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ABSTRACT

Hyperparameter optimization (HPO) is a crucial step in achieving strong predic-
tive performance, particularly for deep learning with hyperparameters controlling
the neural architecture and learning behavior. However, the impact of some hy-
perparameters on model generalization can vary significantly depending on the
dataset and performance measure, making it challenging to generalize their im-
portance. Gaining a better understanding of the importance of hyperparameters is
therefore important to deepen our understanding of machine learning and to lever-
age this knowledge in future downstream HPO tasks, especially if training is ex-
pensive and HPO needs to be as efficient as possible. To address these challenges,
we propose a game theoretic framework based on Shapley values and interactions
for HPO. These methods offer an additive decomposition of a performance mea-
sure across hyperparameters, enabling both local and global explanations of hy-
perparameter importance and interactions. Our framework, named HYPERSHAP,
provides insights into ablation studies, tunability of specific hyperparameter con-
figurations, and entire configuration spaces. Through experiments, we demon-
strate that focusing on the hyperparameters deemed important by our framework
can improve performance during subsequent hyperparameter optimization, while
ignoring important hyperparameters or interactions degrades performance. This
validates the effectiveness of our approach in enhancing model performance and
providing meaningful, interpretable explanations of hyperparameter importance.

1 INTRODUCTION

Hyperparameter optimization is an indispensable step in the design process of developing machine
learning applications to achieve the best possible performance for a given dataset and performance
measure (Bischl et al., 2023). This is particularly true for deep learning methods exposing different
kinds of hyperparameters for describing the neural architecture and steering the learning behavior,
e.g., the learning rate or weight decay (Zimmer et al., 2021). Moreover, through the advent of gener-
ative AI and large language models that are fine-tuned to various tasks, hyperparameter optimization
is key to achieving the best-possible results (Yin et al., 2021; Tribes et al., 2023; Wang et al., 2023).

However, different hyperparameters affect the generalization performance of the resulting model
differently (Bergstra & Bengio, 2012; Hutter et al., 2014; Zimmer et al., 2021) and, thereby, their
importance to be tuned. Moreover, the importance of hyperparameters that lead to an effective im-
provement in generalization performance can depend on the dataset and performance measure of
interest (Bergstra & Bengio, 2012; van Rijn & Hutter, 2018). Due to this, so far, it is difficult to
draw general conclusions about the importance of individual hyperparameters to better understand
the corresponding learning algorithm. In addition, just observing an optimized hyperparameter con-
figuration, it is difficult to attribute the effect of individual hyperparameter values to the improvement
in generalization performance.

To address this issue, methods for eliciting hyperparameter importance have been devised, ranging
from local methods to determine the effect of single hyperparameter values over a default value
(Fawcett & Hoos, 2016; Biedenkapp et al., 2017) to global explanations performing a symbolic
regression (Segel et al., 2023) or a variance decomposition (Hutter et al., 2014; Watanabe et al.,
2023; Theodorakopoulos et al., 2024). While the former can only detect main effects and ignores
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Figure 1: Game-theoretic explanations as defined with HYPERSHAP’s hyperparameter importance
games can be used to gain insights into hyperparameter values, hyperparameter configuration spaces,
datasets, and different hyperparameter optimizers (frames). HYPERSHAP can be used for data-
specific explanations or explanations across datasets.

interactions between hyperparameter values, the latter can take interactions into account to a limited
degree but is rather complicated to implement, and its result is rather difficult to interpret.

In this paper, we propose HYPERSHAP, a post-hoc explanation framework for hyperparameter im-
portance and interactions between hyperparameters based on Shapley values (Shapley, 1953) and
Shapley interaction indices (Tsai et al., 2023). Stemming from the field of algorithmic game the-
ory, Shapley values represent an additive decomposition of a given value function, in our case, a
performance measure, across a set of players, in our case (values of) hyperparameters. Overall, we
define 5 games to quantify the importance of hyperparameters, each of which can be used to obtain
different types of explanations either of a given hyperparameter configuration, of a hyperparameter
search space, or an optimizer’s characteristics.

While we generate first insights with the help of our framework, we also showcase the usefulness of
the explanations in a downstream task, performing hyperparameter optimization for the same dataset
and performance measure as a proof of concept that our approach identifies, in fact, meaningful im-
portances and interactions. In our experiments, focusing on hyperparameters identified as important
with a low degree of interactions by HYPERSHAP proves beneficial, resulting in better anytime
performance. However, ignoring the presence of interactions deteriorates performance in turn.

Contribution. All in all, our contributions are threefold:

(1) First, we propose HYPERSHAP, a novel framework for determining hyperparameter im-
portance based on Shapley additive explanations and interaction indices. Therewith, we
define 5 different games that can be considered for obtaining explanations on three levels:
specific configurations, hyperparameter spaces, and optimizer behavior.

(2) Second, with the help of HYPERSHAP, we elicit hyperparameter importance and inter-
action structures for lcnet (Zimmer et al., 2021), observing that while higher-order in-
teractions among the hyperparameters exist, considering only lower-order interactions is
typically sufficient to explain most of the performance improvements.

(3) Third, we demonstrate in a downstream task the practical usefulness of these explanations.
In particular, we showcase how focusing on important hyperparameters, and thereby re-
ducing the search space, improves anytime performance of hyperparameter optimizers in
constrained budget settings.

2 HYPERPARAMETER OPTIMIZATION AND IMPORTANCE

Hyperparameter optimization (HPO) is concerned with the problem of finding the most suitable
hyperparameter configuration of a learner A for a given task, typically consisting of some (training)
dataset D and some performance measure u quantifying the usefulness (Bischl et al., 2023). To
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put it more formally, let X be an instance space and Y a label space and suppose x ∈ X are (non-
deterministically) associated with labels y ∈ Y via a joint probability distribution P (· , ·). Then,
a training dataset D = {(x(k), y(k))}Nk=1 ⊂ X × Y is a sample from that probability distribution.
Furthermore, a predictive performance measure u : Y × P (Y) → R is a function mapping tuples
consisting of a label and a probability distribution over the label space to the reals. A learner A can
be understood as a function AΛ : D → H that is parameterized by some hyperparameter space Λ
and maps datasets from the dataset space D to a corresponding hypothesis space H := {h | h :
X → P (Y)}.

As the parameterization λ ∈ Λ of A typically impacts the hypothesis space H and biases the learn-
ing behavior in some way, it needs to be tuned to the task at hand, i.e., to the given dataset and loss
function. The task of HPO is then to find a parameterization that yields a hypothesis that general-
izes well beyond the data used for training. For brevity, we denote the hypothesis obtained through
applying Aλ to dataset D by hλ,D. For a given dataset D ∈ D, then the following optimization
problem needs to be solved:

λ∗ ∈ argmax
λ∈Λ

∫
(x,y)∼P (·,·)

u
(
y, hλ,D(x)

)
.

