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ABSTRACT

Reputation, the aggregation of peer assessments diffused through social networks,
is a pivotal mechanism for promoting cooperation in social dilemmas ubiquitous
to distributed multi-agent systems comprising agents with limited perception and
cognitive capabilities. Exploring efficient reputation systems, comprising repu-
tation assessment rules and reputation-based policies, is a long-standing chal-
lenge. Previous work assumes predefined reputation assessment rules or mod-
els reputation as an intrinsic reward to learn policies, compromising the meth-
ods’ ability for generalization and adaptation. To address this, we propose a
distributed multi-agent reinforcement learning method COOPER (COOPeration
with Emergent Reputation), which jointly learns reputation assessment rules and
reputation-based policies entirely from environment rewards. Notably, leveraging
the underlying mechanisms of reputation, we deliberately design the constituent
modules of COOPER and the data flows among them, overcoming the latency and
noise in the feedback signal, caused by the deep entanglement between reputation
and policy. Experiments on the donation game and the coin game in grid world
environments demonstrate that COOPER effectively adapts to various existing
reputation systems and co-players. Furthermore, we observe the co-emergence
of reputation norms and cooperation in self-play settings. These results hold ro-
bustly across diverse social network topologies, underscoring the generalizability
and efficacy of our approach.

1 INTRODUCTION

Distributed multi-agent systems (MAS) have attracted considerable attention for their advantages in
scalability, robustness, and efficiency when addressing complex real-world problems (Zhang et al.,
2021; Ning & Xie, 2024; Maldonado et al., 2024). These systems leverage decentralized decision-
making to harness the collective intelligence of multiple autonomous agents, enabling effective so-
lutions across various domains (Oliehoek & Amato, 2016; Jin et al., 2025; Hady et al., 2025). How-
ever, agents’ autonomy often implies their pursuit of self-interest. Coupled with limited perception
(partial observation) and bounded cognitive capabilities, this can give rise to social dilemmas, where
the individually optimal strategies conflict with the collective optimum (Axelrod & Hamilton, 1981;
Hardin, 1998; Vlassis, 2007). For example, in unmanned aerial vehicle (UAV) formation tasks, mul-
tiple UAVs minimizing their own energy use may target the same position, thereby compromising
the group’s objective of covering all locations efficiently (Yun et al., 2022). Therefore, develop-
ing distributed multi-agent reinforcement learning (MARL) methods that effectively mitigate social
dilemmas is of critical importance.

To tackle this problem, reputation mechanisms have emerged as a promising solution inspired by
human societies (Nowak & Sigmund, 2005). In human interactions, an individual’s reputation is an
aggregation of others’ assessments regarding that individual’s behavior, and it is diffused on social
networks via gossip (Nowak & Sigmund, 1998). Humans routinely tailor their interaction strategies
based on the reputations of others, and the awareness of being judged incentivizes individuals to act
in ways that preserve their own reputations for long-term benefit (Fehr & Fischbacher, 2004). Con-
sequently, reputation systems help promote cooperation in social dilemmas by encouraging agents
to forgo short-term gains in favor of sustained collective outcomes. However, existing MARL ap-
proaches incorporating reputation often rely on predefined reputation assessment rules (Anastas-
sacos et al., 2021; Smit & Santos, 2024) or model reputation as an intrinsic reward signal (Ren et al.,
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2025). By doing so, these approaches simplify the learning problem by assuming a pre-existing
reputation norm, such as the desirability of a higher reputation or specific rules for reputation as-
signment. However, this simplification comes at a cost: such methods may lack adaptability in novel
environments or when interacting with unfamiliar agents, and they fail to learn a reputation norm
from scratch in a fully decentralized manner (Cordova et al., 2024). Actually, learning such a norm
is challenging, particularly in self-play settings where no ground-truth standard exists to guide the
emergence of reputation assignment rules that foster cooperation.

To conquer this challenge, we propose COOPER (COOPeration with Emergent Reputation), a novel
MARL algorithm that jointly learns a reputation assignment rule and a reputation-based policy in
a fully decentralized manner. COOPER comprises two key modules: (1) a reputation assignment
module that dynamically integrates assessments from neighbors with direct interaction experiences
to assess others and infer how one is perceived by the group; and (2) a reputation-based policy
module that leverages reputation assessment for co-players and the estimation for self-reputation to
guide actions. Our approach distinguishes itself through its sophisticated module and information
flow design, which enables the simultaneous emergence of reputation norms and cooperative poli-
cies purely through environmental feedback, without relying on predefined reputation semantics or
intrinsic rewards. This endows COOPER with strong adaptability to diverse reputation norms and
co-players. Through extensive experiments in diverse matrix games and grid-world environments,
we demonstrate COOPER’s effectiveness in achieving sustained cooperation across various network
structures, its robustness in self-play scenarios, and its adaptation capabilities when interacting with
agents with existing reputation norms. Furthermore, we provide a detailed analysis of the emer-
gent reputation norms, offering insights that bridge MARL behaviors with theoretical models of
reputation and cooperation. In summary, our key contributions are:

• We introduce COOPER, a novel MARL algorithm that jointly learns a reputation assign-
ment module and a reputation-based policy, enabling the emergence of reputation norm and
cooperation without predefined reputation semantics or update rules.

• We empirically demonstrate that COOPER sustains cooperation across diverse network
structures and successfully adapts to various co-players and pre-existing reputation norms.

• We provide a detailed analysis of the emerged reputation norms, bridging the gap between
MARL behaviors and theoretical reputation models.

2 RELATED WORK

The fact that individuals help others based on their reputation is a powerful explanation for large-
scale human cooperation (Nowak & Sigmund, 2005; Milinski, 2016). Seminal work like image
scoring (Nowak & Sigmund, 1998), showed how simple reputation systems can promote coopera-
tion, inspiring extensive research into reputation norms. A key finding is that higher-order norms,
such as standing (Panchanathan & Boyd, 2003) and judging (Ohtsuki & Iwasa, 2004), which con-
dition assessments on the co-player’s reputation, lead to more robust and widespread cooperation.
This research culminated in the “leading eight” norms, a family of evolutionarily stable assessment
rules (Ohtsuki & Iwasa, 2006). Beyond assessment rules, reputation propagation, often modeled
as gossip (Wu et al., 2016; Ellwardt, 2019), and social network structures (Watts & Strogatz, 1998;
Barabási & Bonabeau, 2003) further shape the efficiency and stability of cooperation. However,
these models fail to establish a reputation norm and reputation-based cooperation from scratch.

