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Abstract
A classic result in the theory of extensive-form
games asserts that the set of strategies available
to any perfect-recall player is strategically equiva-
lent to a low-dimensional convex polytope, called
the sequence-form polytope. Online convex opti-
mization tools operating on this polytope are the
current state-of-the-art for computing several no-
tions of equilibria in games, and have been crucial
in landmark applications of computational game
theory. However, when optimizing over the joint
strategy space of a team of players, one cannot
use the sequence form to obtain a strategically-
equivalent convex description of the strategy set of
the team. In this paper, we provide new complex-
ity results on the computation of optimal strate-
gies for teams, and propose a new representa-
tion, coined team belief DAG (TB-DAG), that de-
scribes team strategies as a convex set. The TB-
DAG enjoys state-of-the-art parameterized com-
plexity bounds, while at the same time enjoying
the advantages of efficient regret minimization
techniques. We show that TB-DAG can be expo-
nentially smaller and can be computed exponen-
tially faster than all other known representations,
and that the converse is never true. Experimen-
tally, we show that the TB-DAG, when paired
with learning techniques, yields state of the art on
a wide variety of benchmark team games.

1. Introduction
In recent years, much research has been concerned with
learning strong strategies for players in extensive-form (i.e.,
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tree-form) games. In those settings, a classic result by Ro-
manovskii (1962) and Koller et al. (1994) asserts that the
set of strategies set of each player admits a strategically
equivalent and low-dimensional convex description—called
the sequence form—provided that the agent has perfect re-
call, that is, that the agent never forgets about past actions
or observations. As a result, learning strong strategies for
any perfect-recall agent amounts to a convex optimization
problem with dimension polynomial in the game tree size,
which is typically solved by online learning. Such a tem-
plate has been used extensively both in the literature and in
the applications of computational game theory.

The study of the computational aspects of strategic decision
making in adversarial team games is relatively newer. If the
team members can privately communicate (for example, a
team of poker players colluding at a table secretly revealing
to each other their private hands), the team as a whole can be
thought of as a single perfect-recall player, and the sequence
form can be used. However, when the team members can-
not privately communicate during play, the asymmetry in
the observations of the different team members makes the
sequence form inapplicable. This begs the question of how
teams should optimize their strategy jointly when communi-
cation is impossible. Such settings are prevalent in the real
world, and examples include recreational games like bridge
(in which two teams compete adversarially), collusion at
a poker table with no means of communicating privately,
military situations with restricted communications, various
swindling settings, and many other real-world situations.

In general, a polynomially-sized convex description of the
strategy set is unlikely to exist even for a team of two mem-
bers, as computing optimal strategies in such team games is
known to be NP-hard (Koller & Megiddo, 1992), but the ex-
act complexity has, to our knowledge, not been established.
In this paper, we sharply characterize the complexity of com-
puting optimal team strategies under two common notions,
the correlated team max-min equilibrium (TMECor) and
team max-min equilibrium (TME): they are complete for the
complexity classes ∆P

2 and ΣP
2 respectively. Here, the result

most similar to ours is from Koller & Megiddo (1992), who
showed that computing a max-min pure strategy for a team
is also ΣP

2 -complete.
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Until recently, the best techniques for solving adversar-
ial team games in absence of communication were based
on column generation (Farina et al., 2018; 2021a; Zhang
et al., 2021; 2022). Those techniques work well in some
small and medium-sized games in practice, but generally
have no or weak theoretical guarantees. More recently,
Zhang & Sandholm (2022) developed an algorithm for
solving adversarial team games based on a novel tree de-
composition of each player’s strategy space, and use it to
devise a linear program. They show parameterized com-
plexity bounds that scale with the amount of uncommon
information among team members. Simultaneously, Carmi-
nati et al. (2022) developed an algorithm for converting
the game into a strategically equivalent (but exponentially-
larger) two-player game with perfect recall, inspired by
prior research in the multi-agent reinforcement learning
community (e.g., Nayyar et al., 2013; Sokota et al., 2021).

Our main contribution is a representation that has several
advantages over the aforementioned papers (Zhang & Sand-
holm, 2022; Carminati et al., 2022). It can be exponentially
smaller and can take exponentially less time to construct
than either constructions—and the reverse is never true. It
is also conceptually cleaner, especially compared to Zhang
& Sandholm (2022): we explicitly give a construction of
the team’s strategy space, without needing to appeal to the
onerous machinery of tree decompositions; furthermore, our
more refined construction saves the need for a non-trivial
preprocessing step, namely inflation. An in-depth compari-
son between ours and those prior approaches is in Section 5.

In experiments, we demonstrate that the state-of-the-art
variants of counterfactual regret minimization—namely
DCFR (Brown & Sandholm, 2019), LCFR (Brown & Sand-
holm, 2019), or PCFR+ (Farina et al., 2021b)—applied on
top of our TB-DAG outperforms the prior state of the art on
almost every game tested by a large margin.

2. Preliminaries
A player in an extensive-form game is faced with a decision
problem over a treeH (rooted at some node ∅ ∈ H). Each
node h ∈ H is either active (where the player selects an
action a—that is, an outgoing edge from h) or inactive
(where someone else, possibly adversarially, selects the
action to take). To model imperfect information regarding
the actions at inactive nodes, the active nodes are partitioned
into information sets, or infosets for short. We denote by I
the collection of infosets for the player. Nodes in the same
infoset are indistinguishable by the player: the player’s
action must be the same at all nodes in a given infoset.

Notation. Ah denotes the set of actions available (i.e., edges
emanating from) at node h. We make the standard assump-
tion that the player always knows her legal action set. That

is, the action set Ah is the same for every node h in any
given infoset I , and we denote this common action set AI .
The child of node h reached by taking action a be denoted
ha. Leaves ofH are called terminal nodes, and we denote
by Z the set of all terminal nodes. We use ⪯ to denote the
precedence order induced by the tree: if h, h′ ∈ S are two
nodes, h ⪯ h′ means that there is a directed path from h
to h′. If S is a set of nodes, then h ⪯ S means h ⪯ h′ for
some h′ ∈ S, and S ⪯ h is defined analogously.

An example of an extensive-form game tree, and some re-
lated decision problems, can be found in Figure 1. The game
tree represents a simple signalling game, where ▲ privately
observes the decision of nature and can send a single bit of
information to ▼. The infosets for ▼ indicate that ▼ knows
what action ▲ played, but not what action nature played.

A decision problem is timeable if all paths from the root to
a given infoset have the same length. Intuitively, this means
that time is common knowledge. In this paper, we will only
consider timeable decision problems.

Realization-Form Representation of Strategies. A pure
strategy is a selection of one action at each infoset. The
realization form of a pure strategy is the vector x ∈ {0, 1}Z
for which x[z] = 1 if and only if the strategy prescribes all
the actions of that player on the path ∅→ z.

A mixed strategy is a distribution over pure strategies. The
realization form x ∈ [0, 1]Z of a mixed strategy is defined as
the corresponding convex combination of realization forms
of the pure strategies. We will call the set of all realization-
form mixed strategies of a player their strategy space, and
denote it X . By definition, X is a compact, convex set.

A behavioral strategy is a mixed strategy in which actions
are independently chosen at each infoset. That is, a behav-
ioral strategy is specified by a collection of distributions
over actions, one per infoset. We will denote by X̃ the set
of realization-form behavioral strategies. The sets X and X̃
do not coincide in general: indeed, X̃ is often non-convex.

Describing X efficiently (e.g., via a polynomially-sized
system of linear constraints) is critical to many modern algo-
rithms for equilibrium finding in games. For example, such
a description enables algorithms based on linear program-
ming (Koller et al., 1994) or regret minimization (Zinkevich
et al., 2007), which have been at the heart of many break-
throughs in computational game theory.

Perfect Information. We say that a decision problem is
perfect-information if every information set is a singleton.
In that case, it is possible to describe the set X efficiently
via the following “probability-flow” constraints. In the be-
low, x ∈ [0, 1]H, and X is the projection of the resulting
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(a) – Extensive-form game tree (b) – DP for ▲ (c) – DP for ▼ (d) – DP for {▲,▼}

Figure 1. An example extensive-form game tree with two players (a), and its decision problems for ▲ (b), ▼ (c), and the team consisting
of both ▲ and ▼ (d). Dotted lines connect nodes in the same infoset. Note that ▲ has perfect information, ▼ has perfect recall, and the
team has neither. In the decision problems, black nodes are active and white inactive.

polytope onto [0, 1]Z .

x[∅] = 1

x[h] =
∑
a∈Ah

x[ha] ∀h active

x[h] = x[ha] ∀h inactive, a ∈ Ah

x[h] ≥ 0 ∀h ∈ H.

(1)

Perfect Recall. The sequence σ(h) of a node h is the or-
dered list of infosets and actions traversed by the player
along the path ∅ → h. The decision problem has per-
fect recall if, at every infoset I , every node in I has the
same sequence. Intuitively, this means that the player never
forgets any information. Perfect-recall decision problems
are particularly well-behaved. First, mixed and behavioral
strategies coincide under perfect recall—that is, X = X̃ .
Second, the set of realization-form strategies X ⊆ [0, 1]Z

can be expressed efficiently by converting it to an equiv-
alent perfect-information decision problem known as the
sequence form, as we now make formal.

Definition 2.1. Two decision problems are strategically
equivalent if they have the same set of terminal nodes Z ,
and the same strategy space X .

Theorem 2.2 (Romanovskii, 1962; Koller et al., 1994). Ev-
ery perfect-recall decision problem with n nodes is strategi-
cally equivalent to a perfect-information decision problem,
called its sequence-form decision problem, with at most 2n
nodes.