As the true generalization performance is intractable, it is estimated by splitting the given dataset D
into training Dtrain and validation data Dval. Accordingly, we obtain

λ∗ ∈ argmax
λ∈Λ

VALu(λ, D),

with VALu(λ, D) := E(Dtrain,Dval)∼D

 1

|Dval|
∑

(x,y)∈Dval

u
(
y, hλ,Dtrain

(x)
) .

Naively, hyperparameter optimization can be approached by discretizing the domains of hyperpa-
rameters and conducting a grid search or by a random search (Bergstra & Bengio, 2012). However,
as both these approaches are neither very effective nor efficient, more sophisticated tools have been
developed in two directions to increase the efficiency of sampling and evaluation, mainly based on
Bayesian and multi-fidelity optimization (Bischl et al., 2023).

Hyperparameter Importance. From an intuitive perspective, it is quite obvious that different
types of hyperparameters can be of different importance and that their effect also depends on the
dataset at hand. However, determining the effect of every hyperparameter requires additional tools,
e.g., eliciting the individual importance of a hyperparameter via ablations (Biedenkapp et al., 2017).
Additionally, hyperparameters may also influence the effect of other hyperparameters, which is why
the importance of a hyperparameter λj is typically specified as its performance-induced variance
(Jin, 2022).Accordingly, computing marginals for quantifying the effect of single hyperparameters
as well as their interactions with other hyperparameters can be used to determine the importance of
hyperparameters in the functional ANOVA framework (Hutter et al., 2014).

3 RELATED WORK

Hyperparameter importance has garnered significant attention in machine learning as it plays a cru-
cial role in providing evidence for the need for tuning hyperparameters and in attributing perfor-
mance improvements through hyperparameter optimization to hyperparameters (Probst et al., 2019;
Pushak & Hoos, 2020; 2022; Schneider et al., 2022). A variety of approaches have been developed
to assess how different hyperparameters affect the performance of resulting models, ranging from
simple (surrogate-based) ablations (Biedenkapp et al., 2017) to sensitivity analyses and eliciting in-
teractions between hyperparameters based on the functional ANOVA framework (Hutter et al., 2014;
van Rijn & Hutter, 2018; Watanabe et al., 2023; Bahmani et al., 2021). Similarly, Moosbauer et al.
(2021) propose partial dependence plots visualizing variance across the domain of hyperparameters.
In this work, we propose an alternative way of quantifying the importance of hyperparameters with
the help of Shapley values and focus on eliciting interactions between hyperparameters with the help
of SHAP interaction indices. We focus on the quantification of interactions since, in previous works,
it has been noticed that interaction is occasionally comparably low (Zimmer et al., 2021; Novello
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et al., 2023), which could serve as a foundation for a new generation of HPO methods that do not
assume interactions to be omnipresent.

Beyond quantifying hyperparameter importance, to better understand the impact of hyperparameters
and the tuning behavior of hyperparameter optimizers, other approaches have been proposed, such
as algorithm footprints (Smith-Miles & Tan, 2012) or deriving symbolic explanations (Segel et al.,
2023), functioning as an interpretable model for estimating the performance of a learner from its
hyperparameters. In this work, we focus on quantifying the impact of tuning a hyperparameter on
the performance.

4 SHAPLEY VALUES AND INTERACTION INDICES

Cooperative game theory has been widely applied in machine learning to assign contributions of en-
tities, such as features or data points for a given task (Rozemberczki et al., 2022). Most prominently,
to interpret predictions of black box models using feature attributions (Lundberg & Lee, 2017), or
to quantify the value of data points (Ghorbani & Zou, 2019). Shapley Interactions (SIs) (Grabisch
& Roubens, 1999) extend the Shapley Value (SV) by additionally assigning contributions to groups
of entities, which reveal synergies and redundancies. Feature interactions uncover additive struc-
tures in predictions, which are necessary to understand complex decisions (Lundberg et al., 2020;
Sundararajan et al., 2020; Tsai et al., 2023; Bordt & von Luxburg, 2023). The SV and SIs are de-
fined based on a cooperative game comprising n players N = {1, . . . , n} and ν : 2N → R as a
real-valued set function on the powerset 2N . This game captures a joint payout ν(S) obtained from
a set of players S ⊆ N forming a coalition. In this section, we assume ν(∅) = 0 for readability,
which does not affect the SV and SIs due to the dummy axiom (introduced below). Given ν, the
SV (Shapley, 1953) is the fair contribution of an individual entity to the overall payout ν(N ). The
SV is uniquely characterized by four intuitive axioms: linearity (contributions are linear for linear
combination of games), symmetry (players with equal contributions obtain equal payout), dummy
(players that do not change the payout receive zero payout), and efficiency (the sum of all payouts
equals the joint payout). The SV ϕSV(i) of player i ∈ N can be computed as a weighted average

ϕSV(i) :=
∑

T⊆N\{i}

1

n ·
(
n−1
|T |
)∆i(T ) over marginal contributions ∆i(T ) := ν(T ∪ i)− ν(T ).

Due to the efficiency axiom, the sum of SVs yields the joint payout ν(N ) =
∑

i∈N ϕSV(i). More-
over, any game value can be approximated with ν̂(T ) =

∑
i∈T ϕSV(i), which is the best approx-

imation of ν restricted to individual contributions in terms of a particular optimization objective
(Charnes et al., 1988). Clearly, individual contributions are limited in describing the values ν(S) for
every subset S ⊆ N . The Möbius Interactions (MIs) m : 2N → R, alternatively Möbius transform
(Rota, 1964) or Harsanyi dividend (Harsanyi, 1963), recover any game value additively as

ν(T ) =
∑
S⊆T

m(S) with m(S) :=
∑
T⊆S

(−1)|S|−|T |ν(T ) for all S, T ⊆ N . (1)

In fact, the MIs are the unique measure with this property (Harsanyi, 1963). The MI m(S) captures
the pure additive contribution that is achieved by forming the coalition S, which cannot be attributed
to any subgroup of players in S. Moreover, the MIs form a basis of the vector space of games
(Grabisch, 2016), and the SV can be derived as

ϕSV(i) =
∑

S⊆N :i∈S

1

|S|
m(S) for all i ∈ N .

In other words, the SV summarizes all MIs m(S) by equally distributing the interaction among the
players in S. While the SV has limited expressivity, the MIs with 2n components are difficult to
interpret. As a remedy, SIs, Φk, provide a flexible framework with interactions for subsets up to size
k = 1, . . . , n, where the edge cases are the SV (k = 1) and the MIs (k = n). Higher-order SIs
are computed based on discrete derivatives ∆S(T ), as an extension of marginal contributions. For
two players i, j ∈ N , the discrete derivative ∆{i,j}(T ) of {i, j} in the presence of T ⊆ N \ {i, j}
is given as ν(T ∪ {i, j}) − ν(T ) − ∆{i}(T ) − ∆{j}(T ), i.e., the effect of adding {i, j} jointly
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minus their individual marginal contributions. This recursion can be extended to any subset S ⊆ N ,
yielding ∆S(T ). The Shapley Interaction Index (SII) (Grabisch & Roubens, 1999), as an axiomatic
extension of the SV to all subsets S ⊆ N is then a weighted average

ϕSII(S) =
∑

T⊆N\S

1

(n− |S|+ 1) ·
(
n−|S|
|T |

)∆S(T ) over ∆S(T ) :=
∑
L⊆S

(−1)|S|−|L|ν(T ∪ L).