Fostering cooperation in self-interested RL agents is a long-standing challenge, particularly in
mixed-motive social dilemmas like the Iterated Prisoner’s Dilemma or Donation Game, where indi-
vidual and collective interests are misaligned (Fatima et al., 2024; Jiang et al., 2024). While early
work in two-agent settings identified strategies like tit-for-tat (Press & Dyson, 2012), scaling these
to large populations is hindered by non-stationarity from simultaneous learning (Du et al., 2023).
Recent methods often use centralized training (Leibo et al., 2021) or agent modeling (Rabinowitz
et al., 2018), but their reliance on central coordination or reward engineering limits decentralization
and adaptability.

Integrating reputation mechanisms into MARL is a promising avenue for addressing social dilem-
mas. A common approach is to implement predefined reputation assignment rules (e.g., image
scoring or a norm from evolutionary theory) and provide reputation assessment as input to the agent’s
policy. Studies by Anastassacos et al. (2021) and Ren & Zeng (2023) have demonstrated that agents
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can learn effective strategies conditioned on such pre-defined reputation signals. Similarly, Smit
& Santos (2024) showed that predefined reputation rules can foster not only cooperation but also
fairness. Another line of work uses reputation as an intrinsic reward to guide agents toward co-
operative behavior (Ren et al., 2025). This approach can be sensitive to the chosen reward function,
requiring careful balancing between extrinsic and intrinsic rewards to avoid unintended behaviors.

3 PROBLEM FORMULATION

We study a networked multi-agent system denoted by a static undirected graph G = (N,E). Here,
N = {1, . . . , n} is the agent set. Every agent i ∈ N maintains a private assessment of all agents’
reputations, represented by ξi = (ξi→1, . . . , ξi→n), where j ∈ N and ξi→j ∈ [−1, 1], and this
assessment is shared with i’s neighbors in the network, denoted as Ni = {j | {i, j} ∈ E}. Each
agent’s reputation is defined and continuously updated by the collective assessments of its peers.
Besides disseminating information, agents are randomly paired to play games and receive rewards.
We denote agent i’s co-player at time t as gt(i).

An agent’s assessment of others is constantly updated based on (1) reputational information shared
by neighbors and (2) her observation in physical interaction with co-players. Meanwhile, agents
also adjust their own behavior to maintain a favorable reputation for future benefits. We formalize
this reputation-based sequential decision-making problem as a partially observable Markov game:

MG = (N,S, {Ai}i∈N , T , {Oi}i∈N , {Ωi}i∈N , {Ri}i∈N , {ξi}i∈N , {Hi}i∈N , γ)

More specifically, the state st ∈ S is defined as st = (stp, G) where stp denotes the physical state, like
the grid world observation, andG represents agents’ social network status. At each timestep, agent i
receives observation oti ∈ Oi generated by the observation function Ωi(o

t
i|st). Agent i takes action

ati ∈ Ai based on observation oti, assessment for others ξti , and her neighbors’ assessments ξtNi
=

{ξtj |j ∈ Ni}. After joint action at = (at1, . . . , a
t
n) ∈ A1 × · · · × An, state st transits to st+1 with

probability T (st+1|st,at), and agent i receives reward rti = Ri(s
t,at).Ht

i = (Ht
i,1, . . . ,Ht

i,n) ∈
Hi represents agent i’s interaction histories with the co-players.

Through interaction, each agent i learns a reputation-based policy πi(ati|oti, ξti) and a reputation
assignment function ui(ξt+1

i |ξti , ξtNi
,Ht

i) together. The policy πi is optimized to maximize a dis-
counted return Gπi

= Eat∼π,st+1∼T (st,at)[
∑∞

t=0 γ
tRi(s

t,at)] where γ ∈ [0, 1] is the discounted
factor. In addition, ui is optimized to generate a more accurate evaluation for different co-players,
which ultimately contributes to a higher return. We say that a reputation norm emerges in a multi-
agent system if the individually learned reputation assignment functions {ui|i ∈ N} converge to-
ward a consistent evaluation strategy, reflecting a shared assessment pattern across the population.

4 METHODOLOGY

To promote cooperation and adapt to unknown scenarios in mixed-motive games, we propose a
distributed MARL method named COOPER (COOPeration with Emergent Reputation), which
jointly learns (i) a reputation norm implemented as differentiable reputation assignment rules and
(ii) a reputation-based policy, entirely from extrinsic rewards. Unlike previous work that relies on
predefined reputation assignment rules or uses reputation as an intrinsic reward, COOPER derives
its learning signal from interaction rewards. This enables the co-emergence of the reputation norm
and cooperation, making COOPER highly adaptable to diverse environments and co-players.

As shown in Figure 1, COOPER consists of a reputation assignment module and a reputation-based
policy. The reputation assignment module comprises two key components: the gossip-based reputa-
tion assessment ψ that aggregates neighbors’ opinions and the interaction-based reputation assess-
ment ϕ that refines beliefs using direct interaction histories. This dual-component design captures
the feature of human social reasoning and effectively balances social opinions with personal experi-
ences, thereby enhancing the robustness and reliability of the reputation assessment. The reputation-
based policy π conditions on these assessments to implement farsighted behavior in mixed-motive
games, where myopic strategies can exploit short-term gains at the expense of future cooperation.
To achieve sustainable long-term cooperation, π leverages reputation assessments of co-players to
adapt to heterogeneous opponents and leverages the estimation of one’s own reputation to regulate
its own behavior, guiding agents to account for the future consequences of current actions.
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Figure 1: An overview of our method. COOPER agents promote cooperative behavior in multi-
agent reinforcement learning by jointly learn a reputation-based policy π and a reputation assign-
ment module which separately processes gossip-based reputation assignment (ψ) and interaction-
based reputation assignment (ϕ). During rollouts, the execution order is ψ → π → ϕ, and in
optimization, the order is ψ → ϕ→ π to facilitate the learning of an aligned reputation assignment
rule and reputation-based policy.

More specifically, at time t, each agent i aggregates social information to generate post-gossip as-
sessments ξ̄ t

i = ψθi(ξ
t
i , ξ

t
Ni

). Given i’s current co-player gt(i), actions are then drawn from the
reputation-based policy conditioned on the current observation and the post-gossip reputations:
ati ∼ πθi(·

∣∣ oti, ξ̄ti). After acting, the joint action (ati, a
t
gt(i)) is appended to the history Ht

i,gt(i),
which, together with ξ̄ti , feeds into ϕ. The interaction-based module ϕ updates agent i’s assessment

for its co-player gt(i) as ξ t+1
i→gt(i) = ϕθi

(
ξ̄ti→gt(i),H

t
i,gt(i)

)
where ξ t+1

i→j = ξ̄ti→j for all j ̸= gt(i).