Combined with (1), Theorem 2.2 immediately implies the
existence of an efficient description of the strategy space in
any perfect-recall imperfect-information decision problem.

Imperfect Recall and Teams. Decision problems with-
out perfect recall can be thought of from two different,
equivalent perspectives. The first, as the name suggests,
is the perspective of a single player who sometimes forgets
information. The second is that the single player in fact
represents a collection of perfect-recall players that form a
team. In this perspective, the player is a team controller, and
(realization-form) mixed strategies are called correlation

plans, because the players’ individual strategies need not
be independent from each other. The two perspectives are
equivalent: clearly, a decision problem for a team can be
viewed as an imperfect-recall decision problem by merely
ignoring which infosets belong to which team members;
conversely, an imperfect-recall decision problem can be
viewed as a decision problem for a team of players, where
each player i controls a subset Ii ⊆ I of infosets obey-
ing perfect recall. Which perspective is taken is, for our
purposes, rather arbitrary; we have chosen to use the per-
spective of team games because we believe it to be better
motivated in practice. We will therefore call a decision prob-
lem a team decision problem if it may lack perfect recall. In
the general case, no poly(|Z|)-sized description of the strat-
egy space X of a team decision problem can exist unless
P = NP (Koller & Megiddo, 1992). This is despite the fact
that X is a convex subset of [0, 1]Z .

Adversarial Games. A zero-sum or adversarial game
can be described as a tuple (H, I,J , u) where (H, I) and
(H,J ) are decision problems for two players with a shared
underlying tree H, and u ∈ RZ is a utility function for
the first player. If the decision problems are team decision
problems, the game is an adversarial team game. The so-
lution concept of interest in adversarial games can be often
obtained by solving an appropriate bilinear saddle-point
problem, that is, a problem of the form

max
x∈X

min
y∈Y

x⊤Uy (2)

where X and Y are the mixed strategy spaces of the two
players or teams, and U is an appropriate payoff matrix.

Definition 2.3. A team maxmin equilibrium with correla-
tion, or TMECor for short, is a solution to (2) when X and
Y are team decision problems.

TMECor is not to be confused with team maxmin equilib-
rium, which is a related but distinct solution concept that
restricts the teams to their behavioral strategies:

Definition 2.4. A team maxmin equilibrium, or TME (von
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Stengel & Koller, 1997), is a solution to the problem

max
x̃∈X̃

min
ỹ∈Ỹ

x̃⊤Uỹ (3)

Since X̃ and Ỹ are nonconvex (when the players/teams have
imperfect recall) in general, swapping the min and max
in (3) may change the value of the problem—that is, the
minimax theorem fails—something that cannot happen with
TMECor. In fact, the computation of TME is substantially
different from the computation of TMECor and, as we show
in Section 3, it is strictly harder.

Online Convex Optimization. Online convex optimiza-
tion (Zinkevich, 2003) is a framework for describing re-
peated interactions of a player with an arbitrary environ-
ment. At each timestep, the player selects a strategy xt

from a convex, compact set X , and observes a (possibly
adversarially chosen) utility vector ut ∈ Rn. The goal of
a regret-minimizing player (a.k.a. a regret minimizer) is to
ensure that the regret after T timesteps,

RT := max
x∈X

T∑
t=1

〈
ut,x− xt

〉
,

grow sublinearly in T , no matter the sequence ut chosen
by the environment. In this paper, we will be concerned
with regret minimizers defined over the set X ⊆ [0, 1]Z of
realization-form strategies in various decision problems.

Regret minimization is well understood in perfect-
information decision problems: counterfactual regret min-
imization (CFR) (Zinkevich et al., 2007) is a well-known
framework for constructing regret minimizers over X when
the decision problem has perfect information.

Theorem 2.5 (Zinkevich et al. 2007). For any perfect-
information decision problem, there exists a regret mini-
mizer over the set of realization-form mixed strategies that
achieves regret O(|Z|

√
T ).

This gives a framework for building regret minimizers
in many decision problems: construct a strategically-
equivalent perfect-information decision problem, and apply
CFR. In particular, it immediately implies that regret min-
imization is possible for perfect-recall decision problems
via the sequence form (Theorem 2.2).

There is a strong connection between regret minimization
and equilibrium computation. Specifically, if the two players
play according to regret minimizers on X and Y achieving
regrets R1 and R2, respectively, after T timesteps, then a
folklore result states that the average strategies x̄, ȳ of the
two players up until time T satisfy

max
x∈X

x⊤Uȳ −min
y∈Y

x̄⊤Uy ≤ R1 +R2

T
(4)

implying convergence in the limit to the set of solutions
to (4). Equilibrium finding via regret minimization is a
key module in game solving, and algorithms that use regret
minimization are the practical state of the art in adversarial
games (Brown & Sandholm, 2019; Farina et al., 2021b).

3. New Complexity Results
In this section, we provide new complexity results regard-
ing finding TMECor and TME values, showing that the
computation of the two solution concepts is fundamentally
different, especially in team-vs-team games.

Specifically, we show that for team-vs-team games, comput-
ing the TMECor value and computing the TME value are
complete for complexity classes ∆P

2 and ΣP
2 , respectively.

These are two complexity classes that form a part of the
polynomial hierarchy. Informally, ∆P

2 is the set of decision
problems that can be solved in polynomial time given a SAT
oracle, and ΣP

2 is the set of decision problems that can be
solved in nondeterministic polynomial time given a SAT
oracle. Thus, P ⊆ NP ⊆ ∆P

2 ⊆ ΣP
2 , and all these inclu-

sions are conjectured to be strict. For an overview of the
polynomial hierarchy, we refer the reader to Chapter 5 of
Arora & Barak (2009).

Interestingly, this distinction does not apply in team-vs-
(perfect-recall)-player settings, where both decision prob-
lems are NP-complete.

Team vs Player Team vs Team

TMECor
NP-complete

(Koller &
Megiddo, 1992)

∆P
2 -complete

(This paper,
Theorems C.7 and C.8)

TME
NP-complete

(Koller &
Megiddo, 1992)

ΣP
2 -complete

(This paper,
Theorems C.4 and C.5)

The results above show that, unless the polynomial hierarchy
collapses, solving team-vs-player games, for either concept,
is strictly easier than solving team-vs-team games, and in
the team-vs-team setting, TMECor is strictly easier than
TME. We believe that this discrepancy suggests that the
study of TMECor should use separate techniques from that
of TME, especially in the team-vs-team setting.

4. Public Observations and the TB-DAG
Our main technical contribution is a generalization of Theo-
rem 2.2 to team decision problems. Specifically, we develop
an algorithm that, like the sequence form, converts a team
decision problem into a strategically-equivalent perfect-
information decision problem, and use it to develop regret
minimization algorithms for solving team games.

Let T be a team decision problem. We will first define the
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Figure 2. (a) Team decision problem from Figure 1 (nodes named for ease of reference), its connectivity graph (b), and its TB-DAG (c).
We remark that per our definition of the construction procedure of TB-DAG, the root is always a decision node; when the root of the
original problem is an observation node, this creates a trivial layer in the decision tree. (Of course, it does not affect the complexity
guarantees, and in fact the layer might be removed as a postprocessing step—we do this in the experiments; see also Appendix F, point 2).

connectivity graph G, which encodes what information is
not public to the team.

Definition 4.1. The connectivity graph G is the graph whose
nodes are the nodesH of T , and whose edges connect any
two nodes h, h′ in the same layer of the tree such that there
is an infoset I for the team with h ⪯ I and h′ ⪯ I .

The team belief DAG (TB-DAG) of a team decision problem
T = (H, I) is a perfect-information decision problem D
whose active nodes are labeled with specific subsets of H
that intuitively enumerate the possible joint states of all
team members, and whose actions intuitively represent all
legal combinations of actions that team members can take
or observe. Formally, we define D recursively as follows:

1. The root of D is the active node whose label is the
singleton set {∅}, containing only the root node of T .

2. The actions available at an active node s ofD are defined
as follows. Let B ⊆ H be the label of the active node. If
B is a singleton containing a terminal node z ∈ Z , then
s is also terminal. Otherwise, let I1, . . . , Im be all the
infosets in T with nonempty intersection with B, and let
J ⊆ H be the set of inactive nodes of T in set B. The
action set at s is the set of prescriptions a ∈×i∈[m]

AIi ,
consisting of one action ai in each infoset Ii. The child
reached from s by selecting the prescription a is an
inactive node whose label, which we denote Ba, is the
set of children of B consistent with a. In symbols:
Ba := {hai : h ∈ Ii ∩B} ∪ {hã : h ∈ J, ã ∈ Ah}.

3. The actions available at an inactive node s of D are
defined as follows. Let O ⊆ H be the label of s,
and P1, . . . , Pm ⊆ O be the connected components
of the subgraph G[O] of G induced by O. We will call

P1, . . . , Pm the public observations at O. The children
of O are the active nodes with labels Pi for i ∈ [m].

The above is a full description of the algorithm for building
the TB-DAG; for reference, we include pseudocode for the
algorithm in the appendix (Algorithm 1). For an example,
see the TB-DAG of Figure 2(a) given in Figure 2(c). The
TB-DAG is a decision problem defined on a DAG, not a
tree. Despite this, it is valid to discuss decision problems
on DAGs in an analogous way to the decision problem on a
tree. We formalize DAG decision problems in Appendix A.

