influences agents’ reputation
 713 assessment. To investigate how different social network structures influence the emergence of co-
 714 operative behavior and the effectiveness of reputation mechanisms, we conduct experiments across
 715 various classic network structures.

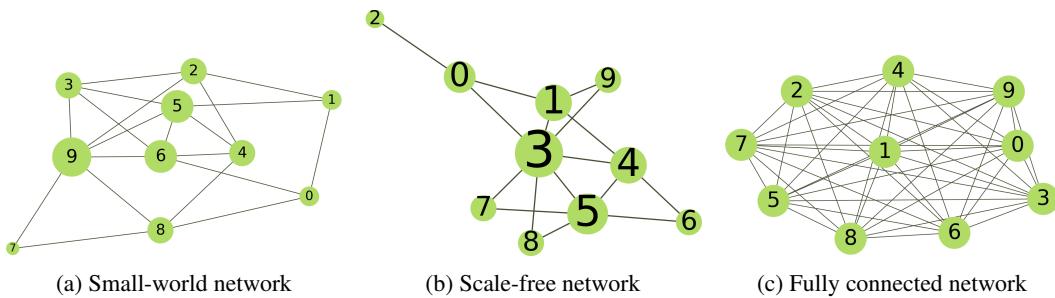
716 **Scale-Free networks** are characterized by a power-law degree distribution, where a few nodes
 717 (hubs) have a significantly higher number of connections compared to the majority of nodes. This
 718 structure mimics real-world social networks, where a small number of highly connected individuals
 719 play a crucial role in information spread and influence.
 720

721 In our experiments, we generate scale-free networks using the Barabási–Albert model, which incor-
 722 porates preferential attachment. This mechanism leads to the formation of hubs, where new nodes
 723 are more likely to connect to nodes that already have a high number of connections. For a scale-free
 724 network parameterized with $n = 10$ and $m = 2$, the network consists of $n = 10$ agents. The
 725 network is constructed through a process where each new node, as it is added to the network, forms
 726 $m = 2$ connections to existing nodes (if possible). The probability of forming a connection to an
 727 existing node is proportional to the number of connections that the existing node already has. This
 728 preferential attachment mechanism ensures that nodes with more connections are more likely to
 729 attract additional connections as the network grows.

730 **Small-World networks** combine high clustering with short average path lengths, which makes them
 731 efficient for information dissemination while maintaining local connectivity. These networks are
 732 generated using the Watts–Strogatz model, which starts with a regular lattice and rewires some
 733 edges with a certain probability to introduce randomness while preserving local structure. Small-
 734 world networks are useful for studying how local interactions and global connectivity impact agent
 735 behavior.

736 Specifically, in our experiments, the parameters are $n = 10, k = 4, p = 0.2$, meaning that each
 737 agent is initially connected to its four nearest neighbors in a ring, forming a regular lattice. Every
 738 existing edge is then rewired independently with a probability of 0.2 to create long-range ties. This
 739 process introduces shortcuts that reduce the average path length while maintaining a high clustering
 740 coefficient, thus capturing the essence of small-world properties.

741 **Fully connected networks** (also known as complete graphs) are networks where every node is di-
 742 rectly connected to every other node, creating a well-mixed structure where all nodes are equivalent
 743 in the gossip phase, i.e., all agents have the same social neighbor set. Moreover, the well-mixed
 744 nature of fully connected networks allows us to isolate the effects of network topology, providing a
 745 clearer picture of how norms and behaviors spread and stabilize in a homogeneous environment.



754 Figure 10: Examples of small-world, scale-free, and fully connected networks.
 755

756 **D DETAILED ENVIRONMENTAL SETUP**
757
758
759

760 In our model, agents are embedded on a social network, where reputation information propagates
761 through the underlying graph structure and influences how agents update their assessments. To
762 examine the robustness of our method, we conduct extensive experiments across several classic
763 network structures. A detailed introduction to the network structures used in our study is provided
764 in Appendix C. In each experiment, the population size is 10, and the episode length is 50. In each
765 episode, all agents are initialized with 0 reputation for each other. At each step, every two agents are
766 randomly paired up to play a game. Regarding the limited memory capacity of agents with respect
767 to interaction history, we apply a “memory-two” setting without loss of generality. In particular,
768 $\mathcal{H}_{i,g^t(i)}^t = [a_{g^t(i)}^t, a_i^t, a_{g^t(i)}^{t_1}, a_i^{t_1}]$ contains agent i ’s last two interaction history with co-player $g^t(i)$,
769 i.e., t_1 is the last time agent i and $g^t(i)$ interacted before t .