A positive interaction indicates a synergistic effect, whereas a negative interaction indicates re-
dundancies (on average). Given an explanation order k, the k-Shapley Values (k-SIIs), ΦSII

k
(Lundberg et al., 2020; Bordt & von Luxburg, 2023), are recursively constructed from the SII,
such that the highest order coincides. Alternatively, the Faithful Shapley Interaction Index (FSII),
ΦFSII

k (Tsai et al., 2023), constructs SIs based on the best k-additive approximation ν̂k(S) :=∑
L⊆S:|L|≤k Φk(L) of ν(S) across all subsets S weighted by the Shapley kernel (Tsai et al., 2023),

cf. Appendix C.2. FSII are thus well-suited to analyze the degree of interactions within a game.
In general, SIs differ in weighting of discrete derivatives (Fumagalli et al., 2023) and MIs of order
larger than k (Bordt & von Luxburg, 2023). The SIs provide a flexible framework to adjust expla-
nation expressivity and complexity based on practitioner needs (Tsai et al., 2023; Fumagalli et al.,
2024). In the following, we explore interactions within hyperparameter optimization using SIs.

5 HYPERSHAP: HYPERPARAMETER IMPORTANCE GAMES

In hyperparameter optimization, a wide variety of questions can be asked for explanations, ranging
from individual suggested values in a returned hyperparameter configuration to complex reason-
ing during the optimization process or the description of remaining optimization potentials. Hence,
explanations may be needed on different levels of the hyperparameter optimization process, rang-
ing from returned configurations to a qualitative comparison of entire hyperparameter optimization
tools. In the following, we will limit ourselves to three areas, dubbed Ablation, Tunability, and
Optimizer Bias, which we describe in more detail in Sections 5.1, 5.2, and 5.3, respectively.

5.1 ABLATION BETWEEN TWO HYPERPARAMETER CONFIGURATIONS

One common scenario for quantifying the importance of hyperparameters is to compare a hyper-
parameter configuration (HPC) λ∗ of interest to some reference HPC λ0, e.g., the default param-
eterization of a learner as provided by its implementing library or a tuned default HPC that has
proven effective for past tasks. In turn, λ∗ can be an HPC returned by a hyperparameter optimizer
or a manually configured HPC. Given λ∗ and λ0, the question now is how values of λ∗ affect the
performance of the learner relative to the reference HPC λ0. To this end, we can transition from
the reference HPC to the HPC of interest by switching the values of hyperparameters one by one
from its value in λ0 to the value in λ∗, which is also done in empirical machine learning studies and
referred to as ablations.

While a similar approach has already been followed by Fawcett & Hoos (2016) and Biedenkapp
et al. (2017), it fails to quantify interactions between hyperparameters. However, with the help of
SVs and SIs, we can overcome this limitation and define the hyperparameter importance game of
Ablation as follows.
Definition 1 (HPI Game - Ablation). The Ablation HPI game is defined as a tuple

GA = (N ,λ0,λ∗, D, ν),

consisting of a player set N , a reference HPC λ0, an HPC of interest λ∗, a dataset D, and a value
function ν. Given a coalition S ⊆ N , we construct an intermediate HPC λS from λ0 and λ∗ as:

λS =

{
λ∗
i if i ∈ S

λ0
i else

Then, the value function ν : 2N → R is defined as

ν(S) = VALu(λ
S , D) .

5
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Table 1: Overview of games to compute hyperparameter importance across three levels: configura-
tion, hyperparameter configuration space, and at the level of the optimizer’s behavior.

Ablation Tunability Optimizer Bias
Pl

ay
er A player represents a hyper-

parameter value.
A player represents the do-
main of a hyperparameter.

A player represents the do-
main of a hyperparameter.

C
oa

lit
io

n A coalition denotes which
hyperparameters’ values are
switched from its value of
the reference HPC λ0 to its
value in λ∗.

A coalition determines a
subset of hyperparameters
tuned by a hyperparameter
optimizer.

A coalition determines a
subset of hyperparameters
tuned by the ensemble of hy-
perparameter optimizers.

Va
lu

e
Fu

nc
tio

n The value function mea-
sures the performance of the
learner parameterized with
the intermediate hyperpa-
rameter configuration λS ,
switch values from the ones
given in λ0 to λ∗.

The value function mea-
sures the maximum achiev-
able performance of an op-
timizer considering the con-
figuration space as specified
by the coalition.

The value function measures
the difference between the
best performances found by
some optimizer and by any
member of an optimizer en-
semble.

5.2 TUNABILITY OF LEARNERS

Zooming out from a specific configuration, we can ask to what extent it is worthwhile to tune hyper-
parameters. In the literature, this question has been connected to the term of tunability (Probst et al.,
2019). Tunability aims to quantify how much performance improvements can be obtained by tuning
a learner comparing against a reference parameterization, e.g., a parameterization that is known to
work well across various datasets (Pushak & Hoos, 2020).
Definition 2 (HPI Game - Tunability). The tunability HPI game is defined as a tuple

GT = (N ,λ0,Λ,D, ν),

consisting of a set of players N , a reference HPC λ0 ∈ Λ, a hyperparameter configuration space
Λ, a collection of datasets D = {D1, D2, . . . DM}, and a value function ν.

Given a coalition S, we construct a hyperparameter configuration space ΛS from the original Λ as
a subspace ΛS = ×i∈SΛi and the value function is defined as

ν(S) = ⊕M
i=1 VALu

(
argmax
λ∈ΛS

VALu(λ, Di), Di

)
,

where ⊕ denotes an operator for aggregating the performances obtained for the individual datasets
Di, which for example can be instantiated by the mean, median, quantile, or interquartile mean.
Hyperparameters j /∈ S that are not tuned as their domain is not contained in ΛS are kept at their
reference value λ0

j . Consequently, the value of the empty coalition S = ∅ refers to the performance
of the reference configuration, i.e., ν(∅) = ⊕M

i=1 VALu(λ
0, Di).

While this definition considers the problem of tunability across datasets, we can also question the
usefulness of tuning the hyperparameters of a learner for a specific dataset at hand. This setting,
which we dub Data-Specific Tunability, can be derived as a special instance of Definition 2:
Definition 3 (HPI Game - Data-Specific Tunability). Data-Specific Tunability is defined as a special
case of Definition 4, considering a dataset collection of size |D| = 1. Then, the value function can
be simplified to

ν(S) = VALu

(
argmax
λ∈ΛS

VALu(λ, D), D

)
.