The active nodes of D are called beliefs. There can be at
most one belief and one inactive node with any given label;
therefore, we will refer to them by their labels, e.g., the
belief B or the inactive node O.

The terminal nodes of D are singleton beliefs, each consist-
ing of one terminal node of T . We will therefore identify
these two sets of terminal nodes with each other in the natu-
ral way, and use Z to refer to the common set of terminal
nodes of both decision problems. The following result is
central in our discussion.1

Theorem 4.2. D and T are strategically equivalent.

By constructing the TB-DAG, we have traded the presence
of infosets and imperfect recall in T for a (possibly) expo-
nentially larger representation (the TB-DAG). However, as
we show, the perfect-information nature of the TB-DAG en-
ables use of online convex optimization methods to compute
team equilibria, akin to what the sequence form affords in
perfect-recall games. Formally, we have the following.

Theorem 4.3. A DAG version of the CFR regret minimizer
can be defined and run efficiently in the size of the TB-DAG.

1All proofs are in Appendix D unless otherwise stated.
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Specifically, if the TB-DAG has N nodes and E edges, then
the regret of CFR after T iterations is O(N

√
T ), and each

iteration takes time O(E).

We give full pseudocode for the DAG version of CFR in
Algorithm 1.

Algorithm 1: Constructing the TB-DAG.

1 function MAKEACTIVENODE(B ⊆ H)
2 if D has active node with belief B then
3 return it
4 s← new active node in D
5 if B = {z} for z ∈ Z then
6 make s a terminal node
7 return s

8 {I1, . . . , Im} ← {I ∋ h : h ∈ B, I ∈ I}
9 J ← {h ∈ B : h is inactive}

10 for each prescription a ∈×i∈[m]
AIi do

11 Ba← {hai : h ∈ Ii ∩B} ∪ {hã : h ∈
J, ã ∈ Ah}

12 add edge s→ MAKEINACTIVENODE(Ba)

13 return s

14 function MAKEINACTIVENODE(O ⊆ H)
15 s← new inactive node in D
16 for each connected component P of G[O] do
17 add edge s→ MAKEACTIVENODE(P )
18 return s

19 function MAKETBDAG(team decision problem T )
20 MAKEACTIVENODE({∅})

In Appendix B we give guarantees for the size of the TB-
DAG as a function of the amount of uncommon team infor-
mation, adapting a technique by Zhang & Sandholm (2022).
Those bounds immediately imply fixed-parameter bounds
for CFR, matching those of Zhang & Sandholm (2022). Fi-
nally, in the next sections we contrast our TB-DAG with
prior attempts at obtaining a convex description of the strat-
egy set of a team decision problem, showing that the TB-
DAG can be exponentially smaller than all prior descriptions,
and that the converse never holds.

5. Closely-Related Research
This paper combines, and at the same time extends, two
recent advances in the understanding of the computational
aspects surrounding team games. Carminati et al. (2022)
observed that regret minimization methods can be applied
to compute TMECor via a team-belief-based representation.
Zhang & Sandholm (2022) were the first to point out that it is
possible to compute team equilibria with complexity clearly
parameterized in the amount of uncommon information
in each team. In this section, we delve deeper into the

connections between our paper and those two prior results,
and discuss how our approach improves over both.

Both of those prior papers use public states instead of public
observations: that is, in our formalism, their representations
would assume only that the team observes a public state
P ∋ h at every inactive node, not a public observation. We
discuss this distinction in depth in Section 6.

Zhang & Sandholm (2022) use a formulation based on
tree decompositions to construct a constraint system that
describes the polytope of correlated strategies of a team.
The constraint system essentially describes what we have
called the public belief TB-DAG. Beyond the public
state/observation distinction discussed above, Zhang &
Sandholm (2022) do not discuss the hierarchical, DAG
structure of the constraint system we study in this paper,
and which we exploited to obtain a CFR-based algorithm
for TMECor. In other words, the observation that one can
combine online optimization methods while retaining the
best parametrized complexity results of tree-decomposition-
based methods is novel in this paper.

Instead of focusing on the team members’ individual deci-
sion problems, Carminati et al. (2022) use beliefs to define a
converted game, which is a two-player zero-sum game that
is strategically equivalent to the original adversarial team
game. Critically, their game is an extensive-form game tree,
and therefore the number of nodes in this tree exceeds the
number of paths through our team belief DAG. Therefore,
their converted game can be exponentially larger than our
team belief DAG (Appendix E of our paper shows an ex-
plicit construction in which this is the case). They represent
the strategy space of the teams via a safe imperfect-recall
abstraction of the converted two-player (not two team) zero-
sum game (Lanctot et al., 2012), resulting in a representation
of each team’s strategy space that is, again, essentially the
public state TB-DAG. However, since their algorithms oper-
ate on the converted game, their time complexity depends
on the size of the converted game. Therefore, the algorithms
in our paper can be exponentially faster even if the strategy
space representation has the same size.

6. Public States and Observations
Both prior approaches use the concept of public states to
construct a strategy space representation. Instead, we pro-
pose and use public observations. In this section, we discuss
this difference in depth. Intuitively, the difference is that
public observations are localized to a particular node in the
TB-DAG: if a fact is public to the team conditional on the
part of the team strategy that has been played to reach this
point, then it is a public observation. On the other hand, pub-
lic states only encode information that is unconditionally
public. We now formally define public states.
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A

C D E
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F G H

Figure 3. A team decision problem showing that public-state-based
approaches do not subsume inflation.

Definition 6.1. A public state is a connected component of
the connectivity graph G.

We envision an alternative construction of the TB-DAG in
which, instead of picking a connected component of G[O]
(i.e., a public observation), the environment picks a public
state P intersecting with O and transitions to P ∩ O. We
will call this version the public state TB-DAG.

Our first result is that the TB-DAG can never be too much
larger than the public state TB-DAG:

Proposition 6.2. Let N and N ′ be the number of nodes in
the TB-DAG and public state TB-DAG respectively. Then
N ≤ 2pN ′, where p is the largest size (in number of nodes)
of any belief in the public state TB-DAG.

Thus, using public observations is never much worse than
using public states—and, in practice, it is almost always
better. In the remainder of the section, we will discuss
why we strictly prefer using public observations, from both
conceptual and theoretical perspectives.

First, using public observations removes the need to inflate
the information partition of the team before the new repre-
sentation can be constructed. Complete inflation (Kaneko
& Kline, 1995), which we simply call inflation for short,
is an algorithm that splits an infoset I into two infosets
I = I1 ⊔ I2 if no pure strategy of the team can simulta-
neously play to a node in I1 and a node in I2, and repeats
this process until no more such splits are possible. This pre-
serves strategic equivalence. However, inflation can lead to
the break-up of public states, in turn resulting in a reduction
in the public state TB-DAG size.

Indeed, consider the team decision problem in Figure 3.
Due to the information sets marked in the last black layer
of the game tree, the connectivity graph contains a path
C—D—E—...—H. Therefore, {C, D, ..., H} form a public
state. Also, it is possible for the combinations CEG and
DFH to be reached (if the player at the root plays left or
right, respectively). Therefore, CEG and DFH are beliefs
in the public-state TB-DAG. In the public-observation TB-
DAG, consider for example what happens if the left action
is played at the root, so that C, E, and G are all reached.

Note that there are no edges connecting C, E, and G—the
path connecting C to E in the connectivity graph passes
through D, which is not reached; therefore, C, E, and G are
three different public observations and hence three different
beliefs, resulting in an exponentially-smaller TB-DAG. In-
flation would remove the nontrivial information sets in the
second black layer, which would ultimately have the same
effect in this example as using public observations.

The number 3 is not special in this construction; it can be
increased arbitrarily by simply increasing the number of
children of A and B. Therefore, in particular, one can con-
struct a family of games in which the public state TB-DAG
(without inflation) has exponential size, while our (public
observation) TB-DAG has polynomial size. This is why
Zhang & Sandholm (2022) and Carminati et al. (2022) in-
sist that inflation be done as a preprocessing step before
beginning their constructions. The use of public observa-
tions, however, removes the need for this step:

Proposition 6.3. Given any team decision problem T , the
TB-DAG of T is the same no matter whether inflation is
applied to T before the construction.

Although inflation can be performed efficiently, not requir-
ing it as a preprocessing step simplifies the code and makes
for a conceptually cleaner construction. However, the ben-
efits of public observations go beyond making inflation
unnecessary. In fact, even with inflation, there are still cases
in which using public observations instead represents an
exponential improvement.

Proposition 6.4. There exists a family of team decision
problems in which the TB-DAG has polynomial size, but the
public state TB-DAG has exponential size, even if inflation
is applied as a preprocessing step before building the latter.

The construction that proves Proposition 6.4 is similar to
Figure 3 but more involved, and is available in Appendix D.

7. Experiments
We experimentally investigate solving adversarial team
games using the team belief DAG. Since all games we ex-
periment on have public actions, we always preprocess with
branching factor reduction.