770 **Donation Game** is an extensively studied game in the field of reputation and evolutionary game
771 theory. In this pairwise game, one agent acts as the donor and the other as the recipient. The donor
772 has the option to either donate or not. If the donor chooses to donate, they incur a cost of 0.3, while
773 the recipient receives a benefit of 0.5. Conversely, if the donor does not donate, there is no cost to
774 the donor, and the recipient receives no reward. This setup mirrors real-world cooperative behaviors,
775 such as giving away second-hand goods, helping others.

776 **Coin Game** is set in a grid world, involving two agents with different colors interacting on a 5×5
777 map where a randomly colored coin is randomly placed. Both agents can pick up the coin and
778 receive a reward of 1. After a coin is collected, a new coin is generated at a random location.
779 However, if the color of the coin does not match the color of the agent picking it up, the other agent
780 incurs a penalty of -2 . This dynamic creates a sequential social dilemma. While each agent may be
781 tempted to collect any coin they encounter, doing so can result in a lower overall expected reward.
782 Therefore, agents need to learn to refrain from collecting coins that do not match their own color,
783 allowing their co-player to do so instead, in order to maximize their long-term rewards.

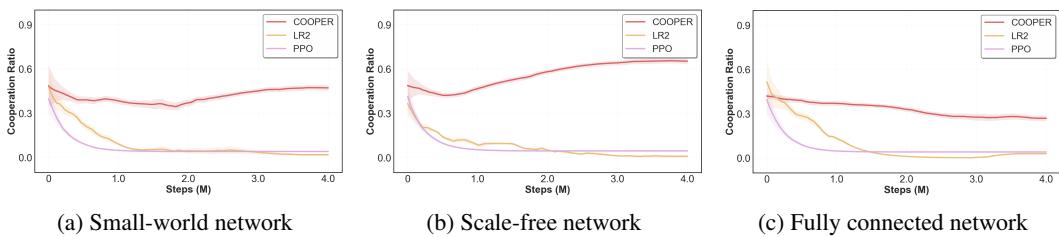
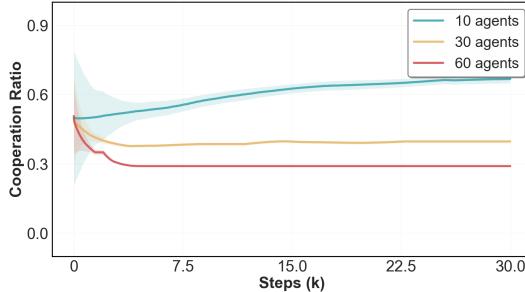
784 We compare the performance of our agent against the **PPO** (Schulman et al., 2017) agent without a
785 reputation module as well as other existing reputation-based reinforcement learning agents.

786 **LR2** (Ren et al., 2025) is built on PPO and it takes reputation as an intrinsic reward and define
787 the reward function as $r_{\text{total}} = [\beta + (1 - \beta) \xi_{N \rightarrow i}] \times r_i$, where $\beta \in [0, 1]$ denotes how much
788 one values a higher reputation. We set $\beta = 0.5$ in the experiments as in the original paper. In
789 this approach, one’s reputation $\xi_{N \rightarrow i}$ is directly computed by the average assessment assigned by
790 neighbors: $\xi_{N \rightarrow i} = \frac{\sum_{j \in \mathcal{N}_i} \xi_{j \rightarrow i}}{|\mathcal{N}_i|}$.

791 **RR** (Smit & Santos, 2024) follows a pre-defined reputation assignment rule to update reputation for
792 others, and the agents take actions conditioning on the co-player’s reputation with classic reinforce-
793 ment learning algorithms. In the experiment, we implement Stern Judging, one of the extensively
794 studied “leading eight” norms (Ohtsuki & Iwasa, 2006), which only assigns a bad reputation if
795 agents with a higher (lower) reputation cooperate with one with a lower (higher) reputation.