For brevity, when unambiguous we write ξ t+1
i = ϕθi(ξ̄

t
i , Ht

i,gt(i)), though only the gt(i)-entry is
updated. To summarize, agent i updates assessments for others by ui = ϕθi(ψθi(ξ

t
i , ξ

t
Ni

),Ht
i). The

updated assessments then diffuse through the social network G.

The co-learning of the reputation assignment module and the reputation-based policy is challenging
because these two are deeply interdependent. The policy depends on accurate reputation assessments
(reflecting certain reputation norms) to make farsighted decisions, while the reputation assignment
module requires policy outcomes (such as cooperation or defection) to assign accurate reputations.
Without careful coordination, this can lead to unstable learning dynamics or failure to converge.

COOPER addresses this challenge through carefully designed modules that capture the fundamental
principle of reputation, as well as an alternating optimization scheme that preserves end-to-end train-
ing guided by environment rewards. During rollouts, the policy π conditions on the pre-interaction
assessments of the current co-player. During optimization, we reverse the flow: π is trained on the
post-interaction assessments computed by ϕ, based on the latest (just-observed) interaction history.
Hence, gradients from rewards and regularizers propagate through π into ϕ and ψ. By aligning up-
dates with the most recent interactions, COOPER grounds training in the most relevant information,
enabling more accurate decision-making. It also ensures that ψ and ϕ are trained to produce as-
sessments that more accurately predict the co-player’s behavior and improve future action selection.
Concretely, we formulate the loss function to train πθi → ϕθi → ψθi as

L(θi) = Lenv(θi) + λconf Lconf(θi) + λentLent(θi). (1)

The first term, Lenv(θi) guides COOPER to jointly learn the reputation assignment module ψ, ϕ and
the reputation-based policy π to maximize environmental rewards. It is formulated as

Lenv(θi) = E

[
T∑

t=0

(
−Ât

i log πθi

(
ati
∣∣ oti, ϕθi(ψθi(ξ

t
i , ξ

t
Ni

),Ht
i,gt(i))

))]
. (2)

4
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We write the policy input as ϕθi(ψθi(ξ
t
i , ξ

t
Ni

),Ht
i,gt(i)) to emphasize that the interaction-informed,

post-gossip assessments drive action selection. In Equation 2, Ât
i =

∑T−1
t′=t (γλ)

t′−t(rt
′

i +

γVωi
(ot

′+1
i , ξt

′+1
i ) − Vωi

(ot
′

i , ξ
t′

i )) + rTi denotes the generalized advantage estimation where
λ ∈ [0, 1] balances variance and bias in value estimation. Vωi

is the value function that predicts
the return from the agent’s current information state. Its parameters are learned by minimizing

Lval(ωi) = E

 T∑
t=0

(
Vωi(o

t
i, ξ

t
i)−

T∑
t′=t

γt
′−trti

)2
 . (3)

The second term in Equation 1 is designed to regularize ψ toward neighborhood consensus weighted
by λconf ≥ 0, capturing the human tendency to consider peers’ points of view Pan et al. (2024). Intu-
itively, if a group of agents shares similar evaluation criteria, their gossip becomes more informative
and consistent. Thus, this alignment helps stabilize norm emergence. For agent i,

Lconf(θi) = E


∥∥∥∥∥∥ψθi

(
ξti , ξ

t
Ni

)
− 1

|Ni|
∑
j∈Ni

ξtj

∥∥∥∥∥∥
2

2

 . (4)

As shown in Equation 4, Lconf measures the distance between agent i’s assessments and its neigh-
bors’ average assessments for others. This term can be viewed as a graph-based smoothness prior
over assessments, improving sample efficiency in sparse interactions without collapsing minority
interaction evidence, since ϕ can override consensus using fresh interaction data.

The entropy loss Lent(θi) = −E
[∑T

t=0

∑
a∈A πθi(a|oti, ·) log πθi(a|oti, ·)

]
is added to encourage

exploration (Haarnoja et al., 2017). We leave the pseudocode of COOPER in Appendix A.

5 EMPIRICAL RESULTS

To comprehensively validate the effectiveness of COOPER, we conduct extensive experiments in
both matrix-form and extended mixed-motive games across various social networks. These experi-
ments assess COOPER’s capabilities in two key aspects: adaptation to the environment with existing
reputation norms, and the co-emergence of reputation norms and cooperation in self-play settings.

5.1 ENVIRONMENTAL SETUP

As shown in Figure 1, our environment includes a social network where agents diffuse reputation
assessment among neighbors, and game playing where agents are randomly paired to interact and
receive rewards. We focus on three classic network structures: small-world, scale-free, and fully
connected networks. A detailed introduction to these network structures is provided in Appendix C.

Regarding the game scenarios, we consider the Donation Game and the Coin Game on a grid
world. In the donation game, one agent is the donor and the other is the recipient. The donor can
choose to donate, incurring a cost of c ≥ 0 and giving the recipient a benefit of b > c. If not, there
is no cost or reward. Coin game is set in a 5 × 5 grid world with two agents of different colors. A
randomly colored coin is placed randomly. Both agents can pick up the coin and receive a reward of
1. If the coin’s color does not match the agent’s color, the other agent incurs a penalty of −2.

Each experiment has a population size of 10 and an episode length of 50. In each episode, all
agents start with 0 reputation for each other. At each step, two agents are randomly paired to play
a game. As for the interaction-based assessment update, we apply a “memory-two” setting, where
agents rely on the previous two interactions to assign assessments. More concretely, Ht

i,gt(i) =

[atgt(i), a
t
i, a

t1
gt(i), a

t1
i ] contains agent i’s last two interactions with co-player gt(i).

Baselines: We compare our agent with PPO (Schulman et al., 2017) and existing reputation-based
reinforcement learning agents. LR2 (Ren et al., 2025) builds on PPO, using reputation as an intrinsic
reward with rtotal = [β+(1−β) ξNi→i]×ri, where β = 0.5 and ξNi→i is the average assessment of
i assigned by its neighbors. RR (Smit & Santos, 2024) uses Stern Judging, a predefined reputation
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assessment rule, to update reputation. IR (Anastassacos et al., 2021) relies on rule-based agents to
foster the learning of reputation assignment rules and the reward is designed as rtotal = αri + (1 −
α)Si, where Si is calculated assuming the co-player uses a same strategy as i.

5.2 ADAPTATION

This subsection tests COOPER’s adaptability from three aspects: i) whether COOPER can recognize
and adapt to unknown reputation norms and reputation-based policies? ii) whether COOPER can
distinguish between different norms and reputation-based policies? iii) whether COOPER can lever-
age the reputation mechanism to promote cooperation? To answer these questions, we introduce one
COOPER agent into an environment with pre-defined reputation norms and policies.