Algorithms Tested. We implemented the following state-
of-the-art variants of CFR on the TB-DAG: Predictive
CFR+ (PCFR+) (Farina et al., 2021b), Discounted CFR
(DCFR) (Brown & Sandholm, 2019), and Linear CFR
(LCFR) (Brown & Sandholm, 2019). PCFR+ and DCFR
use quadratic averaging of iterates, while LCFR uses linear
averaging. PCFR+ is a predictive regret minimization algo-
rithm. At each time t, we use the previous utility vector for
each time as prediction for the next. All implementations
are single-threaded.
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Game {▼} Leaves Team ▲ P. S.
k

Team ▲’s DAG Team ▼’s DAG CCCG22 This paper (CFR) ZS22 (LP) ZFCS22 (CG)
Value Size Vertices Edges Vertices Edges Game Size ε = 10−3 ε = 10−4 ‡ ε = 10−3 ε = 10−4

3K3 {3} 78 0.000 6 6 487 918 37 36 4,108 0.00s 0.00s 0.01s 0.00s 0.00s
3K4 {3} 312 −0.042 12 8 2,100 6,711 49 48 66,349 0.00s 0.00s 0.02s 0.01s 0.02s
3K6 {3} 1,560 −0.024 30 12 54,255 336,944 73 72 7,002,763 0.03s 0.12s 1.22s 0.14s 0.14s
3K8 {3} 4,368 −0.019 56 16 1,783,926 15,564,765 97 96 488,157,721 4.73s 32.36s 3m 23s 0.23s 0.32s
3K12 {3} 17,160 −0.014 132 24 — — — — — oom oom oom 0.84s 1.39s
4K5 {3,4} 3,960 −0.037 20 10 26,566 124,875 4,621 15,415 — 0.03s 0.05s 0.79s — —
4K5 {4} 3,960 −0.030 60 15 998,471 4,658,070 121 120 202,660,366 1.59s 6.34s 3m 25s — —
3L133 {3} 6,477 0.215 9 6 23,983 49,005 685 684 1,691,158 0.02s 0.05s 0.50s 24.89s 45.96s
3L143 {3} 20,856 0.107 16 8 139,964 417,027 1,201 1,200 61,983,093 0.10s 0.48s 7.58s 2m 4s 6m 3s
3L151 {3} 10,020 −0.019 20 10 150,707 496,196 1,501 1,500 — 0.18s 0.50s 9.30s 3.06s 13.98s
3L153 {3} 51,215 0.024 25 10 855,397 3,486,091 1,861 1,860 1,973,610,366 1.24s 4.94s 4m 24s 7m 23s 28m 13s
3L223 {3} 8,762 0.516 4 4 32,750 45,913 2,437 2,436 538,111 0.03s 0.08s 0.27s 13.48s 18.53s
3L523 {3} 775,148 0.953 4 4 2,911,352 4,183,685 220,705 220,704 222,239,487 11.26s 24.86s 2m 26s > 6h > 6h
4L133 {3,4} 80,322 0.147 9 6 79,351 158,058 75,157 155,475 277,714,570 0.21s 0.92s 7.30s — —
3D3 {3} 13,797 0.284 9 6 91,858 215,967 1,522 1,521 — 0.11s 0.40s 2.10s 11.05s 11.05s
3D4 {3} 262,080 0.284 16 8 4,043,377 13,749,608 16,381 16,380 — 22.54s 1m 28s 8m 29s 3h 19m 3h 19m
4D3 {2,4} 331,695 0.200 9 6 514,120 1,217,310 486,442 1,155,144 — 2.31s 4.70s 1m 32s — —
6D2 {2,4,6} 262,080 0.072 8 6 254,758 457,795 218,570 389,995 — 1.72s 4.26s 16.55s — —
6D2 {4,6} 262,080 0.265 16 8 991,861 2,029,546 46,236 60,717 — 3.80s 11.09s 1m 35s — —
6D2 {6} 262,080 0.333 32 10 3,158,364 7,395,885 5,551 5,550 — 30.20s 1m 11s 8m 53s — —

Table 1. Runtime of our CFR-based algorithm (column ‘This paper’) using the team belief DAG form, compared to the prior state-of-
the-art algorithms based on linear programming and column generation by Zhang & Sandholm (2022) (‘ZS22’) and Zhang et al. (2022)
(‘ZFCS22’) respectively, on several standard parametric benchmark games. See Section 7 for a description of the games, and for a
detailed description of the meaning of each column. Missing or unknown values are denoted with ‘—’. For each row, the background
color of each runtime column is set proportionally to the ratio with the best runtime for the row, according to the logarithmic color scale

1 10 ≥ 100
. ‡: Solved to Gurobi’s default precision (LP barrier solver does not produce feasible iterates until convergence).

We compare solving an adversarial team games via the team
belief DAG against two prior state-of-the-art algorithms:
1) The tree-decomposition-based LP solver proposed by
Zhang & Sandholm (2022) (henceforth “ZS22”), which has
already been discussed at length in this paper. We used
the original implementation of the authors, which internally
uses the barrier algorithm implemented by the commercial
solver Gurobi. As recommended by the authors, we turned
Gurobi’s presolver off to avoid numerical instability and
increase speed. We allowed Gurobi to use up to four threads.
2) The single-oracle algorithm of Farina et al. (2021a)
(henceforth “ZFCS22”). ZFCS22 iteratively refines the
strategy of each team by solving best-response problems
using a tight integer program derived from the theory of
extensive-form correlation (von Stengel & Forges, 2008; Fa-
rina et al., 2021b). We used the original code by the authors,
which was implemented for three-player games in which
a team of two players faces an opponent. Like ZS22 and
our LP-based solver, ZFCS22 uses the commercial solver
Gurobi to solve linear and integer linear programs. We
allowed Gurobi to use up to four threads.

All experiments were run on a 64-core AMD EPYC 7282
processor. Each algorithm was allocated a maximum of 4
threads, 60GBs of RAM, and a time limit of 6 hours.

Game Instances. We ran experiments on the following

standard, parametric benchmark games: 1) nKr: n-player
Kuhn poker with r ranks (Kuhn, 1950). 2) nLbrs: n-player
Leduc poker with a b-bet maximum in each betting round, r
ranks, and s suits (Southey et al., 2005). 3) nDd: n-player
Liar’s Dice with one d-sided die for each player (Lisỳ
et al., 2015). These are the same games used by Zhang
& Sandholm (2022) and Farina et al. (2021a) in their ex-
perimental evaluations. We refer the reader to the latter
paper for detailed descriptions of the games. The size of
each game, measured in terms of number of terminal states
(leaves), is reported in the second column of Table 1.

Discussion of Experimental Results. Experimental results
are summarized in Table 1. Column ‘Game‘ indicates the
game, and the set of players on Team ▼. Column ‘P. S.
Size’ reports the largest effective size p of any public state.
Column ‘k’ reports the value of k for which both teams are
k-private. Columns ‘Team ▲’s DAG’ and ‘Team ▼’s DAG’
report the total number of vertices and edges in the team
belief DAG for teams ▲ and ▼ respectively. Column ‘Team
▲ value’ reports the utility that team ▲ can expect to gain
at equilibrium. Column ‘CCCG22’ indicates the number of
nodes in the converted game of Carminati et al. (2022).

Column ‘This paper’ reports the time to convergence of the
best CFR variant to an average team exploitability of less
than ε times the range of payoffs of the game. Convergence
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plots for all CFR variants on all games can be found in the
appendix. Column ‘ZS22’ reports the time it took ZS22 to
compute an equilibrium strategy for team ▲, to Gurobi’s
default precision. Finally, column ‘ZFCS22’ reports the
time it took ZFCS22 to compute an equilibrium strategy for
team ▲ with exploitability of less than ε times the range of
payoffs of the game. The missing values in that column are
due to the fact that the implementation of ZFCS22 by the
original authors only supported 3-player games.

Overall, our algorithms based on the team belief DAG are
generally 2-3 orders of magnitude faster than ZS22. In
games with low parameter k, our algorithms are also sev-
eral orders of magnitude faster than ZFCS22, validating
the conclusion of Zhang & Sandholm (2022). In games
with high parameters (e.g., 3K8 and 3K12), on the other
hand, ZFCS22 is significantly more scalable, as it avoids
the exponential dependence in the parameters at the cost of
requiring the solution to integer programs, for which run-
time guarantees are hard to give. Compared to the converted
game of Carminati et al. (2022), our team belief DAG is
much smaller, often by orders of magnitude, which allows
our algorithms to similarly be faster by orders of magnitude.
Since Carminati et al. (2022) do not give detailed timing
results for their implementation for most of the games they
tested, we have not included a runtime comparison. How-
ever, they reported a runtime of approximately 3 minutes to
achieve an exploitability of 0.021 in 3L133, whereas our al-
gorithm took 0.02 seconds to achieve a lower exploitability
of 0.001—a difference of about four orders of magnitude.
We believe that some of the difference may be due to their
implementation being unoptimized compared to ours, but
certainly some of it is not: their converted game is 34x larger
than the total size of our DAGs on this game, so we would
expect our algorithm to perform approximately that much
better with an optimized implementation.

8. Conclusion and Future Research
We gave a new representation, the TB-DAG, for the decision
problem faced by a team of correlating players, which we
used to develop new algorithms for solving adversarial team
games. Our method enjoys the parameterized complexity
bounds of Zhang & Sandholm (2022), and the extensibility
and interpretability of Carminati et al. (2022), and ours can
be exponentially more efficient in time and space than either
and never much less efficient. Experiments showed that
modern variants of CFR applied with our TB-DAG give
state-of-the-art performance across multiple domains.

This work opens many possible directions for future re-
search, including the following:

1. devising a technique to allow the use of Monte Carlo
CFR (MCCFR) (Lanctot et al., 2009) in DAG-form

decision problems, and in particular in the TB-DAG;

2. finding theoretically sound techniques for mitigating
the exponential blowup in parameters w and k;

3. finding a “best-of-both-worlds” algorithm that com-
bines the strengths of our approach and the single-
oracle-based methods;

4. motivated by the complexity results, investigating
whether a practically-fast algorithm exists that uses
an integer programming oracle as a subroutine

5. relaxing the assumption of timeability;

6. devising a construction that additionally generalizes the
triangle-free interaction (Farina & Sandholm, 2020), a
known polynomially-solvable subclass of the problem;
and

7. applying other standard game-theoretic techniques in
two-player zero-sum games, such as abstraction, dy-
namic pruning, subgame solving, etc., to team games.
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A. Decision Problems on DAGs
In this section, we discuss how techniques that apply to decision problems, such as CFR can be used on a decision problem
that is a DAG, which may be of independent interest beyond team games.