796 **IR** (Anastassacos et al., 2021) adds seeding agents with existing reputation rules to foster reputa-
797 tion norm in group and introduce an introspective reward to promote reputation-based cooperation,
798 $r_{\text{total}} = \alpha r_i + (1 - \alpha) S_i$ where α balances the weight of actual reward and imaginary reward. The
799 imaginary reward S_i is generated by assuming i ’s co-player plays the same strategy as i . In the
800 experiment, we apply a straightforward implementation and provide the agents with a game matrix
801 so that they can calculate the introspective reward.

802 To ensure fair comparison, every baseline agent receives exactly the same raw observation as a
803 COOPER agent. Hence, there is no difference in the MDP state/observation between methods. In
804 baselines without reputation-related modules, such as PPO, reputation information is treated as just
805 one more entry in the observation vector. Additionally, we want to clarify that our PPO baseline is
806 not “vanilla” in the sense of lacking regularization. We keep the same actor-critic network width,
807 entropy coefficient, clipping coefficient, learning rate, and so on, as COOPER; the only change
808 is that the reputation assignment modules and the reputation-related loss are removed. We follow
809 CleanRL’s PPO implementation and ensures that any performance gap comes solely from the repu-
810 tation related learning framework and module design.

810 E SELF-PLAY DONATION GAME ON DIFFERENT NETWORKS
811812
813 Figure 11: Self-play in donation game $b = 0.5, c = 0.3$ on various networks with network size
814 $n = 10$.
815816
817 Following the standard MARL convention, self-play refers to a setting where all agents are COOPER
818 agents, and they jointly learn from scratch without any pre-defined reputation rules or external su-
819 pervision.
820821 We conduct self-play experiments in the donation game, with $b = 0.5, c = 0.3$, on three classic
822 network structures. Figure 11a is conducted on small-world networks with average neighbor number
823 $k = 4$. Figure 11b shows the performance on scale-free networks with $m = 2$. Figure 11c presents
824 the emerged cooperation on fully connected networks. In this rather strict (compared to the donation
825 game with $b = 0.5, c = 0.1$) social dilemma setting, COOPER outperforms the baselines despite
826 the social network structure.
827834 E.1 NETWORK SIZE AND SCALABILITY
835836 We repeat the self-play donation-game experiment with population sizes $n = 10, 30, 60$, while keep-
837 ing the other network parameters the same. Due to the population changes, we correspondingly
838 update the episode length to 50, 150, 300 steps (so that every two agents will have approximately
839 5 encounters in each episode). As shown in Figure 12, the results of the self-play experiment con-
840 firm that COOPER achieves a cooperation level that outperforms the baselines across all population
841 sizes, but the cooperation ratio is lower for large populations given the same sampling steps. To
842 be more specific, with 30k steps, in scale-free networks, $n=30$ achieves an average cooperation ra-
843 tio of 0.398, and $n=60$ achieves an average cooperation ratio of 0.336 ($n=10$ achieves an average
844 cooperation ratio of 0.726).845 We speculate that the decline in cooperation is tied to gossip-efficiency differences across scales. In
846 the 10-agent scale-free network generated by the Barabási–Albert model with $m = 2$, the average
847 path length is only about 1.5-1.7 hops, so a reputation update reaches the whole population almost
848 immediately. With 30 agents (same $m = 2$), the average path length grows to 2.4-2.6 hops (and for
849 $n=60$, 2.9-3.1 steps), slowing convergence of the reputation estimates and weakening the signal that
850 COOPER needs to sustain high cooperation levels.
851853
854 Figure 12: Self-play Cooperation Ratio with 10, 30, 60 agents
855

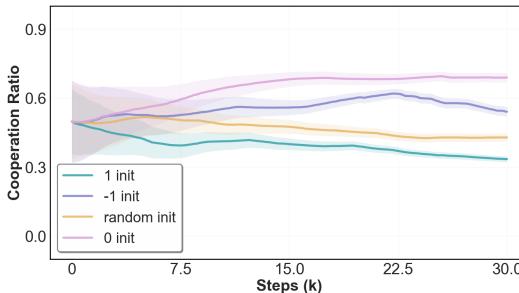


Figure 13: Cooperation Level Difference Caused by Initialization

E.2 INITIALIZATION

In this paper, the initial reputation is set to 0 for all agents by default. Since the reputation value ranges from -1 to 1, this initialization indicates a neutral and default starting point. As shown in Figure 13, the initialization difference has some impact on the final stable state, in terms of the final cooperation ratio/reward, but it does not affect the pattern that COOPER learns to cooperate with emergent reputation. To be more specific, for self-play experiments on the scale-free networks with 10 agents, initializing the reputation as all 0, all 1, all -1, and uniformly random results in the cooperation ratio of 0.726, 0.38, 0.56, and 0.48, respectively.