We augment three classic rule-based agents with reputation awareness (RA). The ALLC-RA agent
cooperates if the co-player’s reputation is above a threshold (e.g., -0.5) and defects otherwise. The
ALLD-RA agent defects by default but cooperates if the co-player’s reputation exceeds a threshold.
The TFT-RA agent initially cooperates, then mirrors the co-player’s previous action, switching to
defection if the co-player’s reputation falls below a threshold. All rule-based agents update their
reputation assessments based on both social information from neighbors and game interaction.

For gossip-based updates, rule-based agent i computes ξ̄ti by the average assessment updates of its

neighbors: ξ̄ti = min

(
1,max

(
−1, ξti +

∑
j∈Ni

(ξt
j−ξ̄t−1

j )

|Ni|

))
. After interaction, agent i adjusts the

assessment by adding or subtracting δ = 0.25 based on whether the co-player cooperates or defects:
ξt+1
i→gt(i) = min

(
1,max

(
−1, ξ̄ti→gt(i) ± δ

))
.

5.2.1 COOPER ADAPTS TO EXISTING REPUTATION NORM

(a) Cooperation ratio (b) Individual reward (c) Average group reward

Figure 2: COOPER achieves a high cooperation ratio and rewards compared to baselines when
adapting to TFT-RA agents. The dashed line denotes the performance upper bound.

The background agents are TFT-RA with a threshold of 0.25. The social network G is modeled as a
small-world network with size n = 10, average degree k = 4, and the rewiring probability p = 0.2.
As shown in Figure 2a, COOPER quickly learns to cooperate with the TFT-RA agents. Based on its
initial cooperation, COOPER earns a favorable reputation assessment from TFT-RA agents. Once
its reputation surpasses TFT-RA’s cooperation threshold, TFT-RA stabilizes its own behavior into
a cooperative mode. As a result, the interactions between COOPER and TFT-RA become mutual
cooperation, which yields high payoffs for both agents as shown in Figure 2b and Figure 2c.

5.2.2 COOPER STIMULATES COOPERATION

Figure 3: Scale-free
network.

Here, a COOPER agent is placed into a population of ALLD-RA agents with
a threshold of 0.5. The agents are embedded in a scale-free network with size
n = 10, neighbor number m = 2. An example is shown in Figure 3 where the
node size is proportional to its degree.

Although a homogeneous group of ALLD-RA agents (with a threshold of
0.5) would converge to defection, COOPER learns to break this equilibrium.
As shown in Figure 4a, COOPER identifies the reputation-based strategy of
ALLD-RA and sustains a high cooperation rate to meet their threshold, in-
centivizing them to switch to cooperation. This results in sustained cooperation, which is directly
reflected in its high individual reward in Figure 4b.

6
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In addition, when COOPER is positioned at the hub of a scale-free network, its high reputation and
cooperative behavior are rapidly disseminated to the entire population via gossip. More importantly,
after mutual cooperation, ALLD-RA is assigned a higher assessment by COOPER. This creates a
positive feedback loop: the improved reputation of ALLD-RA agents encourages cooperation not
only with COOPER but also among themselves. Consequently, COOPER acts as a “cooperation
seed” that triggers a cascade of cooperation, leading the entire group to achieve a higher average
reward compared to baseline methods, as shown in Figure 4c.

(a) Cooperation ratio (b) Individual reward (c) Average group reward

Figure 4: COOPER achieves a high reward compared to baselines and stimulates cooperation in
ALLD-RA crowds. The dashed line denotes the performance upper bound.

5.2.3 COOPER IDENTIFIES DIFFERENT CO-PLAYERS AND PROMOTES COOPERATION

The background population consists of 2 ALLC agents without reputation sensitivity, 2 ALLD-RA
agents with a threshold of 0.5, and 5 TFT-RA agents with a threshold of 0.25. The social network
G is modeled as a scale-free network with network size n = 10, neighbor number m = 2.

In Figure 5b, COOPER sustains a high cooperation rate toward both ALLD-RA and TFT-RA to
satisfy their thresholds, while slightly lowering its cooperation toward ALLC to exploit their uncon-
ditional cooperation. COOPER also recognizes that reputation propagates through the network and
fully defecting ALLC will negatively affect its reputation. In Figure 5a, we can see that COOPER’s
reputation management fosters widespread mutual cooperation, resulting in a higher average group
reward. Furthermore, the results shown in Figure 5c indicate that COOPER learns to assign dis-
tinct reputations to the three types of agents, and thus can adopt different strategies accordingly,
demonstrating its robustness in learning and adapting to heterogeneous reputation norms.

(a) Average group reward (b) Cooperation with co-players (c) Reputation for co-players

Figure 5: COOPER identifies different co-players and achieves a high reward compared to baselines.

5.3 SELF-PLAY

This subsection examines: i) whether COOPER can establish reputation-based cooperation from
scratch; ii) what the emerging reputation norm is like; and iii) how the two reputation-assignment
modules ψ and ϕ contribute to COOPER’s performance. Given that RR and IR require predefined
reputation update rules, it would be inappropriate to compare COOPER’s self-play performance
with these methods. Instead, we compare COOPER’s performance with PPO and LR2.

Figure 6a demonstrates COOPER’s capability to establish reputation-based cooperation across di-
verse network topologies. Compared to baselines, COOPER consistently performs the best across
various social networks (additional results are shown in Appendix E). Specifically, networks with
higher degree heterogeneity, i.e., the scale-free network, support the highest cooperation ratios, fol-
lowed by small-world and then fully connected networks. This pattern aligns with established evo-
lutionary game theory literature, which suggests that heterogeneous network structures can promote
cooperation through hubs acting as cooperation anchors (Santos & Pacheco, 2005; Perc et al., 2017).
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(a) (b) (c)

Figure 6: COOPER achieves high cooperation ratio in self-play. (a) shows the performance of
COOPER in donation games b = 0.5, c = 0.3 with various social networks. (b) shows the cooper-
ation ratio compared with baselines in the donation game with b = 0.5, c = 0.1 on fully connected
networks. (c) depicts the performances in the grid world coin game on a scale-free network.

Notably, we employ a moderated social dilemma setting where cooperation costs c = 0.1 and
benefits the recipient b = 0.5 for fair comparison with LR2, as LR2 struggles with more extreme
dilemmas (we use b = 0.5, c = 0.3 in other experiments). Figure 6b shows the performance of
the three approaches in fully connected networks. The results show that COOPER outperforms the
baselines, while the PPO agents fail to establish cooperation and converge to defection.

Figure 6c illustrates the performance of the algorithms in the grid world coin game with population
size n = 10. Agents are embedded on a scale-free network with average neighbor numberm = 2. In
this more complex environment, COOPER still exhibits cooperative behavior, though the improve-
ment is moderate. This indicates that COOPER learns to cooperate using reputation information, but
additional context should be provided to further enhance cooperation. Future work could explore
incorporating more historical or reputational information to facilitate agents’ decision-making.

