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ABSTRACT

In gradient descent dynamics of neural networks, the top eigenvalue of the loss
Hessian (sharpness) displays a variety of robust phenomena throughout training.
This includes early time regimes where the sharpness may decrease during early
periods of training (sharpness reduction), and later time behavior such as pro-
gressive sharpening and edge of stability. We demonstrate that a simple 2-layer
linear network (UV model) trained on a single training example exhibits all of the
essential sharpness phenomenology observed in real-world scenarios. By analyzing
the structure of dynamical fixed points in function space and the vector field of
function updates, we uncover the underlying mechanisms behind these sharpness
trends. Our analysis reveals (i) the mechanism behind early sharpness reduction
and progressive sharpening, (ii) the required conditions for edge of stability, (iii)
the crucial role of initialization and parameterization, and (iv) a period-doubling
route to chaos on the edge of stability manifold as learning rate is increased. Finally,
we demonstrate that various predictions from this simplified model generalize to
real-world scenarios and discuss its limitations.

1 INTRODUCTION

Over the last several years, it has been observed that the training dynamics of neural networks
exhibits a rich and robust set of unexpected phenomena, stemming from the non-convexity of the loss
landscape. These phenomena not only challenge our existing understanding of loss landscapes but
also open avenues for significantly enhancing model performance through improved optimization
techniques. In particular, the unexpected and robust phenomenology is mainly associated with the
evolution of the Hessian of the loss function, which provides a measure of the local curvature of the
loss landscape and plays an important role in understanding generalization performance Keskar et al.
(2016); Dziugaite & Roy (2017); Jiang et al. (2019). However, the relationship between sharpness
and generalization has been called into question Dinh et al. (2017); Kaur et al. (2023).

On the one hand, it has been observed that at late training times, gradient descent (GD) typically
exhibits “progressive sharpening," where the top eigenvalue of the loss Hessian λH , referred to as
the sharpness, gradually increases with time, until it reaches roughly 2/η, where η is the learning
rate. Once the sharpness reaches roughly 2/η, it stops increasing and typically oscillates near 2/η, a
late-time training phenomenon referred to as the “edge of stability (EoS)" Cohen et al. (2021). On
the other hand, during early training, a decrease in sharpness is observed —referred to as “sharpness
reduction" Kalra & Barkeshli (2023) —before hitting a temporary plateau.

For large enough learning rates, training temporarily destabilizes early on, and the network “catapults"
out of its local basin, leading to a temporary sudden increase in the loss in the first few steps, before
eventually settling down in a flatter region of the loss landscape characterized by lower sharpness
Lewkowycz et al. (2020). Similar to the loss, sharpness may also spike within the first few steps of
training and quickly decrease (sharpness catapult). A rich phase diagram as a function of network
depth, width and learning rate summarizes the early training dynamics Kalra & Barkeshli (2023).
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Figure 1: Training loss and sharpness trajectories of ReLU FCNs trained on a 5k subset of CIFAR-10
examples using MSE loss and GD: (a, d) SP with σ2

w = 0.5, (b, e) SP with σ2
w = 2.0, (c, f) µP with

σ2
w = 2.0. The dashed lines in the sharpness figures show the 2/η threshold.

The discovery of these intriguing sharpness phenomena has attracted significant attention, with an
emphasis on various toy models that exhibit similar phenomenology. Yet, the specific conditions and
reasons why these phenomena occur still remain elusive. In this paper, we analyze a simple toy model,
a 2-layer linear network trained on one example, referred to as the UV model. We show that all of the
phenomena described above can be observed in the UV model for appropriate choices of learning
rate, initialization, parameterization, and choice of training example. Through this exploration, we
provide novel insights into the mechanisms at play and offer predictions that we validate in realistic
architectures with both real and synthetic datasets.

Our Contributions. We revisit the four training regimes identified by Kalra & Barkeshli (2023)
(early time transient, intermediate saturation, progressive sharpening, and late time EoS) in Section 3,
focusing on the crucial role of initializations and parameterizations. Our findings reveal that models
in Standard Parameterization (SP) with large initializations do not exhibit EoS, even at late training
times. Moreover, we show that models in Maximal Update Parameterization (µP) Yang & Hu (2021)
do not experience an early sharpness reduction. This result also holds for models in SP with small
initializations.

We show the UV model exhibits all four training regimes and also captures the effect of initializations
and parameterization discussed above. Through fixed-point analysis of the UV model in the function
space, we analyze the origins of the various dynamical phenomena exhibited by the sharpness.
Specifically, we demonstrate in Sections 4 and 5: (i) the emergence of various sharpness phenomena
arising from the stability and position of the dynamical fixed points, (ii) a critical learning rate ηc,
above which the model exhibits EoS on a sub-quadratic manifold, and (iii) a period-doubling route to
chaos of sharpness fluctuations as learning rate is increased in the EoS regime.

In Section 6, we verify various non-trivial predictions from the UV model in realistic architectures
with real and synthetic datasets. Our findings reveal: (i) a sharpness-weight norm correlation
before the training enters the EoS regime, (ii) a phase diagram of EoS, revealing initializations
and parameterizations that do not exhibit EoS, and (iii) a period-doubling route to chaos in real
architectures trained on synthetic datasets, while those trained on real datasets exhibit long-range
correlations at the EoS, with a remnant of the period doubling route to chaos.

Related Works. Using the top eigenvalue of the Neural Tangent Kernel (NTK) λK at initialization
(t = 0), Lewkowycz et al. (2020) revealed a ‘catapult phase’, 2/λK

0 < η < ηmax, in which training
converges despite an initial spike in training loss. After the early training phase, sharpness continues
to increase until it reaches a break-even point (Jastrzebski et al., 2020), beyond which GD dynamics
typically enters the EoS regime (Cohen et al., 2021). This has motivated various theoretical studies
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to understand GD dynamics at large learning rates Ma et al. (2022); Wang et al. (2022); Arora et al.
(2022); Damian et al. (2023); Rosca et al. (2023); Zhu et al. (2023); Wu et al. (2023); Chen & Bruna
(2023); Ahn et al. (2022); Kreisler et al. (2023); Song & Yun (2023); Chen et al. (2023). These
include an analysis by Wang et al. (2022), who show analyzed EoS in a 2-layer linear network using
the norm of the last layer, restricting to cases that show progressive sharpening from initialization.
Agarwala et al. (2022) suggested that the UV model does not exhibit EoS behavior but showed that a
modified model exhibits progressive sharpening and two-step oscillations at EoS using NTK as the
proxy. In contrast, we show that the UV model shows EoS behavior under the appropriate choice of
parameterization and training example. Meanwhile Chen & Bruna (2023) analyzed two-step gradient
updates of a single-neuron network and matrix factorization to gain insights into EoS. Furthermore,
Song & Yun (2023) analyzed a 2-layer linear network under logistic loss and demonstrated that
sharpness at late training times oscillates around 2f/ηℓ′, where f is the network output and ℓ′ is the
derivative of the loss. Another study by Chen et al. (2023) analyzed large learning rate dynamics of
toy models which are characterized by a one-dimensional cubic map. Our work, in contrast, delves
into various sharpness phenomena occurring throughout the training trajectory and analyzes their
origins. It is worth noting that a concurrent study by Wang et al. (2023) also examines sharpness
throughout training. Noci et al. (2024) relate sharpness dynamics to learning rate transfer in µP
networks by showing that sharpness trajectories do not change appreciably when depth and width
are varied. Given that our analysis spans the entire training trajectory, it relates to numerous studies.
Hence, we defer a comprehensive discussion of related works to Appendix A.

2 NOTATIONS AND PRELIMINARIES

This section describes the fundamental concepts and notations that form the basis of our analysis.

Dynamical Systems and Fixed Points: Consider a discrete dynamical system described by θt+1 =
M(θt). A fixed point θ∗ of the dynamics satisfies M(θ∗) = θ∗. The linear stability of a fixed point
θ∗ is determined by analyzing the eigenvalues {λJ∗

i } of the Jacobian JM (θ∗) := ∇θM(θ) |θ=θ∗ .
An eigendirection uJ∗

i of a fixed point θ∗ is stable if |λJ∗

i | < 1 and unstable if |λJ∗

i | > 1 Ott (2002).
The dynamics is captured by the vector field of updates G(θ) := M(θ)− θ. The corresponding unit
vector is denoted Ĝ(θ) := G(θ)/∥G(θ)∥. Nullclines refer to curves where one of the variables, θi,
remains invariant, i.e., θi;t = Mi(θt).

Parameterizations in Neural Networks: Sharpness phenomena in neural networks are intrinsically
tied to network parameterization. Standard Parameterization (SP) Sohl-Dickstein et al. (2020) and
Neural Tangent Parameterization (NTP) Jacot et al. (2018) are two commonly used parameterizations,
which converge to kernel methods at infinite width. Yang & Hu (2021) proposed Maximal update
Parameterization (µP), which allows for feature learning at infinite width. For implementation details,
see Appendix B.2.1.

UV Model: The UV model refers to a 2-layer linear network f : Rd → R trained on a single example.
We parameterize f as f(x; θ) = 1√

n1−p
vTUx, where x ∈ Rd is the input, n is the network width,

and v ∈ Rn, U ∈ Rn×d are trainable parameters, with each component drawn i.i.d. at initialization
from a normal distribution N (0, σ2

w/n
p). Here, p ∈ [0, 1] is a parameter that interpolates between

NTP and µP, and neff := n1−p is referred to as the effective width. We consider the network trained
on a single training example (x, y) using MSE loss ℓ (f(x; θ), y) = 1

2 (f(x; θ)− y)
2.

3 REVIEW OF THE FOUR REGIMES OF TRAINING

Typical training trajectories of neural networks can be categorized into four training regimes Kalra &
Barkeshli (2023), as shown in Figure 1(a, d):

(T1) Early time transient: This corresponds to the first few steps of training. At small learning
rates (η < ηloss), loss and sharpness decrease monotonically. At larger learning rates (η > ηloss),
training catapults out of the initial basin, temporarily increasing the loss, and finally converges to
a flatter region Lewkowycz et al. (2020). By the end of this regime, sharpness has decreased from
initialization for all learning rates, and more substantially at larger learning rates.
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(T2) Intermediate saturation: Following the initial transient regime, sharpness approximately plateaus
before gradually increasing.