Here, initializing ξ as all ones leads to the worst cooperation level. We conjecture that with ξ initialized as +1, the only possible update direction is downward, and once every reputation has been dragged slightly below +1, the population loses the numerical contrast needed to separate “good” from “bad”, and cooperation collapses. The fact that all -1 are better than all +1 indicates that there is a trend to assign a higher reputation to cooperators and a lower reputation to defectors, so starting with all -1 does not hinder the reputation rise for the cooperators. Moreover, initialization with 0 leaves the full range open where both positive and negative updates are feasible, and this symmetry produces the highest cooperation level.

F ADDITIONAL RESULTS ON THE EMERGED NORM

In Figure 14, we present each agent’s reputation-based cooperation pattern that emerged in the self-play donation game on a fully connected network with network size $n = 10$.

For 10-agent self-play in the donation game on scale-free networks ($n = 10, m = 2$), we visualize the interaction-based reputation module ϕ of the hub agent and the leaf agent. As illustrated in Figure 15, the hub agent and the leaf agent develop distinct reputation-assignment rules, which can be attributed to their respective positions within the network.

Under the learned reputation norm, COOPER’s policy is a Nash Equilibrium: any unilateral deviation breaks the alternation and reduces the deviator’s cumulative payoff. We further analyzed the policy under different reputation values. The agent (as shown in Figure 14) cooperates deterministically when the opponent’s reputation exceeds -0.3 , and defects when it falls below -0.6 . Between these thresholds, the probability of cooperation increases monotonically with the opponent’s reputation. Importantly, the agent’s own reputation also influences its behavior: higher self-reputation increases the tendency to cooperate at any given opponent reputation level.

As for interaction-based reputation updates, cooperation reduces the opponent’s reputation by ≈ 1 , while defection increases it by ≈ 1 . We agree that these are not canonical game-theoretic equilibria, but they are emergent, sustainable, and computationally stable under decentralized learning with reputation.

Let’s consider a scenario with two players, A and B. In the well-mixed population, the policy learned by COOPER is as follows:

1. $\xi > -0.3$ play C, $\xi < -0.6$ play D, $-0.6 \leq \xi \leq -0.3$ play C with $p(\xi) = \frac{\xi+0.6}{0.3}$
2. if A plays C, then $\xi_B - 1$, if A plays D, then $\xi_B + 1$ (and same for B)