Definition A.1. A DAG decision problem D = (H, E) is a perfect-information decision problem defined on a DAG, with
node setH and edge set E , instead of a tree.

We will insist on the following technical conditions:

1. inactive nodes always have exactly one parent;

2. Nodes along every path alternate between active nodes and inactive nodes; and

3. If p1 and p2 are two paths from the root ending at the same node, then the last node common to both p1 and p2 is active.

The first two conditions are for expository simplicity and are without loss of generality; the final one is necessary so that
the realization form, which we are about to define, makes sense. It is easy to check that our TB-DAG satisfies all three
definitions.

The realization form x ∈ {0, 1}Z of a pure strategy is the vector for which x[z] = 1 if and only if the player plays all the
actions on some ∅→ z path, where condition (3) ensures that there exists at most one such path. Mixed strategies and their
realization forms are then defined analogously to the case of trees.

DAG Decision Problems via Scaled Extensions. We now show that the set of sequence-form strategies in a DAG can be
expressed in terms of scaled extensions (Farina et al., 2019).

Definition A.2. Given two nonempty, compact, convex sets X ,Y and a linear map f : X → R≥0, the scaled extension of
X with Y via f , is defined as

X
f
◁ Y = {(x, f(x)y) : x ∈ X ,y ∈ Y}.

We now construct the set of sequence-form strategies in a given DAG. We begin with the set X ← {1}. Then, for each

active node h, we perform the operation X ← X
x7→x[h]

◁ ∆Ah where

x[h] :=
∑

(h′,h)∈E

x[h′].

The restriction of the resulting set X on the set of terminal states Z is exactly the set of sequence-form mixed strategies.
Thus, we have shown:

Theorem A.3. The set of sequence-form strategies on a DAG can be expressed by scaled extension operations with simplices
via functions h : X → [0, 1].

Regret Minimization in DAGs. Any set that can be built from scaled extensions and simplexes admits a regret minimizer
that can be constructed starting from any simplex regret minimizer (Farina et al., 2019). This construction extends
CFR (Zinkevich et al., 2007), and all its modern variants, to such sets. In particular, applying Proposition 1 of Farina
et al. (2019) on top of Theorem A.3 gives us:

Corollary A.4. CFR can be run on a DAG decision problem D = (H, E), with regret bounded by O(|H|
√
T ) after T

timesteps and iteration time O(|E|).

Pseudocode for running CFR on an arbitrary DAG can be found in Algorithm 2.

B. The Size of a TB-DAG
Since all our theoretical results depend on the size of the TB-DAG, it is critical to analyze that size. The hardness result of
Koller & Megiddo (1992) means that our size bounds will not be polynomial. However, we can still bound the size relative
to natural parameters related to the complexity of the game.
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Algorithm 2: CFR-based algorithm for DAGs

1 function D.NEXTSTRATEGY()
[▷ x′ will store the unscaled probabilities]

2 x,x′ ← 1∈RH ;
3 for each active node s in D (top down) do
4 if s is not the root then
5 x[s]←

∑
s′ parent of s x[s

′];
6 S ←

∑
a∈As

R[sa]+;
7 for each action a ∈ As do
8 if S = 0 then
9 x′[sa] = 1/|As|

10 else
11 x′[sa]← R[sa]+/S
12 x[sa]← x′[sa]x[s];
13 return x;

14 function D.OBSERVEUTILITY(u ∈ RZ )
15 for each s ∈ H \ Z do
16 u[s]← 0
17 for each active node s in D (bottom up) do
18 u[s]← u[s] +

∑
a′∈As

u[sa′]x′[sa′];
19 for each action s ∈ As do
20 R[sa]← R[sa] + u[sa]− u[s];
21 for each parent s′ of s do
22 u[s′]← u[s′] + u[s];

The correspondence between our construction and that of Zhang & Sandholm (2022) allows us to achieve similar theoretical
guarantees to that paper. Here, we explicitly give such results in our language. Let T be a team decision problem with node
set S and public state set P . Define the effective size of a set of nodes H ⊆ H is the number of distinct team sequences
among the nodes in H . In all the below theorem statements, O∗ hides factors polynomial in the size of the game.

Theorem B.1. The TB-DAG of T has at most O∗(∑w
i=1

(
p
i

)
bw

)
edges, where p is the largest effective size of any public

state, w is the largest effective size of any belief, and b is the branching factor of the team decision problem.

Proof. It suffices to bound the number of inactive nodes, since each inactive node has at most one incoming edge and at
most as many outgoing edges as there are public states. A belief B inside a public state P ∈ P , can be uniquely identified
by specifying its sequence set σ(B) and a node h within it. We have |σ(B)| ≤ w by definition. Hence, there are at most∑w

i=1

(
p
i

)
|H| beliefs, and at most bw prescriptions a at B. Multiplying these gives the desired result.

The parameter w is similar to the namesake parameter in Zhang & Sandholm (2022), except that it might be smaller due to
our public observations inducing smaller beliefs. As discussed in that paper, w depends only on the amount of uncommon
external information, that is, observations (as opposed to decisions by the team) that are not common knowledge to the team.

In a certain family of team decision problems including those with team-public actions, we can do better.

Definition B.2. An n-player team decision problem is k-private if, in every public state, there are at most k distinct player
sequences. That is, |{σi(h) : i ∈ [n], h ∈ P}| ≤ k for every P ∈ P .

This is distinct from the effective size p, which is the total number of team sequences in P . In particular, in games with
team-public actions (such as poker), where each player has at most t private types, we have k ≤ nt.

In a k-private team decision problem, it is possible that w = (k/n)n, so Theorem B.1 gives a bound of O∗((2bp)(k/n)n),
which is bad. However, we can improve upon this through a more careful analysis.

Theorem B.3. The TB-DAG of a k-private team decision problem has at most O∗((b+ 1)k
)

edges.
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Proof. Consider a public state P . Each of the k player sequences corresponds to at most one infoset in P . Thus, to specify
that player sequence’s contribution to a belief-prescription pair Ba, it suffices to specify one of: either the player does not
play to the sequence, or the player chooses one of her b possible actions at the sequence. Thus, there are at most (b+ 1)k

possible belief-prescription pairs Ba.

It is possible to “mix and match” the analyses of Theorems B.1 and B.3 when some public states have low w and some have
low t. To save the cumbersome notation, we will not do that here.

B.1. Branching Factor Reduction

Since the branching factor b appears as the base of an exponential in Theorems B.1 and B.3, it is natural to ask whether it
can reduced without affecting the other parameters. This turns out to be true assuming team-public actions, which we now
formalize.

Definition B.4. A team decision problem has team-public actions if, for all public states P containing active nodes, for all
edge labels (i.e., actions or observations) a ∈

⋃
h∈P Ah, the set {ha : h ∈ P, a ∈ Ah} is a union of public states.

Intuitively, this means that any action taken by a team member becomes common knowledge for the team. The definition
also allows for information other than the action to become common knowledge, and for some public states to give the team
members private information.

Theorem B.5. Given a team decision problem T with public actions, there exists another realization-equivalent team
decision problem T ′ such that the branching factor of T ′ is at most 2 at each active node, the parameters p, n, k, w in T ′

are the same as in T , and the size of the game has increased by at most a polynomial amount.

Proof. Consider a public state P of T . If P contains no active nodes, we leave it alone. Otherwise, let B be an arbitrary
binary tree with leaf set A :=

⋃
h∈P Ah. The internal nodes of B will be labelled with partial actions ã, which we can think

of as partial bitstrings of indices of actions in A. For each node h ∈ P , we replace h with a modified copy of B wherein
subtrees containing no nodes in Ah have been pruned. If h and h′ are in the same infoset in P , then for every partial action
(i.e., nonterminal node) ã ∈ B we connect hã and h′ã in an infoset. This creates a new public tree T ′, whose parameters we
must now analyze.

For each node h of T , the construction creates the internal nodes of a public subtree in T ′ with leaves corresponding to the
children of h, and log

∣∣⋃
h∈P Ah

∣∣ layers, thus introducing at most |Ah| log
∣∣⋃

h∈P Ah

∣∣ nodes, so the total number of nodes
introduced is poly(|H|) nodes.

The number of players n remains the same.

For each new public state P ∗ constructed in this process, we have P ∗ ⊆ P ã := {hã : h ∈ P, ã ⪯ a ∈ Ah} for some ã,
where ⪯ denotes precedence in B (the subset may not be the whole set, because it is possible for the partial action ã to
have already revealed further common knowledge that was not available at P ). Thus, every team or player sequence σ(h)
in P identifies at most one unique team or player sequence in P ∗—namely σ(hã), if present—and thus p and k have not
increased.

Finally, for each belief B ⊆ P , the largest belief in P ã induced by B is Bã, which has no larger effective size. Hence, w
has not increased. This completes the proof.

Corollary B.6. In a team decision problem T with public actions, it is possible to create a team DAG for T with
O∗((2p+ 2)w) or O∗(3k) edges.