(T3) Progressive sharpening: In this regime, sharpness continues to increase until it reaches λH ≈ 2/η
Jastrzebski et al. (2020); Cohen et al. (2021). At large effective widths or small learning rates, training
may conclude before reaching this threshold.

(T4) Late-time dynamics (EoS): After progressive sharpening, for MSE loss, sharpness oscillates
around 2/η. For cross-entropy loss, the sharpness oscillates when reaching approximately 2/η, while
decreasing over longer time scales Cohen et al. (2021).

In this work, we show that the sharpness dynamics heavily depends on the initialization and param-
eterization of the network, and not every training trajectory shows all four regimes. For instance,
Figure 1(b, e) shows that FCNs in SP with large initialization (or large effective width) do not exhibit
EoS, even when loss decreases to a value below 10−5. Following the early transient regime, sharpness
monotonically decreases, with only a nominal increase towards late training. In contrast, Figure 1(c,
f) shows that FCNs in µP (or small effective width) do not experience an initial sharpness reduction at
small learning rates (η < ηloss). Rather, sharpness continues to increase until it reaches 2/η and then
oscillates around it. At large learning rates (η > ηsharp), sharpness catapults and eventually settles
into the same trend as above.

These different training regimes are generically observed for more complex architectures and datasets
as we show in Appendix D.3, including CNNs and ResNets, trained on CIFAR-10 and Transformers
trained on Wikitext-2.

In Appendix D.1, we show that these trends remain consistent when NTP is used instead of SP. Given
this similarity in the training dynamics between SP and NTP, we use NTP for theoretical analysis for
clarity and SP in realistic experiments for implementation convenience.

Figure 2 (and Figure 7 in Appendix C.5) demonstrates that the UV model displays all four training
regimes. It also captures the cases where sharpness reduction or EoS is not observed. Therefore, the
simplified UV model can serve as an effective model for understanding these universal behaviors in
the sharpness dynamics. In the subsequent section, we perform fixed point analysis of the UV model
and probe the origin of these complex phenomena in later sections.

4 FIXED POINT ANALYSIS OF THE UV MODEL

Under GD, the parameters of the UV model are updated as Ut+1 = Ut − η∆ftvtx
T

√
neff

, vt+1 =

vt − η∆ftUtx√
neff

, where η is the learning rate and ∆ft := f(x; θt)− y is the residual at training step
t. In function space, the dynamics can be completely described using the residual ∆ft and trace of
the loss Hessian λ := Tr H = 1

neff

(
xTUTUx+ vTv xTx

)
, which is also the scalar neural tangent

kernel in this case. The function space dynamics of the UV model can be fully described using two
coupled non-linear equations (for derivation, see Appendix C.1):

∆ft+1 = ∆ft

(
1− ηλt +

η2∥x∥2
neff

∆ft(∆ft + y)

)
, (1)

λt+1 = λt +
η ∥x∥2
neff

∆f2
t

(
ηλt − 4

(∆ft + y)

∆ft

)
, (2)

with effectively three parameters: η, ∥x∥/√neff and y. While similar equations have been considered in
previous works Lewkowycz et al. (2020); Zhu et al. (2022); Agarwala et al. (2022), the generalization
to generic parameterizations is novel and would be crucial in observing different sharpness phenomena
such as EoS. The y = 0 case has been analyzed in prior works Lewkowycz et al. (2020); Kalra &
Barkeshli (2023) for understanding catapult dynamics. Here, λ can only decrease with time, as can
be seen from Equation (2) with η < ηmax = 4/λ0 (training diverges if η > ηmax). As a result, the
model does not exhibit progressive sharpening and EoS. Below we focus on the case y > 0, which
allows for λ to increase in time and consequently, much richer dynamics.

Equations (1) and (2) have four distinct fixed points/lines (referred to as I-IV) as detailed in Table 1
of Appendix C.3. The fixed line I defines a zero-loss line, meaning ℓ = 0 for all points in I; the points
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Figure 2: Training trajectories of the UV model with ∥x∥ = 1 and y = 2 in the (∆f, λ) plane for
different values of n, neff and η. The columns show initializations with different n and neff, while the
rows represent increasing learning rates for fixed initializations. The horizontal dash-dot line ηλ = 2
separates the stable (solid black vertical line) and unstable (dashed black vertical line) fixed points
along the zero loss fixed line I. Forbidden regions, 2∥x∥|∆f + y|/√neff > λ, (see Appendix C.2)
are shaded gray. The nullclines ∆ft+1 = ∆ft and λt+1 = λt are shown as orange and white dashed
curves, respectively. Sharpness reduction, progressive sharpening, and divergent regions are colored
green, yellow, and blue. The gray arrows indicate the local vector field Ĝ(∆f, λ), which is the
direction of the updates. The training trajectories are depicted as black lines with arrows, with the
star marking the initialization. In all cases, ηc =

√
neff/2 (introduced in Section 5.2).

in I are stable for ηλ < 2 and unstable otherwise. Fixed point II at (−y, 0) corresponds to the origin
in parameter space (U,v = 0) and it is a saddle point of the dynamics for convergent learning rates
η. Both I and II are also fixed points of the GD optimization, i.e., critical points of the loss. The
loss Hessian at I is positive definite, while fixed point II is a saddle point in the loss landscape. The
remaining two fixed points III and IV are unstable and exist only in function space, representing
non-trivial parameter space dynamics that leave the function space dynamics invariant.

Figure 2 shows the fixed points and the vector field Ĝ(∆f, λ) determined by Equations (1) and (2),
which illustrates the direction of the updates at each point. Note that the stability of the fixed line
(I) does not follow from Ĝ alone, as the magnitude G is required to determine stability. Figure 2
also shows training trajectories for various parameter values. Using λ as a proxy for sharpness, we
see there are regions where λ increases (colored yellow) and decreases (colored green) along the
flow, which we refer to as progressive sharpening and sharpness reduction, respectively. It follows
from Equation (2) that the condition ηλ∆f = 4(∆f + y) separates these regions. Importantly, the
parameters η, ∥x∥/√neff and y influence the position of the fixed points. This, in turn, affects the extent
of different regions and the vector field Ĝ, as illustrated in Figure 2. In particular, on decreasing
effective width neff, or increasing learning rate η, fixed points III and IV move inward (see fixed point
expressions in Table 1), which relatively enlarges the progressive sharpening region while shrinking
the overall convergent region. Overall, these illustrations demonstrate how the local stability and
relative position of the fixed points collectively impact the dynamics. In the subsequent section, we
discuss the dynamics in detail.
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5 UNDERSTANDING SHARPNESS DYNAMICS IN THE UV MODEL

In this section, we describe the origin of different robust phenomena in the dynamics of sharpness
using the fixed point and linear stability analysis from the previous section. This explains the four
training regimes observed in the UV model. We will discuss the influence of effective width and
initializations, shedding light on the differences between NTP and µP. For simplicity, we assume
∥x∥ = 1, while allowing neff to vary continuously. Note that we use λ := Tr H from the previous
section as a proxy for sharpness; we have verified that the top eigenvalue of the Hessian of the loss
also follows λ (see Appendix C.5), although it is more difficult to analyze analytically.

5.1 UNDERSTANDING SHARPNESS TRENDS THROUGHOUT TRAINING

Figure 2 shows that the training dynamics can exhibit different behavior depending on the initial
region. Below we summarize these based on empirical observations.

(R1) Progressive sharpening region: As shown in Figure 2(a, d), initialization in this region experi-
ences an upward push due to the flow originating from fixed point II, resulting in a steady increase in
λ. Depending on η relative to a critical learning rate ηc (introduced in Section 5.2) different late-time
dynamics arises. For η < ηc, training converges to stable fixed points on the zero-loss line (I), as
shown in Figure 2(a). When η > ηc, all points along the zero-loss line (I) become unstable, as shown
in Figure 2(d). In this case, the network eventually converges to a line segment joining fixed points II
and IV (the EoS manifold), where it continues to oscillate indefinitely between these fixed points,
leading to the EoS phenomena. This will be analyzed in more depth in the subsequent section.

(R2) Sharpness reduction region between fixed points II and III: Figure 2(b, e) show that initializations
in this region undergo a decrease in λ as the flow is towards saddle point II. On approaching this
saddle point, the dynamics slows down, resulting in the intermediate saturation regime. Eventually,
training moves away from this saddle and enters the progressive sharpening region. From here on,
the dynamics becomes akin to the case (R1).

(R3) Sharpness reduction region b/w fixed line I and point IV: Initializations in this region either
converge to the nearby zero-loss solution for (η < ηc) or enter the progressive sharpening region for
(η > ηc). In the latter case, the dynamics resembles those of case (R1).

So far, we have described the resultant dynamics when training is initialized in different regimes.
Below, we describe the conditions that typically exhibit these regimes.

Neural Tangent Parameterization: In NTP, ∆f and λ follow normal distributions: ∆f0 ∼
N (−y, σ4

w) and λ0 ∼ N (2σ2
w, 4σ

4
w/n). Hence, the model can be initialized in any of the three

regions described above. Moreover, fixed points III and IV move outward with increasing width,
affecting the local vector field Ĝ(∆f, λ). At large widths n ≫ 1, Ĝ(∆f0, λ0) at initialization points
along [1 0]

T towards the zero-loss line. For small learning rates (η < 2/λ0), training exponentially
converges to the nearest zero-loss solution (see Figure 2(c)). Regardless of the initialization region,
the change in λ is minimal, receiving O(1/n) updates as per Equation (2). For large learning rates
(η > 2/λ0), the nearby zero-loss solution becomes unstable. Consequently, training catapults to a
region with smaller λ, while bouncing between fixed points III and IV. This is the catapult effect
studied in Lewkowycz et al. (2020) and Figure 2(f) demonstrates such a trajectory. By comparison, at
small widths, the dynamics follows cases (R1-R3) discussed above.