We note that, in practice, for evaluating a single coalition in Definition 2, M HPO runs are carried
out to approximate the argmax. In the specific case of Definition 3, we still need to conduct one
HPO run per coalition evaluation. While this can result in considerable costs, we argue that using
surrogate models that are, e.g., obtained through HPO via Bayesian optimization, can be used to
simulate HPO runs, rendering HYPERSHAP more tractable.

6
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HPO budget
[number of evaluations]

100,00010,0001,00010010

Figure 2: Hyperparameter importance with HyperSHAP, approximating the argmax in Definition 3
of the value function via hyperparameter optimization with increasing budgets for dataset ID 7593
of lcbench. For tuning, we consider the following hyperparameters of lcnet: learning rate (L-
R), batch size (B-S), weight decay (W-D), num layers (N-L), momentum (M), max units (M-U), and
max dropout (M-D).

5.3 OPTIMIZER BIAS

In the previous section, we aimed to explain the importance of hyperparameters being tuned. How-
ever, depending on how much a hyperparameter may contribute to a performance gain can also be
used to gain insights into the capabilities of a hyperparameter optimizer. More specifically, we would
like to investigate whether a hyperparameter optimizer may fail to exploit certain hyperparameters.
As shown in Figure 2, partial contributions of main effects and interactions to the overall perfor-
mance vary depending on the approximation quality of the argmax. As a consequence, for high
quality explanations, we need sufficiently accurate approximations. In turn, we may leverage this
fact to detect deficiencies of optimizers. To this end, we define a hyperparameter optimizer to be a
function O : D×2Λ → Λ, mapping from the space of datasets and a (sub)space of a hyperparameter
configuration space to a configuration.

Definition 4 (HPI Game - Optimizer Bias). The Optimizer Bias HPI game is defined as a tuple

GO = (N ,Λ,λ0,O,D, ν),

where N ,Λ,λ0,D, and the construction of ΛS are as in Definition 2, O the hyperparameter opti-
mizer of interest, and a value function ν. Then, the value function is defined as

ν(S) = ⊕M
i=1

[
VALu

(
O(Di,Λ

S), Di

)
− VALu

(
argmax
λ∈ΛS

VALu(λ, Di), Di

)]
.

Intuitively speaking, the value function measures any deviation from the performance of the actual
best-performing hyperparameter configuration. In other words, with the help of Definition 4, we can
identify deficiencies of the hyperparameter optimizer O over the actual best-performing solution
and, thereby for example, identify whether an optimizer struggles to optimize certain (types of)
hyperparameters.

However, to approximate the right-hand side of the difference, i.e., the argmax, in practice, we
propose to employ a diverse ensemble of optimizers O := {Oi}. Furthermore, for some hyperpa-
rameter configuration space ΛS , we pick the best result obtained through any optimizer from O.
Thereby, we obtain a virtual best hyperparameter optimizer:

VBO(Di,Λ
S) 7→ λ̂, λ̂ ∈ argmax

λi=Oi(Di,ΛS)

VALu(λ
i, Di) .

Analogue to Definition 3, we can define Data-Specific Optimizer Bias:

Definition 5 (HPI Game - Data-Specific Optimizer Bias). Data-Specific Optimizer Bias is defined
as a special case of Definition 4, considering a dataset collection of size |D| = 1.

7
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Figure 3: Interaction quantification for different HPI scenarios in terms of magnitude of interactions
at each order (left) and faithfulness of lower order explanations (right, standard error shaded).

6 EXPERIMENTS

In this section, we showcase how the games proposed in Section 5 can be used to explain different
aspects of the HPO pipeline with a particular focus on interactions between hyperparameters. To this
end, we consider the benchmark suite lcbench (Zimmer et al., 2021) from the HPO benchmark
package YAHPOGym (Pfisterer et al., 2022). Across three different levels, ranging from a specific
configuration to the tunability of lcnet as the underlying network of lcbench to the analysis of
optimizer biases, we demonstrate the usefulness of HYPERSHAP in Sections 6.1 and 6.2. Further-
more, in Section 6.3, we demonstrate how knowledge about hyperparameter importance can help to
increase sample efficiency, but taking interactions into account is crucial. Details about the exper-
iment setup, implementation, and additional results can be found in Appendix A and the technical
supplement. For guidance on interpreting the SI visualizations, we kindly refer to Appendix B.

6.1 INTERACTIONS IN HYPERPARAMETER OPTIMIZATION

Using HYPERSHAP, we analyze the interactions at different levels of hyperparameter optimization,
demonstrating that while higher-order interactions are present, they can be effectively captured with
second-order explanations. The interaction quantification is summarized in Figure 3. Additional
details are provided in Appendix C. For each HPI game — Ablation, Data-Specific Tunability, and
Tunability — we determine the magnitude of interactions by measuring the MIs for each order (see
Figure 3, left). The MIs show that all levels of hyperparameter optimization include both lower- and
higher-order interactions (with box plots above zero), and that lower-order interactions are the most
influential (showing the largest range for orders 1 and 2). Data-Specific Tunability exhibits the most
higher-order interactions, indicating that there are dataset-specific nuances.

In addition, we examine how faithfully lower-order representations capture the higher-order effects
and behavior of different games (see Figure 3, right). For each game setting, we compute the FSII
ΦFSII

k with explanation order k. We then approximate the game values for each hyperparameter
subset S ⊆ N as ν̂k(S) :=

∑
L⊆S:|L|≤k Φ

FSII
k (L). Finally, we compare the approximated game

values with the ground truth as determined by considering the complete game and calculate an
R2 (ν(S), ν̂k(S)) loss weighted with the Shapley kernel (Lundberg & Lee, 2017; Tsai et al., 2023).
This assesses how well the FSII describe the game behavior and cover higher-order interactions.
An R2 score of one indicates a perfect fit, meaning all interactions are covered with the given
explanation. Figure 3, right, displays the R2 scores all explanation orders k, and demonstrates that
the behavior of hyperparameter optimization games cannot be explained without interactions. The
SV (k = 1) yield a low R2 score, whereas second-order interactions (k = 2) already achieve a
near-perfect reconstruction error, outlining an interesting avenue for future research on exploiting
this fact for efficient approximation.
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Figure 4: 3-SII plot for optimizing every hyperparameter individually (left) and for optimizing only
a subset of hyperparameters consisting of learning rate (L-R), max dropout (M-D), and max units
(M-U) in the center, and optimizing every hyperparameter but weight decay (W-D) on the right.