We next analyze the fundamental reasons behind COOPER’s superior performance compared to
the baselines. Consider the scenario where an agent cooperates but its co-player defects, which is
common during the early stages of norm formation. In this case, the agent receives an environment
reward ri = −c. Under LR2’s reward formulation, rtotal = β · ri +(1−β) · ξNi→i · ri. For an agent
with higher reputation (ξNi→i → 1), rtotal is closer to ri, meaning that the negative environmental
reward is amplified (positive rewards is also scaled, but the negative ones create disincentive to
cooperate.), creating a perverse incentive where higher reputation leads to greater punishment for
unilateral cooperation. This design flaw provides misaligned learning signals that discourage
cooperative behavior in challenging scenarios. COOPER avoids this pitfall by jointly learning a
reputation assignment module and a reputation-based policy without relying on extra reputational
rewards. It is also worth noting that the PPO agent, lacking reputation modules, fails to develop
farsighted strategies and sustained cooperation in these mixed-motive environments.

5.3.1 EMERGED NORM

Figure 7: Norm example.

In a fully connected network with n = 10, all agents converge to the
same reputation norm, whereas in a scale-free network with popula-
tion size n = 10 and average neighbor m = 2 shown in Figure 3, hub
and leaf agents develop different behavior patterns. Since reputation
assignment modules and reputation-based policy are learned distribu-
tively, the interpretation of reputation values can vary among agents
(e.g., one may regard ξi→j = 0.7 as favorable, another may not).
To quantify and compare agents’ reputation norms, we visualize how
agents update and subsequently utilize reputation in decision-making
using an experience-to-action heatmap. The x-axis represents the most
recent joint action, where ‘CC’ denotes mutual cooperation, ‘CD’ in-
dicates that the opponent cooperated while the focal agent defected, and so on for ‘DC’ and ‘DD’.
The y-axis shows the previous interaction. Each cell indicates the probability of cooperation in the
next encounter with the same opponent, given the past two interactions. For example, in Figure 7,
the upper right cell shows the agent will cooperate if the previous sequence was [D,D,C,C].

Take agent 1’s reputation-based cooperation pattern shown in Figure 7 as an example (see Ap-
pendix F for other agents’ emerged behavioral pattern). In fully connected networks, agents tend
to defect against partners with whom they previously cooperated, while cooperating with those they
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previously defected. In scale-free networks, a more complex norm emerges. Hub agent, as presented
in Figure 8a, with their numerous connections, develop strategies similar to those in the fully con-
nected networks. In contrast, leaf agents with limited connections exhibit a more nuanced pattern
shown in Figure 8b: they always cooperate unless mutual cooperation (CC) in the latest interaction,
in which case they cooperate probabilistically. The diverged behavioral norms can be explained by
agents’ structural positions. Hub agents, owing to their high connectivity, are exposed to multiple
information sources in gossip that approximate a well-mixed environment. Leaf agents with limited
connections, on the other hand, depend heavily on localized information and direct experience. This
constraint leads them to adopt more cautious and generally more cooperative strategies.

The “leading eight” norms proposed by Ohtsuki & Iwasa (2006), have been pivotal in reputation
study, providing a foundational framework for understanding how simple rules can drive cooper-
ative behavior. We plot the “leading eight” norms with the initial self-assessment ξi→i set to 1
in Figure 8c for comparison. The rule-based reputation norms generally play cooperation if the
co-player cooperated in the latest interaction and defection otherwise. In contrast, our method can
develop flexible reputation norms that are related to the network structure, which further leverages
reputation norms as well as the network structural features to promote cooperation.

(a) Hub agent norm (b) Leaf agent norm (c) Leading 8 norm

Figure 8: Hub agent and leaf agent in the scale-free network learn different patterns. (c) presents the
“leading eight” norms where the initial self-assessment ξi→i is 11.

5.3.2 ABLATION STUDY

Figure 9: Ablation study

In this section, we conduct an ablation study in a 10-agent dona-
tion game self-play setting on a scale-free network with m = 2.
Specifically, we evaluate two ablated versions of COOPER: 1)
COOPER without ψ, which lacks the gossip-based reputation
assessment and relies solely on interaction experiences, and 2)
COOPER without ϕ, which removes the interaction-based as-
sessment module and depends exclusively on social gossip.

In Figure 9, the removal of either module leads to a noticeable
decline in cooperation ratio. The absence of the gossip module
ψ results in a significant drop in cooperation, a finding consistent with theoretical work on the
co-evolutionary relationship between gossip and reputation-based cooperation (Pan et al., 2024).
This decline occurs because, without social information sharing, agents are limited to their own
interactions, thereby slowing the spread of reputation assessment and hindering reputation-based
cooperation. When the interaction-based module ϕ is removed, cooperation fails to emerge entirely.
The reason is that without interaction-based assessments, reputation updates remain unanchored and
fail to provide reliable guidance for action.

6 CONCLUSION

We propose COOPER, a reinforcement learning algorithm that jointly learns reputation assignment
modules and policies without pre-defined rules or additional reward shaping. Extensive experiments
show that COOPER can adapt to existing norms and develop emergent reputation norms to promote
cooperation in decentralized multi-agent systems. See Appendix H for discussion of future work.

1To plot the leading eight heatmap, the initial self-assessment is either Good ξi→i = 1 or Bad ξi→i = −1.
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ETHICS STATEMENT

We confirm that our research, which focuses on designing a novel MARL algorithm and evaluating
within a simulated environment, does not raise any ethical concerns. This work does not involve
human subjects, personal data, or real-world deployments. It therefore poses no risks to privacy,
safety, or well-being. We have designed the study in accordance with principles of scientific rigor,
transparency, and reproducibility, and affirm that it aligns with the ethical guidelines set forth by
ICLR.

REPRODUCIBILITY STATEMENT

We have included detailed descriptions of our method and experimental setup in the main text and
appendix to facilitate reproducibility. Section 4, along with Appendices A and B, elaborates on our
proposed algorithm and implementation specifics, including critical hyperparameters and computa-
tional resources utilized for training. As for the experimental environment setting, we thoroughly
presented the background population’s setup and reward structures in Section 5.1 and Appendix D.
In our experiments, all reported results are averaged over 6 independent runs with different random
seeds, and the corresponding standard deviations are provided. We plan to release the full source
code, along with configuration files and scripts for reproducing all experiments, upon publication.

REFERENCES

Nicolas Anastassacos, Julian Garcı́a, Stephen Hailes, and Mirco Musolesi. Cooperation and reputa-
tion dynamics with reinforcement learning. arXiv preprint arXiv:2102.07523, 2021.