Maximal Update (µP) Parameterizations: In contrast to NTP, the position of fixed points III-
IV do not change with width n, and ∆f0 follows the distribution: ∆f0 ∼ N (−y, σ

4
w/n), while

λ0 distribution remains unchanged. Consequently, at large widths, the model is initialized at
(−y, 2σ2

w), right above fixed point II in the progressive sharpening region (R1), satisfying the
condition ηλ0∆f0 < 4(∆f0 + y). Figure 2(a, d) shows such a trajectory. At small widths, fluctua-
tions increase, making it plausible for µP networks to start in the sharpness reduction regions. In this
case, the dynamics follow case (R2) or (R3).

5.2 UNDERSTANDING EDGE OF STABILITY

This section analyzes the EoS behavior in the UV model, particularly from the fixed point perspective.
As discussed in the previous section, the EoS behavior in the UV model arises when all fixed points
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Figure 3: (a) Bifurcation diagram depicting limiting values of λ obtained by simulating Equation (3).
(b) Bifurcation diagram of the UV model. In both figures, ∥x∥ = 1, y = 2, neff = 1 and ηc = 0.5.

along the zero-loss line (I) become unstable wrt the learning rate. Yet, the gradient updates (shown as
gray arrows in Figure 2) continue to point towards the zero loss line. As a result, training is trapped
in this region, converging to the line segment that joins fixed points II and IV —referred to as the
EoS manifold —where it oscillates indefinitely.

EoS Manifold is an Attractor: By examining the two-step dyanmics akin to Agarwala et al. (2022);
Chen & Bruna (2023), we show in Appendix C.7 that training converges to the EoS manifold above a
critical learning rate ηc. For η < ηc, training converges to the stable fixed points on the zero-loss
line. By comparison, for η > ηc, all points along the zero-loss line become unstable and the EoS
manifold becomes a dynamical attractor. The critical ηc for which all points on the zero-loss line
become unstable thus gives a necessary condition for EoS:

Result 1. A necessary condition for the UV model to exhibit EoS is η > ηc =
√
neff/∥x∥y (see

Appendix C.8 for details). It is useful to scale the learning rate as η = c/λ0, in which case this
condition becomes λ0 < c∥x∥y/√neff .

For learning rates η > 2/λ0, training can catapult to regions with λT < λ0. In such cases, the
condition λT < c∥x∥y/√neff also applies.

Dynamics on the EoS Manifold and Route to Chaos: The dynamics on the EoS manifold satisfies
λ = 2∥x∥(∆f+y)/√neff, coupling ∆f and λ together. This yields the map ∆ft+1 = Mf (∆ft)
describing the dynamics on the EoS manifold, with Mf defined as

Mf (∆ft) :=∆ft +
η∆ft
ηcy

(
η∆ft
ηcy

− 2

)
(∆ft + y). (3)

Figure 3(a) shows the limiting values of λ (i.e. the values of λ that the network jumps between at
late times) as a function of learning rate, obtained by simulating Equation (3). We refer to this as the
bifurcation diagram. As mentioned before, for η > ηc, the zero-loss solution becomes unstable with
λ oscillating around 2/η instead of converging. These fluctuations exhibit a fractal structure, as the
system undergoes a series of period-doubling transitions with an increasing learning rate. This is the
well-known period-doubling route to chaos Ott (2002). Figure 3(b) shows the bifurcation diagram of
the UV model for y = 2. The bifurcation diagram diagram extends up to η ≈ 0.8 before diverging at
higher learning rates. This leads us to the following corollary of Result 1.

Corollary 5.1. Let ηmax be the maximum trainable learning rate for a given initialization. The
bifurcation diagram is observed up to η < ηmax. If ηmax < ηc, the UV model does not exhibit EoS.

These results suggest that models with small λ0 and neff are more prone to show EoS behavior. As a
result, µP networks or those with small initial weight variance are more likely to exhibit EoS. On the
other hand, large-width NTP networks may not show EoS behavior at all. In the next section, we will
validate this prediction in real-world scenarios.

Connections to sub-quadratic loss: Ma et al. (2022) demonstrated that GD on sub-quadratic loss
with large learning rates inherently results in EoS behavior. Here, we show that the loss on the EoS
manifold of the UV model is sub-quadratic near its minimum. As noted above, the dynamics on
the EoS manifold satisfies λ = 2∥x∥(∆f+y)/√neff. The loss on the EoS manifold is then given by
L(θ) = 1

2∆f2 = y2

2 (ηcλ
2 − 1)2 (see Appendix C.9 for derivation), where θ denotes the parameters.

7



Published as a conference paper at ICLR 2025

1 2 3
σ2
w

0.5

1.0

1.5

2.0

2.5

3.0

c
=
η
λ
H 0

ηλH/2

0.25

0.50

0.75

1.00

1.25

(a)

1 2 3
σ2
w

0.5

1.0

1.5

2.0

2.5

3.0

c
=
η
λ
H 0

Test accuracy

20

25

30

35

40

45

(b)

0.00 0.25 0.50 0.75 1.00
s

1.0

1.5

2.0

2.5

3.0

c
=
η
λ
H 0

ηλH/2

0.25

0.50

0.75

1.00

1.25

1.50

(c)

0.00 0.25 0.50 0.75 1.00
s

1.0

1.5

2.0

2.5

3.0

c
=
η
λ
H 0

Test accuracy

30.0

32.5

35.0

37.5

40.0

42.5

45.0

(d)

Figure 4: (a, b) Heatmap of ηλH
/2 and test accuracy of ReLU FCNs in SP trained on a 5k subset of

CIFAR-10 until 99% training accuracy is achieved, with the weight variance σ2
w and learning rate

multiplier c = ηλH
0 as axes. As the color varies from blue to white, ηλH

/2 increases. (b, d) Same
heatmaps with fixed σ2

w = 2.0, but varying s continuously.

Since λ ∼ O(∥θ∥2), the loss is of the form L(θ) ≈ 1
2 (a∥θ∥2 − b)2 and is sub-quadratic near its

minimum. The GD dynamics near the minimum is given by a cubic map, which is known to show the
period-doubling route to chaos Rogers & Whitley (1983). Chen et al. (2023) showed a similar route to
chaos by considering a two-layer network with quadratic activation, with the last layer vector v fixed
through training and each entry set to one. In this model, the loss is sub-quadratic by construction
((∥Ux∥2 − y)2 and the dynamics is given by a cubic map.

6 PREDICTIONS AND VERIFICATIONS IN REAL-WORLD SCENARIOS

The preceding analysis offers broader insights and predictions for optimization in real-world models.
In this section, we study realistic architectures with real and synthetic datasets and examine the extent
to which insights from the UV model generalize.

Experimental Setup: Consider a network f(x; θ), with trainable parameters θ, initialized using
normal distribution with zero mean and variance σ2

w in appropriate parameterization. In this section,
we use the interpolating parameterization with s ∈ [0, 1] (detailed in Appendix B.2.1), where networks
with s = 0 are equivalent to networks in SP as width n goes to infinity and those with s = 1 are in
µP. The network is trained on a dataset with P examples using MSE loss and GD. The learning rate
is scaled as η = c/λH

0 , where c is the learning rate constant, and λH
0 is the sharpness at initialization.

Additional details provided in figure captions and Appendix B.2.

6.1 IMPLICATIONS OF INITIALIZATION AND PARAMETERIZATION FOR REAL-WORLD MODELS

The analysis in Section 5.1 unveils crucial insights into the implicit biases of parameterization in
real-world networks. Figure 2(a, d) shows that µP networks begin training in a flat region of the
landscape, where gradients point towards increasing sharpness, and approach the zero loss line while
maintaining a low sharpness bias. In contrast, networks in NTP (or equivalently SP), characterized as
large initializations, experience sharpness reduction during early training and might not approach with
a minimal sharpness bias. The agreement of these observations with networks trained on real-world
datasets (Figure 1) suggests that these inherent biases hold in practical scenarios.
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Figure 5: 2-layer linear FCNs trained on (first row) 5, 000 iid random examples with unit output
dimension and (second row) 5, 000 CIFAR-10 examples. Different columns correspond to the
bifurcation diagram, late-time sharpness trajectories, and the power spectrum of sharpness trajectories.
The power spectrum is computed using the last 1000 steps of the trajectories.

6.2 SHARPNESS & WEIGHT-NORM CORRELATION AND THE ORIGIN OF FOUR REGIMES

Section 5.1 revealed that, for a wide variety of initializations, at early times trajectories move closer
to the saddle point II, resulting in an interim decrease in λ (also proportional to the weight norm
in this case), before eventually increasing. This critical point where all parameters are zero also
exists in real-world models. We thus anticipate that in real-world models, the origin of the four
training regimes may be related to a similar mechanism. This would predict a decrease in weight
norm as training passes near the saddle point, followed by an eventual increase. In Appendix E, we
validate this hypothesis. During the sharpness reduction and intermediate saturation regimes, we see
a decrease in the weight norm, followed by an increase in the weight norm as the network undergoes
progressive sharpening, following the prediction from the UV model.

6.3 THE PHASE DIAGRAM OF EDGE OF STABILITY

Result 1 presents a necessary condition for EoS to occur in the UV model: λ0 < c∥x∥y/√neff. In
real-world models, the initial sharpness λH

0 can be controlled using the initial variance of the weights
σ2
w. Therefore, this result predicts that real-world models with (i) small initial weight variance σ2

w,
(ii) large interpolating parameter s, or (iii) large learning constant c are more likely to exhibit EoS
behavior. Figure 4(a, c) show the phase diagram of EoS, validating these predictions. Additional
phase diagrams in Appendix F indicate an enhanced tendency for CNNs and ResNets to exhibit EoS.
Furthermore, Figure 4(b, d) show the corresponding test accuracy heatmaps for the above experiments,
revealing a positive correlation between observing EoS and improved model performance.