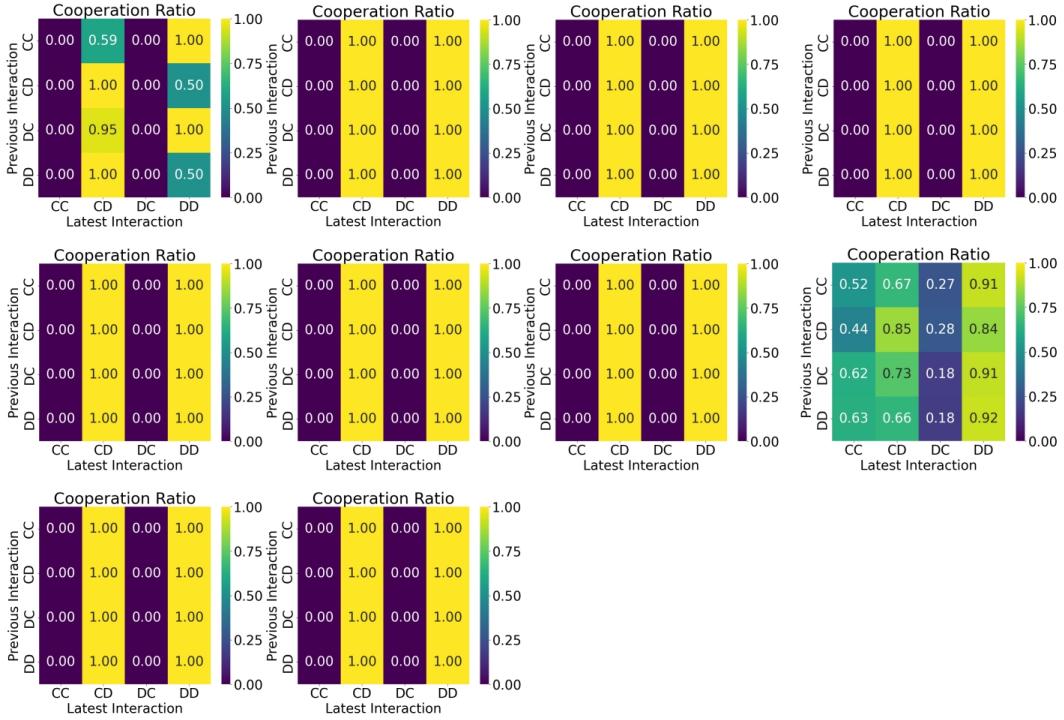


Figure 14: Norm learned in a 10-agent donation game self-play setting. The social network is fully connected. Each heatmap shows the different agents’ probability of cooperation given previous interaction.

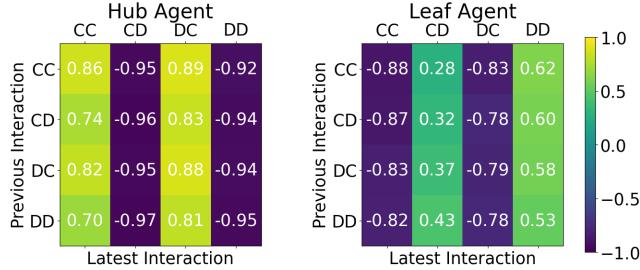


Figure 15: Reputation update pattern of hub and leaf agent in scale-free network. Let the co-player’s initial reputation = 0, the heatmap shows the assessment updates under different interaction sequences.

Initially, let $\xi_A = \xi_B = 0$. At step 1, A plays C, B plays C because $\xi_A = \xi_B > -0.3$. So, $r_A = r_B = 0.2$. Then, update $\xi_A = \xi_B = -1$. At step 2, A and B both play D and then update $\xi_A = \xi_B = 0$. And $r_A = r_B = 0$. It is clear that the system is recursively running step 1-2.

But, if at step 1, let agent B deviate and play D, then $r_A = -0.3$, $r_B = 0.5$. In this case, update $\xi_A = 1$, $\xi_B = -1$. So, in the new step 2, A will play D and B will play C, so $r_A = 0.5$, $r_B = -0.3$. In this case, update $\xi_A = 0$, $\xi_B = 0$, and it goes back to the situation in step 1.

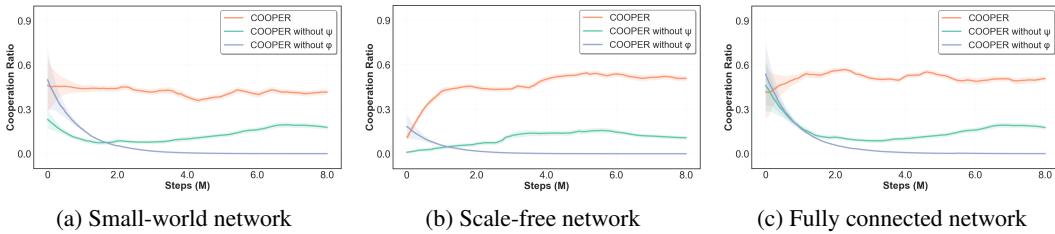
It is clear that B has no gain in this deviation, so the policy learned by COOPER is stable.

G ABLATION STUDY ON DIFFERENT NETWORKS

In this section, we conduct an ablation study in a 10-agent donation game self-play setting on various network structures. The two ablated versions of COOPER are: 1) COOPER without ψ , which lacks the gossip-based reputation assessment and relies solely on interaction experiences, and 2) COOPER

972 without ϕ , which removes the interaction-based assessment module and depends exclusively on
 973 social gossip.
 974

975 As shown in Figure 16, removing either ψ or ϕ leads to a decline in cooperative behavior. Notably,
 976 in scale-free networks with apparent degree heterogeneity, the performance drop is more evident
 977 when ψ is absent. This highlights the importance of the gossip-based reputation assessment module
 978 in maintaining robust cooperation.