Robert Axelrod and William D Hamilton. The evolution of cooperation. science, 211(4489):1390–
1396, 1981.
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A ALGORITHM

Algorithm 1 COOPER (COOPeration with Emergent Reputation)

Initialize policy network πi with parameters θi, value function Vi with parameters ωi, gossip
module ψi, interaction module ϕi; replay buffer Bi ← ∅ for each agent i ∈ N .
Initialize all reputations ξi→j ← 0, ∀i, j ∈ N .
for episode = 1 to T do

Reset environment, get initial observations o0i and initial reputations ξ0i for all agents.
for timestep t = 0 to Tmax − 1 do

for each agent i do
ξ̄ti ← ψi

(
ξti , ξ

t
Ni

)
▷ Gossip-based update

ati ∼ πi
(
oti, ξ̄

t
i

)
▷ Sample action (with ξi→gt(i) and ξN→i)

end for
Execute joint action at, observe rewards rt, next observations ot+1.
for each agent i do

ξt+1
i ← ϕi

(
ξ̄ti ,Ht

i,gt(i)

)
▷ Interaction-based update

Store
(
oti, ξ

t
i , a

t
i, r

t
i , o

t+1
i , ξt+1

i

)
in Bi

end for
end for
Update Phase:
for each agent i do

Sample minibatchMi from Bi
Compute generalized advantage estimates Ât

i using Vωi .
Compute Lenv, conformity loss Lconf , and entropy regularization Lent. Then, update θi by
minimizing L(θi) = Lenv + λentLent + λconfLconf .
Update ωi by minimizing Lval.

end for
end for

B IMPLEMENTATION DETAILS

Our agent’s policy module is implemented based on PPO algorithm Schulman et al. (2017). We
adopt Adam optimizer for all modules training. The assessment module ϕ updates the reputation
based on the action sequence and current reputation. It takes these inputs, concatenates them, and
passes them through a series of fully connected layers with Tanh activations to produce an updated
reputation value. The communication module ψ processes the combined representation of neigh-
bor reputation and the agent’s own reputation. It consists of two separate processing branches for
neighbor and RL reputation, respectively. These branches are concatenated and passed through ad-
ditional layers to produce an output vector representing the integrated reputation information. In
coin game, we add an observation processor that processes the coin game observation using convo-
lutional layers. The input observation is first permuted to match the channel-first format required
by convolutional layers. The network consists of two convolutional layers followed by flattening
and fully connected layers, ultimately producing a processed observation that matches the original
observation size.

Parameter Design

As for parameter design, the learning rate for the optimizer, set to 2.5e-4. The discount factor for
the reward, set to 0.99. The lambda value for Generalized Advantage Estimation (GAE), set to
0.95. The clipping coefficient for the PPO (Proximal Policy Optimization) algorithm, set to 0.3. The
entropy coefficient, set to 0.05. This parameter encourages exploration by adding an entropy term to
the loss function.The value function coefficient, set to 0.5.The maximum norm for gradient clipping,
set to 0.5.The number of mini-batches used for updating the policy, set to 4.

In practice, we tune λconf empirically. In self-play settings, where agents learn from scratch, con-
formity is less critical, so we set λconf = 0. In adaptation settings, where agents interact with
rule-based agents with existing reputation norms, we set λconf = 0.5 to encourage alignment with
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the existing norms. For a given environment, the best coefficient value can be selected via grid search
over simulations. As for the rule-based reputation update introduced in Section 5.2, the parameter
δ = 0.25 is chosen empirically as a moderate step size that allows meaningful but not overwhelming
reputation adjustments per interaction (given that the reputation is ranging from -1 to 1).

Experiments Computer Resources CPU:13th Gen Intel(R) Core(TM) i9-13900KF;Total mem-
ory:64.0 GB;GPU:NVIDIA GeForce RTX 4090;Memory per GPU:55.9 GB.

C SOCIAL NETWORKS

In our model, reputation information diffuses on a social network and influences agents’ reputation
assessment. To investigate how different social network structures influence the emergence of co-
operative behavior and the effectiveness of reputation mechanisms, we conduct experiments across
various classic network structures.

Scale-Free networks are characterized by a power-law degree distribution, where a few nodes
(hubs) have a significantly higher number of connections compared to the majority of nodes. This
structure mimics real-world social networks, where a small number of highly connected individuals
play a crucial role in information spread and influence.

In our experiments, we generate scale-free networks using the Barabási–Albert model, which incor-
porates preferential attachment. This mechanism leads to the formation of hubs, where new nodes
are more likely to connect to nodes that already have a high number of connections. For a scale-free
network parameterized with n = 10 and m = 2, the network consists of n = 10 agents. The
network is constructed through a process where each new node, as it is added to the network, forms
m = 2 connections to existing nodes (if possible). The probability of forming a connection to an
existing node is proportional to the number of connections that the existing node already has. This
preferential attachment mechanism ensures that nodes with more connections are more likely to
attract additional connections as the network grows.

Small-World networks combine high clustering with short average path lengths, which makes them
efficient for information dissemination while maintaining local connectivity. These networks are
generated using the Watts–Strogatz model, which starts with a regular lattice and rewires some
edges with a certain probability to introduce randomness while preserving local structure. Small-
world networks are useful for studying how local interactions and global connectivity impact agent
behavior.

Specifically, in our experiments, the parameters are n = 10, k = 4, p = 0.2, meaning that each
agent is initially connected to its four nearest neighbors in a ring, forming a regular lattice. Every
existing edge is then rewired independently with a probability of 0.2 to create long-range ties. This
process introduces shortcuts that reduce the average path length while maintaining a high clustering
coefficient, thus capturing the essence of small-world properties.

Fully connected networks (also known as complete graphs) are networks where every node is di-
rectly connected to every other node, creating a well-mixed structure where all nodes are equivalent
in the gossip phase, i.e., all agents have the same social neighbor set. Moreover, the well-mixed
nature of fully connected networks allows us to isolate the effects of network topology, providing a
clearer picture of how norms and behaviors spread and stabilize in a homogeneous environment.

(a) Small-world network (b) Scale-free network (c) Fully connected network

Figure 10: Examples of small-world, scale-free, and fully connected networks.
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D DETAILED ENVIRONMENTAL SETUP

In our model, agents are embedded on a social network, where reputation information propagates
through the underlying graph structure and influences how agents update their assessments. To
examine the robustness of our method, we conduct extensive experiments across several classic
network structures. A detailed introduction to the network structures used in our study is provided
in Appendix C. In each experiment, the population size is 10, and the episode length is 50. In each
episode, all agents are initialized with 0 reputation for each other. At each step, every two agents are
randomly paired up to play a game. Regarding the limited memory capacity of agents with respect
to interaction history, we apply a “memory-two” setting without loss of generality. In particular,
Ht

i,gt(i) = [atgt(i), a
t
i, a

t1
gt(i), a

t1
i ] contains agent i’s last two interaction history with co-player gt(i),

i.e., t1 is the last time agent i and gt(i) interacted before t.