6.4 ROUTE TO CHAOS AND BIFURCATION DIAGRAMS

The analysis in Section 5.2 unveiled structured fluctuations in λ at the EoS, with a period-doubling
route to chaos observed as the learning rate is tuned. This motivates us to analyze fluctuations at the
EoS in real-world models trained on realistic and synthetic datasets. Figure 5 shows the bifurcation
diagram, late-time sharpness trajectories, and power spectrum of sharpness trajectories for a 2-layer
linear FCN. In the first row, the model is trained on random synthetic data with 5, 000 iid examples
with unit output dimension, whereas, in the second row, on a 5, 000 example subset of CIFAR-10.
Similar to the UV model, FCNs trained on random data exhibit a period-doubling route to chaos, as
shown in Figure 5(a). By comparison, FCNs trained on CIFAR-10 only show dense bands in the
sharpness rather than exhibiting a clear period-doubling route to chaos.

On analyzing the sharpness trajectories at EoS, we observe long-range correlations in time in real
datasets, with fluctuations increasing with the learning rate (see Figure 5(e)). By comparison,
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sharpness trajectories of models trained on random datasets exhibit short-period oscillations (see
Figure 5(b)). The power spectrum of these sharpness trajectories further quantifies these observations,
as shown in Figure 5(c, f). In the random dataset case, high-frequency modes corresponding to the
period-doubling route to chaos emerge at EoS as shown in Figure 5(c). In contrast, real datasets
exhibit low-frequency modes at small learning rates. As the learning rate is increased, high-frequency
modes, reminiscent of the period-doubling route to chaos, start emerging (see Figure 5(f)). In
Appendix G.1, we demonstrate that CNNs and ResNets trained on image datasets show dense bands
of sharpness similar to those in FCNs.

To understand when the period-doubling route to chaos arises, we perform further analysis in
Appendix G. A key determining feature appears to be whether the singular value spectrum of the
input-input and output-input covariance matrices are flat or have power-law decay. In Appendix G.2,
we show that a 2-layer FCNs trained on a random dataset with power-law singular value spectrum
in the input exhibits dense sharpness bands. In Appendix G.3 we show that linear FCNs trained on
synthetic datasets with random inputs, such as teacher-student settings and generative settings (details
in Appendix B.1), exhibit the period-doubling route to chaos. In contrast, non-linear networks trained
on these tasks exhibit dense sharpness bands as observed in real datasets. These observations shed
some light on the nature of EoS observed in realistic settings. Nevertheless, a complete understanding
of sharpness fluctuations at EoS requires a separate detailed examination.

7 DISCUSSION

In this work, we analyzed the crucial effect of initializations and parameterizations on the sharpness
dynamics of neural networks and characterized conditions under which sharpness phenomena, such
as sharpness reduction, progressive sharpening, and EoS, occur during training.

To develop a deeper understanding of these sharpness phenomena, we analyzed the UV model,
which exhibits these sharpness trends. Through a fixed point analysis, we uncover the underlying
mechanisms behind these complex sharpness phenomena, such as (i) the mechanism behind early
sharpness reduction and progressive sharpening, (ii) the required conditions for the edge of stability,
(iii) the crucial role of initialization and parameterization, and (iv) a period-doubling route to chaos
on the edge of stability manifold as the learning rate is increased. Finally, we demonstrated that
various predictions from this simplified model generalize to real-world scenarios.

While the UV model does capture major sharpness phenomena, it does have some limitations. The UV
model does not capture the non-monotonic decrease in the training loss at EoS. This is because the UV
model dynamics is effectively described by two variables and the EoS condition λ = 2/η puts another
constraint. As a result, the loss also oscillates along with sharpness at EoS. In comparison, real-world
neural networks have a large number of degrees of freedom, and the training can still converge in
stable eigendirections. Furthermore, the UV model does not exhibit loss catapult behavior for small
effective widths (neff = 1). In such cases, the threshold for loss catapult (η = 2/λ0) is comparable to
the maximum trainable learning rate. Finally, the UV model does not capture long-range correlations
in sharpness dynamics observed in realistic datasets. Through extensive experiments, we identified
that long-range correlations in the input covariance matrix results in these long-range correlations.

The applicability of the fixed point analysis extends well beyond the UV model and can be employed
in settings involving complex architectures and adaptive optimizers. A prerequisite for applying
this method is the closure of the dynamical equations describing the model. While this closure
requirement is manageable for deep linear networks through additional function space variables, it
becomes challenging for non-linear DNNs where such closure with a few variables is difficult. By
analyzing the fixed points of such equations in broader classes of models where closure is achievable,
we can gain significant insights into their training dynamics, thereby advancing our understanding of
non-convex optimization in neural networks.

Various results such as the phase diagram of EoS, the bifurcation diagram, and the late-time sharpness
analysis depend on the training time. Nevertheless, we found that training the models longer does not
impact the conclusions presented. In Appendix D.2, we show our results are robust for reasonably
small batch sizes (B ≈ 512). For even smaller batch sizes, the dynamics becomes noise-dominated,
and separating the inherent dynamics from noise becomes challenging.
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revealed a ‘catapult phase’, 2/λK

0 < η < ηmax, in which training converges despite an initial spike in
training loss. Kalra & Barkeshli (2023) analyzed early training dynamics for arbitrary depths and
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width and revealed a ‘sharpness reduction phase’, 2/λH
0 < η < closs/λH

0 , which opens up significantly
as closs increases with depth and 1/width.

Beyond early training, sharpness continues to increase, until it reaches a break-even point (Jastrzebski
et al., 2020), beyond which GD dynamics typically enters the EoS regime (Cohen et al., 2021). This
has motivated various theoretical studies to understand GD dynamics at large learning rates: Arora
et al. (2022); Rosca et al. (2023); Zhu et al. (2023); Wu et al. (2023); Chen & Bruna (2023); Ahn
et al. (2022); Kreisler et al. (2023); Song & Yun (2023); Chen et al. (2023). In particular, Ma et
al. Ma et al. (2022) showed that loss functions with sub-quadratic growth exhibit EoS behavior.
Arora et al. (2022) show that normalized gradient descent reaches the EoS regime. Damian et al.
(2023) analyze the dynamics of the cubic approximation of the loss. Assuming a negative correlation
between the gradient direction and the top eigenvector of Hessian, they show that gradient descent
dynamics enters a stable cycle in the EoS regime. Ahn et al. (2022) analyze EoS in a single-neuron
2-layer network and a simplified three-parameter ReLU network assuming the existence of a ‘forward
invariant subset’ near the minima. Kreisler et al. (2023) analyzed scalar linear networks to show that
the sharpness attained by the gradient flow dynamics monotonically decreases in the EoS regime. Wu
et al. (2023) demonstrate that gradient descent, with any learning rate in the EoS regime, optimizes
logistic regression with linearly separated data over large time scales. Below, we discuss closely
related works in detail and clarify the distinction with our work.

Wang et al. (2022) analyze EoS in a 2-layer linear network using the norm of the last layer. They
solely focus on cases that exhibit progressive sharpening right from initializations by considering
assumptions (refer to Assumptions 4.1 and 4.2 of their paper) on the training dataset. Contrary to
these assumptions, Figure 1(e) demonstrates that such assumptions are invalid in many realistic
settings, where progressive sharpening is not observed at all.

Agarwala et al. (2022) showed that a modified model exhibits progressive sharpening and two-step
oscillations at EoS using NTK as the proxy. They state that the UV model does not exhibit EoS
behavior (see Section 3.2.1 of the referenced paper). This is because their analysis is restricted
to the Standard Parmaeterization corresponding to Figure 2(c, f) (c.f. Figure 8 of Agarwala et al.
(2022)). In contrast, we show that the UV model exhibits EoS behavior under the appropriate choice
of parameterization and training example.

Zhu et al. (2023) proved EoS convergence for the loss 1
4 (x

2y2 − 1)2, where x, y ∈ R. Additionally,
they empirically demonstrated a bifurcation diagram in the space of abstract variables of x and y. It
is worth noting that while these bifurcations arise from the same underlying behavior, they contrast
with our route to chaos bifurcation diagrams which quantify sharpness fluctuations with learning rate.

Chen & Bruna (2023) analyze two-step gradient updates of a single-neuron network and matrix
factorization to gain insights into EoS. Similar to our work, they show a bifurcation diagram of
sharpness against the learning rate for the matrix factorization problem. While the scalar matrix
factorization problem can be mapped to the UV model with a specific choice of ||x||√

neff
, it is not

straightforward to apply their conclusions to the neural network setting, as it requires the correct
choice of parameterization. In particular, the UV model under NTP parameterization, as shown in
Figure 2(c, f), does not display EoS behavior at considerable widths, a finding also noted by Agarwala
et al. (2022). Observing EoS requires the correct choice of the parameterization (µP) and training
example. Furthermore, although the scalar matrix factorization in Chen & Bruna (2023) can be
mapped to a special case of the UV model considered in our work, we provide significant additional
insights. In particular, with respect to the bifurcation phenomena in the UV model, we explain the
existence of an attractor submanifold on which the EoS behavior occurs. We further show that on
the EoS submanifold, the loss becomes subquadratic in nature and the gradient descent dynamics
therefore become approximated by the cubic map, which is well-studied in the chaos literature. This
makes clear the origin of the period-doubling route to chaos. Additionally, in Section 6, we extend
the analysis of EoS beyond the UV model, comparing sharpness trajectories of synthetic and real
datasets at EoS. In contrast to the synthetic datasets, sharpness trajectories of real datasets show
long-range correlations in time. We take the first steps by attributing these long-range correlations to
correlations in the dataset. Note that this setting cannot be mapped to the matrix factorization setting.