C. Complexity Results
For both problems, the goal is to solve the following decision problem: given a two-team zero-sum game Γ, threshold value
v, and error ε > 0 (where all the numbers are rational), determine whether the (TMECor or TME) value of the game is ≥ v,
or < v − ε. The allowance of an exponentially-small error is to circumvent issues of bit complexity that arise due to the fact
that exact TMEs may not have rational coefficients (Koller & Megiddo, 1992).

Theorem C.1 (Koller & Megiddo, 1992; Chu & Halpern, 2001). Team-vs-player TMECor and TME are NP-hard.
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Proof. Given a 3-CNF formula ϕ with m clauses and n variables, construct the following game with two players on the
maximizing team and no opponent. Nature picks a clause in ϕ uniformly at random. For each variable xi in the clause,
player i selects an assignment to variable xi (without knowing the clause). The team wins if the formula is satisfied.

Clearly, the best possible team value is exactly the maximum fraction of satisfied clauses in any assignment x. This
completes the proof, as by the PCP theorem (e.g., Håstad, 2001), approximating the maximum fraction of satisfied clauses
in a SAT problem is NP-hard.

Since the negation of team-vs-team TMECor is itself and team-vs-player is a special case of team-vs-team, it follows
immediately that:

Corollary C.2. Team-vs-team TMECor is NP-hard and co-NP-hard.

Theorem C.3. Team-vs-player TMECor is in NP, and team-vs-team TMECor is in ΣP
2 ∩ΠP

2 .

Proof. Given a team-vs-player game Γ with n nodes, suppose that its value is ≥ v. Therefore, there is a distribution D over
pure strategies of the team such that no opponent response has value < v. By Caratheodory, D is realization equivalent to
some distributionD′ supported on at most n pure strategies x1, . . . , xn. Such a distribution can be represented in polynomial
bit complexity, and verified in polynomial time (using an IP solver oracle, in the case of team-vs-team).

Theorem C.4. Team-vs-player TME is in NP, and team-vs-team TME is in ΣP
2 .

Proof. Let x be a TME, and x be its correlation plan. Let δ > 0, and consider rounding each entry of x by at most an
additive δ so that the resulting (pure) strategy is rational, creating a new strategy with correlation plan x′. Thus, for any given
terminal node s, the resulting reach probability x′[s] is perturbed by at most an additive O(Nδ) where N is the number
of nodes in the game. Thus, ∥x′ − x∥1 ≤ O(N2δ). Thus, for any realization-form strategy y for the opponent, we have
|⟨x′ − x,Ay⟩| ≤ ∥x′ − x∥1∥Ay∥∞ ≤ O(N2δ), so x′ is O(N2δ)-close to the optimal solution. Taking δ < O(ε/N2)
thus concludes the proof.

Theorem C.5. Team-vs-team TME is ΣP
2 -hard.

Proof. We reduce from ∀∃3-SAT, which is known to be ΠP
2 -complete (Schaefer & Umans, 2002). The ∀∃3-SAT problem is

to, given a 3-CNF formula ϕ(x, y), determine whether ∀x ∃y ϕ(x, y).

Given a 3-CNF formula ϕ with m clauses, n1 variables in x, and n2 variables in y, construct the following game between
the max-team with 2n1 players and the min-team with n2 players. Nature chooses a clause ϕ. For each variable yi in the
clause, Player i on the min-team is asked for an assignment to yi. For each variable xi in the clause, Players i and n1 + i on
the max-team are asked for an assignment to xi.

If, for any xi, the two players on the max-team differ in their choice of assignment, the max-team gets value −M where M
is a large value. Otherwise, the max-team gets value 1 if and only if the clause is unsatisfied, else 0.

If ϕ is not ∀∃-satisfiable, let x be such that ∀y ¬ϕ(x, y), and suppose ▲ plays according to x. This forces value at least 1/m:
no matter what pure strategy ▼ plays, there will always exist some clause in ϕ that is unsatisfied, so ▲ gets value at least
1/m.

The converse will follow, intuitively, from the following observation. For large enough M , since ▲ cannot correlate, ▲’s
strategy needs to be nearly pure to avoid losing too much utility. Therefore, ▲ must basically fix an assignment x. But this
cannot achieve large value, because ▼ can simply choose the assignment y that satisfies ϕ, which makes the value of the
game small. We now work through this formally.

Lemma C.6. Let xi be a variable. Let p be the probability that Player i plays her less-likely action in a TME. Then
p ≤ m/M .

Proof. Variable xi appears in at least one clause. If that clause is picked by chance (probability 1/m), then the penalty
incurred by the two players is (M/m)(p(1 − q) + q(1 − p)) ≥ (M/m)(p + q(1/2 − p)) ≥ (M/m)p. The result now
follows by observing that any strategy incurring penalty greater than 1 is dominated by a pure strategy.
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For M sufficiently large, then, a TME for ▲ can be rounded to a pure strategy by perturbing each player’s probability by at
most m/M . Suppose ϕ is ∀∃-satisfiable. Consider an arbitrary TME for ▲, and let x be its rounded version—that is, for
every variable i, ▲ plays from x with probability at least 1−m/M . Let y be such that ϕ(x, y) is true. The only way for
▲ to get value 1 is for at least one player to play the wrong assignment to at least some variable. By a union bound, this
happens with probability at most mn/M . Thus, taking M = 2m2n, ▼ ensures that the value of the game is at most 1/(2m)
by playing from y. This completes the proof.

Theorem C.7. Team-vs-team TMECor is in ∆P
2 .

Proof. Let X ⊂ Rm,Y ⊂ Rn be the space of realization-form pure strategies of both players, and A be the payoff matrix.
Then our goal is to decide whether the polytope

X ∗ :=

{
x ∈ Rm :

1 x ∈ coX ,
2 y⊤Ax ≤ v ∀y ∈ Y

}
is empty. We will show how to separate over X ∗ with a mixed-integer convex programming oracle, which suffices to
complete the proof because such a separating oracle can be used to run the ellipsoid algorithm.

Given a candidate solution x, we check both constrants. If 2 is violated for some y∗ ∈ Y , then Ay∗ is a separating
direction; such y∗ can be found by an integer programming oracle. If 1 is violated, then a separating direction can be
found because (strong) separation and optimization are equivalent for well-described polytopes (Grotschel et al., 1993), and
optimization over coX is an integer program.

Theorem C.8. Team-vs-team TMECor is ∆P
2 -hard.

Proof. We reduce from Last-SAT, which is known to be ∆P
2 -complete (Krentel, 1988). The Last-SAT problem is to, given a

3-CNF formula ϕ(x), decide whether the lexicographically last satisfying assignment of ϕ has a 1 in the least-significant bit.

Given a 3-CNF formula ϕ with m clauses and n variables, we construct the following zero-sum game with n players on
each team. First, nature chooses some t ∈ [m+ n] uniformly.

If t ≤ m, then let xi, xj , xk be the three variables in clause t. Players i, j, k on both teams are asked to assign either true or
false to each of the three variables (but are not told anything else). If the max-team satisfies the clause, they score 2m points.
If the min-team satisfies the clause, they score 1 point.

If t > m, let i = t −m. Both players are asked for their assignments to variable i. If Max assigned 1, then Max scores
2−i points. If i = n and Max assigned 1 then Max scores an additional 2m points. If Min assigned 1, then Min scores 2−i

points.

We claim that Max has a mixed strategy scoring≥ m(2m+1), to within error ε = 2−n, if and only if the Last-SAT instance
is true. If ϕ is not satisfiable, then Max has no way to score 2m2 points. So, assume ϕ is satisfiable. Let r(x) ∈ [0, 1) be the
value of assignment x when it is expressed as a binary number; i.e., r(x) = 0.x1x2 . . . , xn. Let x∗ be the last satisfying
assignment.

If the Last-SAT instance is true, suppose that Max plays according to x∗. Then she scores (m + 1)(2m) = m(2m + 2)
points from t ≤ m, and r(x∗) points from t > m. But Min has no way to score more than m+ r(x∗) points: if she does not
play a satisfying assignment then she cannot score more than m; if she does, she cannot play one larger than r(x∗). Thus,
Max scores at least m(2m+ 2)−m = m(2m+ 1) points.

Conversely, if the Last-SAT instance is false, suppose that Min plays according to x∗. Min scores m+ r(x∗) points, so Max
must score m(2m+ 2) + r(x∗). But this is impossible: to score m(2m+ 2), Max must play a satisfying assignment x with
xn = 1. But then r(x) < r(x∗) by definition of Last-SAT. This completes the proof.

D. Other Omitted Proofs
D.1. Theorem 4.2

We will show the claim for pure strategies, which is enough since mixed and correlated strategies come from taking convex
combinations of pure strategies.
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Figure 4. A pictoral representation of the proof of Proposition 6.3. Since h and h′ can be played simultaneously but u and u′ cannot,
there must be an infoset like the red dotted one connecting a child of h to a child of h′. Therefore, inflation cannot break existing edges
between played nodes.

(⇒) Consider a pure correlation plan x. Consider the pure strategy in the TB-DAG in which the team chooses the
prescription in each belief consistent with x, inducing a TB-DAG-form strategy x′.

Let z be a terminal node in T , and suppose x[z] = 1. We need to demonstrate a path through D leading to {z}
such that x plays every action prescribed along that path. Consider the path through D defined by following the
prescriptions of x, and always selecting the public observation that leads to z. By construction of the TB-DAG, this
path must end exactly at z, so x′[{z}] = 1.

Conversely, suppose that such a path exists. Then, every infoset I ⪯ z must have appeared in exactly one belief node
B along the path, and, at that belief node, in order for {z} to still have been reachable, the team must have chosen the
action at I leading to z. Thus, the team plays all actions on the path from the root to z, so x[z] = 1.