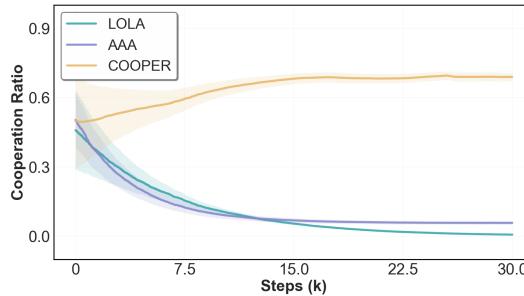


985 Figure 16: Ablation study in different network structures. Both ψ and ϕ modules foster cooperation.
 986

989 G.1 ADDITIONAL COMPARISON WITH OPPONENT SHAPING METHODS

991 Opponent Shaping (OS) methods are highly relevant to social dilemmas and have shown promise
 992 in learning robust strategies. In this subsection, we conduct an additional experiment in the
 993 self-play donation game comparing COOPER with two prominent OS methods: Learning with
 994 Opponent-Learning Awareness (LOLA) Foerster et al. (2017) and Advantage Alignment Algorithms
 995 (AAA) Duque et al. (2024).
 996

997 As illustrated in Figure 17, COOPER significantly outperforms opponent shaping baselines. A
 998 likely explanation is that these baselines struggle to effectively utilize reputation information, which
 999 constitutes a substantial portion of the observation space. In contrast, COOPER integrates a gossip-
 1000 based assignment model (ψ) and an interaction-based assignment model (ϕ), enabling more efficient
 1001 and accurate processing of reputation-related cues. This dual-model design allows COOPER to
 1002 better capture and leverage social dynamics, leading to superior performance in self-play settings.
 1003

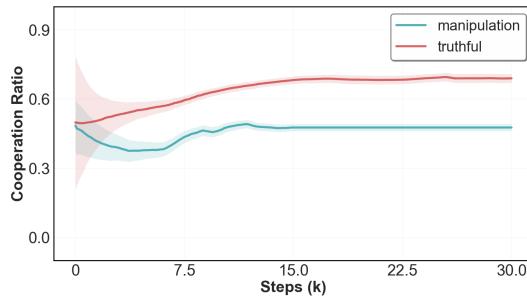


1012 Figure 17: COOPER outperforms the opponent shaping baselines in 10 agents self-play.
 1013

1015 H LIMITATION AND FUTURE DIRECTIONS

1017 Despite its promising results, our approach has several limitations that point to important directions
 1018 for future work. First, the efficacy of COOPER is inherently tied to reliable communication. The
 1019 model assumes that agents truthfully share their reputation assessments. This is an assumption that
 1020 may not hold in adversarial settings where agents could disseminate misinformation to manipulate
 1021 others' reputations for their own benefit. In addition, the current reputation representation, while
 1022 effective, is a simple scalar value. This may lack the expressiveness to capture complex behavioral
 1023 nuances in more sophisticated environments, potentially leading to oversimplified or unfair social
 1024 evaluations. Finally, our study primarily focuses on static network topologies. The dynamics of
 1025 reputation propagation and norm emergence in dynamically evolving networks, where connections
 between agents change over time, remain an open and challenging problem.

1026 Assuming only truthful communication during the gossip phase (ψ) is a limitation in real-world
 1027 deployments, as reputation systems are inherently vulnerable to manipulation.
 1028



1038 Figure 18: Strategic gossip hinders cooperation in 10 agents self-play Donation Game.
 1039

1040 We have conducted preliminary experiments where agents are allowed to manipulate the reputation
 1041 information they share. Our initial findings suggest that such misinformation can indeed distort
 1042 group-level cooperation dynamics, reducing group cooperation. As shown in Figure 18, in 10-
 1043 agent self-play donation game experiments under scale-free networks, the cooperation level with
 1044 strategic gossip is decreased to 0.47 (while in truthful reputation dissemination, the cooperation
 1045 level is 0.726).

1046 To mitigate the impact of deceptive gossip on collective cooperation, we can employ adversarial
 1047 training within COOPER to help agents learn to detect and discount false reputation messages, or
 1048 simultaneously maintaining an explicit trust score for each neighbor that is updated based on how
 1049 well their past gossip aligns with subsequent observations. These methods provide a straightforward
 1050 starting point, though more sophisticated mechanisms may be investigated in future exploration.

1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079