Donation Game is an extensively studied game in the field of reputation and evolutionary game
theory. In this pairwise game, one agent acts as the donor and the other as the recipient. The donor
has the option to either donate or not. If the donor chooses to donate, they incur a cost of 0.3, while
the recipient receives a benefit of 0.5. Conversely, if the donor does not donate, there is no cost to
the donor, and the recipient receives no reward. This setup mirrors real-world cooperative behaviors,
such as giving away second-hand goods, helping others.

Coin Game is set in a grid world, involving two agents with different colors interacting on a 5 × 5
map where a randomly colored coin is randomly placed. Both agents can pick up the coin and
receive a reward of 1. After a coin is collected, a new coin is generated at a random location.
However, if the color of the coin does not match the color of the agent picking it up, the other agent
incurs a penalty of−2. This dynamic creates a sequential social dilemma. While each agent may be
tempted to collect any coin they encounter, doing so can result in a lower overall expected reward.
Therefore, agents need to learn to refrain from collecting coins that do not match their own color,
allowing their co-player to do so instead, in order to maximize their long-term rewards.

We compare the performance of our agent against the PPO (Schulman et al., 2017) agent without a
reputation module as well as other existing reputation-based reinforcement learning agents.

LR2 (Ren et al., 2025) is built on PPO and it takes reputation as an intrinsic reward and define
the reward function as rtotal = [β + (1 − β) ξN→i] × ri, where β ∈ [0, 1] denotes how much
one values a higher reputation. We set β = 0.5 in the experiments as in the original paper. In
this approach, one’s reputation ξN→i is directly computed by the average assessment assigned by

neighbors: ξN→i =
∑

j∈Ni
ξj→i

|Ni| .

RR (Smit & Santos, 2024) follows a pre-defined reputation assignment rule to update reputation for
others, and the agents take actions conditioning on the co-player’s reputation with classic reinforce-
ment learning algorithms. In the experiment, we implement Stern Judging, one of the extensively
studied “leading eight” norms (Ohtsuki & Iwasa, 2006), which only assigns a bad reputation if
agents with a higher (lower) reputation cooperate with one with a lower (higher) reputation.

IR (Anastassacos et al., 2021) adds seeding agents with existing reputation rules to foster reputa-
tion norm in group and introduce an introspective reward to promote reputation-based cooperation,
rtotal = αri + (1 − α)Si where α balances the weight of actual reward and imaginary reward. The
imaginary reward Si is generated by assuming i’s co-player plays the same strategy as i. In the
experiment, we apply a straightforward implementation and provide the agents with a game matrix
so that they can calculate the introspective reward.

To ensure fair comparison, every baseline agent receives exactly the same raw observation as a
COOPER agent. Hence, there is no difference in the MDP state/observation between methods. In
baselines without reputation-related modules, such as PPO, reputation information is treated as just
one more entry in the observation vector. Additionally, we want to clarify that our PPO baseline is
not “vanilla” in the sense of lacking regularization. We keep the same actor–critic network width,
entropy coefficient, clipping coefficient, learning rate, and so on, as COOPER; the only change
is that the reputation assignment modules and the reputation-related loss are removed. We follow
CleanRL’s PPO implementation and ensures that any performance gap comes solely from the repu-
tation related learning framework and module design.
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E SELF-PLAY DONATION GAME ON DIFFERENT NETWORKS

(a) Small-world network (b) Scale-free network (c) Fully connected network

Figure 11: Self-play in donation game b = 0.5, c = 0.3 on various networks with network size
n = 10.

Following the standard MARL convention, self-play refers to a setting where all agents are COOPER
agents, and they jointly learn from scratch without any pre-defined reputation rules or external su-
pervision.

We conduct self-play experiments in the donation game, with b = 0.5, c = 0.3, on three classic
network structures. Figure 11a is conducted on small-world networks with average neighbor number
k = 4. Figure 11b shows the performance on scale-free networks with m = 2. Figure 11c presents
the emerged cooperation on fully connected networks. In this rather strict (compared to the donation
game with b = 0.5, c = 0.1) social dilemma setting, COOPER outperforms the baselines despite
the social network structure.

E.1 NETWORK SIZE AND SCALABILITY

We repeat the self-play donation-game experiment with population sizes n = 10, 30, 60, while keep-
ing the other network parameters the same. Due to the population changes, we correspondingly
update the episode length to 50, 150, 300 steps (so that every two agents will have approximately
5 encounters in each episode). As shown in Figure 12, the results of the self-play experiment con-
firm that COOPER achieves a cooperation level that outperforms the baselines across all population
sizes, but the cooperation ratio is lower for large populations given the same sampling steps. To
be more specific, with 30k steps, in scale-free networks, n=30 achieves an average cooperation ra-
tio of 0.398, and n=60 achieves an average cooperation ratio of 0.336 (n=10 achieves an average
cooperation ratio of 0.726).

We speculate that the decline in cooperation is tied to gossip-efficiency differences across scales. In
the 10-agent scale-free network generated by the Barabási–Albert model with m = 2, the average
path length is only about 1.5-1.7 hops, so a reputation update reaches the whole population almost
immediately. With 30 agents (same m = 2), the average path length grows to 2.4-2.6 hops (and for
n=60, 2.9-3.1 steps), slowing convergence of the reputation estimates and weakening the signal that
COOPER needs to sustain high cooperation levels.

Figure 12: Self-play Cooperation Ratio with 10, 30, 60 agents
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Figure 13: Cooperation Level Difference Caused by Initialization

E.2 INITIALIZATION

In this paper, the initial reputation is set to 0 for all agents by default. Since the reputation value
ranges from -1 to 1, this initialization indicates a neutral and default starting point. As shown
in Figure 13, the initialization difference has some impact on the final stable state, in terms of the
final cooperation ratio/reward, but it does not affect the pattern that COOPER learns to cooperate
with emergent reputation. To be more specific, for self-play experiments on the scale-free networks
with 10 agents, initializing the reputation as all 0, all 1, all -1, and uniformly random results in the
cooperation ratio of 0.726, 0.38, 0.56, and 0.48, respectively.