(⇐) Consider a pure strategy x′ in D, and let x′ be its realization form. Define the pure strategy x in T as follows. In
each levelHℓ of T , the strategy x′ induces a collection of disjoint beliefs Bℓ(x′). For each such belief B ∈ Bℓ(x′),
let a be the prescription in x′ at Bk. At every infoset I intersecting Bk, define x to play aI at I . This strategy is
well-defined because no two beliefs B,B′ ∈ Bℓ(x′) can intersect the same infoset (otherwise they would not be
distinct beliefs!), and if we have not defined an action at an infoset, that means x′ plays to no node in that infoset. We
claim that x defined in this way is realization-equivalent to x′.

Suppose x′[{z}] = 1; that is, there is a path through D ending at {z} at which x′ plays every prescription. Then, at
each belief B along this path, if B contains an infoset I ⪯ z, then I ∩B ̸= ∅. Thus, the team plays all actions on the
root→ z path, so x[z] = 1.

Conversely, suppose x[z] = 1. Then we construct a path through a DAG that follows the prescriptions of x′ and
always selects the public observation leading to z. By induction, such a path must always contain an ancestor of z; in
particular, once it reaches the layer of z, it must have reached {z}.

D.2. Proposition 6.2

Let B be any belief in the public state TB-DAG. In the (non-public-state) TB-DAG, B splits into disjoint beliefs B1, . . . , Bm.
Let A1, . . . , Am be the sizes of the prescription spaces at B1, . . . , Bm respectively. Then B has A1A2 . . . Am children, so
B induces 1 +A1A2 . . . Am nodes in the public state TB-DAG. On the other hand, the beliefs B1, . . . , Bm in the TB-DAG
will have A1, . . . , Am children respectively, accounting for a total of m+ A1 + · · ·+ Am ≤ 2mA1 . . . Am nodes. Now
observing simply that m ≤ p completes the proof.

D.3. Proposition 6.3

Let I = I1 ⊔ I2 be an inflatable infoset. The only place where inflation can have an effect is the construction of the public
observations Pi. Hence, let O be inactive, and h, h′ ∈ O. We need to show that inflating cannot remove an (h, h′) edge
in G[O]. Suppose it did. Then (WLOG) let us say that h ⪯ u ∈ I1 and h′ ⪯ u′ ∈ I2. But O is a valid node in D, so it is
possible for the team to play to both nodes h and h′ simultaneously. But then there must be an infoset connecting some node
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c = 1 c = 2 c = 3 c = 4 c = 5 c = 6

t = 3

t = 2

t = 1

t = 4

t = 5

t = 6

Figure 5. The counterexample for Proposition 6.4, for C = 6. All solid-colored nodes (▲, ▼, and ■) are active (we split them into three
different symbols and types so that we can discuss each one separately).

on the h→ u path to some node on the h′ → u′ path—otherwise, it would be possible for the team to play to both u and u′

simultaneously, which violates inflatability of I . This completes the proof.

D.4. Proposition 6.4

The counterexample in Figure 3 would work if it were not for the fact that all of ▼’s infosets inflate. Therefore, for our proof
of this result, we use a similar gadget at the bottom of the game, but ensure that ▼’s infosets do not inflate.

Consider the following family of team decision problems, parameterized by a integer C > 1. We will not distinguish
the players on the team except for ▲ and ▼. First, nature picks an integer c ∈ {1, . . . , C}. Over the next C − 2 layers
t = 2, 3, . . . , C − 1, if c ∈ {t− 1, t+ 1}, a player who cannot distinguish the two cases chooses an action a ∈ {−1,+1}.
If c = t+ a, then the game continues; otherwise, the game ends.

Finally, player ▲, who has perfect information about c chooses either c or c+ 1. Then, player ▼, observing ▲’s action but
not the value c, picks one of two options.

The resulting team decision problem is visualized in Figure 5. We observe the following things about it.

1. No infoset inflates: all nontrivial infosets have size 2, and it is easy to check that for all such infosets it is always
possible to play to both nodes in them. This is in stark contrast to the earlier counterexample, in which inflation was
enough to achieve a small representation.

2. Every ▲-node in layer C is in the same public state, and it is always possible to play to at least C/2 of them.
Therefore, even if one runs inflation beforehand (which does nothing), if using public-state-based beliefs, there will be
a belief with 2C/2 prescriptions. Thus, the public-state-based team belief DAG, and also the construction of Zhang &
Sandholm (2022), will have size at least 2C/2.

We now claim that any given (nonterminal) node takes part in O(1) public observation-based beliefs, and such beliefs never
touch more than O(1) different infosets. This would complete the proof, because this would mean that the team belief DAG
has size at most O(C2). Clearly, the claim is true at the final layer, because each infoset contains only at most two nodes.

Fix a layer t ∈ {2, . . . , C}, and number the nonterminal nodes in it according to the nature choice c. The induced
connectivity subgraph G[Ht], whereHt is the set of nodes at level t, has edges linking j to j + 1 for all j, as well as edges
between j and j + 2 whenever j ≥ t− 1. Further, every node j > t must be played to, because there are no player nodes on
the path from root to such nodes.
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Let B be a belief containing node i ≤ t. (If no such i exists, then since we play to every node j > t, the belief B must be
exactly {t+ 1, . . . , C} which touches exactly one infoset) We claim that specifying which one of i− 1 or i+ 1 is in B is
enough to fully determine B.

By construction, since we play to i, it is impossible to also play to node i− 2, because they were linked by an infoset at time
i− 1 < t. Thus, any node j < i− 2 cannot be part of the same belief, because there is no infoset linking any such node to
any node j′ ≥ i− 1 except the one connecting a descendant of i− 1 to a descendant of i− 2. We now consider cases.

1. If i ≤ t− 2, then the same argument applies to node i+ 2, so there can be at most O(1) nodes in the belief.

2. If i ≥ t− 1, then i is connected to every node j > t, and all are played. Thus, it is only a question of whether the node
t itself is played, but in any case, once again there can be at most O(1) nodes in the belief.

Thus, the total number of beliefs is at most O(C2), and each has O(1) branching factor, so the team belief DAG is also of
size O(C2). This is exponentially smaller than the public-belief-based team belief DAG or the construction of Zhang &
Sandholm (2022).

A practical experiment backs up these results. When C = 16, using public observations generates a DAG with around 1000
edges; using public states generates a DAG with 30 million edges.

Remark. Propositions 6.3 and 6.4 are mostly of theoretical interest. Their impact on practical game instances is negligible.
Instead, the practical improvements in Appendix F have significantly more effect in practice.

E. Example in which the TB-DAG is exponentially better than the expanded game tree
In this section, we exhibit another explicit counterexample in which our TB-DAG will be exponentially smaller than the
converted game of Carminati et al. (2022). Since that converted game effectively has (at least) one node corresponding to
every path from the root in our TB-DAG, it suffices to exhibit a game in which our TB-DAG has exponentially many paths.
Consider the tree from Figure 1, duplicated several times by repeatedly attaching a copy of itself at node H. Let the tree with
n such duplicates be denoted Tn (so that T1 is the original game). In T1, there are two paths to the active node H. Following
the pattern, in Tn, there will be 2n paths to the last copy of node H. Thus, the TB-DAG of Tn will have O(n) nodes but
2O(n) paths, which is what we wanted to show.

F. TB-DAG Postprocessing Techniques
In practice, the construction of Algorithm 1 is suboptimal in several ways. These do not affect the theoretical statements as
the primary focus of those is isolating the dependency on our parameters of interest, but they can significantly affect the
practical performance, so we apply them in the experiments.

1. If two terminal nodes z, z′ correspond to the same team sequence, we remove one of them (say, z′) from our DAG
because it is redundant, and alias x[{z′}] to x[{z}]. If this removal causes a section of the DAG to no longer contain
any terminal children, we remove that section as well.

2. If an active node has at most one parent and at most one child, we remove it and its child, and connect its parent directly
to its grandchildren.

In particular, if the team has perfect recall, the above two optimizations are sufficient for the team belief DAG to coincide
with the sequence form.

Appendix G empirically investigates the benefit of postprocessing the TB-DAG.

G. Additional Experimental Details
G.1. TB-DAG Construction Time

Table 2 shows the construction times for the TB-DAG, the linear programming approach of Zhang & Sandholm (2022)
(ZS22), and von Stengel-Forges polytope for the column-generation technique of Zhang et al. (2022) on the left part, as well
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as a version of our main results table with these construction times added and also including LP running on the TB-DAG on
the right part. It is worth mentioning that our implementation of the von Stengel-Forges polytope construction is highly
optimized, whereas the TB-DAG and ZS22 constructions are not. In particular, the latter two are not parallelized, and
parallelization would easily save a factor of approximately the number of threads.

The results show that our algorithm, even when considering the unoptimized TB-DAG construction time, is significantly
faster than ZS22 and column generation. In other words, the conclusions reported in the paper do not significantly change.