6.2 IDENTIFYING OPTIMIZER BIAS VIA HYPERPARAMETER IMPORTANCE

In this section, we consider Data-Specific Optimizer Bias as defined in Definition 5 to demonstrate
how quantifying hyperparameter importance can be used to detect hyperparameter optimizer defi-
ciencies. To this end, we implement two HPO strategies with built-in deficiencies. First, we consider
a hyperparameter optimizer that optimizes every hyperparameter individually and composes the re-
turned configuration from the individual best hyperparameter values, i.e., it ignores all potential
interactions of hyperparameters. Second, we consider a hyperparameter optimizer that only opti-
mizes a pre-defined subset of hyperparameters, resembling HPO methods that, e.g., can only tackle
continuous hyperparameters and ignore categorical or integer hyperparameters. For the former, we
expect the main effects of hyperparameters to be small but observe substantial negative interactions.
The latter is expected to show small effects for the selected subset of hyperparameters and negative
main effects for the rest.

As shown in Figure 4, we observe the effects expected for the two HPO strategies, validating our
approach. While on the left, we analyze the hyperparameter optimizer tuning every hyperparam-
eter independently, the main effects for the single hyperparameters are negligible (i.e., thin circles
around the hyperparameters), demonstrating that the tuning of the individual hyperparameters works
well. However, by design, the tuning behavior does not account for interactions between the hyper-
parameters, which results in large negative interactions, as indicated by the bold blue edges, red
edges in turn indicate missing out on negative interactions. In the middle and on the right, we vi-
sualize Optimizer Bias for the HPO approach limiting to certain subsets of hyperparameters (see
caption of the figure). We observe negligible main effects for the tuned hyperparameters, indicating
close to optimal performance for tuning those. However, left-out hyperparameters are showing large
main effects and also interactions with them are more pronounced, bringing the deficiencies of this
HPO method to light. Momentum (M) and Weight Decay (W-D) show little change, reflecting their
ineffectiveness for this dataset, and the subset tuner correctly avoids tuning them.

6.3 DOWNSTREAM TASK: IMPORTANCE-INFORMED HYPERPARAMETER OPTIMIZATION

In this section, we incorporate information obtained through HYPERSHAP in a subsequent HPO
run. To this end, given a dataset D, we first determine the hyperparameter importance using
HYPERSHAP. Based on this, we determine the top-2 hyperparameters with respect to their main
effects, thus deliberately ignoring any kind of interaction these two hyperparameters may have with
other hyperparameters (and themselves). We limit the hyperparameter configuration space to these
two hyperparameters and conduct HPO runs (with information about hyperparameter importance)
via random search, abbreviated as RS, (RS + HPI) (Bergstra & Bengio, 2012) and Bayesian opti-
mization using SMAC (SMAC + HPI) (Hutter et al., 2011; Lindauer et al., 2022), a versatile and
state-of-the-art package for HPO based on Bayesian optimization (Eggensperger et al., 2021). As
baselines, we run both methods on the full hyperparameter configuration space, in the plots referred
to as RS and SMAC, respectively, and compare their anytime performances for a budget of 100
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(a) Dataset ID: 3945 (low interactivity) (b) Dataset ID: 7593 (high interactivity)
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Figure 5: MI interaction graphs and anytime performances, showing mean accuracy ± standard error
for dataset IDs 3945 (a) and 7593 (b). While in (a), the low level of interactions can be leveraged
for shrinking the hyperparameter configuration space, in (b), a significant amount of interactions is
present such that shrinking the hyperparameter configuration space deteriorates performance.

candidate evaluations. While we repeat SMAC runs 30 times with different random seeds, random
search runs are repeated 1,000 times as random search is more noisy but cheaper to compute.

In Figure 5, we show interaction graphs for two datasets from lcbench (OpenML-IDs 3945, 7593)
and anytime performance plots, plotting the number of evaluations on the x-axis versus accuracy on
the y-axis. The graphs show the mean and the standard error is plotted in terms of error bands.
We can observe that for Dataset 3945 where we have a relatively small level of interactions but
strong main effects for the hyperparameters batch size and num layers, this information can
be leveraged in both random search and SMAC. On the contrary, the presence of higher-order in-
teractions, as visual for Dataset 7593, limiting to the top-2 hyperparameters yielding the highest
main effects hurts anytime performance. As can be seen from the anytime performance plots, while
having a slight advantage in the first few evaluations, considering the entire hyperparameter con-
figuration space yields substantially better results within the total budget of 100 evaluations. From
these observations, we conclude that taking higher-order interactions into account is crucial when
being present, whereas if only a low level of interactions (and few major main effects) is detected,
we can potentially leverage this information to speed up the HPO process. Recent results indicate
that such scenarios with little interactions are more common in HPO than we might think (Pushak
& Hoos, 2022) and thus can be quantified with the help of HYPERSHAP.

7 CONCLUSION & FUTURE WORK

In this paper, we proposed HYPERSHAP a comprehensive post-hoc explanation framework for
quantifying hyperparameter importance via Shapley values and Shapley interactions on three levels:
the values of hyperparameters, the tunability of hyperparameters, and the capabilities of hyperpa-
rameter optimizers. Compared to previous methods accounting for interactions between hyperpa-
rameters, HYPERSHAP attributes contributions to the performance rather than quantifying variance.
While we can use HYPERSHAP to better understand the impact of hyperparameter values or tun-
ability of hyperparameters, we also demonstrated that this knowledge can be immediately applied to
downstream tasks. To this end, we showed how the anytime performance of a subsequent HPO run
can benefit from focusing on hyperparameters identified as important.

In future work, we aim to extend the framework to the more general task of combined algorithm
selection and hyperparameter optimization, and the design of entire ML pipelines (Olson & Moore,
2016; Wever et al., 2018; Heffetz et al., 2020; Feurer et al., 2022). In contrast to plain HPO, such
more complex AutoML scenarios are less well studied, but with HYPERSHAP we now have a ver-
satile and theory-grounded approach at hand that will allow a thorough study. Furthermore, we plan
to develop methods for HPO that can leverage the information about the importance of hyperpa-
rameters. Learning hyperparameter importance across datasets could outline a promising direction
to warmstart hyperparameter optimizers in an interpretable way and improve their efficiency based
on past experience, leading to synergies with recent prior-guided HPO (Hvarfner et al., 2024) and
human-centered AutoML (Lindauer et al., 2024).
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ETHICAL STATEMENT

In conducting this research on HyperSHAP, we have carefully considered the ethical implications of
our work. This paper presents work with the goal to advance the field of machine learning (ML) and
specifically the field of explainable artificial intelligence (XAI) and hyperparameter optimization
(HPO). There are many potential societal consequences of our work. The aim of our study is to
improve the transparency and interpretability of hyperparameter optimization, which is crucial for
building trust and accountability into hyperparameter optimization methods. Thus, our research
impacts a wide variety of ML application domains and therein can positively impact ML adoption
and potentially reveal biases or unwanted behavior in HPO systems.