Song & Yun (2023) show that late-time trajectories oscillate around 2f/ηℓ′, where f is the network
output and ℓ′ is the derivative of the loss. They refer to the term bifurcation diagram to describe these
phenomena, contrasting with the sharpness versus learning rate bifurcation diagrams presented in our
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study. We quote Section 3 from their paper ”..we plot the bifurcation diagram q = r(p) = ℓ′(p)/p and
observe that GD trajectories tend to align with this curve..” Here, p and q correspond to ∆f and 2

ηλ in
our setting. They plot trajectories in the (p, q) ≡ (∆f, 2

ηλ ) plane and their condition q = r(p) simply
corresponds to the EoS condition λ = 2

η for MSE loss. In contrast, our work presents bifurcation
diagrams resulting from how the sharpness fluctuations vary with the learning rate. Therefore, the
bifurcation diagrams from these works are not directly related to the route-to-chaos bifurcation
diagrams presented in our work.

Kong & Tao (2020) were the first ones to show that gradient descent dynamics becomes chaotic at
large learning rates and converges to a statistical distribution instead of a minimum.

Chen et al. (2023) analyzed large learning rate dynamics of toy models which are characterized
by a one-dimensional cubic map and demonstrated five different training phases: (a) monotonic,
(b) catapult, (c) periodic, (d) chaotic, and (e) divergent. In particular, they considered a two-layer
network with quadratic activation, where the last layer vector v is not trained and each entry is set to
one. This model belongs to a family that is effectively described by one variable ∆f . In this model,
the loss is sub-quadratic by construction (||Ux||2 − y)2. In contrast, the UV model that we study is
an effectively two-variable model and in these cases, training dynamically finds the attractive EoS
manifold such that the loss has a sub-quadratic nature on this submanifold.

Concurrent work by Wang et al. (2023) categorizes training trajectories into three stages: (i) sharpness
reduction, (ii) progressive sharpening, and (iii) edge of stability. They argue that different large
learning rate behavior depends on the ‘regularity’ of the loss landscape. Specifically, they generalize
toy landscapes from existing studies with parameters controlling the regularity. They show that
models with good regularity first experience a decrease in sharpness and then progressive sharpening
and enter the edge of stability.

Noci et al. (2024) examined the sharpness dynamics of networks with parameterization. They argue
that the learning rate transfer property of µP is correlated with consistent sharpness trajectories across
varying depths and widths.

B EXPERIMENTAL DETAILS

B.1 DATASETS

Standard image datasets: We considered the MNIST Deng (2012), Fashion-MNIST Xiao et al.
(2017), and CIFAR-10 Krizhevsky (2009) datasets. The images are standardized to have zero
mean and unit variance across the feature dimensions, and target labels are represented as one-hot
encodings.

Random dataset: We construct a random dataset (X,Y ) = {(xµ,yµ)}Pµ=1 with xµ ∼ N (0, I)
and yµ ∼ N (0, I), both sampled independently. Note there is no correlation between inputs and
outputs.

Teacher-student dataset: Consider a teacher network f(x; θ0) with θ0 initialized randomly as
described in Appendix B.2. Then, we construct a teacher-student dataset (X,Y ) = {(xµ,yµ)}Pµ=1

with xµ ∼ N (0, I) and yµ = f(xµ; θ0).

Random power-law dataset: Starting with the random dataset (X ′, Y ′), we utilize the singular
value decomposition of the input and output matrices

X ′ = PxSx′QT
x , Y ′ = PySy′QT

y . (4)

Next, we rescale the kth singular value of Sx′ and Sy′ as

(Sx)k = Ax(Sx′)kk
−Bx (Sy)k = Ay(Sy′)kk

−By , (5)

and re-construct input and output matrices as below
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X = PxSxQ
T
x , Y = PySyQ

T
y . (6)

The variables Ax, Bx, Ay , and By uniquely characterize the dataset.

Generative image dataset: Given a pre-trained network f(x; θ) on a standard image dataset listed
above, we construct a generative image dataset (X,Y ) = {(xµ,yµ)}Pµ=1 with xµ ∼ N (0, I) and
yµ = f(xµ; θ).

B.2 MODELS

FCNs: We considered ReLU FCNs without bias with uniform hidden layer width n.

CNNs: We considered Myrtle family ReLU CNNs Shankar et al. (2020) without any bias with a
fixed number of channels in each layer, which we refer to as the width of the network.

ResNets: We adapted ResNet He et al. (2016) implementations from Flax examples. Our imple-
mentation uses Layer norm and initialize the weights as N (0, σ

2
w/fanin). For ResNets, we refer to the

number of channels in the first block as the width.

We implemented all models using the JAX Bradbury et al. (2018), and Flax libraries Heek et al.
(2020).

B.2.1 DETAILS OF NETWORK PARAMETERIZATION

In this section, we describe different parameterizations used in the paper. For simplicity, we describe
the parameterizations for FCNs. Nevertheless, these arguments generalize to other architectures.

Standard Parameterization (SP): Consider a neural network f : Rdin → Rdout with d layers and
constant width n. Then, standard parameterization is defined as follows:

h(1)(x) = W (1)x,

h(l+1)(x) = W (l+1)ϕ
(
h(l)(x)

)
,

f(x; θ) = W (d)ϕ
(
h(d−1)(x)

)
, (7)

where W (1) ∼ N (0, σ
2
w/din), W (l) ∼ N (0, σ

2
w/n) for 1 < l < d, and W (d) ∼ N (0, 1/n); ϕ(·) is the

elementwise activation function. The input is normalized such that ∥x∥2 = din.

Neural Tangent Parameterization (NTP): Consider a neural network f : Rdin → Rdout with d
layers and constant width n. Then, the Neural Tangent Parameterization is defined as follows:

h(1)(x) =
σw√
din

W (1)x,

h(l+1)(x) =
σw√
n
W (l+1)ϕ

(
h(l)(x)

)
,

f(x; θ) =
1√
n
W (d)ϕ

(
h(d−1)(x)

)
, (8)

where W (l) ∼ N (0, 1) for 1 ≤ l ≤ d and ϕ(·) is the elementwise activation function. The input is
normalized such that ∥x∥2 = din.

Both SP and NTP are closely related parameterizations —SP with learning rate η = Θ(1/n) learning
rate becomes equivalent to NTP when the input dimension is equal to the width (din = n) Yang & Hu
(2021).
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Interpolating Parameterization: Consider a neural network f : Rdin → Rdout with d layers and
constant width n. Let W (l) denote the weight matrix at layer l. Then, “interpolating parameterization”
is defined as follows:

h(1)(x) = n
s/2W (1)x,

h(l+1)(x) = W (l+1)ϕ
(
h(l)(x)

)
,

f(x; θ) =
1

ns/2
W (d)ϕ

(
h(d−1)(x)

)
, (9)

Here, s is a parameter that interpolates between standard-like parameterization and maximal update pa-
rameterization. The weight matrices are sampled from Gaussian distributions: W (1) ∼ N (0, σ

2
w/ns),

W (l) ∼ N (0, σ
2
w/n) for 1 < l < d, and W (d) ∼ N (0, 1/n). We normalize the input such that

∥x∥ = 1.

Maximal update Parameterization (µP): The maximal update parameterization corresponds to
the s = 1 case in the above setting.

B.3 DETAILS OF FIGURES

Figure 1: Training loss and sharpness trajectories of 4-layer ReLU FCNs with n = 512, trained on
a subset of 5, 000 CIFAR-10 examples using MSE loss and GD: (a, d) SP with σ2

w = 0.5, (b, e) SP
with σ2

w = 2.0, (c, f) µP with σ2
w = 2.0.

Figure 2 Training trajectories of the UV model with ∥x∥ = 1 and y = 2 in the (∆f, λ) plane for
different values of n, neff and η. The columns show initializations with different n and neff, while the
rows represent increasing learning rates for fixed initializations. The horizontal dash-dot line ηλ = 2
separates the stable (solid black vertical line) and unstable (dashed black vertical line) fixed points
along the zero loss fixed line I. Forbidden regions, 2∥x∥|∆f + y|/√neff > λ, (see Appendix C.2)
are shaded gray. The nullclines ∆ft+1 = ∆ft and λt+1 = λt are shown as orange and white dashed
curves, respectively. Sharpness reduction, progressive sharpening, and divergent regions are colored
green, yellow, and blue. The gray arrows indicate the local vector field Ĝ(∆f, λ), which is the
direction of the updates. The training trajectories are depicted as black lines with arrows, with the
star marking the initialization. In all cases, ηc =

√
neff/2 (introduced in Section 5.2).

Figure 3: UV model dynamics on the EoS manifold:(a) Bifurcation diagram depicting late-time
limiting values of λ obtained by simulating Equation (3). (b) Bifurcation diagram of the UV model.
In both figures, ∥x∥ = 1, y = 2 and neff = 1 and ηc = 0.5.

Figure 4: Phase diagram of EoS: (a) Heatmap of ηλ̄H
/2 of 3-layer ReLU FCNs with s = 0 trained

on a subset of 5, 000 CIFAR-10 examples for 10k steps, with the weight variance σ2
w and learning

rate multiplier c = ηλH
0 as axes. λ̄H is obtained by averaging λH

t over last 200 steps. As the color
varies from blue to white, ηλ̄H

/2 increases, where the brightest white region indicates the EoS regime
with ηλ̄H

/2 ≥ 1. (b) Same heatmap with fixed σ2
w = 2.0, but varying s continuously.

Figure 5: EoS in synthetic vs real-datasets: 2-layer linear FCN trained on (first row) 5, 000 iid
random examples with unit output dimension and (second row) 5, 000 CIFAR-10 examples. Different
columns correspond to the bifurcation diagram, late-time sharpness trajectories, and the power
spectrum of sharpness trajectories. Both models are trained for 10k steps using GD.

Figure 9: Two-step phase portrait of UV model in (∆f, β) phase plane: These plots are equivalent
to Figure 2(d-f), but with training trajectory and local are plotted for every other step.

Figure 15: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3 and width

200, trained on a subset of CIFAR-10 with 5, 000 examples using GD.
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B.4 SHARPNESS MEASUREMENT

We measure sharpness using the power iteration method with m iterations. Typically, m = 20
iterations ensure convergence. Exceptions requiring more iterates are discussed separately.