Here, initializing ξ as all ones leads to the worst cooperation level. We conjecture that with ξ
initialized as +1, the only possible update direction is downward, and once every reputation has been
dragged slightly below +1, the population loses the numerical contrast needed to separate “good”
from “bad”, and cooperation collapses. The fact that all -1 are better than all +1 indicates that there is
a trend to assign a higher reputation to cooperators and a a lower reputation to defectors, so starting
with all -1 does not hinder the reputation rise for the cooperators. Moreover, initialization with 0
leaves the full range open where both positive and negative updates are feasible, and this symmetry
produces the highest cooperation level.

F ADDITIONAL RESULTS ON THE EMERGED NORM

In Figure 14, we present each agent’s reputation-based cooperation pattern that emerged in the self-
play donation game on a fully connected network with network size n = 10.

For 10-agent self-play in the donation game on scale-free networks (n = 10,m = 2), we visualize
the interaction-based reputation module ϕ of the hub agent and the leaf agent. As illustrated in Fig-
ure 15, the hub agent and the leaf agent develop distinct reputation-assignment rules, which can be
attributed to their respective positions within the network.

Under the learned reputation norm, COOPER’s policy is a Nash Equilibrium: any unilateral devi-
ation breaks the alternation and reduces the deviator’s cumulative payoff. We further analyzed the
policy under different reputation values. The agent (as shown in Figure 14) cooperates determinis-
tically when the opponent’s reputation exceeds –0.3, and defects when it falls below –0.6. Between
these thresholds, the probability of cooperation increases monotonically with the opponent’s repu-
tation. Importantly, the agent’s own reputation also influences its behavior: higher self-reputation
increases the tendency to cooperate at any given opponent reputation level.

As for interaction-based reputation updates, cooperation reduces the opponent’s reputation by ≈ 1,
while defection increases it by ≈ 1. We agree that these are not canonical game-theoretic equilibria,
but they are emergent, sustainable, and computationally stable under decentralized learning with
reputation.

Let’s consider a scenario with two players, A and B. In the well-mixed population, the policy learned
by COOPER is as follows:

1. ξ > −0.3 play C, ξ < −0.6 play D, −0.6 <= ξ <= −0.3 play C with p(ξ) = ξ+0.6
0.3

2. if A plays C, then ξB − 1, if A plays D, then ξB + 1 (and same for B)
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Figure 14: Norm learned in a 10-agent donation game self-play setting. The social network is fully
connected. Each heatmap shows the different agents’ probability of cooperation given previous
interaction.

Figure 15: Reputation update pattern of hub and leaf agent in scale-free network. Let the co-
player’s initial reputation = 0, the heatmap shows the assessment updates under different interaction
sequences.

Initially, let ξA = ξB = 0. At step 1, A plays C, B plays C because ξA = ξB > −0.3. So,
rA = rB = 0.2.Then, update ξA = ξB = −1. At step 2, A and B both play D and then update
ξA = ξB = 0. And rA = rB = 0. It is clear that the system is recursively running step 1-2.

But, if at step 1, let agent B deviate and play D, then rA = −0.3, rB = 0.5. In this case, update
ξA = 1, ξB = −1. So, in the new step 2, A will play D and B will play C, so rA = 0.5, rB = −0.3.
In this case, update ξA = 0, ξB = 0, and it goes back to the situation in step 1.

It is clear that B has no gain in this deviation, so the policy learned by COOPER is stable.

G ABLATION STUDY ON DIFFERENT NETWORKS

In this section, we conduct an ablation study in a 10-agent donation game self-play setting on various
network structures. The two ablated versions of COOPER are: 1) COOPER without ψ, which lacks
the gossip-based reputation assessment and relies solely on interaction experiences, and 2) COOPER
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without ϕ, which removes the interaction-based assessment module and depends exclusively on
social gossip.

As shown in Figure 16, removing either ψ or ϕ leads to a decline in cooperative behavior. Notably,
in scale-free networks with apparent degree heterogeneity, the performance drop is more evident
when ψ is absent. This highlights the importance of the gossip-based reputation assessment module
in maintaining robust cooperation.

(a) Small-world network (b) Scale-free network (c) Fully connected network

Figure 16: Ablation study in different network structures. Both ψ and ϕmodules foster cooperation.

G.1 ADDITIONAL COMPARISON WITH OPPONENT SHAPING METHODS

Opponent Shaping (OS) methods are highly relevant to social dilemmas and have shown promise
in learning robust strategies. In this subsection, we conduct an additional experiment in the
self-play donation game comparing COOPER with two prominent OS methods: Learning with
Opponent-Learning Awareness (LOLA) Foerster et al. (2017) and Advantage Alignment Algorithms
(AAA) Duque et al. (2024).

As illustrated in Figure 17, COOPER significantly outperforms opponent shaping baselines. A
likely explanation is that these baselines struggle to effectively utilize reputation information, which
constitutes a substantial portion of the observation space. In contrast, COOPER integrates a gossip-
based assignment model (ψ) and an interaction-based assignment model (ϕ), enabling more efficient
and accurate processing of reputation-related cues. This dual-model design allows COOPER to
better capture and leverage social dynamics, leading to superior performance in self-play settings.

Figure 17: COOPER outperforms the opponent shaping baselines in 10 agents self-play.

H LIMITATION AND FUTURE DIRECTIONS

Despite its promising results, our approach has several limitations that point to important directions
for future work. First, the efficacy of COOPER is inherently tied to reliable communication. The
model assumes that agents truthfully share their reputation assessments. This is an assumption that
may not hold in adversarial settings where agents could disseminate misinformation to manipulate
others’ reputations for their own benefit. In addition, the current reputation representation, while
effective, is a simple scalar value. This may lack the expressiveness to capture complex behavioral
nuances in more sophisticated environments, potentially leading to oversimplified or unfair social
evaluations. Finally, our study primarily focuses on static network topologies. The dynamics of
reputation propagation and norm emergence in dynamically evolving networks, where connections
between agents change over time, remain an open and challenging problem.
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Assuming only truthful communication during the gossip phase (ψ) is a limitation in real-world
deployments, as reputation systems are inherently vulnerable to manipulation.

Figure 18: Strategic gossip hinders cooperation in 10 agents self-play Donation Game.

We have conducted preliminary experiments where agents are allowed to manipulate the reputation
information they share. Our initial findings suggest that such misinformation can indeed distort
group-level cooperation dynamics, reducing group cooperation. As shown in Figure 18, in 10-
agent self-play donation game experiments under scale-free networks, the cooperation level with
strategic gossip is decreased to 0.47 (while in truthful reputation dissemination, the cooperation
level is 0.726).

To mitigate the impact of deceptive gossip on collective cooperation, we can employ adversarial
training within COOPER to help agents learn to detect and discount false reputation messages, or
simultaneously maintaining an explicit trust score for each neighbor that is updated based on how
well their past gossip aligns with subsequent observations. These methods provide a straightforward
starting point, though more sophisticated mechanisms may be investigated in future exploration.
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