However, we recognize that the increased explainability provided by XAI also carries ethical risks.
There is the potential for “explainability-based white-washing”, where organizations, firms, or in-
stitutions might misuse XAI to justify questionable actions or outcomes. With responsible use, XAI
can amplify the positive impacts of ML, ensuring its benefits are realized while minimizing harm.

REPRODUCIBILITY STATEMENT

The code, datasets (in terms of pre-computed games), and hyperparameter configurations used in
this work are stated in the experiment setup in Appendix A. Also the code provided as supple-
mentary material will be made publicly available on GitHub upon acceptance. Clear instructions
for reproducing our results are provided in the code supplement, including environment setup and
dependency management. Detailed experimental results with random seeds are reported to ensure
consistency in outcomes across different runs.
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A EXPERIMENT SETUP

Our implementation builds upon the shapiq package (Muschalik et al., 2024a), which is publicly
available on GitHub1, for computing Shapley values and interactions. Furthermore, for the experi-
ments, we use YAHPO-Gym (Pfisterer et al., 2022), a surrogate-based benchmark for multi-fidelity
hyperparameter optimization. YAHPO-Gym provides several benchmark suites, i.a., lcbench
(Zimmer et al., 2021), which we focused on in the main paper. However, in the subsequent sections,
we also present results from the rbv2 ranger benchmark set, a random forest benchmark, from
YAHPO-Gym demonstrating the more general applicability of HYPERSHAP. Furthermore, we run
evaluations on the benchmark PD1 and JAHS-Bench-201 to showcase HYPERSHAP’s wide appli-
cability. In our repository, we provide pre-computed games to foster reproducibility of our results
and allow for faster post-processing of the game values, e.g., for plotting different representations
of the played games.

For better readability in terms of the font size, hyperparameter names are abbreviated in the interac-
tion graphs.

lcbench (Pfisterer et al., 2022; Zimmer et al., 2021) lcbench is a benchmark considering joint
optimization of the neural architecture and hyperparameters that has been proposed by Zimmer et al.
(2021) together with the automated deep learning system Auto-PyTorch. The benchmark consists
of 35 datasets with 2000 configurations each for which the learning curves have been recorded,
allowing for benchmarking multi-fidelity HPO. However, in YAHPO-Gym only 34 of the 35 original
datasets are contained which is why our evaluation is also restricted to those 34 datasets.

Hyperparameter Name Abbreviation Type

weight decay W-D float
learning rate L-R float
num layers N-L integer
momentum M float
max dropout M-D float
max units M-U integer
batch size B-S float

rbv2 ranger (Pfisterer et al., 2022) As already mentioned above, rbv2 ranger is a benchmark
faced with tuning the hyperparameters of a random forest. We consider the hyperparameters of
ranger as listed below:

Hyperparameter Name Abbreviation Type

min node size M-N integer
mtry power M-P float
num impute selected cpo N-I categorical
num trees N-T integer
respect unordered factors R-U categorical
sample fraction S-F float
splitrule S categorical/Boolean
num random splits N-R integer

PD1 (Wang et al., 2024) The PD1 benchmark is a testbed for evaluating hyperparameter optimiza-
tion methods in the deep learning domain. It consists of tasks derived from realistic hyperparameter
tuning problems, including transformer models and image classification networks. Across these
different types of models, 4 hyperparameters are subject to tuning:

1https://github.com/mmschlk/shapiq
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Hyperparameter Name Abbreviation Type

lr decay factor L-D float
lr initial L-I float
lr power L-P float
opt momentum O-M float

JAHS-Bench-201 (Bansal et al., 2022) To democratize research on neural architecture search,
various table look-up and surrogate-based benchmarks have been proposed in the literature. Going
even beyond plain neural architecture search, in JAHS-Bench-201, the combined task of searching
for a suitable neural architecture and optimizing the hyperparameters of the learning algorithm is
considered. We include it via the “‘mf-prior-bench“‘ package that serves it with a surrogate model
for predicting the validation error of a given architecture and hyperparameter configuration. The
considered hyperparameters, including those for the neural architecture, are as follows:

Hyperparameter Name Abbreviation Type

Activation A categorical
LearningRate L float
Op1 Op1 categorical
Op2 Op2 categorical
Op3 Op3 categorical
Op4 Op4 categorical
Op5 Op5 categorical
Op6 Op6 categorical
TrivialAugment T Boolean
WeightDecay W float

A.1 APPROXIMATION OF ARGMAX

As per Definitions 2 to 4, for every coalition S, we need to determine the argmax. However, the
true argmax is hard to compute, so we approximate it throughout our experiments. For the sake of
implementation simplicity and unbiased sampling, to this end, we use random search with a large
evaluation budget of 10,000 candidate evaluations. As the configurations are independently sampled,
for evaluating a configuration, we simply blind an initially sampled batch of 10,000 hyperparameter
configurations for the hyperparameters not contained in the coalition S by setting their values to the
default value. After blinding, the surrogate model provided by YAHPO-Gym is then queried for the
set of hyperparameter configurations and the maximum observed performance is returned.

A.2 COMPUTING OPTIMIZER BIAS

For the experiments considering the HPI game of Data-Specific Optimizer Bias, we designed three
HPO methods that focus on different structural parts of the hyperparameter configuration space. For
the hyperparameter optimization approach, tuning every hyperparameter individually, when consid-
ering a hyperparameter for tuning, we sampled 50 random values for every hyperparameter. For
the hyperparameter optimizer focusing on a subset of hyperparameters, we allowed for 50,000 hy-
perparameter configurations. For the VBO, we employed the considered limited hyperparameter
optimizer and a random search with a budget of 50,000 evaluations on the full hyperparameter con-
figuration space. We chose larger HPO budgets for these experiments to immediately ensure the
built-in deficiencies become apparent and reduce noise effects. Howevér, they might also already be
visible with substantially smaller budgets.

A.3 HARDWARE USAGE AND COMPUTE RESOURCES

Initial computations for lcbench and rbv2 ranger have been conducted on consumer hardware, i.e.,
Dell XPS 15 (Intel i7 13700H, 16GB RAM) and a MacBook Pro (M3 Max - 16C/40G, 128GB
RAM). Overall computations took around 10 CPUd, highlighting HYPERSHAP being lightweight
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when combined with surrogates. In the course of the reviewing process, we re-computed the games
for Ablation and Data-Specific Tunability of lcbench and rbv2 ranger and added PD1 and JAHS-
Bench-201. These computations have been conducted on a high-performance computer with nodes
equipped with 2× AMD Milan 7763 (2 × 64 cores) and 256GiB RAM of which 1 core and 8GB
RAM have been allocated to the computations for a single game. While the latter experiments
amounted to 10.71 CPU days, in sum, the computations for this paper accumulate roughly 21 CPU
days.