B.5 POWER SPECTRUM ANALYSIS

For a given signal x′(t), we standardize the signal

x(t) =
x′(t)− µ

σ
, (10)

where µ is the mean and σ2 is the variance of the signal. Subtracting the mean removes the zero
frequency component in the power spectrum. Next, consider the discrete Fourier transform F(ω) of
x(t):

F(ω) =
1

T

T−1∑
t=0

e−
i2πωt/Tx(t), (11)

Then, the power spectrum is P (ω) = |F(ω)|2. The normalization by T in the Fourier transform
ensures that the sum of the power spectrum is equal to the variance of the signal, i.e.,

∑
ω P (ω) = σ2.

B.6 ESTIMATION OF COMPUTATIONAL RESOURCES USED

Most of our experiments, aside from the phase diagrams, required minimal computational resources,
estimated to be less than 50 A100 hours. In contrast, each phase diagram required 50 A100 hours,
totaling 500 A100 hours for all phase diagrams. Including initial experiments, we expect our total
usage to be under 600 A100 hours.

C PROPERTIES OF THE UV MODEL

C.1 DERIVATION OF THE FUNCTION SPACE DYNAMICS

Equations (1) and (2) can be derived using the gradient descent update equations:

Ut+1 = Ut − η
∆ftvtx

T

√
neff

, (12)

vt+1 = vt − η
∆ftUtxt√

neff
. (13)

At step t+ 1, the residual ∆ft+1 can be written in terms of the gradient updates of U and v:

∆ft+1 = ft+1 − y (14)

=
1√
neff

vT
t+1Ut+1x− y (15)

=
1√
neff

(
vt − η

∆ftUtx√
neff

)T (
Ut − η

∆ftvtx
T

√
neff

)
x− y (16)

= ∆ft −
η∆ft
neff

(
xTUT

t Utx+ vT
t vtx

Tx
)
+

η2∥x∥2∆f2
t

neff

(
1√
neff

xTUT
t vt

)
(17)

= ∆ft

(
1− ηλt +

η2∥x∥2
neff

∆ft(∆ft + y)

)
. (18)

18



Published as a conference paper at ICLR 2025

Here, ∆ft+1 only depends on ∆ft and λt. Similarly, we write down the λt+1 using the gradient
update equations:

λt+1 =
1

neff

(
xTUT

t+1Ut+1x+ vT
t+1vt+1x

Tx
)

(19)

= λt − 4
η∥x∥2
neff

∆ft(∆ft + y) +
η2∥x∥2∆f2

t

neff
λt (20)

= λt +
η∥x∥2
neff

∆f2
t

(
ηλt − 4

∆ft + y

∆ft

)
. (21)

Equations (18) and (21) form a closed system. This means that ∆ft+1 and λt+1 are completely
described using ∆ft and λt. As a result, the complete dynamics of the UV model can be fully
described using only these two variables with three parameters effective parameters η, ∥x∥2

neff
and y.

C.2 FORBIDDEN REGIONS OF THE UV MODEL

In this section, we utilize the non-negativity of λ to derive the condition for allowed regions within
the phase plane for the UV model. Consider the function space equations written in terms of the
pre-activation h(x) = Ux:

f(x; θ) =
1√
neff

vTh(x) (22)

λ =
1

neff

(
∥v∥2∥x∥2 + ∥h∥2

)
. (23)

Let cos(h,v) denote the cosine similarity between v and h. Then, the network output is bounded as

| cos(h,v)| =
√
neff|∆f + y|
∥v∥∥h∥ ≤ 1 (24)

Next, using (∥v∥∥x∥ − ∥h∥)2 ≥ 0, we can bound the product ∥v∥∥h∥ using λ

2∥x∥√
neff

|∆f + y| ≤ λ. (25)

The derived inequality describes the allowed phase plane regions for the UV model.

C.3 FIXED POINTS AND LINE

To identify the fixed points, we set ∆ft+1 = ∆ft and λt+1 = λt in Equations (1) and (2). This
yields the dynamical fixed points of the UV model. Table 1 lists these fixed points along with their
stability. Additionally, it provides the eigenvalues and eigenvectors of the Jacobian for the update
maps described by Equations (1) and (2), evaluated at the fixed points.

C.4 THE MAXIMUM LEARNING RATE ηUPPER

In Section 4, we stated that for η > ηupper = 2ηc, training diverges for all initializations except for
those at the fixed points. Here, we justify this claim.

First, Figure 6 shows that as η approaches ηupper, fixed point III merges with fixed point II, reducing
the convergence region to the EoS manifold. At this learning rate, the stability of fixed point II changes
from saddle to unstable as the corresponding eigenvalue (1− η

ηc
)2
∣∣∣
η=2ηc

surpasses 1. Consequently,

any initialization outside the EoS manifold results in divergence. Next, Figure 3(a) shows that on the
EoS manifold training diverges for η > ηupper. This corroborates our initial claim.
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(∆f∗, λ∗) eigenvalues eigenvectors Linear stability

I (0, λ) for λ ≥ 2∥x∥y√
neff

1, 1 − ηλ

0

1

 ,

 neffλ
4∥x∥2y

1

 {
stable ηλ < 2

unstable ηλ > 2

II (−y, 0) (1 − η∥x∥y√
neff

)2, (1 +
η∥x∥y√

neff
)2

−
√

neff
2∥x∥

1

 ,

√
neff

2∥x∥

1

 saddle

III
(

−2
√

neff
∥x∥η , 4

η − 2∥x∥y√
neff

)
9, 5 − 2η∥x∥y√

neff

 neff
η∥x∥2y

1

 ,

−
√

neff
2∥x∥

1

 unstable

IV
(

2
√

neff
∥x∥η , 4

η +
2∥x∥y√

neff

)
9, 5 +

2η∥x∥y√
neff

 neff
η∥x∥2y

1

 ,

√
neff

2∥x∥

1

 unstable

Table 1: Fixed line (I) and points (II-IV) and corresponding eigenvalues and eigenvectors of the
Jacobian of the update map in Equations (1) and (2). The stability is determined for η < ηupper =
2ηc = 2

√
neff/∥x∥y. Above this threshold, training diverges for all initializations except for those at

the fixed points, as demonstrated in Appendix C.4.
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Figure 6: Phase portrait of the UV model for different learning rates η. The critical learning rate is
ηc = 0.5 and the maximum learning rate is ηupper = 1.0.

C.5 SHARPNESS VERSUS THE TRACE OF HESSIAN
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Figure 7: Training trajectories of the UV model trained on a single example with ∥x∥ = 1 and y = 2
using MSE loss and GD: (a, d) NTP with n = 1, σ2

w = 0.5, (b, e) NTP with n = 512, σ2
w = 1.0, and

(c, f) µP with n = 512, σ2
w = 1.0.

In this section, we show that the trace of the Hessian λ (which is also the scalar NTK in this case), is
an adequate proxy for sharpness. Figure 8 shows training trajectories of the UV model, with λ as a
proxy for sharpness and learning rate scaled as η = k/λ0. These λ trajectories show similar trends to
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Figure 8: UV model shows all four training regimes: Training trajectories of the UV model trained
on a single example (x, y) with ∥x∥ = 1 and y = 2 using MSE loss and gradient: (a, d) NTP with
n = 1 and σ2

w = 0.5 (b, e) NTP with n = 512 and σ2
w = 1.0, and (c, f) µP with n = 1 and σ2

w = 1.0.

those of λH observed in Figure 7, with one key difference: during early training, λ does not catapult
during early training at large widths (compare Figure 7(e) and Figure 8(e)). Otherwise, λ effectively
captures other qualitative behavior of λH .

C.6 THE DISTRIBUTION OF RESIDUAL AND NTK AT INITIALIZATION

In this section, we compute the distribution of ∆f and λ for the UV model at initialization. Consider
the UV model written in terms of the pre-activation h(x) = Ux,

f(x; θ) =
1√
n1−p

vTh(x) (26)

λ =
1

n1−p

(
∥v∥2∥x∥2 + ∥h∥2

)
, (27)

with vi, Uij ∼ N (0, σ
2
w/np). Then, each pre-activation hi is normally distributed at initialization with

zero mean and variance

Eθ[h
2
i ] =

din∑
j,k=1

⟨UijUik⟩xjxk =

din∑
j,k=1

σ2
w

np
δjkxjxk =

σ2
w∥x∥2
np

. (28)

Hence, each pre-activation is distributed as hi ∼ N (0, σ
2
w∥x∥2

/np). It follows that the network output
is also normally distributed at initialization with zero mean and variance

Eθ[f
2
0 ] =

1

n1−p

n∑
i,j=1

⟨vivj⟩⟨hihj⟩ =
1

n1−p

n∑
i=1

σ2
w

np

σ2
w∥x∥2
np

=
σ4
w∥x∥2
np

. (29)

Hence, the residual at initialization is distributed as ∆f0 ∼ N
(
−y, σ

4
w∥x∥2

/np
)
. Similarly, we can

also compute the distribution of λ at initialization. The mean value of λ is given by
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Eθ[λ0] =
1

n1−p

(
∥x∥2⟨∥v∥2⟩+ ⟨∥h∥2⟩

)
= 2σ2

w∥x∥2, (30)

where we have used ⟨∥v∥2⟩ = σ2
wn

1−p and ⟨∥h∥2⟩ = σ2
w∥x∥2n1−p. Using similar computations,

the second moment of λ is given by:

Eθ[λ
2
0] =

1

n2−2p

(
∥x∥4⟨∥v∥4⟩+ ⟨∥h∥4⟩+ 2∥x∥2⟨∥v∥2∥h∥2⟩

)
=

4(n+ 1)

n
σ4
w∥x∥4 . (31)

Hence, the λ at initialization is distributed as λ0 ∼ N
(
2σ2

w∥x∥2, 4σ4
w∥x∥4

/n
)
.