Game {▼} TB-DAG ZS22 LP CG VSF CFR (Ours) LP (Ours) LP (ZS22) CG
constr. time constr. time constr. time ϵ = 10−3 ϵ = 10−3

3K3 {3} 0.00s 0.00s 0.00s 0.00s 0.00s 0.01s 0.00s
3K4 {3} 0.01s 0.01s 0.00s 0.01s 0.02s 0.03s 0.01s
3K6 {3} 1.03s 1.03s 0.00s 1.05s 1.53s 2.24s 0.14s
3K8 {3} 1m 6s 1m 25s 0.01s 1m 11s 1m 47s 4m 23s 0.24s
4K5 {3,4} 0.55s 0.30s — 0.58s 1.22s 1.09s —
4K5 {4} 13.71s 27.62s — 15.30s 1m 36s 3m 49s —
3L133 {3} 0.49s 0.13s 0.02s 0.51s 0.73s 0.63s 24.91s
3L143 {3} 1.39s 0.99s 0.05s 1.49s 5.73s 8.54s 2m 5s
3L151 {3} 1.54s 1.14s 0.04s 1.73s 6.63s 10.46s 3.10s
3L153 {3} 16.03s 11.52s 0.12s 17.27s 2m 40s 4m 30s 7m 23s
3L223 {3} 0.13s 0.19s 0.05s 0.17s 0.26s 0.46s 13.54s
3L523 {3} 18.02s 30.47s 6.83s 29.28s 51.00s 2m 43s 5h 35m
4L133 {3,4} 2.03s 1.10s — 2.24s 7.53s 8.27s —
3D3 {3} 0.80s 0.64s 0.09s 0.91s 1.57s 2.75s 11.13s
3D4 {3} 1m 3s 43.39s 1.57s 1m 25s 4m 36s 9m 1s 3h 19m
4D3 {2,4} 27.05s 10.86s — 29.36s 45.52s 1m 41s —
6D2 {2,4,6} 10.74s 6.46s — 12.45s 14.33s 22.99s —
6D2 {4,6} 16.55s 12.10s — 20.36s 30.92s 1m 46s —
6D2 {6} 31.00s 37.05s — 1m 1s 54.89s 9m 0s —

Table 2. (Left) Comparison of construction times for our TB-DAG, the LP of Zhang & Sandholm (2022), and the von Stengel-Forges
polytope-based column-generation (CG) technique of (Zhang et al., 2022). (Right) Cumulative running times including construction times
for the different algorithms benchmarked in the paper.

G.2. Effect of Postprocessing Step on Final TB-DAG Size

Table 3 shows the TB-DAG size (number of edges) with and without the practical tricks. The results show that postprocessing
significantly reduces the size of the TB-DAG, sometimes by a factor of 10 or more. Therefore, this ablation confirms that
postprocessing of the DAG is an important step in the algorithm.
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Game {▼} Team ▲’s DAG size (num. edges) Team ▼’s DAG size (num. edges)
Postprocessing No postprocessing Ratio Postprocessing No postprocessing Ratio

3K3 {3} 918 976 1.06 36 164 4.56
3K4 {3} 6,711 7,143 1.06 48 378 7.88
3K6 {3} 336,944 346,906 1.03 72 1,406 19.53
3K8 {3} 15,564,765 15,725,273 1.01 96 3,634 37.85
4K5 {3,4} 124,875 136,403 1.09 15,415 22,323 1.45
4K5 {4} 4,658,070 4,743,796 1.02 120 4,432 36.93
3L133 {3} 49,005 54,101 1.10 684 7,106 10.39
3L143 {3} 417,027 444,299 1.07 1,200 19,914 16.59
3L151 {3} 496,196 512,546 1.03 1,500 12,292 8.19
3L153 {3} 3,486,091 3,609,851 1.04 1,860 45,682 24.56
3L223 {3} 45,913 76,157 1.66 2,436 31,734 13.03
3L523 {3} 4,183,685 6,505,495 1.55 220,704 2,521,646 11.43
4L133 {3,4} 158,058 251,742 1.59 155,475 251,895 1.62
3D3 {3} 215,967 435,475 2.02 1,521 76,189 50.09
3D4 {3} 13,749,608 32,130,090 2.34 16,380 1,646,112 100.50
4D3 {2,4} 1,217,310 6,731,374 5.53 1,155,144 6,523,226 5.65
6D2 {2,4,6} 457,795 3,194,399 6.98 389,995 2,981,963 7.65
6D2 {4,6} 2,029,546 6,385,216 3.15 60,717 2,014,433 33.18
6D2 {6} 7,395,885 13,947,463 1.89 5,550 1,941,206 349.77

Table 3. Comparison of TB-DAG size (number of edges) with and without TB-DAG postprocessing (Appendix F).

G.3. Effect of Postprocessing Step on Solver Performance

Table 4 compares the performance of our DAG-form generalization of CFR applied on the DAG produced with and without
postprocessing. Again, we see a benefit associated with postprocessing.

Game {▼} Approximation ϵ = 10−3 Approximation ϵ = 10−4

CFR (postproc) CFR (no postproc.) Ratio CFR (postproc) CFR (no postproc.) Ratio
3K3 {3} 0.00s 0.00s 1.00 0.00s 0.00s 1.00
3K4 {3} 0.00s 0.00s 1.00 0.00s 0.00s 1.00
3K6 {3} 0.03s 0.03s 1.19 0.12s 0.15s 1.20
3K8 {3} 4.73s 4.44s 0.94 32.36s 27.45s 0.85
4K5 {3,4} 0.03s 0.03s 1.23 0.05s 0.06s 1.21
4K5 {4} 1.59s 1.96s 1.23 6.34s 7.98s 1.26
3L133 {3} 0.02s 0.02s 1.18 0.05s 0.06s 1.22
3L143 {3} 0.10s 0.17s 1.67 0.48s 0.75s 1.57
3L151 {3} 0.18s 0.21s 1.16 0.50s 0.63s 1.25
3L153 {3} 1.24s 1.42s 1.14 4.94s 9.34s 1.89
3L223 {3} 0.03s 0.09s 2.74 0.08s 0.21s 2.73
3L523 {3} 11.26s 28.18s 2.50 24.86s 58.75s 2.36
4L133 {3,4} 0.21s 0.42s 2.01 0.92s 1.79s 1.95
3D3 {3} 0.11s 0.66s 5.85 0.40s 3.45s 8.57
3D4 {3} 22.54s 51.90s 2.30 1m 28s 3m 22s 2.28
4D3 {2,4} 2.31s 14.12s 6.11 4.70s 28.23s 6.00
6D2 {2,4,6} 1.72s 14.23s 8.30 4.26s 36.39s 8.54
6D2 {4,6} 3.80s 19.99s 5.26 11.09s 1m 1s 5.52
6D2 {6} 30.20s 1m 15s 2.52 1m 11s 3m 1s 2.53

Table 4. Comparison between runtime of our solver with and without TB-DAG postpcessing (Appendix F).
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G.4. Postprocessing Time

Table 5 shows the time required for the postprocessing. The postprocessing time is negligible in practice.

Game {▼} Postprocessing
time

3K3 {3} 0.00s
3K4 {3} 0.00s
3K6 {3} 0.00s
3K8 {3} 0.14s
4K5 {3,4} 0.00s
4K5 {4} 0.09s

Game {▼} Postprocessing
time

3L133 {3} 0.00s
3L143 {3} 0.01s
3L151 {3} 0.01s
3L153 {3} 0.10s
3L223 {3} 0.00s
3L523 {3} 1.13s

Game {▼} Postprocessing
time

4L133 {3,4} 0.02s
3D3 {3} 0.03s
3D4 {3} 1.58s
4D3 {2,4} 0.56s
6D2 {2,4,6} 0.40s
6D2 {4,6} 0.68s
6D2 {6} 1.45s

Table 5. Time spent in the TB-DAG postprocessing operations (Appendix F).

G.5. Comparison between Our and Zhang and Sandholm’s LP Size

Table 6 shows a size comparison (in terms of number of nonzeros) between the TB-DAG and ZS22’s tree decomposition, in
terms of the number of nonzero entries in the resulting LP. The results show that the TB-DAG-based LP is between 2-5
times smaller (in terms of number of nonzeros in the program).

Game {▼} LP (Ours) ZS22 LP Ratiosize (nnz) size (nnz)
3K3 {3} 1034 2386 2.31
3K4 {3} 7073 18 810 2.66
3K6 {3} 338 578 1 150 838 3.40
3K8 {3} 15 569 231 62 574 570 4.02
4K5 {3,4} 144 252 426 297 2.96
4K5 {4} 4 662 152 21 106 658 4.53
3L133 {3} 56 072 126 075 2.25
3L143 {3} 438 893 1 195 766 2.72
3L151 {3} 507 718 1 425 583 2.81

Game {▼} LP (Ours) ZS22 LP Ratiosize (nnz) size (nnz)
3L153 {3} 3 538 848 11 234 573 3.17
3L223 {3} 56 913 112 305 1.97
3L523 {3} 5 161 867 10 507 398 2.04
4L133 {3,4} 388 517 785 032 2.02
3D3 {3} 226 526 500 665 2.21
3D4 {3} 13 940 182 32 755 273 2.35
4D3 {2,4} 2 699 717 5 275 196 1.95
6D2 {2,4,6} 1 076 626 1 859 959 1.73
6D2 {4,6} 2 235 785 4 749 031 2.12
6D2 {6} 7 501 203 17 635 669 2.35

Table 6. size comparison (in terms of number of nonzeros) between the TB-DAG and ZS22’s tree decomposition, in terms of the number
of nonzero entries in the resulting LP

H. CFR Convergence Plots
In this section, we show the performance of each of the three CFR variants that we implemented to perform no-regret
learning on the team belief DAG. As a rule of thumb, the predictive algorithm PCFR+ (Farina et al., 2021b) is fastest when
high precision (low team exploitability) is necessary. For low precision, DCFR (Brown & Sandholm, 2019) is often the
fastest algorithm in practice, especially in certain variants of Kuhn poker.
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