The average runtimes per benchmark and game are as follows (Table 2):

Benchmark |Λ| |D| Runtime Ablation [s] Runtime Data-Specific Tunability [s] Runtime Tunability [s]
PD1 4 4 64.9±16.0 862.4±13.7 -
JAHS 10 3 123.7±4.4 30,406.7±4750.9 (8h26m) -
LCBench 7 34 4.8±0.4 357.3±3.1 10,713.4 (2h58m)
rbv2 ranger 8 119 26.4±6.8 6,717±767.3 -

Table 2: Mean ± standard deviation of the runtimes on a single CPU per benchmark and game.

B GUIDANCE ON INTERPRETING INTERACTION VISUALIZATIONS

B-S

L-R

M-D

M-U

M

N-L

W-D

Figure 6: The 3-SII visualization
replicated from Figure 4.

To visualize and interpret lower-, and higher-order interactions
such as k-SII and FSII scores or MIs, we employ the SI graph
visualization by Muschalik et al. (2024a;b). An exemplary 3-
SII graph is represented in Figure 6. Visualizations as in Fig-
ure 6 can be interpreted as follows. Each individual player
(e.g. hyperparameter) is represented as a node with connecting
hyperedges representing the strength and direction of interac-
tions. Akin to the well-established force plots (Lundberg &
Lee, 2017), positive interactions are colored in red and nega-
tive interactions in blue, respectively. The strength of an inter-
action is represented by the size and opacity of the hyperedge.
To reduce visual clutter, small interactions below a predefined
absolute threshold may be omitted from the graph. Notably,
first-order interactions (i.e. individual player contributions, or
main effects) are represented by the size of the nodes.

C ADDITIONAL
RESULTS FOR INTERACTION QUANTIFICATION

C.1 MEASURING THE MAGNITUDE OF INTERACTIONS

In this section, we provide further details for measuring the presence of interactions discussed in
Section 6.1. The MIs describe the pure additive effect of a coalition to the payout of the game.
They thus serve as an important tool to analyze the interactions present in a game ν. For instance,
low-complexity games, where MIs are non-zero only up to coalitions of size k, are typically referred
as k-additive games (Grabisch, 2016). In this case, SIs with explanation order k perfectly recover
all game values (Bordt & von Luxburg, 2023). In this case, the SIs correspond to the MIs. We
thus analyze the absolute values of MIs for varying size of coalitions, i.e., displaying the strata
q(k) := {|m(S)| : S ⊆ N , |S| = k} for varying interaction order k = 1, . . . , n. Analyzing
q(k) indicates, if the game ν has lower- order higher-order interactions present by investigating the
magnitudes and distributions in the strata q(k).

C.2 ANALYZING LOWER-ORDER REPRESENTATIONS OF GAMES

In this section, we provide additional details for the lower-order representations and R2 scores dis-
cussed in Section 6.1. The SV that capture the fair contribution in a game ν of an individual to
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the joint payout ν(N ). However, as discussed in Section 4, the SV ϕSV(i) is also the solution to a
constrained weighted least squares problem (Charnes et al., 1988; Fumagalli et al., 2024)

ϕSV = argmin
ϕ

∑
T⊆N

1(
n−2
|T |−1

) (ν(T )− ν(∅)−
∑
i∈T

ϕ(i)

)2

s.t. ν(N ) = ν(∅) +
∑
i∈N

ϕ(i).

In other words, the SV is the best additive approximation of the game ν in terms of this weighted loss
constrained on the efficiency axiom. Based on this result, the FSII (Tsai et al., 2023) was introduced
as

ΦFSII
k := argmin

Φk

∑
T⊆N

µ(|T |)

ν(T )−
∑

S⊆T,|S|≤k

Φk(S)

2

with µ(t) :=

{
µ∞ if t ∈ {0, n}

1

(n−2
t−1)

else ,

where the infinite weights capture the constraints ν(∅) = Φk(∅) and ν(N ) =
∑

S⊆N Φk(S). Note
that Tsai et al. (2023) introduce FSII with a scaled variant of µ that does not affect the solution. The
FSII can thus be viewed as the best possible approximation of the game ν using additive components
up to order k constrained on the efficiency axiom. It is therefore natural to introduce the Shapley-
weighted faithfulness as

F(ν,Φk) :=
∑
T⊆N

µ(|T |)

ν(T )−
∑

S⊆T,|S|≤k

Φk(S)

2

.

Based on this faithfulness measure, the Shapley-weighted R2 can be computed. More formally, we
compute the weighted average and the total sum of squares as

ȳ :=

∑
T⊆N µ(|T |)ν(T )∑

T⊆N µ(|T |)
and Ftot :=

∑
T⊆N

µ(|T |) (ν(T )− ȳ)
2
,

which yields the Shapley-weighted R2 as

R2(k) := R2(ν,Φk) := 1− F(ν,Φk)

Ftot
.

In our experiments, we rely on FSII, since this interaction index optimizes the faithfulness measure
F by definition. However, k-SII satisfies a similar faithfulness property (Fumagalli et al., 2024).
Since the FSII is equal to the MIs for k = n, we have that F(ν,Φn) = 0 due to the additive recovery
property of the MIs. Hence, R2(n) = R2(ν,Φn) = 0 in this case. Clearly, the R2(k) scores are
monotonic increasing in k by definition of FSII. An R2(k) ≈ 1 indicates an almost perfect recovery
of all game values. In our experiments, we have shown that higher-order interactions are present,
but lower-order representations (low k) are mostly sufficient to achieve very high R2 scores. This
indicates that higher-order interactions are present but do not dominate the interaction landscape in
our applications. For instance, a single isolated higher-order interaction would yield much lower R2

scores (Muschalik et al., 2024a).

C.3 INTERACTION QUANTIFICATION FOR HYPERPARAMETER OPTIMIZATION OF RANGER

This section contains additional results regarding the interaction quantification. In addition to the
analysis of lcbench (see Section 6.1), we also assess the interactivity of rbv2 ranger. The
results are summarized in Figure 7. Violin plots of the magnitude of interactions can be found in
Figure 7. Surprisingly, the analysis of the three HPI games — Ablation, Data-Specific Tunability,
and Tunability— of rbv2 ranger reveals a similar trend to lcbench. Both higher-, and lower-
order interactions are present in all three HPI scenarios. While the largest range of interactions
are of first order, interactions exist until the highest order. Akin to Section 6.1, these higher-order
interactions can be faithfully represented with lower order explanations of order k = 2. Compared
to the neural network based lcbench benchmark, first-order explanations recover a substantially
higher R2 score for the random forest based rbv2 ranger on both Tunability scenarios. This
may indicate that independent tuning of parameters can be more effective with traditional machine
learning models than for deep architectures.
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Figure 7: Interaction quantification for the three HPI scenarios, Ablation, Data-Specific Tunability,
and Tunability in terms of magnitude of interactions at each order (left) and faithfulness of lower
order explanations (right, standard error of the mean shaded). The first row shows the interaction
quantification for lcbench, and the second row for rbv2 ranger.
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Figure 8: Violin plots of the magnitude for the three HPI scenarios, Ablation, Data-Specific Tun-
ability, and Tunability for the lcbench (left) and rbv2 ranger (right).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

MI:

lcbench

B-S

L-R
M-D

M-U

M

N-L
W-D

rbv2 ranger

M-N

M-P

N-I

N-T

R-U

S-F

S

N-R

2-FSII: B-S

L-R
M-D

M-U

M

N-L
W-D

M-N

M-P

N-I

N-T

R-U

S-F

S

N-R

Figure 9: MIs and second order FSII interactions for the Ablation HPI Game for Dataset 7593 of
lcbench (left) and Dataset 40981 of rbv2 ranger (right).