C.7 EOS MANIFOLD IS A DYNAMICAL ATTRACTOR

To demonstrate that late time trajectories for η > ηc converge to the EoS manifold, we define
β :=

√
neff

2∥x∥λ − (∆f + y). β lies on the direction orthogonal to the EoS manifold, such that β = 0

corresponds to the manifold itself, while β < 0 is forbidden. Under this transformation, β updates as
βt+1 = βt(1 +

η∥x∥∆ft√
neff

)2. It follows that β∗ = 0 stays invariant under the dynamics and defines a
nullcline.

Due to oscillations in ∆f near convergence, it is instructive to examine the two-step dynamics Agar-
wala et al. (2022); Chen & Bruna (2023), compactly denoted as (∆ft+2, λt+2) := M (2)(∆ft, λt).
Figure 9 shows the two-step trajectories and the corresponding vector field Ĝ(2)(∆f, β) in the
(∆f, β) plane.

We observe that there exists a critical ηc such that for η < ηc, Ĝ(2)(∆f, β) points towards the stable
zero-loss line (see Figure 9(a)). By comparison, for η > ηc, all points along the zero-loss line become
unstable and the vector field directs towards points on the β = 0 line, as shown in Figure 9(b). The
critical ηc for which all points on the zero-loss line become unstable thus gives a necessary condition
for EoS:
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Figure 9: These plots are equivalent to Figure 2(a, d) (ηc = 0.5), but with training trajectory and
local vector field plotted for every other step in (∆f, β) plane. The tilted dash-dotted line indicates
the ηλ = 2 line.

C.8 CRITICAL LEARNING RATE FOR EDGE OF STABILITY

In this section, we estimate the required condition on the learning rate for the UV model to exhibit
EoS. We specifically focus on the case with y > 0 as for y = 0, λ can only decrease. As a result,
the model does not exhibit progressive sharpening and EoS. In Section 5, we observed that the EoS
occurs as the zero-loss minima with the smallest λ becomes unstable. From Equation (25) it follows
that the smallest λ with zero loss is
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λmin =
2∥x∥y√

neff
. (32)

This minimum becomes unstable if the learning rate η exceeds a critical value ηc, given by

ηc =

√
neff

∥x∥y (33)

It is worth noting that this is a necessary condition for λ to oscillate around 2/η. Otherwise, training
converges to the zero-loss minimum with λ = λmin for η < ηmax.

We can also derive the exact same result by analyzing the dynamics on the EoS manifold. As
discussed in Section 5.2, the dynamics on the EoS manifold is given by the map ∆ft+1 = M(∆ft),
where

M(∆f) = ∆f

(
1− 2η∥x∥√

neff
(∆f + y) +

(
η∥x∥√
neff

)2

∆f(∆f + y)

)
. (34)

As demonstrated in Section 5.2, EoS in the UV model follows the period doubling route to chaos,
with the period two cycle marking the onset. Hence, the conditions required for the emergence of
the period two cycle are also necessary conditions for EoS. Consider the two-step dynamics on the
EoS manifold given by the map M2(∆f) := M(M(∆f)). This map has six fixed points (excluding
three fixed points of the map M ) summarized below

∆f∗ =
ηx̃(1− ηx̃y)±

√
η2x̃2(ηx̃y − 1)(3 + ηx̃y)

2η2x̃2
(35)

∆f∗ =
3 + h(η, x̃, y)± ηx̃(±y +

√
2
√

−−5+h(η,x̃,y)+ηx̃y(−2−ηx̃y+h(η,x̃,y))
η2x̃2 )

4ηx̃
. (36)

Here x̃ = ∥x∥√
neff

and h(η, x̃, y) =
√
−7 + x̃yη(2 + x̃yη). For the fixed points to exist, we require the

expressions inside the square root to be non-negative, i.e.,

(
η∥x∥y√

neff
− 1

)(
η∥x∥y√

neff
+ 3

)
≥ 0 =⇒ η ≥ η1 =

√
neff

∥x∥y (37)

η∥x∥y√
neff

(
η∥x∥y√

neff
+ 2

)
− 7 ≥ 0 =⇒ η ≥ η2 =

(
√
32− 2)

2

√
neff

∥x∥y . (38)

As η1 < η2, the necessary condition for the period two cycle to emerge is η > η1 =
√
neff/∥x∥y, which

coincides with the condition obtained earlier in this section.

C.9 SUB-QUADRATIC LOSS

In this section, we detail how the UV model naturally leads to a sub-quadratic loss on the EoS
manifold demonstrated by Ma et al. (2022).
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First, recall that the EoS manifold that connects fixed points II and IV satisfies the relation λ =
2∥x∥(∆f+y)/√neff. Then:

1. Starting Relation: λ =
2∥x∥(∆f + y)√

neff
(39)

2. Solving for ∆f : ∆f =
λ
√
neff

2∥x∥ − y (40)

3. Factoring Out y : ∆f = y

(
λ
√
neff

2∥x∥y − 1

)
(41)

4. Defining ηc : ηc =

√
neff

∥x∥y (42)

5. Expressing ∆f with ηc : ∆f = y

(
ηcλ

2
− 1

)
(43)

6. Computing the Loss: L =
1

2
∆f2 =

y2

2

(
ηcλ

2
− 1

)2

(44)

As we mentioned in the main text, since λ ∼ O(∥θ∥2), the loss is sub-quadratic near its minimum.

D ADDITIONAL RESULTS ON SHARPNESS DYNAMICS

D.1 SHARPNESS DYNAMICS OF NTP NETWORKS
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Figure 10: Training loss and sharpness trajectories of ReLU FCNs in NTP trained on a 5k subset of
CIFAR-10 examples using MSE loss and GD: (a, c) σ2

w = 0.5, (b, d) σ2
w = 2.0.

Figure 10 shows that the sharpness dynamics of FCNs in NTP aligns with the behavior of FCNs in
SP demonstrated in Figure 1.

D.2 THE EFFECT OF BATCH SIZE ON THE FOUR TRAINING REGIMES

In this section, we examine the effect of batch size B on the results presented in the main text. We
find that our conclusions are robust for reasonable batch sizes around B ≈ 512. For even smaller
batch sizes, the dynamics becomes noise-dominated, and separating the inherent dynamics from noise
becomes challenging. This observation further supports the use of SGD to reduce the computational
cost of experiments in the subsequent sections involving CNNs and ResNets.
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Figure 11: Comparison of SGD trajectories with their GD counterpart for a 3-layer FCNs in SP with
σ2
w = 0.5 trained on a subset of CIFAR-10 consisting of 5, 000 training examples with MSE loss.

The learning rate is scaled as η = c/λH
0 and batch sizes (a-c) B = 512, (d-f) B = 128, (g-i) B = 32

are considered. GD trajectories are plotted using solid lines with transparency.

Figure 11 shows that SGD trajectories of FCNs in SP begin to deviate from their GD counterpart
significantly for batch sizes around B ≈ 128. In contrast, for µP networks this deviation begins at a
larger batch size of B ≈ 512 as shown in Figure 12.

D.3 GENERIZABILITY OF THE FOUR TRAINING REGIMES

This section shows that the four regimes are generically observed for different architectures, loss
functions, and datasets. Figure 13 shows training trajectories of CNNs and ResNets trained SGD
with batch size B = 512. Figure 14 show the training trajectories of Transformers trained on the
WikiText-2 dataset using the cross-entropy loss. These results further exemplify that four regimes of
training are generically observed for complex architectures, datasets, and loss functions.

E SHARPNESS-WEIGHT NORM CORRELATION

Section 5.1 reveals that several aspects of the training dynamics are controlled by the fact that, for a
wide variety of initializations, at early times trajectories move closer to the saddle point II, resulting
in an interim decrease in λ (also proportional to the weight norm in this case), before eventually
increasing. This critical point where all parameters are zero also exists in real-world models. We
thus anticipate that in real-world models, the origin of the four training regimes may be related to a
similar mechanism. This would predict a decrease in weight norm as training passes near the saddle
point, followed by an eventual increase.
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Figure 12: Same setting as Figure 11, except we used 3-layer FCNs in µP with σ2
w = 2.0.

Figure 15 validates this hypothesis. During the sharpness reduction and intermediate saturation
regimes, we see a decrease in the weight norm, followed by an increase in the weight norm as the
network undergoes progressive sharpening, following the prediction from the UV model. Similar
correlations between the last layer weight norm and sharpness are utilized by Wang et al. (2022)
to analyze the EoS phase. By comparison, we focus on the correlation between sharpness and
weight norm during early training to attribute the emergence of four regimes to the critical point
corresponding to all parameters being zero. In Appendix E, we provide further evidence for this
correlation between sharpness and weight norm, extending this relationship to CNNs and ResNets.

This section presents additional results for Section 6, further supporting the relationship between
sharpness and weight norm during training.

Figure 16 is an extended version of Figure 15, where we plotted the whole training trajectories and
measured Pearson correlation

Cor(∥θt∥, λH
t /λH

0 ) :=

∑t
t′=1

(
θt′ − θ̄t

) (
λH
t′ /λ

H
0 − (λH/λH

0 )t

)
√∑t

t′=1

(
θt′ − θ̄t

)2∑t
t′=1

(
λH
t′ /λ

H
0 − (λH/λH

0 )t

)2 (45)

Here t ≥ 2 and θ̄t = (
∑t

t′=1 θt′)/t.

Figure 17 shows the weight norm of each layer separately for the experiment in Figure 15. This result
shows a high correlation between weight norm and sharpness through training.

We also confirm these correlations between weight norm and sharpness in CNNs for the experiment
in Figure 13(a, b).
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Figure 13: Training trajectories of (a, b) a 5-layer CNN in SP with n = 64, and (c, d) ResNet-18
with LayerNorm in SP, also with n = 64. Both models are trained on the CIFAR-10 dataset with
MSE loss using SGD. The learning rate is scaled as η = c/λH

0 and batch size is B = 512. In panel
(d), λH

t becomes negative during early training. This is due to the power iteration method returning
the largest eigenvalue by magnitude.
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Figure 14: Training loss, sharpness and test loss trajectories of Transformers trained on Wikitext-2
using cross-entropy loss: (a, b, c) Pre-LN Transformers and (d, e, f) Pre-LN Transformer without last
LayerNorm.

E.1 SETTING THE LAST LAYER TO ZERO ELIMINATES SHARPNESS REDUCTION

Figure 19 shows setting the last layer to zero eliminates sharpness reduction during early training.
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Figure 15: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3, trained on a

subset of CIFAR-10 with 5, 000 examples using GD.
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Figure 16: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3, trained on a

subset of CIFAR-10 with 5, 000 examples using GD.
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Figure 17: Weight Norm of each layer in 3-layer ReLU FCNs (same experiments as Figure 15): (a,
b, c) SP with σ2

w = 1/3. All results are obtained by training on a subset of CIFAR-10 with 5, 000
examples using GD.

F ADDITIONAL PHASE DIAGRAMS OF EOS

This section demonstrates additional phase diagrams of EoS and quantifies the effect of batch size in
the EoS regime. Figure 20 shows phase diagrams of EoS for FCNs trained on CIFAR-10 with MSE
loss using SGD for 10, 000 steps for three different batch sizes. We observe that as the batch size
decreases, λH

t oscillates at a value different from 2/η depending on σ2
w and s. For large σ2

w and small
s, λH favors a smaller value for smaller batch size, which is in agreement with the observation in
Cohen et al. (2021). In contrast, λH can be larger than 2/η for small σ2

w and large s at late training
times.

Figures 21 and 22 show the phase diagrams of EoS for CNNs and ResNets trained on the CIFAR-10
dataset with MSE loss using SGD for 10, 000 steps with learning rate η = c/λH

0 and batch size
B = 512. In contrast to the FCN phase diagrams, these architectures exhibit EoS behavior at smaller
values of s and larger values of σ2

w, indicating their implicit bias towards EoS. Moreover, we observe
in ResNets, that EoS is less sensitive to change σ2

w, likely due to a combination of LayerNorm and
residual connections Doshi et al. (2023).
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Figure 18: Weight Norm of each layer for 5-layer CNNs in SP (same experiments as Figure 13(a, b):
(a) Total weight norm; (b-f) Weight norm of each layer. We see that for c = 16, the initial catapult in
sharpness λH (Figure 13(b)) is accompanied by a catapult in total weight norm. Notably, the total
weight norm and per-layer weight norm, whether catapults (a, c-e) or not (b, f), show a decreasing
trend during the early sharpness decreasing stage, followed by an eventual increase.
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Figure 19: Sharpness trajectories of ReLU FCNs trained on a 5k subset of CIFAR-10 examples using
MSE loss and GD. (a, b, c) SP with σ2

w = 0.5, SP with σ2
w = 2.0 and µP with σ2

w = 2.0. (d, e, f) the
bottom row shows the effect of setting the last layer to zero at initialization. The dashed lines in the
sharpness figures show the 2/η threshold.

It is worth noting that EoS boundaries in these phase diagrams are time-dependent. For instance,
models close to the EoS boundary may eventually reach EoS on training longer (see Figure 13(b)
c = 1.0 for example), causing a shift in the EoS boundary. Nevertheless, models with small learning
rates, large σ2

w, and small s may never show EoS behavior, regardless of training duration, as predicted
by the UV model and seen in Figure 1(e).
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Figure 20: Phase diagram of EoS for 3-layer FCNs trained on CIFAR-10 with MSE loss using SGD
with three different batch sizes: (a, b) B = 512, (c, d), B = 128, and (e, f) B = 32. The color
indicates the value of ηλ̄H/2, where λ̄H is obtained by averaging λH

t over the last 200 steps. Except
for the batch size, all settings are identical to Figure 4. Black dash-dotted lines indicate the phase
boundary ηλ̄H/2 = 1. For clarity, these lines are generated from data smoothed with a Gaussian
kernel.
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Figure 21: Phase diagram of EoS for 5-layer CNNs in SP with width n = 64 trained with MSE loss
using SGD for 10, 000 steps with learning rate η = c/λH

0 and batch size B = 512.

G ROUTE TO CHAOS

G.1 ROUTE TO EOS IN REAL DATASETS

This section presents additional bifurcation diagrams for different architectures and datasets. These
results show the reminiscent of the period-doubling route to chaos observed in different architectures
and datasets. In all figures, we choose the smallest and largest learning rate exhibiting EoS for
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Figure 22: Phase diagram of EoS for ResNet-18 in SP with width n = 64 trained with MSE loss
using SGD for 10, 000 steps with learning rate η = c/λH

0 and batch size B = 512. For s = 1, the
average eigenvalue λ̄H is observed to be less than 2/η. Upon detailed investigation of the trajectories,
we found that λH

t oscillates around a value lower than 2/η. We leave this anomalous behavior as an
observation.

plotting the trajectories and power spectrum. The structured route to chaos in realistic experiments
can be disrupted due to a variety of reasons. Below, we discuss a few of them.

Measurement of only the top eigenvalue of Hessian: In our experiments, we only measured the
top eigenvalue of the Hessian. However, when multiple eigenvalues of Hessian enter EoS, plotting
only the top eigenvalue of Hessian is a projection that could obscure all the structured routes to chaos
that the system may exhibit.

The effect of correlations in real-world datasets: Real-world datasets inherently contain
correlations between different samples (x,y). These correlations can be quantified using the
input-input covariance matrix ΣXX = XXT ∈ Rdin×din and output-input covariance matrices
ΣY X = Y XT ∈ Rdout×din . In Appendix G.2, we find that a key determining factor in observing
route-to-chaos is whether the power spectrum of ΣXX is flat or exhibits power law decay. We show
that power-law decay in the singular values of the ΣXX results in long-range correlations in time and
dense sharpness bands observed in real datasets.
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Figure 23: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of MNIST
with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.

G.2 THE EFFECT OF POWER-LAW TRENDS IN DATA ON SHARPNESS TRAJECTORIES

In this section, we analyze a 2-layer linear FCN trained on the power law dataset described in
Appendix B.1 to understand the origin of long-range correlations in sharpness trajectories and dense
sharpness bands in realistic datasets.

Figure 28 shows the bifurcation diagram, late time trajectories, and the associated power spectrum
of the network trained on the power-law dataset with the same Ax = 1.0 and Ay = 1.0, for four
different combinations of power-law exponents: (i) Bx = 0.0, By = 0.0, (ii) Bx = 1.0, By = 0.0,
(iii) Bx = 0.0, By = 1.0, and (iv) Bx = 1.0, By = 1.0. We observe that a power-law trend to the
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Figure 24: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of Fashion-
MNIST with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of
the corresponding trajectories.
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Figure 25: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of CIFAR-10
with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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Figure 26: 5-layer CNN in SP with width n = 32 trained on a subset of 1000 examples of CIFAR-10
with MSE loss using GD.

singular values of the input matrix results in dense sharpness bands observed in real datasets. It is
worth noting that this is one way to obtain dense sharpness bands and in general, there can be many
other methods.

G.3 ROUTE TO CHAOS IN SYNTHETIC DATASETS

In this section, we analyze the route to chaos in synthetic datasets to gain insights into the dense
sharpness bands in realistic datasets. We considered two datasets, defined as follows:

Teacher-student dataset: Consider a teacher FCN f : Rdin → Rdout with din = 3072, dout = 10,
depth d, and width n = 512 in Standard Paramaterization. Then, we construct a teacher-student
dataset (X,Y ) consisting of P = 5000 examples with xµ ∼ N (0, I) and yµ = f(xµ; θ0). Next,
we train a student FCN with the same depth d and depth n as the teacher FCN on this dataset.
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Figure 27: ResNet-18 in SP with width n = 32 trained on a subset of 1000 examples of CIFAR-10
with MSE loss using GD.

Figures 29 and 30 show the bifurcation diagram, late time sharpness trajectories and the associated
power spectrum of linear and ReLU FCNs trained on the teacher-student task. These figures show
that while linear FCN shows the period-doubling route to chaos, ReLU FCN shows long-range
correlations as observed in real datasets.

Generative dataset: Consider a 5-layer CNN f(x, θ) in SP with n = 64, trained on the CIFAR-10
dataset with MSE loss using SGD with learning rate η = 12/λH

0 and momentum m = 0.9 for 100k
steps. This model achieves a test accuracy of 76.9%. Then, we construct a generative image dataset
(X,Y ) consisting of P = 5000 examples with xµ ∼ N (0, I) and yµ = f(xµ; θ). Next, we train an
FCN in SP with depth d, width n, and weight variance σ2

w = 0.5 on the generated dataset.

Figures 31 and 32 show the bifurcation diagram, late time trajectories and the associated power
spectrum of a 4-layer ReLU FCN with linear and ReLU activations, trained on the generative CIFAR-
10 dataset. We observe that while the linear network shows a period-doubling route to chaos, the
ReLU shows long-range correlations as observed in real-datasets.
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Figure 28: Bifurcation diagrams, late-time sharpness trajectories, and power spectrum of a 2-layer
linear network trained on the power-law dataset for different parameter values: (a-c) Bx = 0.0, By =
0.0, (d-f) Bx = 1.0, By = 0.0, (g-i) Bx = 0.0, By = 1.0, and (j-l) Bx = 1.0, By = 1.0. All power
spectrums are computed using the last 1000 steps of the corresponding trajectories.
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Figure 29: 2-layer linear FCN in µP trained on the teacher-student task. Both power spectrums are
computed using the last 1000 steps of the corresponding trajectories.
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Figure 30: 4-layer ReLU FCNs in µP trained on the teacher-student task. Both power spectrums are
computed using the last 1000 steps of the corresponding trajectories.
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Figure 31: 4-layer linear FCNs in SP with σ2
w = 0.5 trained on the generative CIFAR-10 task

with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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Figure 32: 4-layer ReLU FCNs in SP with σ2
w = 0.5 trained on the generative CIFAR-10 task

with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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