C.4 ADDITIONAL INTERACTION VISUALIZATIONS

In this section, we present further interaction visualizations for both lcbench and rbv2 ranger
comparing explanations obtained through MI and 2-FSII for the HPI games Ablation (see Figure 9),
Data-Specific Tunability (see Figure 10), and Tunability (see Figure 11).

C.5 RESULTS FOR JAHS-BENCH-201

In Figure 12, we present Moebius interactions between the hyperparameters of JAHS-Bench-201
for three different datasets: CIFAR10, FashionMNIST, and Colorectal Histology.

Ablation: At first sight, for CIFAR10 and Colorectal Histology, there are plenty of interactions,
most of them between the different operations of the neural architecture. Hyperparameters for con-
figuring the learning algorithm seem to have dense interactions with the operations chosen, showing
the need to adjust the hyperparameters to the corresponding architecture. However, in the case of
FashionMNIST, most of the performance gain seems to stem from configuring the learning rate to-
gether with the weight decay hyperparameter, indicating that the architecture we have optimized
before running the Ablation HPI game does not yield too much of a performance improvement -
furthermore, the learning rate seems to be changed for the worse in the considered HPC.

Data-Specific Tunability: The MIs for the Data-Specific Tunability show a significant amount of
interactions between almost all hyperparameters and operations for the neural architecture. Across
the three datasets, the operations typically show the largest main effects and also the strongest in-

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

MI:

lcbench

B-S

L-R
M-D

M-U

M

N-L
W-D

rbv2 ranger

M-N

M-P

N-I

N-T

R-U

S-F

S

N-R

2-FSII: B-S

L-R
M-D

M-U

M

N-L
W-D

M-N

M-P

N-I

N-T

R-U

S-F

S

N-R

Figure 10: MIs and second order FSII interactions for the Data-Specific Tunability HPI Game for
Dataset 3945 of lcbench (left) and Dataset 4135 of rbv2 ranger (right).
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Figure 11: MIs and second order FSII interactions for the Tunability for lcbench (left) and
rbv2 ranger (right).
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Figure 12: MIs for the two HPI games Ablation and Data-Specific Tunability on JAHS-Bench-201.

teractions among each other, which would also be expected, but also, the hyperparameters for the
learning algorithm have a high degree of interactions, suggesting a need for joint optimization.

C.6 RESULTS FOR PD1

In Figure 13, we present Moebius interactions between the hyperparameters of the PD1 benchmark
with Ablation games on the right and Data-Specific Tunability on the right side of the figure. In the
plots, we can observe that throughout the different scenarios and games, the initial learning rate has
the largest impact on the overall performance of the learning procedure. In Data-Specific Tunability
also obj momentum appears as an important hyperparameter that has a strong negative interaction
with the initial learning rate, indicating redundancy, i.e., optimizing one of the two hyperparameters
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likely suffices to obtain the best possible performance. This is also reflected on the right-hand side
of the figure, where we see that most of the performance improvement over the reference HPC
stems from the initial learning rate. obj momentum, in turn, is assigned almost no importance as the
hyperparameter optimization process apparently focused on focusing on the initial learning rate.

D ADDITIONAL RESULTS FOR THE DOWNSTREAM TASK

In this section, we present the results of additional experiments using hyperparameter importance
for informing downstream hyperparameter optimization tasks. To this end, we again select the top-
2 hyperparameters according to main effects. In Figure 14 to 17 the results are visualized with
the help of interaction graphs, violin plots showing Moebius coefficients for different orders of
interaction, and the anytime performance of the hyperparameter optimizers for a budget of 100
candidate evaluations. Typically, the interaction graphs are normalized per dataset to account for
effects on different scales. Here, in contrast, we normalize all interaction graphs jointly with the
overall minimum and maximum to make the interaction graphs comparable to each other.
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Figure 13: MIs for four different scenarios of the PD1 benchmark, considering hyperparameter
optimization for Resnets and transformers.
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(a) Dataset ID: 34539
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(b) Dataset ID: 126025
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(c) Dataset ID: 126026

Figure 14: Downstream task HPO on lcbench benchmark for different datasets. On the left, inter-
action graphs are shown, visualizing the main effects of and interactions between hyperparameters.
In the center column, the absolute amount of interactions is plotted for every order of interactions.
On the right, anytime performance plots are shown for RS (+HPI), and SMAC (+HPI).

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B-S

L-R
M-D

M-U

M

N-L
W-D

100 101 102

Number of Configurations

85

90

95

100

Va
lid

at
io

n 
Ac

cu
ra

cy

HPO Performance

SMAC + HPI
RS + HPI

SMAC
RS

(d) Dataset ID: 126029
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(a) Dataset ID: 146212
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(b) Dataset ID: 167104
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(c) Dataset ID: 167149

Figure 15: Downstream task HPO on lcbench benchmark for different datasets. On the left, inter-
action graphs are shown, visualizing the main effects of and interactions between hyperparameters.
In the center column, the absolute amount of interactions is plotted for every order of interactions.
On the right, anytime performance plots are shown for RS (+HPI), and SMAC (+HPI).
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(d) Dataset ID: 167152
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(a) Dataset ID: 167161
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(b) Dataset ID: 167168

Figure 16: Downstream task HPO on lcbench benchmark for different datasets. On the left, inter-
action graphs are shown, visualizing the main effects of and interactions between hyperparameters.
In the center column, the absolute amount of interactions is plotted for every order of interactions.
On the right, anytime performance plots are shown for RS (+HPI), and SMAC (+HPI).
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(a) Dataset ID: cifar100 wideresnet 2048
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(b) Dataset ID: imagenet resnet 512
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(c) translatewmt xformer 64
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(d) Dataset ID: lm1b transformer 2048

Figure 17: Downstream task HPO on pd1 benchmark for the four different scenarios. On the left,
interaction graphs are shown, visualizing the main effects of and interactions between hyperpa-
rameters. In the center column, the absolute amount of interactions is plotted for every order of
interactions. On the right, anytime performance plots are shown for RS (+HPI), and SMAC (+HPI).
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